Nonparametric Bayesian Inference with Positive Definite Kernels

Kenji Fukumizu

The Institute of Statistical Mathematics
Graduate University for Advanced Studies

Workshop on Mathematical Approaches to Large-Dimensional Data Analysis
2014 March 13 – 15. ISM, Tokyo
Nonlinearity and high-dimensionality

- Nonlinear / higher-order information in high-dimensional data. Biology, documents, social networks, ….

- Extracting nonlinear information of data
 Common practice:

\[(X, Y, Z) \rightarrow (X, Y, Z, X^2, Y^2, Z^2, XY, YZ, ZX, \ldots)\]

- Computational problem for high dimensional data
 e.g. Up to the 2nd order for 10,000 dim data

 Dim of feature space:

 \[\binom{10000}{1} + \binom{10000}{2} = 50,005,000 (!)\]
Nonparametric inference

- Smoothing kernel: KDE, local polynomial fitting
 \[h^{-d}K(x/h) \]
- Characteristic function: \[E[e^{i\omega X}] \]
- Spline, wavelet, order statistics, etc, etc,

→ Curse of dimensionality
 - Smoothing kernel: usually not strong for high-dimensional data
 - Characteristic function: Integral on high-dimensional spaces is difficult.

→ Kernel method: a new approach to nonparametric inference.
 Computationally efficient, good performance for high-dimensional data in theory and practice.
Outline

1. Introduction
2. Representing probabilities with kernels
3. Conditional probabilities
4. Kernel methods for Bayesian inference
5. Conclusions

References:
Introduction
Kernel methods: a big picture

- Feature space (functional space)

- Space of original data

- Feature map

- Do linear analysis in the feature space.

- $\Phi: \Omega \rightarrow H, \quad x \mapsto \Phi(x)$

- Support vector machine is known most.
- This talk: more recent advances for nonparametric inference.
Positive definite kernel

Def. \(\Omega \): set. \(k : \Omega \times \Omega \to \mathbb{R} \)

\(k \) is positive definite if \(k \) is symmetric, and for any \(n \in \mathbb{N}, x_1, \ldots, x_n \in \Omega \), \(c_1, \ldots, c_n \in \mathbb{R} \), the matrix \(\left(k(X_i, X_j) \right)_{ij} \) (Gram matrix) satisfies

\[
\sum_{i,j=1}^{n} c_i c_j k(X_i, X_j) \geq 0.
\]

- **Examples on** \(\mathbb{R}^m \):
 - Gaussian RBF kernel \(k_G(x, y) = \exp \left(-\frac{1}{2\sigma^2} ||x - y||^2 \right) \) \((\sigma > 0)\)
 - Laplace kernel \(k_L(x, y) = \exp \left(-\alpha \sum_{i=1}^{m} |x_i - y_i| \right) \) \((\alpha > 0)\)
 - Polynomial kernel \(k_P(x, y) = (x^T y + c)^d \) \((c \geq 0, d \in \mathbb{N})\)
Reproducing kernel Hilbert space

Feature space = reproducing kernel Hilbert space (RKHS)

Positive definite kernel k on Ω uniquely defines a RKHS H_k (Aronzajn 1950).

- Function space: functions on Ω.
- Very special inner product: for any $f \in H_k$

$$\langle f, k(\cdot, x) \rangle = f(x) \quad \text{(reproducing property)}$$

$c.f. \; L^2 \; \text{space}$

- Its dimensionality may be infinite (Gaussian, Laplace).

Note: from reproducing property

$$\langle k(\cdot, x), k(\cdot, y) \rangle = k(x, y)$$
Mapping data into RKHS

- Feature Map
 \[\Phi: \Omega \rightarrow H_k, \quad x \mapsto k(\cdot, x) \]

- Data transform
 \[X_1, \ldots, X_n \mapsto \Phi(X_1), \ldots, \Phi(X_n): \text{ functional data} \]
 (artificially made)

- Inner product
 For \(f = \sum_i \alpha_i \Phi(X_i), \ g = \sum_i \beta_i \Phi(X_i) \in H_k \),
 \[
 \langle f, g \rangle = \sum_{i,j=1}^{n} \alpha_i \beta_j k(X_i, X_j) = \alpha^T G_X \beta
 \]

