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Abstract 

This documentation describes some FORTRAN and R programs used for fitting and 

displaying the Hierarchical Space-Time ETAS (HIST-ETAS) models, 2D spatial 

Poisson processes, 1D space vs time Poisson processes and location-dependent 

b-value estimates. The FORTRAN programs are used for the computationally intensive 

work of fitting the models, including a large dataset. The R programs provide 

graphical summaries of characteristics of the fitted models, which can be replaced by 

your preferred graphical software.  

The document is split into five parts. In the first part, we outline the file naming 

convention that we use, how to compile the source code, and execution of jobs on 

standard Linux systems. In the second part, documentation is given for each of the 

FORTRAN programs. In the third part, various R programs are described for plotting 

spatial images that visualize the inversion outputs of the FORTRAN programs. In the 

fourth part, based on the estimated HIST-ETAS models, the FORTRAN programs for 

forecasting future seismicity rate are explained. R programs are then described to 

display snapshots of the spatial distribution of forecasts. In the fifth part, programs are 

given for simulating spatial nonhomogeneous Poisson model, spatial magnitude 

simulation using location-dependent b-values, and space-time simulation of 

HIST-ETAS models. The Appendix contains mathematical background of the models 

and optimization procedures.  

 
Keywords: space-time ETAS model, space-time point process, location dependent 

parameters, penalized log-likelihood, maximum posterior estimates, 
non-homogeneous spatial Poisson process, location dependent b-value of the 
Gutenberg-Richter’s formula, magnitude frequency, FORTRAN, R, Short-term 
seismicity forecast, simulations of HIST-PPM models  
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Part I. File Organisation and Code Execution 
The programs are written in FORTRAN and R. FORTRAN is generally used for the 

computationally intensive work, and R is used for graphical displays. The 
documentation is written for UNIX like systems, and it is assumed that a satisfactory 
FORTRAN compiler is installed along with the R statistical software distributed by the 
R Project (R Development Core Team, 2009).  
   Alternatively, you can use your own graphical software such as Matlab. Data is 
exchanged between the FORTRAN and R software as standard text files, and hence 
could be read by other graphic software too.  
 

1 File Organization 

1.1 Program Source Code  

The original version of HIST-PPM is in the following program directory  
http://bemlar.ism.ac.jp/ogata/HIST-PPM/  

and its a revised version HIST-PPM-V2 can be taken from the following program 
directory  

http://bemlar.ism.ac.jp/ogata/HIST-PPM-V2/  

in which the following program subdirectory  
http://bemlar.ism.ac.jp/ogata/HIST-PPM-V2/estimation/  

is equivalent to the original HIST-PPM package, containing the same FORTRAN 
source codes, but some corrected R programs from those in the original package.  

The additionally provided FORTRAN and R programs in HIST-PPM-V2 are for 
the implementation of Short-Term Earthquake Forecasting that are taken from the 
program subdirectory  

http://bemlar.ism.ac.jp/ogata/HIST-PPM-V2/forecasting/  

the use of which is explained in Part IV of this manual.  

    Finally, simulating spatial nonhomogeneous Poisson model, spatial magnitude 
simulation using location-dependent b-values, and space-time simulation of 
HIST-ETAS models are added to those in HIST-PPM-V3.  

   All the programs, inputs files and outputs files in this package HIST-PPM-V3 are 
selected and separately located in the directories that correspond to the subsections of 
Sections 3 ~ 16 in this manual, so that it will be useful that you can learn the 
implementation of the programs by reading the manual.  
  

1.2 File Naming Convention  
Files are grouped with a common file name. This enables the user to determine the 

files that are associated with a particular program. It also ensures that later programs 

http://www.r-project.org/
http://bemlar.ism.ac.jp/ogata/HIST-PPM/
http://bemlar.ism.ac.jp/ogata/HIST-PPM-V2/estimation/
http://bemlar.ism.ac.jp/ogata/HIST-PPM-V2/forecasting/
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do not overwrite the output of earlier programs. The files have been named as follows. 
The suffix determines the nature of the file:  
 
FILENAME.conf:     Configuration file (i.e. input parameters to FILENAME.f) 

FILENAME.f:        FORTRAN source code for single processor 

FILENAME:          Compiled object code for single processor 

FILENAME.prt:      write(6,*) output to keep by  
FILENAME |tee FILENAME.prt  

or 
FILENAME > FILENAME.prt & 

FILENAME.out:   Various output files for single processor out1, out2, ...   
number denotes I/O unit in Fortran code, where the transient output is 
out6. 

