
The Infinite Markov Model

Daichi Mochihashi ∗

NTT Communication Science Laboratories
Hikaridai 2-4, Keihanna Science City

Kyoto, Japan 619-0237
daichi@cslab.kecl.ntt.co.jp

Eiichiro Sumita
ATR / NICT

Hikaridai 2-2, Keihanna Science City
Kyoto, Japan 619-0288

eiichiro.sumita@atr.jp

Abstract

We present a nonparametric Bayesian method of estimating variable order Markov
processes up to a theoretically infinite order. By extending a stick-breaking prior,
which is usually defined on a unit interval, “vertically” to the trees of infinite depth
associated with a hierarchical Chinese restaurant process, our model directly infers
the hidden orders of Markov dependencies from which each symbol originated.
Experiments on character and word sequences in natural language showed that
the model has a comparative performance with an exponentially large full-order
model, while computationally much efficient in both time and space. We expect
that this basic model will also extend to the variable order hierarchical clustering
of general data.

1 Introduction

Since the pioneering work of Shannon [1], Markov models have not only been taught in elementary
information theory classes, but also served as indispensable tools and building blocks for sequence
modeling in many fields, including natural language processing, bioinformatics [2], and compres-
sion [3]. In particular, (n−1)th order Markov models over words are called “n-gram” language
models and play a key role in speech recognition and machine translation, as regards choosing the
most natural sentence among candidate transcriptions [4].

Despite its mathematical simplicity, an inherent problem with a Markov model is that we must
determine its order. Because higher-order Markov models have an exponentially large number of
parameters, their orders have been restricted to a small, often fixed number. In fact, for “n-gram”
models the assumed word dependency n is usually set at from three to five due to the high dimen-
sionality of the lexicon. However, word dependencies will often have a span of greater than n for
phrasal expressions or compound proper nouns, or a much shorter n will suffice for some grammat-
ical relationships. Similarly, DNA or amino acid sequences might have originated from multiple
temporal scales that are unknown to us.

To alleviate this problem, many “variable-order” Markov models have been proposed [2, 5, 6, 7].
However, all stemming from [5] and [7], they are based on pruning a huge candidate suffix tree by
employing such criteria as KL-divergences. This kind of “post-hoc” approach suffers from several
important limitations: First, when we want to consider deeper dependences, the candidate tree to be
pruned will be extremely large. This is especially prohibitive when the lexicon size is large as with
language. Second, the criteria and threshold for pruning the tree are inherently exogeneous and must
be set carefully so that they match the desired model and current data. Third, pruning by empirical
counts in advance, which is often used to build “arbitrary order” candidate trees in these approaches,
is shown to behave very badly [8] and has no theoretical standpoints.

In contrast, in this paper we propose a complete generative model of variable-order Markov pro-
cesses up to a theoretically infinite order. By extending a stick-breaking prior, which is usually

∗This research was conducted while the first author was affiliated with ATR/NICT.

1

”will”

”she will”
”he will”

sing

cry like

sing like ”and”

”bread and”

ε

butter

Depth 0

1

2

=customer =proxy customer

”of”

”states of”

america

(a) Suffix Tree representation of the hierarchical Chinese
Restaurant process on a second-order Markov model. Each
count is a customer in this suffix tree.

”will”

”she will”

cry

sing like ”and”

”bread and”

ε

butter

Depth 0

1

2

= customer

= proxy customer

”of”

”states of”

”united states of”

”the united states of”

america

”order of”

(b) Infinite suffix tree of the proposed model.
Deploying customers at suitable depths, i.e.
Markov orders, is our inference problem.

Figure 1: Hierarchical Chinese restaurant processes over the finite and infinite suffix trees.

defined on a unit interval, “vertically” to the trees of infinite depth associated with a hierarchical
Chinese restaurant process, our model directly infers the hidden orders of Markov dependencies
from which each symbol originated. We show this is possible with a small change to the inference
of the hiearchical Pitman-Yor process in discrete cases, and actually makes it more efficient in both
computational time and space. Furthermore, we extend the variable model by latent topics to show
that we can induce the variable length “stochastic phrases” for topic by topic.