 Computation with Gram matrices of size \(n \).
Covariance matrix

\[
\begin{bmatrix}
X_1^1 & \cdots & X_n^1 \\
X_1^2 & \cdots & X_n^2 \\
\vdots & \ddots & \vdots \\
X_1^p & \cdots & X_n^p
\end{bmatrix}
\begin{bmatrix}
X_1^1 & X_1^2 & \cdots & X_1^p \\
X_2^1 & \cdots & \cdots & \cdots \\
\vdots & \ddots & \ddots & \ddots \\
X_n^1 & X_n^2 & \cdots & X_n^p
\end{bmatrix}
= n\hat{V}_{XX}
\]

Gram matrix

\[
\begin{bmatrix}
\Phi(X_1)^1 & \cdots & \Phi(X_n)^1 \\
\Phi(X_1)^2 & \cdots & \Phi(X_n)^2 \\
\vdots & \ddots & \vdots \\
\Phi(X_1)^p & \cdots & \Phi(X_n)^p
\end{bmatrix}
= (k(X_i, X_j))
\]

where \(\Phi \) is the feature mapping function.
RKHS \mapsto low-cost computation

Linear methods on H_k are computable by Gram matrices of size n (sample size).

- Suitable for high-dimensional data of moderate sample size.
 c.f. power expansion / L^2 basis expansion.

Remark: If sample size n is large, low rank approximation of Gram matrices works well.
 » Incomplete Cholesky factorization (Fine & Scheinberg 2001)
 » Nyström approximation (Williams & Seeger 2000).
Representing probabilities with kernels
Mean on RKHS

\(X \): random variable taking value on a measurable space \(\Omega \), \(\sim P \).

\(k \): pos.def. kernel on \(\Omega \). \(H \): RKHS defined by \(k \).

Def. \textit{kernel mean} on \(H \):

\[
m_P := E[\Phi(X)] = E[k(\cdot, X)] = \int k(\cdot, x)dP(x) \in H_k
\]

- Reproducing expectations
 \[
 \langle f, m_P \rangle = E[f(X)] \quad \text{for any } f \in H_k.
 \]
- Kernel mean can express higher-order moments of \(X \).
 Suppose \(k(u, x) = c_0 + c_1ux + c_2(ux)^2 + \cdots \quad (c_i \geq 0), \quad \text{e.g., } e^{ux} \)
 \[
m_P(u) = c_0 + c_1E[X]u + c_2E[X^2]u^2 + \cdots
c.f. \text{moment generating function}
\]
Def. A bounded pos. def. kernel k is called characteristic if

$$
P \rightarrow H_k, \quad P \mapsto m_P$$

is injective, i.e.,

$$E_{X \sim P}[k(\cdot, X)] = E_{Y \sim Q}[k(\cdot, Y)] \iff P = Q.$$

m_P with a characteristic kernel uniquely determines a probability.

Examples: Gaussian, Laplace kernel

(polynomial: not characteristic.)

c.f. characteristic functions $E[e^{iuX}]$.

Kernel mean \rightarrow advantage in efficient computation.
Nonparametric inference with kernels

Principle: with characteristic kernels,

\[\text{Inference on } P \Rightarrow \text{Inference on } m_P \]

- Two sample test \(\rightarrow m_P = m_Q \)?

 (Gretton et al. JMLR 2012)

- Independence test \(\rightarrow m_{XY} = m_X \otimes m_Y \)?

 – Close connection to \textit{distance covariance}, which is a popular dependence measure (Székely, Rizzo, Bakirov 2007)

 (Sejdinovic, Sriperumbudur, Gretton, Fukumizu, AoS 2013)

- Bayesian Inference \(\rightarrow \) this talk.
Covariance

\((X, Y)\) : random vector taking values on \(\Omega_X \times \Omega_Y\).

\((H_X, k_X), (H_Y, k_Y)\): RKHS on \(\Omega_X\) and \(\Omega_Y\), resp.

