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Intro

Grammatical Inference

e Algorithmic learning of formal languages
e String languages
e Tree languages ...

e More theoretical rather than heuristic

e Motivations/Applications:

e Mathematical model of natural language acquisition
e Grammar extraction from tagged/untagged corpora
e Biological sequences
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Prelim Congruential CFG — Primal FCP — Dual

Regular Language Learning and CFL Learning

e Fruitful positive results on the learning of Regular languages

e Query learning

e PAC learning under the simple distribution

o l|dentification in the limit from positive and negative data
e Learning interesting subclasses from positive data only

o Nice properties of Regular languages
e Mpyhill-Nerode Theorem — Canonical DFA
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Regular Language Learning and CFL Learning

e Fruitful positive results on the learning of Regular languages

e Query learning

e PAC learning under the simple distribution

o l|dentification in the limit from positive and negative data
e Learning interesting subclasses from positive data only

o Nice properties of Regular languages
e Mpyhill-Nerode Theorem — Canonical DFA
e Few positive results on CFL learning

e No nice mathematical properties
e No canonical automata/grammars
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Regular Language Learning and CFL Learning

Fruitful positive results on the learning of Regular languages

e Query learning
e PAC learning under the simple distribution
o l|dentification in the limit from positive and negative data
e Learning interesting subclasses from positive data only
Nice properties of Regular languages

e Mpyhill-Nerode Theorem — Canonical DFA
Few positive results on CFL learning before this century

e No nice mathematical properties
e No canonical automata/grammars

Distributional Learning for CFLs

SCFTG



Intro

Distributional Learning

e Substitutable CFLs are identifiable in the limit from positive
data only (Clark and Eyraud 2007)

e Query learning of c-deterministic/congruential CFGs
(Shirakawa & Yokomori 1995 / Clark 2010)

e Quite rich subclasses are identifiable in the limit from positive
data and MQs (Clark et al. 2009, Clark 2010, Yoshinaka 2010,
2011, 2012 etc.)

e PAC learnability of Unambiguous NTS languages (Clark 2006)
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Intro

Distributional Learning

e Substitutable CFLs are identifiable in the limit from positive
data only (Clark and Eyraud 2007)

e Query learning of c-deterministic/congruential CFGs
(Shirakawa & Yokomori 1995 / Clark 2010)

e Quite rich subclasses are identifiable in the limit from positive
data and MQs (Clark et al. 2009, Clark 2010, Yoshinaka 2010,
2011, 2012 etc.)

e PAC learnability of Unambiguous NTS languages (Clark 2006)
Heuristics has preceded Theory

(Brill et al. 1990, Adriaans 1999, van Zaanen 2000, Klein &
Manning 2002, etc.)
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Prelim.

Notation

A Context-Free Grammar
A tuple (X, V, I, R)
e Y : finite set of terminal symbols
e V: finite set of nonterminal symbols
e | C V: set of initial symbols
e R: set of productions

Bottom-up derivation:
e aNy = afyif N —-p3€P
e LIGN)={weX"|NS>w}
o L(G) =Use £(G, S)
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Context

A context is just a pair of strings /CIr with /,r € L.
e (/Or)® u = lur,
e aallbbb ® aab = aaaabbbb,

SCFTG
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Context

A context is just a pair of strings /CIr with /,r € L.
e (/Or)® u = lur,
e aallbbb ® aab = aaaabbbb,
e Llou={/0Or|lurelL}and Lo (IOr)={u|lurelL},
e Special context [I:

e JOu=u,
e ycl <— Oelou.



Prelim. Congruential CFG — Primal FCP — Dual SCFTG

Context

A context is just a pair of strings /CIr with /,r € L.
e (IOr)® u=lur,
e aallbbb ® aab = aaaabbbb,
e Llou={/0Or|lurelL}and Lo (IOr)={u|lurelL},
e Special context [I:
e JOu=u,
e uel «— Oelou
Syntactic congruence
u= v iff Lou=LOov

Let [u ={veX*|v=Lu}.



Prelim.

Example

For L={a"b"|n>0},

O a0 Ob aldbb abb
A 1 0 0 0 0
a 0 O 1 1 1
b 0 1 0 0 0
ab 1 0 0 0 0
aab |0 O 1 1 0
aaabb| 0 O 1 1 0

L @ aab = L @ aaabb = {Ob,a0lbb, ..., a*Ob 1 ...}
[aab] = {a*T1bK | k > 1}.
VIOr, IOr ® aaabb € L iff IOr ® aab € L iff IOr ® akt1bk e L.



