吉仲 亮

京都大学情報学研究科

December 19, 2012 最先端構文解析とその周辺

Outline

Introduction

Preliminaries

Learning Congruential Context-Free Grammars

Finite Context Property — Dual Approach

Learning Simple Context-Free Tree Grammars

Grammatical Inference

- Algorithmic learning of formal languages
 - String languages
 - Tree languages ...
- More theoretical rather than heuristic
- Motivations/Applications:
 - Mathematical model of natural language acquisition
 - Grammar extraction from tagged/untagged corpora
 - Biological sequences

Regular Language Learning and CFL Learning

- Fruitful positive results on the learning of Regular languages
 - Query learning
 - PAC learning under the simple distribution
 - Identification in the limit from positive and negative data
 - Learning interesting subclasses from positive data only
- Nice properties of Regular languages
 - Myhill-Nerode Theorem Canonical DFA

Regular Language Learning and CFL Learning

- Fruitful positive results on the learning of Regular languages
 - Query learning
 - PAC learning under the simple distribution
 - Identification in the limit from positive and negative data
 - Learning interesting subclasses from positive data only
- Nice properties of Regular languages
 - Myhill-Nerode Theorem Canonical DFA
- Few positive results on CFL learning
 - No nice mathematical properties
 - No canonical automata/grammars

Regular Language Learning and CFL Learning

- Fruitful positive results on the learning of Regular languages
 - Query learning
 - PAC learning under the simple distribution
 - Identification in the limit from positive and negative data
 - Learning interesting subclasses from positive data only
- Nice properties of Regular languages
 - Myhill-Nerode Theorem Canonical DFA
- Few positive results on CFL learning before this century
 - No nice mathematical properties
 - No canonical automata/grammars
- Distributional Learning for CFLs

Distributional Learning

- Substitutable CFLs are identifiable in the limit from positive data only (Clark and Eyraud 2007)
- Query learning of c-deterministic/congruential CFGs (Shirakawa & Yokomori 1995 / Clark 2010)
- Quite rich subclasses are identifiable in the limit from positive data and MQs (Clark et al. 2009, Clark 2010, Yoshinaka 2010, 2011, 2012 etc.)
- PAC learnability of Unambiguous NTS languages (Clark 2006)

Distributional Learning

- Substitutable CFLs are identifiable in the limit from positive data only (Clark and Eyraud 2007)
- Query learning of c-deterministic/congruential CFGs (Shirakawa & Yokomori 1995 / Clark 2010)
- Quite rich subclasses are identifiable in the limit from positive data and MQs (Clark et al. 2009, Clark 2010, Yoshinaka 2010, 2011, 2012 etc.)
- PAC learnability of Unambiguous NTS languages (Clark 2006)

Heuristics has preceded Theory (Brill et al. 1990, Adriaans 1999, van Zaanen 2000, Klein & Manning 2002, etc.)

Outline

Introduction

Preliminaries

Learning Congruential Context-Free Grammars

Finite Context Property — Dual Approach

Learning Simple Context-Free Tree Grammars

Notation

A Context-Free Grammar

A tuple $\langle \Sigma, V, I, R \rangle$

- Σ: finite set of terminal symbols
- *V*: finite set of nonterminal symbols
- I ⊆ V: set of initial symbols
- R: set of productions

Bottom-up derivation:

- $\alpha N \gamma \Rightarrow \alpha \beta \gamma$ if $N \rightarrow \beta \in P$
- $\mathcal{L}(G, N) = \{ w \in \Sigma^* \mid N \stackrel{*}{\Rightarrow} w \}$
- $\mathcal{L}(G) = \bigcup_{S \in I} \mathcal{L}(G, S)$

Context

A context is just a pair of strings $I \square r$ with $I, r \in \Sigma^*$.

- $(I\square r)\odot u=lur$,
 - aa□bbb ⊙ aab = aaaabbbb,

A context is just a pair of strings $I \square r$ with $I, r \in \Sigma^*$.

- $(I \square r) \odot u = Iur$,
 - aa□bbb ⊙ aab = aaaabbbb.
- $L \oslash u = \{ I \square r \mid Iur \in L \}$ and $L \oslash (I \square r) = \{ u \mid Iur \in L \}$,
- Special context □:
 - $\square \odot u = u$.
 - $u \in L \iff \Box \in L \oslash u$.

A context is just a pair of strings $I \square r$ with $I, r \in \Sigma^*$.

- $(I \square r) \odot u = Iur$,
 - aa□bbb ⊙ aab = aaaabbbb.
- $L \oslash u = \{ I \square r \mid Iur \in L \}$ and $L \oslash (I \square r) = \{ u \mid Iur \in L \}$,
- Special context □:
 - $\square \odot u = u$.
 - $u \in L \iff \Box \in L \oslash u$.