Def. (uncentered) covariance operators \(C_{YY} : H_X \to H_Y, C_{XX} : H_X \to H_X\)

\[
C_{YY} = E[\Phi_Y(X)\Phi_X(Y)^T], \quad C_{XX} = E[\Phi_X(X)\Phi_X(X)^T]
\]

Reproducing property

\[
\langle g, C_{YY}f \rangle = E[f(X)g(Y)] \quad \text{for all } f \in H_X, g \in H_Y.
\]

Simply, extension of covariance matrix (linear map) \(V_{YX} = E[XY^T]\)
Empirical estimators

Given \((X_1, Y_1, \ldots, X_n, Y_n) \sim P\), i.i.d.,

Empirical Estimator:

\[
\hat{m}_X = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, X_i), \quad \hat{C}_{YX} f = \frac{1}{n} \sum_{i=1}^{n} k_Y(\cdot, Y_i)\langle k(\cdot, X_i), f \rangle
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} k_Y(\cdot, Y_i) f(X_i)
\]

- Typically Gram matrix expression is obtained.

 e.g. \[\| \hat{C}_{YX} \|^2_{HS} = Tr [G_X G_Y] \]

- \(\sqrt{n}\)-consistency (in norm) and CLT are guaranteed. (Berlinet & Thomas-Agnan 2004, Gretton et al. 2005)
Conditional probabilities
Conditional kernel mean

- X, Y: Gaussian random vectors ($\in R^m, R^\ell$, resp.)
 \[
 \arg\min_{A \in R^{\ell \times m}} \int \|Y - AX\|^2 dP(X, Y) = V_{YX} V_{XX}^{-1}
 \]
 \[E[Y|X = x] = V_{YX} V_{XX}^{-1} x\]

- With characteristic kernels, for general X and Y,
 \[
 \arg\min_{F \in H_X \otimes H_Y} \int \|\Phi_Y(Y) - \underbrace{F(X)}_{H_Y}\|^2 dP(X, Y) = C_{YX} C_{XX}^{-1}
 \]
 \[\langle F, \Phi_X(X) \rangle\]
 \[E[\Phi(Y)|X = x] = C_{YX} C_{XX}^{-1} \Phi_X(x)\]

Representing the conditional probability of Y given $X = x$. In practice, regularized inverse must be used.
– How to use the conditional kernel mean?

• Nonparametric estimator of regression

\[
\hat{E}[g(Y)|X = x] = k_x^T(x)(G_x + \varepsilon_n I_n)^{-1}g
\]

\[
k_x(\cdot) = \left(k_x(\cdot, X_1), ..., k_x(\cdot, X_n)\right)^T \in H^n_x,
\]

\[
g = \left(g(Y_1), ..., g(Y_n)\right)^T \in R^r
\]

\[\varepsilon_n: \text{regularization coefficient}\]

c.f. Gaussian process / kernel ridge regression

• Conditional independence (Fukumizu et al. JMLR 2004, AoS 2009, NIPS 2010)

• Bayesian inference (discussed later)

– Note: for consistency, kernel is fixed, regularization coefficient \(\varepsilon_n \to 0 \).
c.f. smoothing kernel.
Comparison: nonparametric regression

Assume Y is 1 dim., and kernel is used only for X

$$\hat{E}[Y|X = x] := k_X^T(x)(G_X + \varepsilon_n I_n)^{-1}Y$$

Gaussian process / kernel ridge regression

- Consistency 1 (Ebets & Steinwart 2011)

If k_X is Gaussian, and $E[Y|X] \in W_2^\alpha(P_X)$, (under some technical assumptions) for any $\rho > 0$,

$$E|\hat{E}[Y|X] - E[Y|X]|^2 = O_p\left(n^{-\frac{2\alpha}{2\alpha+m}+\rho}\right) \quad (n \to \infty)$$

Note: $O_p\left(n^{-\frac{2\alpha}{2\alpha+m}}\right)$ is the optimal rate for a linear estimator (Stone 1982).

* $W_2^\alpha(P_X)$: Sobolev space of order α.