Intro Prelim. Congruential CFG — Primal FCP — Dual SCFTG

Keywords of Distributional Learning

e Observe, model, exploit the relation between
“substrings” and “contexts”
(Observation table indexed by strings and contexts)

e Objectivity

e Symmetric approaches
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Outline

Learning Congruential Context-Free Grammars
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Congruential CFG — Primal

Congruential CFGs [Clark 2010]

Congruential context-free grammars

For every nonterminal N of G, if u,v € L(G, N), then u =) v.

e If G is congruential, and we binarize G, then the result is
congruential.

e So we assume productions are all like N — PQ or N — a.

Examples

° L:{a”b”|n20}with 51—\ Sy — aSyb, S, — ab.
e Si: LoXx={0,a0b,ab0,0ab,...} ={uvOv |uvel}
o S L@oab=L@aabb={0,al0b,aallbb,...} ={a"0b" |ne N}

e Dyck grammar: S — S5, S — aSh, S — A.

e Every regular language is generated by a congruential CFG
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Congruential CFGs [Clark 2010]

Congruential context-free grammars

For every nonterminal N of G, if u,v € L(G, N), then u =) v.

e If G is congruential, and we binarize G, then the result is
congruential.

e So we assume productions are all like N — PQ or N — a.

Examples not generated by congruential CFGs

e Palindromes: {w | w = wf}.
e {a"b" |n>0}U{a"b?* |n>0}
e {a"b" | m<n}
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Clark 2010 (modified)

Congruential CFGs are uniformly identifiable in the limit from
positive data and membership queries.
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Congruential CFG — Primal

Clark 2010 (modified)

Congruential CFGs are uniformly identifiable in the limit from
positive data and membership queries.

Identification in the limit

e Input: Infinite sequence of the elements wy, wy, ...
of the learning target L, in an arbitrary order

e Each time the learner gets an example w;, it outputs a
grammar G; as her conjecture. After some point the
conjecture should be stable and represent the target.

Membership Queries (MQs)
e Q:wex*?
e A: Yes (if we L,);
No (otherwise).
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Grammar Construction

D C X*: finite set of examples.
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Grammar Construction

D C ¥*: finite set of examples.

The learner's hypothesis Gk r is computed from two sets
e K C Sub(D), where Sub(D) ={wu |3/, r. lure D},
e F C Con(D), where Con(D) = {/0r | Ju. lur € D }.
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Congruential CFG — Primal

Grammar Construction

D C ¥*: finite set of examples.
The learner's hypothesis Gk r is computed from two sets

e K C Sub(D), where Sub(D) ={wu |3/, r. lure D},

e F C Con(D), where Con(D) = {/0r | Ju. lur € D }.

GKJ: = (Z, Vi, Ik, Rx U RKJ:) where
Vik ={[v] |lue K}

We want [[u]] to generate all and only v s.t. v =, u,
i.e., L(Gk F,[u]]) = [u].
Congruential context-free grammars

If u,v € L(G,N), then u=,) v.
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Congruential CFG — Primal

Grammar Construction
D C ¥*: finite set of examples.
The learner's hypothesis Gk r is computed from two sets
e K C Sub(D), where Sub(D) ={wu |3/, r. lure D},
e F C Con(D), where Con(D) = {/0r | Ju. lur € D }.
Gk,F = (X, Vk, Ik, Rk U Rk F) where
o Vk ={lu] [ueK}
o Ik ={lu] | ue L} (by MQ),

o Rk ={[a]l —alaeXu{At}u{lluv] — [vllv] | uv e K},

* Rep={lv] = IVl | (Lkou)NnF =(L.ov)NF},
with the aid of Membership Queries.
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Congruential CFG — Primal

Monotonicity
Hypothesis grammar: Gk ¢
e Vk ={[ul [ue K}
o Ik ={[ull | ue L} (by MQ),

o Rk ={[all —alae>XU{At}u{lluv] — [vllv] | uv e K},

e Rur={lul =Vl | (Lkou)yNnF=(L,ov)NF}.

Monotonicity

If K C K’ then every rule of Gy r is a rule of Gk/ F,
SO E(GK,F) C E(GK/,F)-

Anti-Monotonicity

If F C F’ then every rule of Gk f/ is a rule of Gy F,
SO ,C(GK,F) D) [,(GKJ:/).

