

統計数理研究所 南 和宏

2024年5月24日

統計数理研究所オープンハウス2024公開講演会

本日の内容

- ・データ利活用における出力プライバシー
- 統計開示抑制と安全性ルール
- 統計表の表セル秘匿処理とマッチング攻撃
- 今後の方向性

• 入力データの機密性を保証しつつ関数f(x)を計算

統計開示制御 (Statistical Disclosure Control) による出力プライバシー保護

- 統計量の開示から入力データが推定されるリスクを抑制する方法論
- 公開するデータを修正、削除することで、統計開示のリスクを減少させる
- しかし公開するデータをあまり劣化させると、
 データが活用できない
 - 一般には機密情報の保護を拘束条件として、情報の有用性の最大化を目指す最適化問題として 定式化される

占有性の原則

入力データが多数あっても、一つの入力値が突出しておおきくてはいけない(例:70%以上)

統計表の統計開示抑制

- 統計表は最も基本的な記述統計
- 国が行う公的調査から多くの統計表が一般
 に公開されている
- ・表の各セル値に
 - ▶最小度数ルール
 - ≻占有性ルール
 - を適用し、安全性を確認

外部者による攻撃

職種

度数分布表 對

	P ₁	P ₂	P ₃	P ₄	P ₅	合計
M_1	20	15	30	20	10	95
M_2	72	20	(1)	30	10	133
M_3	38	38	15	40	2	133
合計	130	73	46	90	22	361

	P ₁	P ₂	P ₃	P ₄	P ₅	合計
M_1	360	450	720	400	360	2290
M ₂	1440	540	22	570	320	2892
M ₃	722	1178	375	800	363	3438
合計	2522	2168	1117	1770	1043	8620

集計表

収入の合計

内部者(調査対象者)による攻撃

度数分布表

集計表

収入の合計

行計、列計の関係式から値が復元されてしまう のを防ぐためには2次秘匿が必要

集計表

NA (Not Available)

	P ₁	P ₂	P ₃	合計				P ₁	L	P ₂	P ₃	合計
M ₁	20	24	28	72			M_1	20)	24	28	72
M ₂	38	38	40	116	松区	臣	M_2	38	3	38	NA	116
M ₃	40	39	42	121		→ _	M_3	40)	39	42	121
合計	98	10	110	309			合計	98	3	101	110	309
表の谷	表の各セルレール、 2次秘匿											
	引注ル	·—//			P ₁	P ₂	2	P ₃	合計	t		
~ を15	え古			M ₁	NA	24	1	A	72			
				M ₂	NA	38	3	A	116	5		

40

98

 M_3

合計

39

101

42

110

121

309

この秘匿処理は安全か?

	B1	B2	B3	B4	計		
A1	7	10	60	13	90		
A2	11	60	12	60	143		
A3	60	11	60	12	143		
A4	14	60	13	60	147		
計	92	141	145	145	523		

	B1	B2	B3	B4	計
A1	X ₁	x ₂	60	X ₃	90
A2	X ₄	60	X 5	60	143
A3	60	x ₆	60	X ₇	143
A4	x ₈	60	x ₉	60	147
計	92	141	145	145	523

x1は特定される

$$x_1 = 7$$

行計、列計の関係式から
 秘匿セルの値が復元される

r行c列の表には (r+c) 個の線形制約条件が存在

安全性の検証には線形計画法の問題を解く必要がある

秘匿セルの取りうる値の範囲が 十分広いことが安全性の要件

秘匿セル変数の可能範囲(*秘匿インターバル*)の幅wの長さが
 しきい値 t(度数分布表では10)以上であること

	P ₁	P ₂	P ₃	合計
M_1	x ₁₁	24	X ₁₃	72
M ₂	x ₂₁	38	X 23	116
M_3	40	39	42	121
合計	98	101	110	309