21
Consistency 2 (case: $E[Y|X] \in H_X$)

Suppose $E[Y|X] \in R(C_{XX}^\beta)$ with $\beta \geq 0$, Then, with a characteristic kernel k_X,

$$\|\hat{E}[Y|X] - E[Y|X]\|_{H_X}^2 = O_p \left(n^{-\min\left\{\frac{1}{2}, \frac{\beta}{\beta+1}\right\}}\right)$$

- The rates do not depend on m (dim of X), since the analysis can be done within the RKHS.
- $\|\cdot\|_{H_X}$ is stronger than $\|\cdot\|_{sup}$. Thus,

$$\sup_x |\hat{E}[Y|X = x] - E[Y|X = x]| = O_p \left(n^{-\min\left\{\frac{1}{4}, \frac{\beta}{2\beta+2}\right\}}\right)$$
Numerical studies

Comparisons

\[Y = \frac{1}{1.5 + ||X||^2} + Z, \quad X \sim N(0, I_d), \quad Z \sim N(0, 0.1^2) \]

\(n = 100, \quad 500 \text{ runs} \)

- Kernel ridge regression with Gaussian kernel
- Local linear regression with Epanechnikov kernel (‘locfit’ in R is used)
- Bandwidth parameters are chosen by CV.
Kernel method for Bayesian inference
Kernel realization of Bayes’ rule

- Bayes’ rule

\[q(x|y) = \frac{p(y|x)\pi(x)}{q(y)}, \quad q(y) = \int p(y|x)\pi(x)dx. \]

\[\Pi: \text{prior with p. d. f } \pi \]
\[p(y|x): \text{conditional probability (likelihood).} \]

- Kernel realization:

 Goal: estimate the kernel mean of the posterior

\[m_{\text{post}|y_*} = \int k_x(\cdot, x)q(x|y_*)dx \]

given

- \(m_\Pi: \text{kernel mean of prior } \Pi, \)
- \(C_{XX}, C_{YX}: \text{covariance operators for } (X, Y) \sim P, \)

 where \(P \) is the joint probability to give \(p(y|x) \) by conditioning.
Kernel Bayes’ Rule
(Fukumizu, Song, Gretton JMLR2014)

Input: \((X_1, Y_1), \ldots, (X_n, Y_n) \sim P\) (to give cond. probability).
\[
\hat{m}_\Pi = \sum_{j=1}^{\ell} y_j \Phi_X(U_j) \quad \text{(prior) a consistent estimator of } m_\Pi.
\]

1. **[Expression of** \(q(x, y) = p(y|x)\pi(x)\): \(\leftarrow\) regression \(((Y, X), U_y) \mid X\])**

 Compute \[
 \Lambda = \text{Diag}\left[(G_X/n + \epsilon_n I_n)^{-1}G_{XY} \right]
 \]

2. **[Conditioning:** \(\leftarrow\) regression with \((W, Z) \sim q(x, y))**

 Compute \[
 R_{W|Z} = \Lambda G_Y \left((\Lambda G_Y)^2 + \delta_n I_n \right)^{-1} \Lambda.
 \]
 * \(\epsilon_n, \delta_n\): regularization coefficients

Output: estimator for kernel mean of posterior given observation \(y_*\)

\[
\hat{m}_{post|y_*} (\cdot) = k_X (\cdot)^T R_{W|Z} k_Y (y_*) = \sum_{i=1}^{n} w_i (y_*) k_X (\cdot, X_i)
\]
Inference with KBR

- Weighted sample expression

\[
\hat{m}_{\text{post}|y_*}(\cdot) = \sum_{i=1}^{n} w_i(y_*) k_X(\cdot, X_i)
\]

Equivalent to the kernel mean of

\[
\sum_{i=1}^{n} w_i(y_*) \delta_{X_i}
\]

(\(\delta_x\): Dirac’s delta)

which is a signed measure (not necessarily a probability).

Some weights may be negative.

- \(\sum_{i=1}^{n} w_i(y_*) \rightarrow 1 \ (n \rightarrow \infty)\) in probability under mild assumption.
How to use?