15/ 46



Congruential CFG — Primal

Chain Rule

Rkr={lu]l = [v] | (Lsou)nF=(L,ov)NF}

O a0 Ob
A 1 0 0
a 0 O 1 We have
b 0o 1 0 [a]] < [[aab] € Rk, F
ab 1 0 0 as they look congruent.
aab | 0 O 1
abb| 0 1 0

Anti-Monotonicity
If F C F' then Rk F 2 Rk fr, and thus £(Gk r) 2 L(Gk ).
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Congruential CFG — Primal

Chain Rule

Rer={lu] = Ivl | (Lsou)nF=(L,ov)NF}

0O a0 Ob Oabb
A 1 0 0 0
a 0 O 1 1
b 0 1 0 0 NO [[a]] < [aab]] any more.
ab 1 0 0 0
aab| 0 O 1 0
abb| 0 1 0 0

Anti-Monotonicity
If F - F' then RK,F D) RKyF/, and thus ;C(GKJ:) D) AC(GKJ:/).
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Congruential CFG — Primal

Example

0 a0 Ob Oab Oabb aabll
A 1 0 0 1 0 0
a 0 O 1 0 1 0
b 0 1 0 0 0 1
ab 1 0 0 0 0 0
aab 0 O 1 0 0 0
abb 0 1 0 0 0 0
aabb | 1 0 0 0 0 0
[aabb] € Ik

[aabb]| =[a]|[[abb]l = [[a]l[ab]l[6]l = a[[ab]|b = a[[aabb]|b = aaabbb
aaabb € L(Gk ), infact L(Gkr)={a"b"|n>0}
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Intro Prelim Congruential CFG — Primal FCP — Dual SCFTG

Soundness
We have [[u]] — [v] if (L@ u)NF=(L.@Vv)NF.
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Soundness

We have [[u]] — [v] if (L@ u)NF=(L.@Vv)NF.
We say [[u]] — [[v] is incorrect iff L, @ u # L, @ v, i.e., [u] # [v].
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Soundness
We have [[u]] — [v] if (L@ u)NF=(L.@Vv)NF.
We say [[u]] — [[v] is incorrect iff L, @ u # L, @ v, i.e., [u] # [v].

Every K admits finite F s.t. Gk ¢ has no incorrect rules.

Proof. For each u,v € K, if L, @ u # L, @ v, then there is
I0Or € (Ly @ u)A(Ly @ v). Put /Or into F.
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Soundness
We have [[u]] — [v] if (L@ u)NF=(L.@Vv)NF.

We say [[u]] — [v] is incorrect iff L, @ u # L, @ v, i.e., [u] # [v].

Every K admits finite F s.t. Gk ¢ has no incorrect rules.

Proof. For each u,v € K, if L, @ u # L, @ v, then there is
I0Or € (Ly @ u)A(Ly @ v). Put /Or into F.

If Gk r has no incorrect rules, £(Gk r) C L.

Proof.
efla] —a -~ a€]a],
o [uvl — [ellvl -~ [uv] 2 [u]lv],
o [u]l = Ivl ~--- [u] = [v] since the rule is correct,

Hence [[u]] = v implies v € [u].
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Congruential CFG — Primal

Soundness
We have [[u]] — [v] if (L@ u)NF=(L.@Vv)NF.

We say [[u]] — [v] is incorrect iff L, @ u # L, @ v, i.e., [u] # [v].

Every K admits finite F s.t. Gk ¢ has no incorrect rules.

Proof. For each u,v € K, if L, @ u # L, @ v, then there is
I0Or € (Ly @ u)A(Ly @ v). Put /Or into F.

If Gk r has no incorrect rules, £(Gk r) C L.

Proof.
efla] —a -~ a€]a],
o [uvl — [ellvl -~ [uv] 2 [u]lv],
o [u]l = Ivl ~--- [u] = [v] since the rule is correct,

Hence [[u]] = v implies v € [u].
Particularly for [[u]] € Ik, we have v € [u] C L,.
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Congruential CFG — Primal

Completeness

Suppose L, is generated by a congruential CFG G,.

If KN L(G,a)# D for every rule N — « of G,, then
L, C L(GkF).

Proof. For a rule N — PQ of G, let vy, vp,vg € K be the
shortest in L( Gy, N), L(G., P), L(Gy, Q), resp. Moreover we have
upug € KN L(Gy, PQ).