2 Suffix Trees on Hierarchical Chinese Restaurant Processes

The main obstacle that has prevented consistent approaches to variable order Markov models is
the lack of a hierarchical generative model of Markov processes that allows estimating increas-
ingly sparse distributions as its order gets larger. However, now we have the hierarchical (Poisson-)
Dirichlet process that can be used as a fixed order language model [9][10], it is natural for us to
extend these models to variable orders also by using a nonparametric approach. While we concen-
trate here on discrete distributions, the same basic approach can be applied to a Markov process on
continuous distributions, such as Gaussians that inherit their means from their parent distributions.
For concreteness below we use a language model example, but the same model can be applied to
any discrete sequences, such as characters, DNAs, or even binary streams for compression.

Consider a trigram language model, which is a second-order Markov model over words often em-
ployed in speech recognition. Following [9], this Markov model can be represented by a suffix tree
of depth two, as shown in Figure 1(a). When we predict a word “sing” after a context “she will”,
we descend this suffix tree from the root (which corresponds to null string context), using the con-
text backwards to follow a branch “will” and then “she will”.1 Now we arrive at the leaf node that
represents the context, and we can predict “sing” by using the count distribution at this node.

During the learning phase, we begin with a suffix tree that has no counts. For every time a three word
sequence appears in the training data, such as “she will sing” mentioned above, we add a count of a
final word (“sing”) given the context (“she will”) to the context node in the suffix tree. In fact this
corresponds to a hierarchical Chinese restaurant process, where each context node is a restaurant
and each count is a customer associated with a word. Here each node, i.e. restaurant, might not
have customers for all the words in the lexicon. Therefore, when a customer arrives at a node and
stochastically needs a new table to sit down, a copy of him, namely a proxy customer, is sent to its
parent node. When a node has no customer to compute the probability of some word, it uses the
distribution of customers at the parent node and appropriately interpolates it to sum to 1.

Assume that the node “she will” does not have a customer of “like.” We can nevertheless compute
the probability of “like” given “she will” if its sibling “he will” has a customer “like”. Because that
sibling has sent a copy of the customer to the common parent “will”, the probability is computed by
appropriately interpolating the trigram probability given “she will”, which is zero, with the bigram
probability given “will”, which is not zero at the parent node.

1This is the leftmost path in Figure 1(a). When there is no corresponding branch, we will create it.

2

j

k

i
1 − qi

1 − qj

1 − qk

Figure 2: Probabilistic suffix tree of an infinite depth. (1−qi) is a “penetration probability” of a
descending customer at each node i, defining a stick-breaking process over the infinite tree.

Consequently, in the hierarchical Pitman-Yor language model (HPYLM), the predictive probability
of a symbol s = st in context h = st−n · · · st−1 is recursively computed by

p(s|h) =
c(s|h)−d·ths

θ+c(h)
+

θ+d·th·
θ+c(h)

p(s|h′), (1)

where h′ = st−n+1 · · · st−1 is a shortened context with the farthest symbol dropped. c(s|h) is the
count of s at node h, and c(h) =

∑
s c(s|h) is the total count at node h. ths is the number of times

symbol s is estimated to be generated from its parent distribution p(s|h′) rather than p(s|h) in the
training data: th· =

∑
s ths is its total. θ and d are the parameters of the Pitman-Yor process, and

can be estimated through the distribution of customers on a suffix tree by Gamma and Beta posterior
distributions, respectively. For details, see [9].

Although this Bayesian Markov model is very principled and attractive, we can see from Figure 1(a)
that all the real customers (i.e., counts) are fixed at the depth (n−1) in the suffix tree. Because actual
sequences will have heterogeneous Markov dependencies, we want a Markov model that deploys
customers at different levels in the suffix tree according to the true Markov order from which each
customer originated. But how can we model such a heterogeneous property of Markov sequences?

3 Infinite-order Hierarchical Chinese Restaurant Processes

Intuitively, we know that suffix trees that are too deep are improbable and symbol dependencies
decay largely exponentially with context lengths. However, some customers may reside in a very
deep node (for example, “the united states of america”) and some in a shallow node (“shorter than”).
Our model for deploying customers must be flexible enough to accommodate all these possibilities.