FILENAME.upda:  Various output of the updated maximum a posteriori solution for 
the weights that improved ABIC value in the searching by the simplex 
method. 

FILENAME.omap : Various output of the optimal maximum a posteriori (OMAP) 
solution where “optimal” means MAP solution under the optimal weights 
(i.e., minimum ABIC solution).  

FILENAME.R: R program (usually to plot a graph)  

FILENAME.pdf: Graphics output from R  

FILENAME.ts: Hypocenter dataset (earthquake events) in the format, as given in 
§3.2.  

FILENAME.etas: Earthquake dataset in etas-format, as given in §3.2.   
 
 

2. Compiling and Executing FORTRAN Programs  

2.1 Compile FORTRAN Programs  
The FORTRAN source code conforms to FORTRAN 77. Source code can be compiled in 
most Linux operating systems by using gfortran, as follows:  
 

gfortran FILENAME.f -o FILENAME  
 

You can use other FORTRAN packages such as Intel Fortran:  
 
ifort FILENAME.f -o FILENAME  

 
We have confirmed that both FORTRAN compilers above work well throughout 

the presented programs. It has been observed that Intel FORTRAN (ifort) works 
significantly faster than gfortran with some of the programs.  

 



9 

2.2 Memory Issues 

The array dimensions in our FORTRAN programs are taken large enough for a 
moderately sized dataset. Usually, they are sufficiently large to accommodate a few 
tens of thousands of earthquakes. If the used memory is in excess of that defined, 
meaningless output can be produced. So, you have to be careful enough to check 
whether dimensions are set large enough. In Intel FORTRAN, for example, the 
following compilation command  
ifort *.f –traceback –g –CB 

allows a trace back when problems occur. However, there is no comparable command 
available in GNU FORTRAN, but you may find information by viewing the 
core-dump file in the Linux system.  
  Another potential problem is that the default FORTRAN settings may not allocate 
enough working memory in a standard Linux system compared to supercomputers. To 
increase such memory, the following command is available for Intel FORTRAN:  
 
ifort *.f –mcmodel=large –shared-intel 

 
 

2.3 Execution of FORTRAN Jobs 
A job can be submitted interactively or in batch mode. Batch mode allows the user 

to log out of the system while the job continues to run in the background. The job 
could consist of a shell script (e.g. job.sh) or it may simply be a compiled FORTRAN 
binary file. The advantage of a shell script is that it can do other things before and 
after calling the compiled FORTRAN object.  

An example script file (job.sh) is  

./FILENAME  

R CMD BATCH FILENAME.R  
mail –s “Job Complete” –r user@localhost  

This would execute the compiled FORTRAN binary called FILENAME, run an R 
script which may do plots, then email the user on completion. 
 

Batch Mode – Submit Immediately: Use Linux command nohup, e.g.  
 
nohup batch.sh & 

 

The ampersand at the end of the line frees the terminal after executing the 
command. In the above usage, any diagnostic output, including that which 
would normally be written to unit 6, will be written to FILENAME.prt. 
To write the output to a file with a specific name, e.g. program.prt, run:  

 
nohup batch.sh > program.prt & 
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Batch Mode – Submit Later: Use Linux command at, e.g. To execute a shell 
script called batch.sh at 21:06 on 08Nov, run the following in an XTERM 
within the program directory containing batch.sh:  

 
at -f batch.sh -t 11082106 

 
The command atq lists jobs in the queue, and atrm removes jobs from the queue. 
More details about each can be found on the manual page (man at). Alternatively, jobs 
can be set up to run at regular time intervals by using chron.  
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Part II. PARAMETER ESTIMATION FOR EACH MODEL  
The programs documented in this part are not used independently of the each other. 

They will generally need to be executed in a certain order, as the outputs from some 
of the programs are required for the execution of other programs. A flowchart in 
Figure 1 gives a summary of the output from each that is required in other programs.  
 