Gk.F has [[vy] =[ve][ve] since

[vn] — [upuql by [vn] = [upuq],
[upuell — [urllluell

[up]l — [ve]l by [up] = [vp],

[uQll — [vel by [ue] = [val.
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Intro Prelim Congruential CFG — Primal FCP — Dual SCFTG

Learning Algorithm

Data: Positive data wy, ws, ... of L,; -
Result: Sequence of CFGs Gy, Go, ... incol”eC‘
let K:=@; F =0, G := Gk F; rues

A no ‘4

forn=1,2,... do K incorrect
let D:={w,...,wy}; Comple L(Gk.r) 2 L. fules
let F := Con(D); ompiete £(GiF) = L
if D¢ £(G) then o
let K := Sub(D); complete| Wrong
end if L(Gk,F) C L.
output G= Gk F as Gp; .
end for F

20 /46



Congruential CFG — Primal

Distributional Learning

e Observe, model, exploit the relation between
“substrings” and “contexts”

e [Primal] Learner for congruential CFGs uses Strings for
nonterminals and Contexts for removing incorrect rules,

e [Dual] Use contexts for nonterminals and strings for removing
incorrect rules.

21 /46



Congruential CFG — Primal

Distributional Learning

e Observe, model, exploit the relation between
“substrings” and “contexts”

e [Primal] Learner for congruential CFGs uses Strings for
nonterminals and Contexts for removing incorrect rules,

e [Dual] Use contexts for nonterminals and strings for removing
incorrect rules.

e Further generalization: each nonterminal is represented by
sets rather than a single object.

Primal Dual
Nonterminal | string / set of strings | context / set of contexts
Rule validation contexts strings
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Intro Prelim. Congruential CFG — Primal FCP - Dual SCFTG

Outline

Finite Context Property — Dual Approach
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Congruence on Sets

We have defined ...
e [Lr®u=lur,
e L,ou={I0r|(IOr)ouCL,},
e L,olOr={u|(/Or)oucC L}
ceu= viffL,ou=L,0v.
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Congruence on Sets

We have defined ...
e [Lr®u=lur,
e L,ou={I0r|(IOr)ouCL,},
e L,olOr={u|(/Or)oucC L}
ceu= viffL,ou=L,0v.

For string set S and context set C, define
e COS={lur|lOreCandueS}
e L,oS={I0r|(IO)®S CL,},
e L,oC={u|CoOuClL,},
e S=, TiffL,oS=L.0T.

FCP - Dual

SCFTG
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Example
L.={a"b"|n>0}.

O a0 Ob aldb aldbb [Oabb

1 0 0 1 0 0
a 0 O 1 0 1 1
b 0 1 0 0 0 0
ab 1 0 0 1 0 0
aab 0O O 1 0 1 0
aaabb | 0 0 1 0 1 0

FCP - Dual

o L, @a={0b,aldbb,0abb,...,a'0abH+1 1},

o L, ®aab=L,®{aab,a} = {Ob,adbb,...,akOpk+1 ...
e {aab} =, {a,aab,aaabb} #£,, {a}.

I3
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Intro Prelim Congruential CFG — Primal FCP - Dual SCFTG

Learning Target

k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff
every nonterminal N admits a finite set S,y C X* such that

o |Sn| <k,
° SN E[j(G) ﬁ(G, /V).

(Every congruential CFG has the 1-KP but not vice versa.)
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k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff

every nonterminal N admits a finite set Sy C X* such that
o |Sn| <k,
* Sy =¢6) £L(G, N).

(Every congruential CFG has the 1-KP but not vice versa.)

k-Context Property (Clark 2010)

A CFG G has the k-CP iff

every nonterminal N admits a finite set Cy C L*[J¥X* such that
o |Cn| <k,
e L(G)2 Cy = L(G, N).
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FCP — Dual
Learning Target

k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff

every nonterminal N admits a finite set Sy C X* such that
o |Sn| <k,
* Sy =¢6) £L(G, N).