1. 最小值問題

2. 最大值問題

$$a_{23} = \min x_{23}$$
 $\overline{a_{23}} = \max x_{23}$ 拘束条件: $x_{11} + x_{13} = 72 - 24$ 拘束条件: $x_{11} + x_{13} = 72 - 24$ $x_{21} + x_{23} = 116 - 38$ $x_{11} + x_{21} = 98 - 40$ and $x_{21} + x_{23} = 116 - 38$ $x_{13} + x_{23} = 110 - 42$ $x_{13} + x_{23} = 110 - 42$ $x_{13} + x_{23} = 110 - 42$ $(x_{11}, x_{13}, x_{21}, x_{23}) \ge 0$ $(x_{11}, x_{13}, x_{21}, x_{23}) \ge 0$

· 秘匿インターバル w = max x₂₃ – min x₂₃ = 68 – 20 = 48 > 10₅

表セル秘匿問題

• 秘匿パターン $y_i \in \{0,1\}$ i = 1, ..., n

• 目的関数: 秘匿セル数

・ 拘束条件:各1次秘匿セル値の機密性保護

秘匿インターバルの要件

秘匿インターバルの幅 $w = \overline{x_{ij}} - x_{ij} > \delta$

行計、列計の線形式を満足する値の範囲

Benders分割アルゴリズムによる 効率的な実装

- 主問題と部分問題に分割
 - 主問題:秘匿パターンの最適化
 - 部分問題:各秘匿セルの拘束条件のチェック
- 最適化問題はNP困難であるが、大部分の表データを効率 的に実行
- アルゴリズムが終了した場合は、最適解を保証

秘匿セルの値を補完

秘匿パターンが再現できた候補テーブルの値のみが真の候補値!

秘匿セルの候補値の列挙

- 秘匿セルの候補値ベクトルx は行計、列計に関 する線形の拘束条件を満たす Ax = b
- ・ 行列Aの零空間N(A)は

$$N(A) = \{ y \in \mathcal{Z}^n \mid Ay = 0 \}$$

Ax = bの解の集合Sは

$$S = \{ v + y \mid Av = b \land y \in N(A) \}$$

例:秘匿セル候補値の列挙

秘匿テーブル

Ax = b

評価実験

Q:マッチング攻撃で秘匿インターバルの条件が侵害される一次秘匿セルの割合はどの程度か?

- セル数: 16, 25, 36, 49の2次元の度数分布表をランダムに 各50個生成
 - セル値は平均15,標準偏差10の正規分布から抽出
- セル秘匿アルゴリズムで2次秘匿テーブルを作成
 - 度数しきい値:5
 - 秘匿インターバルのしきい値:8
- 同じセル秘匿アルゴリズムによるマッチング攻撃を実施

マッチング攻撃で安全要件(秘匿インター バルの最小幅)が破られた1次秘匿セル数

表セル数	ー次秘匿セ ル数	安全でない 一次秘匿セル数	安全でない 一次秘匿セ ルの割合
16 (4×4)	104	48	46%
25 (5×5)	170	117	69%
36 (6×6)	230	190	83%
49 (7×7)	271	226	83%

零空間の次元別の 安全でない1次秘匿セルの割合

 零空間の次元が小さいほど、候補となるテー ブルが少なく、秘匿インターバルの絞り込み が大きい

	Dimension of the null space						
#Cells in a table	1	2	3	4			
16	0.83	0.42	0.17				
25	1.00	0.71	0.57	0.83			
36	1.00	0.87	0.78	0.82			
49		0.81	0.89	0.73			
Total	0.88	0.73	0.75	0.77			

絞り込まれた秘匿インターバルの分布

まとめ

- 統計開示抑制は出力プライバシー保護を目的とする
- 統計量が特定の入力に依存しないことを目指す安全性
 ルールに経験的に定めている
 最小度数ルール、占有性ルール
- 「決定論的」なセル秘匿処理には秘匿パターンの再現性 確認によるマッチング攻撃が存在
 - 実証実験では現実的な脅威であることを確認
- 今後の方向性
 - ▶秘匿処理への確率的なランダム性の導入
 - ・ノイズ付加、ランダムサンプリング等
 - ▶ 攻撃者に関する仮定の緩和
 - ・例:9人の共謀は不可能

自分以外のデータ提供者が全員共謀している場合 に入力データの機密性を保証する安全性指標は?