- **Expectation:** if \(\frac{\pi}{\mu_X} \in \text{Range}(C_{XX}) \) and \(f \in L^2(P_X) \) satisfies
 \[
 \int f(x)p(y|x)\pi(x)dx \in \text{Range}(C_{YY}),
 \]
 \[
 \sum_{i=1}^{n} w_i(y_i)f(X_i) \rightarrow \int f(x)q(x|y_*)dx, \quad (n \rightarrow \infty). \quad (\text{consistent})
 \]

 e.g.
 - \(f(x) = I_B(x) \): \(\sum_{X_i \in B} w_i \rightarrow \text{posterior prob. of set } B \).
 - \(f(x) = x^r \): \(\sum_i w_i X_i^r \rightarrow r\text{-th moment of posterior} \).
 (More general discussions in Kanagawa and Fukumizu, AISTATS 2014)

- **Point estimation** (quasi-MAP):
 \[
 \hat{x} = \arg\min_x \| \hat{m}_{post|y_*} - \Phi_X(x) \|_{H_X}
 \]
 Solved numerically
Completely nonparametric way of computing Bayes rule.

- No parametric models are needed, but data or samples are used to express the probabilistic relations.
- Bayesian inference is done with matrix computation.

Examples:

1. Nonparametric HMM

\[
p(X, Y) = p(X_0, Y_0) \prod_{t=1}^T p(Y_t | X_t) q(X_t | X_{t-1})
\]

\[p(Y_t | X_t) \text{ and/or } q(X_t | X_{t-1})\] are unknown, but data are available.

2. Explicit form of likelihood \(p(y | x) \) or prior \(\pi \) is unavailable, but sampling is possible.

\textit{c.f.} Approximate Bayesian Computation (ABC)

\textit{(Kernel ABC: Nakagome, Mano, Fukumizu 2013)}
Practical example

State $X_t \in \mathbb{R}^3$: 2-D coordinate and orientation of a robot
Observation Y_t: image sequence.

Training sample $(X_t, Y_t) : t = 1, ..., T$

Estimate the location of a robot from image sequences

- Observation: $p(Y_t | X_t)$
 Very difficult to model with a simple parametric model.
 \rightarrow KBR!
Convergence rate

Theorem (Fukumizu, Song, Gretton 2012)

Let \(f \in H_X, (Z, W) \sim Q \) with p.d.f. \(p(y|x)\pi(x) \).

Assumptions:
- \(\|\hat{m}_\Pi - m_\Pi\|_{H_X} = O_p(n^{-\alpha}) \) for some \(0 < \alpha \leq 1/2 \).
- \(\pi(x)/p_X(x) \in \text{Range} \left(C^{1/2}_{XX} \right) \) for some \(\beta \geq 0 \).
- \(E[f(Z)|W = \cdot] \in \text{Range}(C^2_{XX}) \) for some \(\nu \geq 0 \).

Then, with \(\varepsilon_n = n^{-2\alpha/3} \) and \(\delta_n = n^{-8\alpha/27} \), for any \(y \),

\[
\mathbf{f}_X^T R_{X|Y} \mathbf{k}_Y (y) - E[f(Z)|W = y] = O_p(n^{-8\alpha/27}) \quad (n \to \infty).
\]

- Remark: the rate depending on the smoothness of the functions \(\pi/p_X \) and \(E[f(Z)|W = \cdot] \) is also available.
- If \(\alpha = 1/2 \), the rate is \(n^{-4/27} \) (very slow, unsatisfactory....).
Choice of kernel and hyperparameter

- Parameters to be chosen for kernel methods: kernel (parameters in kernel) and regularization parameter for regression and KBR.

- In general, cross-validation is recommended, if possible.
 - Straightforward in supervised setting.
 - Make a relevant supervised problem and apply CV (e.g. HMM).

Supports
- CV has been used successfully for SVM.
- The rate $O_p(n^{-\frac{2\alpha}{2\alpha+m}+\rho})$ for the regression is attained with parameter choice by validation (Eberts & Steinwart 2011).
Example: KBR for nonparametric HMM

- Assume:
 \[p(y_t|x_t) \text{ and/or } q(x_t|x_{t-1}) \text{ is not known.} \]
 But, data \((X_t,Y_t)_{t=0}^T\) is available in training phase.

 Examples:
 - Measurement of hidden states is expensive,
 - Hidden states are measured with time delay.