(Every congruential CFG has the 1-KP but not vice versa.)

k-Context Property (Clark 2010)

A CFG G has the k-CP iff

every nonterminal N admits a finite set Cy C L*[J¥X* such that
o |Cn| <k,
e L(G)2 Cy = L(G, N).
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FCP - Dual

Examples

e Every grammar G with a single nonterminal S has the 1-CP,
since the initial symbol S is characterized by Cs = {O0}:
L(G)oO=L(G)=L(G,S).

e Eg. {a"b" | n>0},
Palindrome {w € =* | w = wR },
Dyck language etc.
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Examples

e Every grammar G with a single nonterminal S has the 1-CP,
since the initial symbol S is characterized by Cs = {O0}:
L(G)oO=L(G)=L(G,S).

e Eg. {a"b" | n>0},
Palindrome {w € =* | w = wR },
Dyck language etc.
e {a"b" | n € N}U{a"b?" | n € N} has the 2-CP but not 1-CP.
° 51 — aSlb, 51 — )\,
52 — 852bb, 52 — A\
o Cs, = {0,a0b} and Cs, = {01, aClbb}.
e Note {alJb} does not characterize £(G, 1)
since abbb € (L @ aldb) — L(G, 51).
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Examples

e Every grammar G with a single nonterminal S has the 1-CP,
since the initial symbol S is characterized by Cs = {O0}:
L(G)oO=L(G)=L(G,S).

e Eg. {a"b" | n>0},
Palindrome {w € =* | w = wR },
Dyck language etc.
e {a"b" | n € N}U{a"b?" | n € N} has the 2-CP but not 1-CP.
° 51 — aSlb, 51 — )\,
52 — 852bb, 52 — A\
o Cs, = {0,a0b} and Cs, = {01, aClbb}.
e Note {alJb} does not characterize £(G, 1)
since abbb € (L @ aldb) — L(G, 51).

e Every regular language has the 1-CP.

26 /46
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Theorem

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is “efficiently” identifiable in the
limit from positive data and MQs.

(k is known to the learner)

27 /46
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Prelim Congruential CFG — Primal

Grammar Construction

D C L,: given set of positive examples.
e F C Con(D) and K C Sub(D).
GF,K = (Z, Vg, I, RF U RF,K) where
e Ve={[IC]|CCFand|C|<k},
We want £(Gf k, [C]]) =L, C

FCP - Dual

SCFTG
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Grammar Construction

D C L,: given set of positive examples.
e F C Con(D) and K C Sub(D).
Gr.k = (X, VF, I, RF U RF k) where
e Ve ={[[C]]| CCFand|C|<k},
We want £(Gf k, [C]]) =L, C
o I ={[{O}1}
e Re={lCl—alac(L.o)n(Xu{r})},
* Re = (1G] — [QIIGT | (L@ G) 2 ¢,
where C(9) = (L, @ C)N K.
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Grammar Construction

D C L,: given set of positive examples.
e F C Con(D) and K C Sub(D).
GF,K = (Z, Ve, I, RF U RF,K) where
e Ve ={[[C]]| CCFand|C|<k},
We want £(Gf k, [C]]) =L@ C
o I ={[{0O31}.
e Re={lCl—alac(L.o)n(Xu{r})},
* Re = (1G] — [QIIGT | (L@ G) 2 ¢,
where C(K) = (L, © C) N K.

We want [G]] — [GI[C.] iff (L © Go) 2 (Le @ G1) (L © ).

Monotonicity

If F C F' then every rule of Gk is a rule of Gk F/,
SO E(GK,F) C E(GK,F’)-

28 /46



FCP - Dual

Grammar Construction

D C L,: given set of positive examples.
e F C Con(D) and K C Sub(D).
GF,K = (Z, Ve, I, RF U RF,K) where
e Ve ={[[C]]| CCFand|C|<k},
We want £(Gf k, [C]]) =L@ C
o I ={[{0O31}.
e Re={lCl—alac(L.o)n(Xu{r})},
* Re = (1G] — [QIIGT | (L@ G) 2 ¢,
where C(K) = (L, © C) N K.

We want [G]] — [GI[C.] iff (L © Go) 2 (Le @ G1) (L © ).

Anti-Monotonicity

If K C K’ then every rule of Gk ¢ is a rule of Gy F,
SO E(GK,F) D) E(GK’,F)-
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FCP - Dual

Correctness

We have [Co]] — [GiIIC] if €& o ¢l

where C(9) = (L, @ C)N K.
We say that [Go]] — [GLI[C2]l is incorrect iff Céz*) ) Cl(z*)Cz(z*).
Soundness Lemma

Every F admits finite K s.t. G k has no incorrect rules, in which
case L(GF k) C L.
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Correctness

We have [Co]] — [GiIIC] if €& o ¢l
where C(9) = (L, @ C)N K.
We say that [Go]] — [GLI[C2]l is incorrect iff Céz*) ) Cl(z*)Cz(Z*).
Soundness Lemma
Every F admits finite K s.t. G k has no incorrect rules, in which

case L(GF k) C L.