3.1 Introducing Suffix Tree Prior

For this purpose, we assume that each node i in the suffix tree has a hidden probability qi of stopping
at node i when following a path from the root of the tree to add a customer. In other words, (1− qi)
is the “penetration probability” when descending an infinite depth suffix tree from its root (Figure 2).
We assume that each qi is generated from a prior Beta distribution independently as:

qi ∼ Be(α, β) i.i.d. (2)
This choice is mainly for simplicity: however, later we will show that the final predictive perfor-
mance does not significantly depend on α or β.

When we want to generate a symbol st given a context h = s−∞ · · · st−2st−1, we descend the suffix
tree from the root following a path st−1→st−2→· · · , according to the probability of stopping at a
level l given by

p(n = l|h) = ql

l−1∏
i=0

(1 − qi) . (l = 0, 1, · · · ,∞) (3)

When we stop at level l, we generate a symbol st using the context st−l· · ·st−2st−1. Since qi differs
from node to node, we may reach very deep nodes with high probability if the qi’s along the path
are equally small (the “penetration” of this branch is high); or, we may stop at a very shallow node
if the qi’s are very high (the “penetration” is low). In general, the probability to reach a node decays
exponentially with levels according to (3), but the degrees are different to allow for long sequences
of typical phrases.

Note that even for the same context h, the context length that was used to generate the next symbol
may differ stochastically for each appearance according to (3).

3

3.2 Inference

Of course, we do not know the hidden probability qi possessed by each node. Then, how can
we estimate it? Note that the generative model above amounts to introducing a vector of hidden
variables, n = n1n2 · · ·nT , that corresponds to each Markov order (n = 0 · · ·∞) from which each
symbol st in s = s1s2 · · · sT originated. Therefore, we can write the probability of s as follows:

p(s) =
∑
n

∑
z

p(s, z,n) . (4)

Here, z = z1z2 · · · zT is a vector that represents the hidden seatings of the proxy customers described
in Section 2, where 0≤ zt ≤ nt means how recursively the st’s proxy customers are stochastically
sent to parent nodes. To estimate these hidden variables n and z, we use a Gibbs sampler as in [9].
Since in the hierarchical (Poisson-)Dirichlet process the customers are exchangeable [9] and qi is
i.i.d. as shown in (2), this process is also exchangeable and therefore we can always assume, by a
suitable permutation, that the customer to resample is the final customer.

In our case, we only explicitly resample nt given n−t (n excluding nt), as follows:

nt ∼ p(nt|s, z−t,n−t). (5)

Notice here that when we sample nt, we already know the other depths n−t that other words have
reached in the suffix tree. Therefore, when computing (5) using (3), the expectation of each qi is

E[qi] =
ai+α

ai+bi+α+β
, (6)

where ai is the number of times node i was stopped at when generating other words, and bi is
the number of times node i was passed by. Using this estimate, we decompose the conditional
probability of (5) as

p(nt|s, z−t,n−t) ∝ p(st|s−t, z−t,n) p(nt|s−t, z−t,n−t) . (7)

The first term is the probability of st under HPYLM when the Markov order is known to be nt,
given by (1). The second term is the prior probability of reaching that node at depth nt. By using
(6) and (3), this probability is given by

p(nt = l|s−t, z−t,n−t) =
al+α

al+bl+α+β

l−1∏
i=0

bi+β

ai+bi+α+β
. (8)

Expression (7) is a tradeoff between these two terms: the prediction of st will be increasingly better
when the context length nt becomes long, but we can select it only when the probability of reaching
that level in the suffix tree is supported by the other counts in the training data.

Using these probabilities, we can construct a Gibbs sampler, as shown in Figure 3, to iteratively
resample n and z in order to estimate the parameter of the variable order hierarchical Pitman-Yor
language model (VPYLM)2. In this sampler, we first remove the t’th customer who resides at a depth
of order[t] in the suffix tree, and decrement ai or bi accordingly along the path. Sampling a new
depth (i.e. Markov order) according to (7), we put the t’th customer back at the new depth recorded
as order[t], and increment ai or bi accordingly along the new path. When we add a customer st, zt

is implicitly sampled because st’s proxy customer is recursively sent to parent nodes in case a new
table is needed to sit him down.