 
 

Fig. 1. The diagram shows the flow of output from each program to subsequent programs. 
Rectangular shapes represent programs, which are explained below. Elliptical shapes 
represent input/output files. The simulation components are given in Part V (§14 -§16).  
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3 Formatting of the ETAS data from hypocenter catalog (tseis2etas) 
Initially the earthquake catalog data are transformed into what we call an “etas” 

format. This format is more convenient for the use with the subsequent Fortran model 
fitting programs. Both input and output allow free format reading in our programs and 
several initial records at the beginning are shown. All the used files in this section are 
selected in the program directory of Section3files/ in the package.   
 

3.1 File Names 
 
Program: tseis2etas.f 

Object: tseis2etas 

input: hypo.ts 

output: work.etas 
 

3.2 Program Execution 
./tseis2etas < hypo.ts  

 
The file hypo.ts contains the earthquake catalog, and is assumed to have the 
following format. 
1973 01 01 00 00   0.00  140.8700  33.4700   56.00 -9.5 
1973 01 05 05 31   5.80  140.8700  33.4700   56.00  4.5 
1973 01 05 11 48  37.50  140.9100  33.1600   33.00  3.9 
1973 01 06 10 21  16.30  140.8500  33.4900   33.00  4.2 
1973 01 06 11 21  54.70  140.9300  33.2700   46.00  4.5 
1973 01 06 14 55  52.80  140.7100  33.1500   61.00  4.7 
1973 01 09 02 21  14.80  141.6900  37.8100   59.00  3.5 
 

<< omitted the middle.>>  
2011 05 30 00 05  39.30  142.6400  36.6200   32.00  4.9 
2011 05 30 01 04  36.02  142.7100  36.5400    6.00  4.8 
2011 05 30 19 36  42.25  140.8000  36.4200   49.00  4.9 
2011 05 30 23 53  44.79  143.2300  40.3400   32.00  4.9 
2011 05 31 07 50  16.83  140.8400  36.5100   42.00  4.6 
2011 05 31 11 26  50.06  141.2400  37.4900   20.00  4.7 
2011 05 31 12 28  36.09  141.9300  39.4000   40.00  5.6 
2011 05 31 16 26  12.41  143.2000  40.2500   38.00  4.9 
2011 05 31 17 14   0.38  146.5900  36.5900   14.00  4.8 
2011 05 31 23 53  59.18  142.1800  38.6000   59.00  4.7  

 

Columns in the order from left to right are year, month, day, hour, minute, second, 
longitude (deg.), latitude (deg.), depth (km) and magnitude. The first record defines 
the beginning of the observation period, and the very small (negative) magnitude 
indicates that it is a non-event. The very small magnitude ensures that it has no effect 
in the analyses.  

If you want make an aftershock analysis, the first row above starts with the main 
shock hypocenter.  

The present data is shown in Figure 2.  
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Fig. 2. All detected earthquake by the JMA catalog, drawn by TSEIS visualization program 
package (Tsuruoka, 1996)  
 
  We recommend using all detected earthquakes to identify anisotropic clusters using 
etas2aniso program in the next section. Then, the corresponding work.etas 
comes as follows.  
 
 formatted_for_etas 
      1  140.87000   33.47000       -9.50     0.0000000  -56.00       1973  1  1 
      2  140.87000   33.47000        4.50     4.2299282  -56.00       1973  1  5 
      3  140.91000   33.16000        3.90     4.4921007  -33.00       1973  1  5 
      4  140.85000   33.49000        4.20     5.4314387  -33.00       1973  1  6 
      5  140.93000   33.27000        4.50     5.4735498  -46.00       1973  1  6 
      6  140.71000   33.15000        4.70     5.6221389  -61.00       1973  1  6 
      7  141.69000   37.81000        3.50     8.0980880  -59.00       1973  1  9 
      8  137.36000   36.84000        4.40     9.5782477  -33.00       1973  1 10 
      9  140.98000   33.11000        3.90    11.3227303  -20.00       1973  1 12 
     10  141.06000   33.28000        3.90    12.0151331  -40.00       1973  1 13 

<< omitted the rest >> 
 

Columns in order from left to right, are: event numbers, longitude (deg.), latitude 
(deg.), magnitude, time in days from the starting observation time, depth (negative 
km), and calendar date in year, month and day. Note that the first record is a 
comment. 
 