Suppose L, is generated by a CFG G, with the k-CP.
That is, every nonterminal N of G, admits a context set Cy of
cardinality at most k s.t. L, @ Cy =1, L(G,, N).

Completeness Lemma

If Cy C F for every N of G, then L, C L(GF k).

29 /46



Intro Prelim Congruential CFG — Primal FCP - Dual SCFTG

Learning Algorithm

Data: Positive data wy, ws, ... of L,; -
Result: Sequence of CFGs Gy, Go, ... incorrect
let F:=2: K:=2; 6 := Grk; A es e
forn=1,2,... do ’ F incorrect
let D:={w,...,wy}; Complotd  £(EFR) 2 L rules
let K := Sub(D); pee L(Gr k) = L.
if D¢ £(G) then o
let F := Con(D); completef WroNg L(Gra) € L
end if
output G = GF k as Gp; >
end for K
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Intro Prelim Congruential CFG — Primal FCP - Dual

Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is “efficiently” identifiable in the
limit from positive data and MQs.

SCFTG
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Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is “efficiently” identifiable in the
limit from positive data and MQs.

Theorem (Yoshinaka 2011)

The class of CFGs with the k-KP is “efficiently” identifiable in the
limit from positive data and MQs.
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FCP - Dual

Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is “efficiently” identifiable in the
limit from positive data and MQs.

Theorem (Yoshinaka 2011)

The class of CFGs with the k-KP is “efficiently” identifiable in the
limit from positive data and MQs.

Combined Property (Yoshinaka 2012)

Every nonterminal N admits either an m-kernel or n-context:
e a finite set Sy € X* s.t. [Sy| < mand Sy =,y £(G, N), or
e a finite set Cy C X*JX* s.t.
|Cn| < nand L(G) © Cy =£6) L(G, N)
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Outline
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Simple Context-Free Tree Grammars

e Tree version of context-free (string) grammars

(essentially) more general than Tree Adjoining (Substitution)
Grammars

(CFG) CF derivation trees yield strings
(SCFTG) CF derivation trees yield trees
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Trees and Stubs

A ranked alphabet: ¥ = [Jy<;<, 2/,
If t1,...,tx are trees and f € X then f(t1,...,tx) is a tree,

special symbol O of rank 0, which is a “hole”,

a k-stub is a tree t over XU {O} that contains exactly k holes,

(0-stub = usual tree)
each nonterminal of a CFG derives strings
each nonterminal of rank k of an SCFTG derives k-stubs

.

//4\\’,@
a é e
b (2-Stub)

SCFTG
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FCP - Dual SCFTG
Derivations of Different Formalisms
CFQG) S= MmN & N= o — S = e
S
“ A A~ D
TAG) ﬁ & A —_ ﬁ
N A
SCFTG) A
=

N

& N#A_» S=

DA
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r-Simple Context-free Tree Grammar

A tuple (X, VI, R) where
e Y V: finite set of ranked terminal/nonterminal symbols,
e 0 <rank(a)<rforallacX,V,
o | C Vp: set of initial symbols (rank 0)
* R C U<, Vi X (k-stubs): set of productions
L(G) =Use £(G, )
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Derivation of SCFTG

C g
AN f
a D @)
DN
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Example

>_,,
>

A Ab A,

P*/jlr\/lf\/ /R

aObcod aobcod

Typical String languages of 2-SCFTGs:
{anbncndn | n Z 1},
{a"b"c"d"e"f" | n > 1} — not generated by a TAG
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Substructure/Context Decomposition

CFGs

e S = uAv
e A= w

* uwv € L(G)
uOv : context

w : substring
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Substructure/Context Decomposition

( SCFTGs 1L
¥
*S= A -A=>4's> A9\ 10
__CFGs m o0 o A A

e S = uAv

e A=w ‘
* uwv € L(G) tree context
uOv : context AA i i i«
A . :stub

w : substring N
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Substructure/Context Decomposition

_( SCFTGs
-s=> A -A=> eL(G)
__CFGs AAA o o o A

e S = uAv

e A=>w
* uwv € L(G) D3 tree context
uOv : context AAA ii [/
o :stub
O O O

w : substring

e k-tree context = tree with a hole Oy of rank k

Every technique on the distributional learning of CFGs can be
translated and applied to the learning of SCFTGs!