1: for j = 1 · · ·N do
2: for t = randperm(1 · · ·T) do
3: if j >1 then
4: remove customer (order[t], st, s1:t−1)
5: end if
6: order[t] = add customer (st, s1:t−1) .
7: end for
8: end for

Figure 3: Gibbs Sampler of VPYLM.

struct ngram { /* n-gram node */
ngram *parent;
splay *children; /* = (ngram **) */
splay *symbols; /* = (restaurant **) */
int stop; /* ah */
int through; /* bh */
int ncounts; /* c(h) */
int ntables; /* th· */
int id; /* symbol id */

};

Figure 4: Data structure of a suffix tree node.
Counts ah and bh are maintained at each node. We
used Splay Trees for efficient insertion/deletion.

2This is a specific application of our model to the hierarchical Pitman-Yor processes for discrete data.

4

‘how queershaped little children drawling-desks, which would get through that dormouse!’
said alice; ‘let us all for anything the secondly, but it to have and another question, but i
shalled out, ‘you are old,’ said the you’re trying to far out to sea.

(a) Random walk generation from a character model.

Character s a i d a l i c e ; ‘ l e t u s a l l f o r a ny t h i ng t h e s e c ond l y , · · ·
Markov order 56547106543714824465544556456777533459116489894447343 · · ·

(b) Markov orders used to generate each character above.

Figure 5: Character-based infinite Markov model trained on “Alice in Wonderland.”

This sampler is an extension of that reported in [9] using stochastically different orders n (n =
0 · · ·∞) for each customer. In practice, we can place some maximum order nmax on n and sample
within it 3, or use a small threshold ε to stop the descent when the prior probability (8) of reaching
that level is smaller than ε. In this case, we obtain an “infinite” order Markov model: now we can
eliminate the order from Markov models by integrating it out.

Because each node in the suffix tree may have a huge number of children, we used Splay Trees [11]
for the efficient search as in [6]. Splay Trees are self-organizing binary search trees having amortized
O(log n) order, that automatically put frequent items at shallower nodes. This is ideal for sequences
with a power law property like natural languages. Figure 4 shows our data structure of a node in a
suffix tree.

3.3 Prediction

Since we do not usually know the Markov order of a context h = s−∞ · · · s−2s−1 beforehand, when
making predictions we consider n as a latent variable and average over it, as follows:

p(s|h) =
∑∞

n=0 p(s, n|h) (9)

=
∑∞

n=0 p(s|h, n)p(n|h) . (10)

Here, p(s|n, h) is a HPYLM prediction of order n through (1), and p(n|h) is the probability distri-
bution of latent Markov order n possessed by the context h, obtained through (8). In practice, we
further average (10) over the configurations of n and s through N Gibbs iterations on training data
s, as HPYLM does.

Since p(n|h) has a product form as (3), we can also write the above expression recursively by
introducing an auxiliary probability p(s|h, n+) as follows:

p(s|h, n+) = qn · p(s|h, n) + (1 − qn) · p(s|h, (n+1)+) , (11)

p(s|h) ≡ p(s|h, 0+) . (12)
This formula shows that qn in fact defines the stick-breaking process on an infinite tree, where
breaking proportions will differ branch to branch as opposed to a single proportion on a unit interval
used in ordinary Dirichlet processes. In practice, we can truncate the infinite recursion in (11) and
rescale it to make p(n|h) a proper distribution.

3.4 “Stochastic Phrases” on Suffix Tree

In the expression (9) above, p(s, n|h) is the probability that the symbol s is generated by a Markov
process of order n on h, that is, using the last n symbols of h as a Markov state. This means that a
subsequence s−n · · · s−1s forms a “phrase”: for example, when “Gaussians” was generated using a
context “mixture of”, we can consider “mixture of Gaussians” as a phrase and assign a probability
to this subsequence, which represents its cohesion strength irrespective of its length.