Syntactic congruence

$$u \equiv_L v$$
 iff $L \oslash u = L \oslash v$

Let
$$[u] = \{ v \in \Sigma^* \mid v \equiv_L u \}.$$

Example

For
$$L = \{ a^n b^n \mid n \ge 0 \}$$
,

		$a\Box$	$\Box b$	a□bb	□abb
λ	1	0	0	0	0
а	0	0	1	1	1
Ь	0	1	0	0	0
ab	1	0	0	0	0
aab aaabb	0	0	1	1	0
aaabb	0	0	1	1	0

$$L \oslash aab = L \oslash aaabb = \{ \Box b, a \Box bb, \dots, a^k \Box b^{k+1}, \dots \}$$

$$[aab] = \{ a^{k+1}b^k \mid k \ge 1 \}.$$

 $\forall I \Box r, \ I \Box r \odot aaabb \in L \text{ iff } I \Box r \odot aab \in L \text{ iff } I \Box r \odot a^{k+1}b^k \in L.$

Keywords of Distributional Learning

- Observe, model, exploit the relation between "substrings" and "contexts" (Observation table indexed by strings and contexts)
- Objectivity
- Symmetric approaches

Outline

Introduction

Preliminaries

Learning Congruential Context-Free Grammars

Finite Context Property — Dual Approach

Learning Simple Context-Free Tree Grammars

Congruential CFGs [Clark 2010]

Congruential context-free grammars

For every nonterminal N of G, if $u, v \in \mathcal{L}(G, N)$, then $u \equiv_{\mathcal{L}(G)} v$.

- If *G* is congruential, and we binarize *G*, then the result is congruential.
- So we assume productions are all like $N \to PQ$ or $N \to a$.

Examples

- $L = \{ a^n b^n \mid n \geq 0 \}$ with $S_1 \rightarrow \lambda$, $S_2 \rightarrow aS_2b$, $S_2 \rightarrow ab$.
 - S_1 : $L \oslash \lambda = \{ \Box, a \Box b, ab \Box, \Box ab, \ldots \} = \{ u \Box v \mid uv \in L \}$
 - S_2 : $L \otimes ab = L \otimes aabb = \{ \Box, a\Box b, aa\Box bb, \ldots \} = \{ a^n\Box b^n \mid n \in \mathbb{N} \}$
- Dyck grammar: $S \rightarrow SS$, $S \rightarrow aSb$, $S \rightarrow \lambda$.
- Every regular language is generated by a congruential CFG

Congruential CFGs [Clark 2010]

Congruential context-free grammars

For every nonterminal N of G, if $u, v \in \mathcal{L}(G, N)$, then $u \equiv_{\mathcal{L}(G)} v$.

- If *G* is congruential, and we binarize *G*, then the result is congruential.
- So we assume productions are all like $N \to PQ$ or $N \to a$.

Examples not generated by congruential CFGs

- Palindromes: $\{ w \mid w = w^R \}$.
- $\{a^nb^n \mid n \geq 0\} \cup \{a^nb^{2n} \mid n \geq 0\}$
- $\{a^mb^n \mid m \leq n\}$

Clark 2010 (modified)

Congruential CFGs are uniformly identifiable in the limit from positive data and membership queries.

Clark 2010 (modified)

Congruential CFGs are uniformly identifiable in the limit from positive data and membership queries.

Identification in the limit

- Input: Infinite sequence of the elements w_1, w_2, \ldots of the learning target L_* in an arbitrary order
- Each time the learner gets an example w_i, it outputs a grammar G_i as her conjecture. After some point the conjecture should be stable and represent the target.

Membership Queries (MQs)

- Q: $w \in \Sigma^*$?
- A: Yes (if $w \in L_*$); No (otherwise).

 $D \subseteq \Sigma^*$: finite set of examples.

 $D \subseteq \Sigma^*$: finite set of examples.

The learner's hypothesis $G_{K,F}$ is computed from two sets

- $K \subseteq Sub(D)$, where $Sub(D) = \{ u \mid \exists I, r. \ lur \in D \}$,
- $F \subseteq Con(D)$, where $Con(D) = \{ I \square r \mid \exists u. \ lur \in D \}$.

 $D \subseteq \Sigma^*$: finite set of examples.

The learner's hypothesis $G_{K,F}$ is computed from two sets

- $K \subseteq Sub(D)$, where $Sub(D) = \{ u \mid \exists I, r. \ lur \in D \}$,
- $F \subseteq Con(D)$, where $Con(D) = \{ I \square r \mid \exists u. \ lur \in D \}$.

 $G_{K,F} = (\Sigma, V_K, I_K, R_K \cup R_{K,F})$ where

$$V_K = \{ \llbracket u \rrbracket \mid u \in K \}.$$

We want $[\![u]\!]$ to generate all and only v s.t. $v \equiv_{L_*} u$, i.e., $\mathcal{L}(G_{K,F},[\![u]\!]) = [u]$.

Congruential context-free grammars

If $u, v \in \mathcal{L}(G, N)$, then $u \equiv_{\mathcal{L}(G)} v$.

 $D \subseteq \Sigma^*$: finite set of examples.

The learner's hypothesis $G_{K,F}$ is computed from two sets

- $K \subseteq Sub(D)$, where $Sub(D) = \{ u \mid \exists I, r. \ lur \in D \}$,
- $F \subseteq Con(D)$, where $Con(D) = \{ I \square r \mid \exists u. \ lur \in D \}$.

 $G_{K,F} = (\Sigma, V_K, I_K, R_K \cup R_{K,F})$ where

- $V_K = \{ [\![u]\!] \mid u \in K \},$
- $I_K = \{ [\![u]\!] \mid u \in L_* \}$ (by MQ),
- $R_K = \{ [a] \rightarrow a \mid a \in \Sigma \cup \{\lambda\} \} \cup \{ [uv] \rightarrow [u] [v] \mid uv \in K \},$
- $R_{K,F} = \{ \llbracket u \rrbracket \rightarrow \llbracket v \rrbracket \mid (L_* \oslash u) \cap F = (L_* \oslash v) \cap F \},$ with the aid of *Membership Queries*.