SCFTG
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Congruential SCFTGs

Congruential simple context-free tree grammars

An SCFTG G is said to be congruential if it satisfies the following:
For any nonterminal N of rank k, if s, t € L(G, N), then s =r@©) t
that is, for any k-tree-context ¢, c ®s € L(G) iff cO t € L(G).
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Grammar Construction

D C ¥*: finite set of tree examples
The learner’s hypothesis G is computed from sets Ky, Fi with
0<k<r:
o Kk C Subk(D), where
Subk (D) is the set of k-stubs extracted from D,

e Fi C Conk(D), where
Conk(D) is the set of k-tree-contexts extracted from D.

G= (Z, V,I,RKURKJ:) where
° V:ngrVkWith Vk:{[[S]] |S€Kk},
o [ ={[t]|teL.NKo} (by MQ),

e Rk ={[If(o,...,0)]] — f(o, )|f€Z}
U{[so]l — [si(o;-- o0, [[52]](0 ,0),0,...,0)
| so =si(o,...,0, 52(0 ,0),0,...,0) },

. RK7F:{[[S]]—>Ht]]|C®SE£(G) |ffc®t6£(G) forall c e F},

SCFTG
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Learning Algorithm

Data: Positive data t, tp,... of L;
Result: Sequence of SACFTGS Gy, Gy, ...
let K:=@; F =0, G := Gk F; .

forn=1,2,... do incorrect
rules

no ‘4

let D:={t1,...,ta}; A
let Fy := Cong(D) K incorrect
fork=0,...,r; £(Grr) 2 L. rules
if D¢ L£(G) then Complete L(GkF) =L,
let Ky := Subk(D) ot
for k=0,...,r; complete| Wrong
end if L(Gk ) C L.
output G = Gk F as Gp; s
end for F
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Other Properties and Learning

Similarly one can define k-KP and k-CP for SCFTGs
and design learning algorithms for the corresponding classes.
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Other “context-free” formalisms

N—>Oé[P1,...,Pk]

Context-free grammars (Clark & Eyraud'07 etc....)
e N — string

Simple context-free tree grammars (Kasprzik & Yoshinaka '11)
e N — tree/stub

Multiple CFGs (Yoshinaka '12 etc.)
e N — tuple of strings

e Linear context-fee linear A-grammars (Yoshinaka & Kanazawa'l1)
e N — A-term

SCFTG
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Context-free grammar with Montague semantics

S(wiwn, Z125) :— NP(wy, Z1) VP(wa, Z5),
VP(wiwy, Ax.Za(ANy.Z1yx)) :— V(wyi, Z1)NP(wa, Z5),
NP(wiwy, Z1Z5) :— Det(wy, X1)N(wa, Z5),
NP(John, Au.u JOHN):—,

V(found, \yz.FIND yz):—,

Det(a, A\uv.INTERSECT uv):—,

N(unicorn, \y.UNICORN y):—

45

SCFTG
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Context-free grammar with Montague semantics

5(W1W2, lez) = NP(Wl, Zl)VP(Wz, Zz),
VP(wiwy, Ax.Za(ANy.Z1yx)) :— V(wyi, Z1)NP(wa, Z5),
NP(W1W272122) — Det(Wl,Xl)N(Wz, Zz)

NP
NP(John, Au.u JOHN):—,
V(found, \yz.FIND yz):—, / / De
Det(a, A\uv.INTERSECT uv):— John found
N(unicorn, \y.UNICORN y):— a unlcorn

(John found a unicorn, INTERSECT(Ay.UNICORN y)(Ay.FIND y JOHN))
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Summary
Distributional Learning

Context-substring relation

Primal-dual approaches
Correctness of rules

SCFTG

e Monotonicity with respect to the two sets

Primal Dual
Nonterminal | string / set of strings | context / set of contexts
Rule validation contexts strings

Other formalisms

e Simple context-free tree grammars (Kasprzik & Yoshinaka '11)

e Multiple CFGs (Yoshinaka '12 etc.)

e Linear context-fee linear A\-grammars (Yoshinaka & Kanazawa

'11)
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