In other words, instead of emitting a single symbol s at the root node of suffix tree, we can first
stochastically descend the tree according to the probability to stop by (3). Finally, we emit s given
the context s−n · · · s−1, which yields a phrase s−n · · · s−1s and its cohesion probability. Therefore,
by traversing the suffix tree, we can compute p(s, n|h) for all the subsequences efficiently. For
concrete examples, see Figure 8 and 10 in Section 4.

3Notice that by setting (α, β) = (0,∞), we always obtain qi = 0: with some maximum order nmax, this
is equivalent to always using the maximum depth, and thus to reducing the model to the original HPYLM. In
this regard, VPYLM is a natural superset that includes HPYLM [9].

5

w
hi

le
ke

y
eu

ro
pe

an
co

ns
um

in
g

na
tio

ns
ap

pe
ar

un
fa

ze
d

ab
ou

t
th

e
pr

os
pe

ct
s

of a pr
od

uc
er

ca
rt

el
th

at
w

ill
at

te
m

pt
to fix pr

ic
es

| th
e

pa
ct

is lik
el

y
to m

ee
t

st
ro

ng
op

po
si

tio
n

fr
om

u.
s.

de
le

ga
te

s
th

is
w

ee
k

E
O

S

0
1

2
3

4
5

6
7

8
9

n

Figure 6: Estimated Markov order distributions from which each word has been generated.

4 Experiments

To investigate the behavior of the infinite Markov model, we conducted experiments on character
and word sequences in natural language.

4.1 Infinite character Markov model

Character-based Markov model is widely employed in data compression and has important applica-
tion in language processing, such as OCR and unknown word recognition. In this experiment, we
used a 140,931 characters text of “Alice in Wonderland” and built an infinite Markov model using
uniform Beta prior and truncation threshold ε = 0.0001 in Section 3.2.

Max. order Perplexity
n = 3 6.048
n = 5 3.803
n = 10 3.519
n = ∞ 3.502

Table 1: Perplexity results of
Character models.

Figure 5(a) is a random walk generation from this infinite model.
To generate this, we begin with an infinite sequence of ‘beginning
of sentence’ special symbols, and sample the next character accord-
ing to the generative model given the already sampled sequence as
the context. Figure 5(b) is the actual Markov orders used for gen-
eration by (8). Without any notion of “word”, we can see that our
model correctly captures it and even higher dependencies between
“words”. In fact, the model contained many nodes that correspond to valid words as well as the
connective fragments between them. Table 1 shows predictive perplexity4 results on separate test
data. Compared with truncations n = 3, 5 and 10, the infinite model performs the best in all the
variable order options.

4.2 Bayesian ∞-gram Language Model

Data For a word-based “n-gram” model of language, we used a random subset of the standard
NAB Wall Street Journal language modeling corpus [12] 5, totalling 10,007,108 words (409,246
sentences) for training and 10,000 sentences for testing. Symbols that occurred fewer than 10 times
in total and punctuation (commas, quotation marks etc.) are mapped to special characters, and all
sentences are lowercased, yielding a lexicon of 26,497 words. As HPYLM is shown to converge
very fast [9], according to preliminary experiments we used N = 200 Gibbs iterations for burn-in,
and a further 50 iterations to evaluate the perplexity of the test data.
Results Figure 6 shows the Hinton diagram of estimated Markov order distributions on part of the
training data, computed according to (7). As for the perplexity, Table 2 shows the results compared
with the fixed-order HPYLM with the number of nodes in each model. n means the fixed order for
HPYLM, and the maximum order nmax in VPYLM. For the “infinite” model of n=∞, we used a
threshold ε=10−8 in Section 3.2 for descending the suffix tree.

As empirically found by [12], perplexities will saturate when n becomes large, because only a small
portion of words actually exhibit long-range dependencies. However, we can see that the VPYLM
performance is comparable to that of HPYLM with much fewer nodes and restaurants up to n = 7
and 8, where vanilla HPYLM encounters memory overflow caused by a rapid increase in the number
of parameters. In fact, the inference of VPYLM is about 20% faster than that of HPYLM of the

4Perplexity is a reciprocal of average predictive probabilities, thus smaller is better.
5We also conducted experiments on standard corpora of Chinese (character-wise) and Japanese, and ob-

tained the same line of results presented in this paper.