Monotonicity

Hypothesis grammar: $G_{K,F}$

- $V_K = \{ [\![u]\!] \mid u \in K \},$
- $I_K = \{ [\![u]\!] \mid u \in L_* \}$ (by MQ),
- $R_K = \{ \llbracket a \rrbracket \rightarrow a \mid a \in \Sigma \cup \{\lambda\} \} \cup \{ \llbracket uv \rrbracket \rightarrow \llbracket u \rrbracket \llbracket v \rrbracket \mid uv \in K \},$
- $R_{K,F} = \{ [\![u]\!] \to [\![v]\!] \mid (L_* \oslash u) \cap F = (L_* \oslash v) \cap F \}.$

Monotonicity

If $K \subseteq K'$ then every rule of $G_{K,F}$ is a rule of $G_{K',F}$, so $\mathcal{L}(G_{K,F}) \subseteq \mathcal{L}(G_{K',F})$.

Anti-Monotonicity

If $F \subseteq F'$ then every rule of $G_{K,F'}$ is a rule of $G_{K,F}$, so $\mathcal{L}(G_{K,F}) \supseteq \mathcal{L}(G_{K,F'})$.

Chain Rule

$$R_{K,F} = \{ \llbracket u \rrbracket \rightarrow \llbracket v \rrbracket \mid (L_* \oslash u) \cap F = (L_* \oslash v) \cap F \}$$

	Ш	$a \square$	$\sqcup b$
λ	1	0	0
а	0	0	1
Ь	0	1	0
ab	1	0	0
aab	0	0	1
abb	0	1	0

We have $[a] \leftrightarrow [aab] \in R_{K,F}$ as they *look* congruent.

Anti-Monotonicity

If $F \subseteq F'$ then $R_{K,F} \supseteq R_{K,F'}$, and thus $\mathcal{L}(G_{K,F}) \supseteq \mathcal{L}(G_{K,F'})$.

Chain Rule

$$R_{K,F} = \{ \llbracket u \rrbracket \rightarrow \llbracket v \rrbracket \mid (L_* \oslash u) \cap F = (L_* \oslash v) \cap F \}$$

	Ш	$a \square$	$\sqcup b$	∐abb
λ	1	0	0	0
a	0	0	1	1
b	0	1	0	0
ab	1	0	0	0
aab	0	0	1	0
abb	0	1	0	0

NO $[a] \leftrightarrow [aab]$ any more.

Anti-Monotonicity

If $F \subseteq F'$ then $R_{K,F} \supseteq R_{K,F'}$, and thus $\mathcal{L}(G_{K,F}) \supseteq \mathcal{L}(G_{K,F'})$.

Example

		$a\Box$	$\Box b$	$\Box ab$	$\Box abb$	$aab\square$
λ	1	0	0	1	0	0
а	0	0	1	0	1	0
b	0	1	0	0	0	1
ab	1	0	0	0	0	0
aab	0	0	1	0	0	0
abb	0	1	0	0	0	0
aabb	1	0	0	0	0	0

We have $\llbracket u \rrbracket \to \llbracket v \rrbracket$ if $(L_* \oslash u) \cap F = (L_* \oslash v) \cap F$.

We have $\llbracket u \rrbracket \to \llbracket v \rrbracket$ if $(L_* \oslash u) \cap F = (L_* \oslash v) \cap F$. We say $\llbracket u \rrbracket \to \llbracket v \rrbracket$ is *incorrect* iff $L_* \oslash u \neq L_* \oslash v$, i.e., $\llbracket u \rrbracket \neq \llbracket v \rrbracket$.

We have $\llbracket u \rrbracket \to \llbracket v \rrbracket$ if $(L_* \oslash u) \cap F = (L_* \oslash v) \cap F$. We say $\llbracket u \rrbracket \to \llbracket v \rrbracket$ is *incorrect* iff $L_* \oslash u \neq L_* \oslash v$, i.e., $\llbracket u \rrbracket \neq \llbracket v \rrbracket$.

Every K admits finite F s.t. $G_{K,F}$ has no incorrect rules.

<u>Proof.</u> For each $u, v \in K$, if $L_* \oslash u \neq L_* \oslash v$, then there is $I \Box r \in (L_* \oslash u) \triangle (L_* \oslash v)$. Put $I \Box r$ into F.

We have $\llbracket u \rrbracket \to \llbracket v \rrbracket$ if $(L_* \oslash u) \cap F = (L_* \oslash v) \cap F$. We say $\llbracket u \rrbracket \to \llbracket v \rrbracket$ is *incorrect* iff $L_* \oslash u \neq L_* \oslash v$, i.e., $\llbracket u \rrbracket \neq \llbracket v \rrbracket$.

Every K admits finite F s.t. $G_{K,F}$ has no incorrect rules.

<u>Proof.</u> For each $u, v \in K$, if $L_* \oslash u \neq L_* \oslash v$, then there is $I \Box r \in (L_* \oslash u) \triangle (L_* \oslash v)$. Put $I \Box r$ into F.

If $G_{K,F}$ has no incorrect rules, $\mathcal{L}(G_{K,F}) \subseteq L_*$.