4 Identify Anisotropic Clusters of Events (etas2aniso) 
Before fitting the space-time models, we compile a dataset with a similar solution 

(but restricted on the 2-dimensional space) as the so-called centroid Moment tensor 
solution (Dziewonski et al.1981) using early aftershocks activity. This program first 
selects the large earthquakes and then selects their immediate aftershocks during a 
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certain time span. This is achieved using a fixed space window centered at each large 
earthquake.  

For each such aftershock sequence, the normalized ellipsoidal coefficients (the 
variances and correlations of a fitted ellipse) are calculated as shown Figure 3. A new 
catalogue is printed containing the original earthquake origin values together with the 
two variances and rotation angle, written with each identified main shock. These 
additional data are used to fit the anisotropic space-time ETAS model (see §5). All the 
used files in this section are selected in the program directory of Section4files/ in 
the program package.  

For more details, see §A.1.  
 

 
Fig. 3. Examples of identified non-anisotropies.  
 
 

4.1 File Names 
 
Program: etas2aniso.f  

Object: etas2aniso  

Configuration: etas2aniso.conf (including work.etas as an input) writes:  
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etas2aniso.out2: 
contains lists of immediate aftershocks that are triggered by large earthquakes, 
specified magnitude threshold and a time span described in etas2aniso.conf, 
together with results of best selected case of anisotropy analysis by the smallest AIC 
value. 

  etas2aniso.out3: 
contains the centroid locations and normalized ellipsoidal coefficients for all event 
with magnitude not less than the cutoff magnitude. 

etas2aniso.out4: 
summarises changed data with either centroid coordinates or anisotropy matrix. 

  etas2aniso.out8: 
summarises changed data of the identified earthquakes. 

  etas2aniso.out9: 
contains the centroid locations of immediate aftershocks of large events with their 
normalized ellipsoidal coefficients. 

 
The input data are included in a file whose name is specified in the configuration 

file (see below). Note that the first event in the input data file is a “no event". Its time, 
usually zero, indicates to the program the start of the analysis interval. A negative 
magnitude will ensure that it has no effect. 
 

4.2 Configuration File Format 

The configuration (or initialisation) file is called etas2aniso.conf and has a 
format as in the following example.  
 
./work.etas   !input data 
6.5  6.0       !clms cutm  
1.0             !xxx(day)= time span for analyzing centroid and anisotropy 
 

The first line is the name of the data file, here work.etas. Here it is recommended 
to use all detected earthquakes without any magnitude cutoff. In the second line, the 
number ”6.5” is the smallest magnitude (clsm in the FORTRAN program) of 
earthquake to analyse its cluster of triggering earthquakes that were followed within a 
certain time span and certain range of neighborhood (may be called as aftershocks). 
And “6.0” is used to set the cutoff magnitude (cutm in the FORTRAN program) of the 
output (etas2aniso.out3) for a homogeneous data. It is read in using free 
format.  

The third line, “1.0” determines the time window in days for each cluster, here we 
set one day or less time span in the case where we have a larger earthquake within the 
considered space window. The time window can be longer in the low detected region 
or during old period. On the other hand, from a real time forecasting perspective, one 
may set ”1/24 = 0.04167 day = one hour “to quickly determine the centroid location 
and orientation characteristics of the impending aftershock sequence after a main 
shock event. For the recent catalog, events within one-hour interval after the main 
shock will be sufficient to give a reasonably good estimate of the centroid and 
orientation characteristics of the evolving aftershock sequence.  
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If you want to use the original epicenters and isotropic clustering for all 
earthquakes in the original catalog, you can take either a very large magnitude 
clsm=9.9 or a very small time span xxx = 0.00001 in etas2aniso.conf.  

4.3 Executing the Program 
The current program directory must contain the configuration file 

etas2aniso.conf and the data file, whose name is specified on the first line of 
etas2aniso.conf. Other values in the configuration file must be specified by the 
user. 

The program code can then be run by executing the following shell script, after 
editing the program directory location of the compiled object file called 
etas2aniso. 
 