- Testing phase (e.g., filtering, e.g.):
 given \(\hat{y}_0,\ldots,\hat{y}_t\), estimate hidden state \(x_s\).
 \[
 \Rightarrow \text{KBR point estimator: } \arg\min_{x_s} \| \hat{m}_{x_s} | \hat{y}_0,\ldots,\hat{y}_t - \Phi(x) \|_{H_X}
 \]

- General sequential inference uses Bayes’ rule \(\Rightarrow\) KBR applied.
Numerical examples

(a) Noisy rotation

\[
\begin{pmatrix} u_t \\ v_t \end{pmatrix} = \begin{pmatrix} \cos(\theta_t) \\ \sin(\theta_t) \end{pmatrix} + Z_t, \quad \theta_{t+1} = \arctan\left(\frac{v_t}{u_t}\right) + 0.3,
\]

\[Y_t = (u_t, v_t)^T + W_t,\]

\[Z_t, W_t \sim N(0, 0.04I_2) \text{ (i.i.d.)}\]

Filtering with the point estimator by KBR.

KBR does NOT know the dynamics, while the EKF and UKF use it.
(b) Noisy oscillation

\[
\begin{align*}
\begin{pmatrix} u_t \\ v_t \end{pmatrix} &= (1 + 0.4 \sin(8\theta_t)) \begin{pmatrix} \cos(\theta_t) \\ \sin(\theta_t) \end{pmatrix} + Z_t, \\
\theta_{t+1} &= \arctan \left(\frac{v_t}{u_t} \right) + 0.4,
\end{align*}
\]

\[
Y_t = (u_t, v_t)^T + W_t,
\]

\[
Z_t, W_t \sim N(0, 0.04I_2) \text{ (i.i.d.)}
\]
Camera angles

- Hidden X_t: angles of a video camera located at a corner of a room.
- Observed Y_t: movie frame of a room + additive Gaussian noise.
- X_t: 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim.).
- The first 1800 frames for training, and the second half for testing.

<table>
<thead>
<tr>
<th>noise</th>
<th>KBR (Trace)</th>
<th>Kalman filter(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^2 = 10^{-4}$</td>
<td>0.15 ± 0.01</td>
<td>0.56 ± 0.02</td>
</tr>
<tr>
<td>$\sigma^2 = 10^{-3}$</td>
<td>0.21 ± 0.01</td>
<td>0.54 ± 0.02</td>
</tr>
</tbody>
</table>

Average MSE for camera angles (10 runs)

To represent SO(3) model, Tr[AB$^{-1}$] for KBR, and quaternion expression for Kalman filter are used.
Robot localization (Re)

COLD (COsy Localization Dataset, IJRR 2009)

State $X_t \in \mathbb{R}^3$: 2-D coordinate and orientation of a robot
Observation Y_t: image sequence (SIFT feature, 4200dim)

Training sample $(X_t, Y_t): t = 1, \ldots, T$

Estimate the location of a robot from image sequences

- Observation: $p(Y_t | X_t)$ difficult to model.
 \rightarrow KBR
- State transition: linear Gaussian
 Kernel Monte Carlo,
 (Kanagawa, Nishiyama, KF. 2013)
NAI: naïve method (closest image in training data)

NN: PF + K-nearest neighbor (Vlassis, Terwijn, Kröse 2002)

KBR: KBR + KBR

KMC: KBR + Monte Carlo
training sample
= 200

⊕: true location

○: estimate

red (+)/ blue (-) circles: weights on the training sample
Conclusions and discussions

“Kernel methods”: useful, general tool for nonparametric inference.

- Suitable for high-dimensional data.
 - Efficient computation with Gram matrices.
 - Good performance for high-dimensional data.
- Can be used for representing probabilities and conditional probabilities.
- “Nonparametric” way for general Bayesian inference with matrix computation.

Theoretical study is yet to be done

- How can we justify the good performance of high-dimensionality theoretically?
 Large dimensional asymptotics?
Collaborators

Arthur Gretton (UCL/MPI)

Bernhard Schölkopf (MPI)

Yu Nishiyama (ISM)

Le Song (Georgia Tech)

Motonobu Kanagawa (GUAS/ISM)