Proof.

- $[a] \rightarrow a \quad \cdots \quad a \in [a],$
- $\llbracket uv \rrbracket \rightarrow \llbracket u \rrbracket \llbracket v \rrbracket$ ··· $[uv] \supseteq [u][v]$,
- $\llbracket u \rrbracket \to \llbracket v \rrbracket$ \cdots [u] = [v] since the rule is correct,

Hence $[\![u]\!] \stackrel{*}{\Rightarrow} v$ implies $v \in [u]$.

We have $\llbracket u \rrbracket \to \llbracket v \rrbracket$ if $(L_* \oslash u) \cap F = (L_* \oslash v) \cap F$. We say $\llbracket u \rrbracket \to \llbracket v \rrbracket$ is *incorrect* iff $L_* \oslash u \neq L_* \oslash v$, i.e., $\llbracket u \rrbracket \neq \llbracket v \rrbracket$.

Every K admits finite F s.t. $G_{K,F}$ has no incorrect rules.

<u>Proof.</u> For each $u, v \in K$, if $L_* \oslash u \neq L_* \oslash v$, then there is $I \Box r \in (L_* \oslash u) \triangle (L_* \oslash v)$. Put $I \Box r$ into F.

If $G_{K,F}$ has no incorrect rules, $\mathcal{L}(G_{K,F}) \subseteq L_*$.

Proof.

- $[a] \rightarrow a \quad \cdots \quad a \in [a],$
- $\llbracket uv \rrbracket \rightarrow \llbracket u \rrbracket \llbracket v \rrbracket$ ··· $[uv] \supseteq [u][v]$,
- $\llbracket u \rrbracket \to \llbracket v \rrbracket$ \cdots [u] = [v] since the rule is correct,

Hence $\llbracket u \rrbracket \stackrel{*}{\Rightarrow} v$ implies $v \in [u]$.

Particularly for $\llbracket u \rrbracket \in I_K$, we have $v \in [u] \subseteq L_*$.

Completeness

Suppose L_* is generated by a congruential CFG G_* .

```
If K \cap \mathcal{L}(G, \alpha) \neq \emptyset for every rule N \to \alpha of G_*, then L_* \subseteq \mathcal{L}(G_{K,F}).
```

<u>Proof.</u> For a rule $N \to PQ$ of G_* , let $v_N, v_P, v_Q \in K$ be the shortest in $\mathcal{L}(G_*, N), \mathcal{L}(G_*, P), \mathcal{L}(G_*, Q)$, resp. Moreover we have $u_P u_Q \in K \cap \mathcal{L}(G_*, PQ)$. $G_{K,F}$ has $\llbracket v_N \rrbracket \Rightarrow \llbracket v_P \rrbracket \llbracket v_Q \rrbracket$ since

$$\llbracket v_N \rrbracket \rightarrow \llbracket u_P u_Q \rrbracket \text{ by } [v_N] = [u_P u_Q],$$

 $\llbracket u_P u_Q \rrbracket \rightarrow \llbracket u_P \rrbracket \llbracket u_Q \rrbracket,$
 $\llbracket u_P \rrbracket \rightarrow \llbracket v_P \rrbracket \text{ by } [u_P] = [v_P],$
 $\llbracket u_Q \rrbracket \rightarrow \llbracket v_Q \rrbracket \text{ by } [u_Q] = [v_Q].$

```
Data: Positive data w_1, w_2, \ldots of L_*;
Result: Sequence of CFGs G_1, G_2, \ldots
let K := \emptyset; F := \emptyset; \hat{G} := G_{K,F};
for n = 1, 2, ... do
   let D := \{w_1, \dots, w_n\};
   let F := Con(D);
  if D \nsubseteq \mathcal{L}(\hat{G}) then
      let K := Sub(D);
   end if
   output \hat{G} = G_{K,F} as G_n;
end for
```


Distributional Learning

- Observe, model, exploit the relation between "substrings" and "contexts"
- [Primal] Learner for congruential CFGs uses Strings for nonterminals and Contexts for removing incorrect rules,
- [Dual] Use contexts for nonterminals and strings for removing incorrect rules.

- Observe, model, exploit the relation between "substrings" and "contexts"
- [Primal] Learner for congruential CFGs uses Strings for nonterminals and Contexts for removing incorrect rules,
- [Dual] Use contexts for nonterminals and strings for removing incorrect rules.
- Further generalization: each nonterminal is represented by sets rather than a single object.

	Primal	Dual
Nonterminal	string / set of strings	context / set of contexts
Rule validation	contexts	strings

Outline

Introduction

Preliminaries

Learning Congruential Context-Free Grammars

Finite Context Property — Dual Approach

Learning Simple Context-Free Tree Grammars

Congruence on Sets

We have defined ...

- $I\Box r\odot u=lur$,
- $L_* \oslash u = \{ I \square r \mid (I \square r) \odot u \subseteq L_* \},$
- $L_* \oslash I \square r = \{ u \mid (I \square r) \odot u \subseteq L_* \}.$
- $u \equiv_{L_*} v$ iff $L_* \oslash u = L_* \oslash v$.

We have defined ...