./etas2aniso | tee etas2aniso.prt 

 

After execution, the current program directory will contain the following 
additional files: etas2aniso.out2, etas2aniso.out3, etas2aniso.out4, 
etas2aniso.out8, and etas2aniso.out9. Some of these are required by 
programs documented in the following sections. 
 

Example of output of etas2aniso.prt is omitted here. 
 

Example of output of etas2aniso.out3 
 
310  0.128E+03  0.149E+03  0.206E+02  0.300E+02  0.470E+02  0.170E+02 

     176  146.06919   42.94649  7.70    167.16323   1.00000   1.00000   0.00000 
     205  146.04000   42.71000  6.00    167.85969   1.00000   1.00000   0.00000 
     263  146.65053   43.15368  7.10    174.11349   1.00000   1.00000   0.00000 
     297  146.56000   43.17000  6.60    176.93889   1.00000   1.00000   0.00000 
     370  146.43000   43.45000  6.00    220.44753   1.00000   1.00000   0.00000 

<< omitted the middle >> 
   13914  141.71029   36.17382  6.90  12910.69813   0.18635   0.13324  -0.48998 
   14039  140.88000   39.03000  6.90  12947.98872   0.07126   0.11156   0.77508 
   14210  142.50500   37.48250  7.00  12983.11075   1.00000   1.00000   0.00000 
   14232  142.05000   37.19000  6.00  12985.47951   1.00000   1.00000   0.00000 
   14331  144.05375   41.75250  6.80  13037.01448   0.15116   0.07155  -0.68744 

<< omitted the rest >> 
 
The first row record represents number of M≥6 earthquakes, minlong, maxlong, 
maxlong-minlong, minlat, maxlat, maxlat-minlat. The following records 
represent earthquake number, longitudes, latitudes, magnitudes, occurrence times in days; the 
last three columns represent the estimate of σ1 ,σ2 and ρ (correlation coefficients) for 
modified epicenters of the centroid type. Relevantly, some of the epicenters are also modified 
from the routine epicenters as shown in etas2aniso.out4. 
 

The above output data are partially illustrated following in Figure 4.  
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Fig. 4. M ≥ 6.0 earthquake by the JMA catalog 
 

5 Spatial ETAS with All Parameters Constant (st-etas) 
This program fits various versions of the space-time ETAS model. It contains two 

main classes of model. The first class is where the function in (§A.5) that determines 
the spatial triggering component of the intensity function is assumed to be isotropic. 
The second class is where it is assumed to be anisotropic. The program does not 
estimate the anisotropy parameters, but uses those values calculated by the program 
described in §4. All the used files in this section are selected in the program directory 
of Section5files/ in the program package. 

Within each class, there are 4 possible models. In the program, the isotropic 
versions of these models are referred to as models 5–8, and their anisotropic 
counterpart as 15–18, respectively. The intensity functions of these models are 
defined by Ogata and Zhuang (2006), Equations 5–7, and 10, respectively. The matrix 
Sj in those equations is a 2×2 positive definite matrix. In the isotropic case, it will 
simply be the identity matrix. In the anisotropic case, its elements will contain those 
values estimated by the program in §4. Further mathematical details can be found in 
§A.5.1.  
 

5.1 File Names 
For the estimation phase, done in FORTRAN:  

 
Program: st-etas.f 

Object:  st-etas 

Configuration: st-etas.conf (see §5.2)  

Write outputs:  st-etas.prt 
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5.2 Configuration File Format 

The configuration file is called st-etas.conf and has a format as in the 
following example. Note the symbol “” below indicates that the record has been 
split in this document, and the symbol is not part of the configuration file.config.  
 
etas2aniso.out3               !hypodata  
7                         !nfunct  
21.0  17.0  14012.0  310         !tx,ty,tz,nn  
128.0  30.0  6.0  0.0  0.0 730.0  2.0 !xmin,ymin,xmg0,zmin,xmg1,tstar,bi2  
7                               !n=# of parameters  
0.95428E-06   0.40231E-02   0.12529E-02   0.11723E+01   0.94533E+00   
0.11215E-04   0.13821E+01        ! µ0,K0,c, α,p,d,q  
7                               !ipr  
 

The numbers are read in as free format and have the following interpretation.  
Line 1: Name of data file.  
Line 2: Indicates the required space-time model. Valid values are: 5, 6, 7, 8, 15, 16, 

17, or 18. Warning: The software has only been tested for cases 7 and 17, and 
others may be unstable.  