6

n HPYLM VPYLM Nodes(H) Nodes(V)
3 113.60 113.74 1,417K 1,344K
5 101.08 101.69 12,699K 7,466K
7 N/A 100.68 27,193K 10,182K
8 N/A 100.58 34,459K 10,434K
∞ — 100.36 — 10,629K

Table 2: Perplexity Results of VPYLM and
HPYLM on the NAB corpus with the number
of nodes in each model. N/A means a memory
overflow caused by the expected number of nodes
shown in italic.

0.0×100
5.0×105
1.0×106
1.5×106
2.0×106
2.5×106
3.0×106
3.5×106

 0 1 2 3 4 5 6 7 8 9 10 11 12

O
cc

ur
re

nc
es

n

Figure 7: Global distribution of sampled
Markov orders on the ∞-gram VPYLM over
the NAB corpus. n = 0 is unigram, n = 1 is
bigram,· · · .

same order despite the additional cost of sampling n-gram orders, because it appropriately avoids
the addition of unnecessarily deep nodes on the suffix tree. The perplexity at n =∞ is the lowest
compared to all fixed truncations, and contains only necessary number of nodes in the model.

Figure 7 shows a global n-gram order distribution from a single posterior sample of Gibbs iteration in
∞-gram VPYLM. Note that since we added an infinite number of dummy symbols to the sentence
heads as usual, every word context has a maximum possible length of ∞. We can see from this
figure that the context lengths that were actually used decay largely exponentially, as intuitively
expected. Because of the tradeoff between using a longer, more predictive context and the penalty
incurred when reaching a deeper node, interestingly a peak emerges around n = 3 ∼ 4 as a global
phenomenon.

With regard to the hyperparameter that defines the prior forms of suffix trees, we used a (4, 1)-
prior in this experiment. In fact, this hyperparameter can be optimized by the empirical Bayes
method using each Beta posterior of qi in (6). By using the Newton-Raphson iteration of [13], this
converged to (0.85, 0.57) on a 1 million word subset of the NAB corpus. However, we can see that
the performance does not depend significantly on the prior. Figure 9 shows perplexity results for the
same data, using (α, β) ∈ (0.1∼10)×(0.1∼10). We can see from this figure that the performance
is almost stable, except when β is significantly greater than α. Finally, we show in Figure 8 some
“stochastic pharases” in Section 3.4 induced on the NAB corpus.

4.3 Variable Order Topic Model

While previous approaches to latent topic modeling assumed a fixed order such as unigrams or
bigrams, the order is generally not fixed and unknown to us. Therefore, we used a Gibbs sampler
for the Markov chain LDA [14] and augmented it by sampling Markov orders at the same time.

Because “topic-specific” sequences constitute only some part of the entire data, we assumed that the
“generic” model generated the document according to probability λ, and the rest are generated by
the LDA of VPYLM. We endow λ a uniform Beta prior and used the posterior estimate for sampling
that will differ document to document.

For the experiment, we used the NIPS papers dataset of 1739 documents. Among them, we used
random 1500 documents for training and random 50 documents from the rest of 239 documents
for testing, after the same preprocessing for the NAB corpus. We set a symmetric Dirichlet prior

p(s, n) Stochastic phrases in the suffix tree
0.9784 primary new issues
0.9726 ˆ at the same time
0.9512 is a unit of
0.9026 from # % in # to # %
0.8896 in a number of
0.8831 in new york stock exchange composite trading
0.7566 mechanism of the european monetary
0.7134 increase as a result of
0.6617 tiffany & co.

:

Figure 8: “Stochastic phrases” induced by the 8-gram
VPYLM trained on the NAB corpus.

 122
 124
 126
 128
 130
 132
 134

105210.5
0.1

105
210.5

0.1

 136
 134
 132
 130
 128
 126
 124

PPL

α
β

PPL

Figure 9: Perplexity results using dif-
ferent hyperparameters on the 1M NAB
corpus.