- $I \square r \odot u = Iur$.
- $L_* \oslash u = \{ I \square r \mid (I \square r) \odot u \subseteq L_* \},$
- $L_* \oslash I \square r = \{ u \mid (I \square r) \odot u \subset L_* \}.$
- $u \equiv_{I} v \text{ iff } L_* \oslash u = L_* \oslash v.$

For string set S and context set C, define

- $C \odot S = \{ Iur \mid I \square r \in C \text{ and } u \in S \},$
- $L_* \oslash S = \{ I \square r \mid (I \square r) \odot S \subseteq L_* \},$
- $L_* \oslash C = \{ u \mid C \odot u \subseteq L_* \}$,
- $S \equiv_{L_*} T$ iff $L_* \oslash S = L_* \oslash T$.

Example

- $L_* \oslash a = \{ \Box b, a \Box bb, \Box abb, \ldots, a^i \Box a^j b^{i+j+1}, \ldots \},$
- $L_* \oslash aab = L_* \oslash \{aab, a\} = \{ \Box b, a \Box bb, \dots, a^k \Box b^{k+1}, \dots \},$
- $\{aab\} \equiv_{L_*} \{a, aab, aaabb\} \not\equiv_{L_*} \{a\}.$

Learning Target

k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff every nonterminal N admits a finite set $S_N \subseteq \Sigma^*$ such that

- $|S_N| \leq k$,
- $S_N \equiv_{\mathcal{L}(G)} \mathcal{L}(G, N)$.

(Every congruential CFG has the 1-KP but not vice versa.)

Learning Target

k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff every nonterminal N admits a finite set $S_N \subseteq \Sigma^*$ such that

- $|S_N| \leq k$,
- $S_N \equiv_{\mathcal{L}(G)} \mathcal{L}(G, N)$.

(Every congruential CFG has the 1-KP but not vice versa.)

k-Context Property (Clark 2010)

A CFG G has the k-CP iff every nonterminal N admits a finite set $C_N \subseteq \Sigma^* \square \Sigma^*$ such that

- $|C_N| \leq k$,
- $\mathcal{L}(G) \oslash C_N = \mathcal{L}(G, N)$.

Learning Target

k-Kernel Property (Yoshinaka 2011)

A CFG G has the k-KP iff every nonterminal N admits a finite set $S_N \subseteq \Sigma^*$ such that

- $|S_N| \leq k$,
- $S_N \equiv_{\mathcal{L}(G)} \mathcal{L}(G, N)$.

(Every congruential CFG has the 1-KP but not vice versa.)

k-Context Property (Clark 2010)

A CFG G has the k-CP iff every nonterminal N admits a finite set $C_N \subseteq \Sigma^* \square \Sigma^*$ such that

- $|C_N| \leq k$,
- $\mathcal{L}(G) \oslash C_N = \mathcal{L}(G, N)$.

Examples

- Every grammar G with a single nonterminal S has the 1-CP, since the initial symbol S is characterized by $C_S = \{\Box\}: \mathcal{L}(G) \oslash \Box = \mathcal{L}(G) = \mathcal{L}(G,S).$
 - E.g. $\{a^nb^n \mid n \ge 0\}$, Palindrome $\{w \in \Sigma^* \mid w = w^R\}$, Dyck language etc.

FCP - Dual

- Every grammar G with a single nonterminal S has the 1-CP, since the initial symbol S is characterized by $C_S = \{\Box\}: \mathcal{L}(G) \oslash \Box = \mathcal{L}(G) = \mathcal{L}(G,S).$
 - E.g. $\{a^nb^n\mid n\geq 0\}$, Palindrome $\{w\in \Sigma^*\mid w=w^R\}$, Dyck language etc.
- $\{a^nb^n\mid n\in\mathbb{N}\}\cup\{a^nb^{2n}\mid n\in\mathbb{N}\}$ has the 2-CP but not 1-CP.
 - $S_1 \rightarrow aS_1b$, $S_1 \rightarrow \lambda$, $S_2 \rightarrow aS_2bb$, $S_2 \rightarrow \lambda$.
 - $C_{S_1} = \{\Box, a\Box b\}$ and $C_{S_2} = \{\Box, a\Box bb\}$.
 - Note $\{a \square b\}$ does not characterize $\mathcal{L}(G, S_1)$ since $abbb \in (L \oslash a \square b) \mathcal{L}(G, S_1)$.

Examples

- Every grammar G with a single nonterminal S has the 1-CP, since the initial symbol S is characterized by $C_S = \{\Box\}$: $\mathcal{L}(G) \oslash \Box = \mathcal{L}(G) = \mathcal{L}(G,S).$
 - E.g. $\{a^nb^n \mid n > 0\},\$ Palindrome { $w \in \Sigma^* \mid w = w^R$ }, Dyck language etc.
- $\{a^nb^n \mid n \in \mathbb{N}\} \cup \{a^nb^{2n} \mid n \in \mathbb{N}\}$ has the 2-CP but not 1-CP.
 - $S_1 \rightarrow aS_1b$, $S_1 \rightarrow \lambda$, $S_2 \rightarrow aS_2bb, S_2 \rightarrow \lambda$.
 - $C_{S_1} = \{ \Box, a \Box b \}$ and $C_{S_2} = \{ \Box, a \Box bb \}$.
 - Note $\{a \square b\}$ does not characterize $\mathcal{L}(G, S_1)$ since $abbb \in (L \oslash a \square b) - \mathcal{L}(G, S_1)$.
- Every regular language has the 1-CP.