Line 3: Longitude region width (tx degrees), latitude region width (ty degrees), 
upper time boundary (tz days), and number (nn) of data points.  

Line 4: Minimum longitude (xmin degrees), minimum latitude (ymin degrees), 
threshold magnitude (xmg0), minimum time (zmin), another magnitude (xmg1, 
currently not used), and starting time (tstar day ). Parameter bi2 is a 
multiplier used with the “Utsu Spatial Distance (USD)” defined explicitly in 
Appendix A5 (§A.5). The bi2 is infinity (very large) in exact log-likelihood 
calculation, and this enables an approximation to shorten the computation time 
to have good initial ETAS parameter values. The USD is the width of a square, 
centred on the main shock, within which it is assumed that most of the 
aftershocks associated with the given main shock will occur. This assumption 
considerably lessens required calculations because the intensity at the location 
of subsequent events will only be affected by historical events if the given event 
is contained within the Utsu squares associated with the historical events.  

Line 5: Number of initial model parameters listed on line 6.  
Line 6: Initial parameter estimates.  
Line 7: If ipr = 7, additional output is printed for the linear search procedure, and 

not printed if ipr=0  
 

5.3 Executing the Program  

The current program directory must contain st-etas.conf and the data file. The 
required data file is etas2aniso.out3 which is one of the outputs from 
etas2aniso. See Appendix A.1 for some detail.  

Appropriate initial parameter values must be edited into the configuration file by 
the user.  

The job is executed by running the following execution command.  
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./st-etas | tee st-etas.prt  

 
Note that the number of events stated in st-etas.conf is the number of events in 
etas2aniso.out3.  
 
An example of the st-etas.prt is as follows:  
 
./etas2aniso.out3                                                                
          17  
       21.       17.    14012.       310  
     128.0      30.0       6.0       0.0       0.0     730.0       2.0  
 data set       310  0.128E+03  0.149E+03  0.206E+02  0.300  
 input device        10  
 nn=         310  
 nfunct=          17  
0tx,ty,tz,xmin,ymin,xmg0,xmg1,zmin,tsta  
    16.435    17.000 14012.000   128.000    30.000     6.000     0.000     0.000      
0.000  
 nn =  310 nnc =  294  
 bi2   2.0000000000000000  
 jmax          67  
 tstar,nstar   730.00000000000000               16  
0   input data  
      n=  7   itr=  
0x=   0.95428E-06   0.40231E-02   0.12529E-02   0.11723E+01   0.94533E+00  
0x=   0.11215E-04   0.13821E+01  
 linear ipr           7 
 - log likelihood =  0.153377032136182D+04     aic =    3081.5 
 lambda =  0.5000000000D+00          e2 =  0.10000000000000000D+31 
 lambda =  0.5000000000D-01          e4 =  0.10000000000000000D+31 
 lambda =  0.5000000000D-02          e4 =  0.10000000000000000D+31 
 lambda =  0.5000000000D-03          e4 =  0.10000000000000000D+31 
 lambda =  0.5000000000D-04          e4 =  0.10665559805887825D+06 
 lambda =  0.5000000000D-05          e4 =  0.28818211711226591D+04 
 lambda =  0.5000000000D-06          e4 =  0.11629651734330857D+04 
 lambda =  0.1900108183D-05          e5 =  0.17130527321761620D+04 
 lambda =  0.8710402217D-06          e6 =  0.13234771092168321D+04 
  lmbd = 0.5000000D-06  -ll = 0.132347710921683D+04  -0.24D+11  0.24D+11  
 lambda =  0.5000000000D-06          e2 =  0.11421402460408272D+04 
 lambda =  0.1000000000D-05          e3 =  0.11725055350543980D+04 
 lambda =  0.4534072998D-06          e5 =  0.11419671670520129D+04 
 lambda =  0.4581397976D-06          e6 =  0.11419644849252979D+04 
  lmbd = 0.4581398D-06  -ll = 0.114196448492530D+04  -0.97D+08  0.11D+09  