7

p(n, s) Phrase
0.9904 in section #
0.9900 the number of
0.9856 in order to
0.9832 in table #
0.9752 dealing with
0.9693 with respect to
(a) Topic 0 (“generic”)

p(n, s) Phrase
0.9853 et al
0.9840 receptive field
0.9630 excitatory and inhibitory
0.9266 in order to
0.8939 primary visual cortex
0.8756 corresponds to

(b) Topic 1

p(n, s) Phrase
0.9823 monte carlo
0.9524 associative memory
0.9081 as can be seen
0.8206 parzen windows
0.8044 in the previous section
0.7790 american institute of physics

(c) Topic 4

Figure 10: Topic based stochastic pharases.

γ = 0.1 and the number of topics M = 5, nmax = 5 and ran a N = 200 Gibbs iterations to obtain
a single posterior set of models.

Although in predictive perplexity the improvements are slight (VPYLDA=116.62,
VPYLM=117.28), “stochastic pharases” computed on each topic VPYLM show interesting
characteristics shown in Figure 10. Although we used a small number of latent topics in this
experiment to avoid data sparsenesses, in future research we need a more flexible topic model where
the number of latent topics will differ from node to node in the suffix tree.

5 Discussion and Conclusion
In this paper, we presented a completely generative approach to estimating variable order Markov
processes. By extending a stick-breaking process “vertically” over a suffix tree of hierarchical Chi-
nese restaurant processes, we can make a posterior inference on the Markov orders from which each
data originates.

Although our architecture looks similar to Polya Trees [15], in Polya Trees their recursive partitions
are independent while our stick-breakings are hierarchically organized according to the suffix tree.
In addition to apparent application of our approach to hierarchical continuous distributions like
Gaussians, we expect that the basic model can be used for the distribution of latent variables. Each
data is assigned to a deeper level just when needed, and resides not only in leaf nodes but also in the
intermediate nodes, by stochastically descending a clustering hierarchy from the root as described
in this paper.

References
[1] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,

623–656, 1948.
[2] Alberto Apostolico and Gill Bejerano. Optimal amnesic probabilistic automata, or, how to learn and

classify proteins in linear time and space. Journal of Computational Biology, 7:381–393, 2000.
[3] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The Context-Tree Weighting Method: Basic Properties.

IEEE Trans. on Information Theory, 41:653–664, 1995.
[4] Frederick Jelinek. Statistical Methods for Speech Recognition. Language, Speech, and Communication

Series. MIT Press, 1998.
[5] Peter Buhlmann and Abraham J. Wyner. Variable Length Markov Chains. The Annals of Statistics,

27(2):480–513, 1999.
[6] Fernando Pereira, Yoram Singer, and Naftali Tishby. Beyond Word N-grams. In Proc. of the Third

Workshop on Very Large Corpora, pages 95–106, 1995.
[7] Dana Ron, Yoram Singer, and Naftali Tishby. The Power of Amnesia. In Advances in Neural Information

Processing Systems, volume 6, pages 176–183, 1994.
[8] Andreas Stolcke. Entropy-based Pruning of Backoff Language Models. In Proc. of DARPA Broadcast

News Transcription and Understanding Workshop, pages 270–274, 1998.
[9] Yee Whye Teh. A Bayesian Interpretation of Interpolated Kneser-Ney. Technical Report TRA2/06,

School of Computing, NUS, 2006.
[10] Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Interpolating Between Types and Tokens by

Estimating Power-Law Generators. In NIPS 2005, 2005.
[11] Daniel Sleator and Robert Tarjan. Self-Adjusting Binary Search Trees. JACM, 32(3):652–686, 1985.
[12] Joshua T. Goodman. A Bit of Progress in Language Modeling, Extended Version. Technical Report

MSR–TR–2001–72, Microsoft Research, 2001.
[13] Thomas P. Minka. Estimating a Dirichlet distribution, 2000. http://research.microsoft.com/˜minka/papers/

dirichlet/.
[14] Mark Girolami and Ata Kabán. Simplicial Mixtures of Markov Chains: Distributed Modelling of Dy-

namic User Profiles. In NIPS 2003. 2003.
[15] R. Daniel Mauldin, William D. Sudderth, and S. C. Williams. Polya Trees and Random Distributions.

Annals of Statistics, 20(3):1203–1221, 1992.

8