Theorem

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is "efficiently" identifiable in the limit from positive data and MQs.

(k is known to the learner)

 $D \subseteq L_*$: given set of positive examples.

• $F \subseteq Con(D)$ and $K \subseteq Sub(D)$.

 $G_{F,K} = (\Sigma, V_F, I, R_F \cup R_{F,K})$ where

• $V_F = \{ \llbracket C \rrbracket \mid C \subseteq F \text{ and } |C| \leq k \},$ We want $\mathcal{L}(G_{F,K}, \llbracket C \rrbracket) = L_* \oslash C$

 $D \subseteq L_*$: given set of positive examples.

• $F \subseteq Con(D)$ and $K \subseteq Sub(D)$.

 $G_{F,K} = (\Sigma, V_F, I, R_F \cup R_{F,K})$ where

- $V_F = \{ \llbracket C \rrbracket \mid C \subseteq F \text{ and } |C| \le k \},$ We want $\mathcal{L}(G_{F,K}, \llbracket C \rrbracket) = L_* \oslash C$
- $I = \{ [[\{ \Box \}]] \},$
- $R_F = \{ [\![C]\!] \to a \mid a \in (L_* \oslash C) \cap (\Sigma \cup \{\lambda\}) \},$
- $R_{F,K} = \{ [\![C_0]\!] \to [\![C_1]\!] [\![C_2]\!] \mid (L_* \oslash C_0) \supseteq C_1^{(K)} C_2^{(K)} \},$ where $C^{(K)} = (L_* \oslash C) \cap K.$

 $D \subseteq L_*$: given set of positive examples.

- $F \subseteq Con(D)$ and $K \subseteq Sub(D)$.
- $G_{F,K} = (\Sigma, V_F, I, R_F \cup R_{F,K})$ where
 - $V_F = \{ [\![C]\!] \mid C \subseteq F \text{ and } |C| < k \},$ We want $\mathcal{L}(G_{F,K}, \llbracket C \rrbracket) = L_* \oslash C$
 - $I = \{ [\{ \Box \}] \},$
 - $R_F = \{ [\![C]\!] \to a \mid a \in (L_* \oslash C) \cap (\Sigma \cup \{\lambda\}) \},$
 - $R_{F,K} = \{ [C_0] \rightarrow [C_1] [C_2] \mid (L_* \oslash C_0) \supseteq C_1^{(K)} C_2^{(K)} \},$ where $C^{(K)} = (L_* \oslash C) \cap K$.

We want $[\![C_0]\!] \to [\![C_1]\!] [\![C_2]\!]$ iff $(L_* \oslash C_0) \supseteq (L_* \oslash C_1)(L_* \oslash C_2)$.

Monotonicity

If $F \subseteq F'$ then every rule of $G_{K,F'}$ is a rule of $G_{K,F'}$, so $\mathcal{L}(G_{K,F}) \subseteq \mathcal{L}(G_{K,F'})$.

 $D \subseteq L_*$: given set of positive examples.

• $F \subseteq Con(D)$ and $K \subseteq Sub(D)$.

 $G_{F,K} = (\Sigma, V_F, I, R_F \cup R_{F,K})$ where

- $V_F = \{ \llbracket C \rrbracket \mid C \subseteq F \text{ and } |C| \le k \},$ We want $\mathcal{L}(G_{F,K}, \llbracket C \rrbracket) = L_* \oslash C$
- $I = \{ [[\{ \Box \}]] \},$
- $R_F = \{ \llbracket C \rrbracket \rightarrow a \mid a \in (L_* \oslash C) \cap (\Sigma \cup \{\lambda\}) \},$
- $R_{F,K} = \{ [\![C_0]\!] \to [\![C_1]\!] [\![C_2]\!] \mid (L_* \oslash C_0) \supseteq C_1^{(K)} C_2^{(K)} \},$ where $C^{(K)} = (L_* \oslash C) \cap K.$

We want $\llbracket C_0 \rrbracket \to \llbracket C_1 \rrbracket \llbracket C_2 \rrbracket$ iff $(L_* \oslash C_0) \supseteq (L_* \oslash C_1)(L_* \oslash C_2)$.

Anti-Monotonicity

If $K \subseteq K'$ then every rule of $G_{K',F}$ is a rule of $G_{K,F}$, so $\mathcal{L}(G_{K,F}) \supseteq \mathcal{L}(G_{K',F})$.

Correctness

We have
$$[\![C_0]\!] \to [\![C_1]\!][\![C_2]\!]$$
 if $C_0^{(\Sigma^*)} \supseteq C_1^{(K)} C_2^{(K)}$, where $C^{(K)} = (L_* \oslash C) \cap K$. We say that $[\![C_0]\!] \to [\![C_1]\!][\![C_2]\!]$ is *incorrect* iff $C_0^{(\Sigma^*)} \not\supseteq C_1^{(\Sigma^*)} C_2^{(\Sigma^*)}$.

Soundness Lemma

Every F admits finite K s.t. $G_{F,K}$ has no incorrect rules, in which case $\mathcal{L}(G_{F,K}) \subseteq L_*$.

Correctness

We have
$$[\![C_0]\!] \to [\![C_1]\!][\![C_2]\!]$$
 if $C_0^{(\Sigma^*)} \supseteq C_1^{(K)} C_2^{(K)}$, where $C^{(K)} = (L_* \oslash C) \cap K$. We say that $[\![C_0]\!] \to [\![C_1]\!][\![C_2]\!]$ is *incorrect* iff $C_0^{(\Sigma^*)} \not\supseteq C_1^{(\Sigma^*)} C_2^{(\Sigma^*)}$.

Soundness Lemma

Every F admits finite K s.t. $G_{F,K}$ has no incorrect rules, in which case $\mathcal{L}(G_{F,K}) \subseteq L_*$.

Suppose L_* is generated by a CFG G_* with the k-CP. That is, every nonterminal N of G_* admits a context set C_N of cardinality at most k s.t. $L_* \oslash C_N \equiv_{L_*} \mathcal{L}(G_*, N)$.

Completeness Lemma

If $C_N \subseteq F$ for every N of G_* , then $L_* \subseteq \mathcal{L}(G_{F,K})$.

Learning Algorithm

```
Data: Positive data w_1, w_2, \ldots of L_*;
                                                                            incorrect
Result: Sequence of CFGs G_1, G_2, \ldots
                                                                              rules
let F := \emptyset; K := \emptyset; \hat{G} := G_{F,K};
for n = 1, 2, ... do
                                                                                     incorrect
                                                                                       rules
   let D := \{w_1, \dots, w_n\};
                                              Complete
                                                                                 \mathcal{L}(G_{F,K}) = L_*
   let K := Sub(D);
   if D \nsubseteq \mathcal{L}(\hat{G}) then
                                                  not
                                                          wrong
      let F := Con(D);
                                               complete
                                                                           \mathcal{L}(G_{F,K}) \subseteq L_*
   end if
   output \hat{G} = G_{F,K} as G_n;
end for
```

Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is "efficiently" identifiable in the limit from positive data and MQs.

Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is "efficiently" identifiable in the limit from positive data and MQs.

Theorem (Yoshinaka 2011)

The class of CFGs with the k-KP is "efficiently" identifiable in the limit from positive data and MQs.

Theorems

Theorem (Clark 2010, Yoshinaka 2011)

The class of CFGs with the k-CP is "efficiently" identifiable in the limit from positive data and MQs.

Theorem (Yoshinaka 2011)

The class of CFGs with the k-KP is "efficiently" identifiable in the limit from positive data and MQs.

Combined Property (Yoshinaka 2012)

Every nonterminal N admits either an m-kernel or n-context:

- a finite set $S_N \subseteq \Sigma^*$ s.t. $|S_N| \le m$ and $S_N \equiv_{\mathcal{L}(G)} \mathcal{L}(G, N)$, or
- a finite set C_N ⊆ Σ*□Σ* s.t. $|C_N| \leq n \text{ and } \mathcal{L}(G) \oslash C_N \equiv_{\mathcal{L}(G)} \mathcal{L}(G, N)$

Outline

Introduction

Preliminaries

Learning Congruential Context-Free Grammars

Finite Context Property — Dual Approach

Learning Simple Context-Free Tree Grammars

Simple Context-Free Tree Grammars

- Tree version of context-free (string) grammars
- (essentially) more general than Tree Adjoining (Substitution)
 Grammars
- (CFG) CF derivation trees yield strings
- (SCFTG) CF derivation trees yield trees

Trees and Stubs

- A ranked alphabet: $\Sigma = \bigcup_{0 \le i \le r} \Sigma_i$,
- If t_1, \ldots, t_k are trees and $f \in \Sigma_k$ then $f(t_1, \ldots, t_k)$ is a tree,
- special symbol O of rank 0, which is a "hole",
- a k-stub is a tree t over $\Sigma \cup \{O\}$ that contains exactly k holes, (0-stub = usual tree)
- each nonterminal of a CFG derives strings
- each nonterminal of rank k of an SCFTG derives k-stubs

SCFTG

Derivations of Different Formalisms

r-Simple Context-free Tree Grammar

A tuple $\langle \Sigma, V, I, R \rangle$ where

- Σ , V: finite set of ranked terminal/nonterminal symbols,
- $0 \le \operatorname{rank}(a) \le r$ for all $a \in \Sigma, V$,
- $I \subseteq V_0$: set of initial symbols (rank 0)
- $R \subseteq \bigcup_{k \le r} V_k \times (k\text{-stubs})$: set of productions

$$\mathcal{L}(G) = \bigcup_{S \in I} \mathcal{L}(G, S)$$

Derivation of SCFTG

Example

Typical String languages of 2-SCFTGs:

$$\left\{ \begin{array}{l} a^nb^nc^nd^n\mid n\geq 1 \right\},\\ \left\{ a^nb^nc^nd^ne^nf^n\mid n\geq 1 \right\} - \text{not generated by a TAG} \end{array} \right.$$

Substructure/Context Decomposition

CFGs

- $S \Rightarrow uAv$
- $A \Rightarrow w$
- uwv ∈ L(G)

 $u \square v$: context

w:substring

Substructure/Context Decomposition

Substructure/Context Decomposition

• k-tree context = tree with a hole \square_k of rank k

Every technique on the distributional learning of CFGs can be translated and applied to the learning of SCFTGs!

Congruential SCFTGs

Congruential simple context-free tree grammars

An SCFTG G is said to be *congruential* if it satisfies the following: For any nonterminal N of rank k, if $s, t \in \mathcal{L}(G, N)$, then $s \equiv_{\mathcal{L}(G)} t$, that is, for any k-tree-context c, $c \odot s \in \mathcal{L}(G)$ iff $c \odot t \in \mathcal{L}(G)$.

 $D \subseteq \Sigma^*$: finite set of tree examples The learner's hypothesis G is computed from sets K_k, F_k with 0 < k < r:

- $K_k \subseteq \operatorname{Sub}_k(D)$, where $\operatorname{Sub}_k(D)$ is the set of k-stubs extracted from D,
- $F_k \subseteq \operatorname{Con}_k(D)$, where $\operatorname{Con}_k(D)$ is the set of k-tree-contexts extracted from D.

 $G = (\Sigma, V, I, R_K \cup R_{K,F})$ where

- $V = \bigcup_{k \le r} V_k$ with $V_k = \{ \llbracket s \rrbracket \mid s \in K_k \},$
- $I = \{ [\![t]\!] \mid t \in L_* \cap K_0 \} \text{ (by MQ)},$
- $R_K = \{ [\![f(o,\ldots,o)]\!] \to f(o,\ldots,o) \mid f \in \Sigma \}$ $\cup \{ [\![s_0]\!] \to [\![s_1]\!](o,\ldots,o,[\![s_2]\!](o,\ldots,o),o,\ldots,o)$ $\mid s_0 = s_1(o,\ldots,o,s_2(o,\ldots,o),o,\ldots,o) \},$
- $R_{K,F} = \{ \llbracket s \rrbracket \rightarrow \llbracket t \rrbracket \mid c \odot s \in \mathcal{L}(G) \text{ iff } c \odot t \in \mathcal{L}(G) \text{ for all } c \in F \},$

Learning Algorithm

```
Data: Positive data t_1, t_2, \ldots of L_*;
Result: Sequence of SCFTGs G_1, G_2, \ldots
let K := \emptyset; F := \emptyset; \hat{G} := G_{K F};
                                                                                incorrect
for n = 1, 2, ... do
                                                                                  rules
   let D := \{t_1, \ldots, t_n\};
                                                                                          incorrect
   let F_k := \operatorname{Con}_k(D)
                                                                                            rules
      for k = 0, ..., r;
                                                 Complete
                                                                                    \mathcal{L}(G_{K,F}) = L_*
   if D \nsubseteq \mathcal{L}(\hat{G}) then
       let K_k := \operatorname{Sub}_k(D)
                                                     not
                                                             wrong
          for k = 0, \ldots, r;
                                                 complete
                                                                                \mathcal{L}(G_{KF}) \subset L_*
   end if
   output \hat{G} = G_{K,F} as G_n;
end for
```

Other Properties and Learning

Similarly one can define k-KP and k-CP for SCFTGs and design learning algorithms for the corresponding classes.

Other "context-free" formalisms

$$N \to \alpha[P_1, \ldots, P_k]$$

- Context-free grammars (Clark & Eyraud'07 etc....)
 - $N \rightarrow \text{string}$
- Simple context-free tree grammars (Kasprzik & Yoshinaka '11)
 - N → tree/stub
- Multiple CFGs (Yoshinaka '12 etc.)
 - N → tuple of strings
- Linear context-fee linear λ -grammars (Yoshinaka & Kanazawa'11)
 - $N \rightarrow \lambda$ -term

SCFTG

Context-free grammar with Montague semantics

```
S(w_1w_2, Z_1Z_2) := NP(w_1, Z_1)VP(w_2, Z_2),
VP(w_1w_2, \lambda x. Z_2(\lambda y. Z_1yx)) := V(w_1, Z_1)NP(w_2, Z_2),
NP(w_1w_2, Z_1Z_2) := Det(w_1, X_1)N(w_2, Z_2),
NP(John, \lambda u. u John) := -,
V(found, \lambda yz. FIND yz) := -,
Det(a, \lambda uv. Intersect uv) := -,
N(unicorn, \lambda y. UNICORN y) := -
```

$$S(w_1w_2, Z_1Z_2) := NP(w_1, Z_1)VP(w_2, Z_2),$$

$$VP(w_1w_2, \lambda x. Z_2(\lambda y. Z_1yx)) := V(w_1, Z_1)NP(w_2, Z_2),$$

$$NP(w_1w_2, Z_1Z_2) := Det(w_1, X_1)N(w_2, Z_2),$$

$$NP(John, \lambda u. u John) := ,$$

$$V(found, \lambda yz. FIND yz) := ,$$

$$Det(a, \lambda uv. Intersect uv) := ,$$

$$N(unicorn, \lambda y. Unicorn y) :=$$

 $\langle \text{John found a unicorn}, \text{Intersect}(\lambda y. \text{unicorn } y)(\lambda y. \text{find } y. \text{John}) \rangle$

SCFTG

Summary

Distributional Learning

- Context-substring relation
- Primal-dual approaches
- Correctness of rules
- Monotonicity with respect to the two sets

	Primal	Dual
Nonterminal	string / set of strings	context / set of contexts
Rule validation	contexts	strings

Other formalisms

- Simple context-free tree grammars (Kasprzik & Yoshinaka '11)
- Multiple CFGs (Yoshinaka '12 etc.)
- Linear context-fee linear λ -grammars (Yoshinaka & Kanazawa '11)