<< skipped >> 
lambda =  0.2089781397D+01          e6 =  0.84830056255183285D+03 

lmbd = 0.1393188D+01  -ll = 0.848300562551833D+03  -0.81D-15  0.15D-08  

lambda =  0.1393187600D+01          e2 =  0.84830030469372718D+03 

lambda =  0.2786375200D+01          e3 =  0.84830056255183172D+03 

lambda =  0.1393187594D+01          e5 =  0.84830056255183490D+03 

lambda =  0.2089781396D+01          e6 =  0.84830056255183433D+03 

 lmbd = 0.1393188D+01  -ll = 0.848300562551834D+03  -0.12D-15  0.23D-09  

 - log likelihood =  0.848300562551825D+03     aic =    1710.6  

0-----  x  -----  

  -0.54093D-03  0.14630D+00  0.42172D-01  0.10343D+01  0.93246D+00  0.13550D+00   
0.12333D+01  

0***  gradient  *** 

  -0.59377D-05  0.22362D-06 -0.32350D-06  0.26929D-07 -0.13557D-06 -0.18250D-06   
0.10456D-06  
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 mle =  0.29261E-06 0.21404E-01 0.17785E-02 0.10697E+01 0.86948E+00   

        0.18359E-01 0.15210E+01  

 

The last 7 numbers are the MLEs of µ, K0, c, α, p, d and q of a space-time ETAS 
model, which will be used (copy & pasted) for the reference parameters in 
hist-etas-mk.conf in §9.2.  
 

5.4 Additional Advice 
When the background rates in space are far from homogeneous, the MLE above 

may not converge well. In that case, firstly, set about a half of the average earthquake 
occurrence rate per unit time and unit area, say, for an initial estimate of the µ 
parameter as the case of the above; and set its gradient for the µ parameter being 
always zero. Then, program st-etas implements the stable optimization for the 
other parameters than with the unfixed µ parameter. This is implemented by 
additionally setting 1 in the 8th line in st-etas.conf as follows:   
 
etas2aniso.out3              !hypodata  
7                         !nfunct  
21.0  17.0  14012.0  310         !tx,ty,tz,nn  
128.0  30.0  6.0  0.0  0.0 730.0  2.0 !xmin,ymin,xmg0,zmin,xmg1,tstar,bi2  
7                               !n=# of parameters  
0.95428E-06   0.40231E-02   0.12529E-02   0.11723E+01   0.94533E+00   
0.11215E-04   0.13821E+01        ! µ0,K0,c, α,p,d,q  
7  1    ! ipr, igrd for optimization by fixing µ−parameter by 0, otherwise 1 
 
and then run the program st-etas.  

Having done that, use the above estimated µ, K0, c, α, p, d and q for initial 
estimates without the 8th line, again to run st-etas by the unfixed 7 parameters 
could lead an eventually stable MLE. This is implemented by setting the value other 
than 0 (say, 1 or nothing) in the 8th line in st-etas.conf.  
 
 

6 Delaunay Tessellation for Spatial Variation (delone1, delone2)  
This section describes a group of programs that are used to perform a Delaunay 

tessellation of the two-dimensional spatial coordinates. This tessellation is used by 
subsequent programs to provide spatial estimates of some or all of the ETAS 
parameters.  

The first FORTRAN program (delone1.f) performs a Delaunay tessellation. It 
initially augments the spatial locations of the points closest to the boundary with the 
location of their mirror image in the boundary. The second (delone2.f) treats the 
locations where the triangle lines cross the observation region boundary as a new 
point, and excludes the mirror image added by delone1.f. Together with the 
original observed locations and these boundary points, it repeats the Delaunay 
tessellation, and then outputs the determined triangles in a satisfactory format so that 
the R program delone2.R can be used to plot all of the triangles. This output is also 
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used by programs for estimation where one or more parameters are assumed to vary in 
space. All the used files in this section are selected in the program directory of 
Section6files/ in the program package. 

Further mathematical detail can be found in §A.2.  

 
 

6.1 File Names to Perform Delaunay Tessellation  
 
Program:         delone1.f  

Object:          delone1  

Configuration:  delone1.conf  

Reads:           etas2aniso.out3  

Writes:           delone1.out  
 

6.2 Configuration File Format  
An example of a configuration file follows.  

 1.00E-15          ! for EPS  

 1000  7000        ! for NEF0, NRG0   

 128.0  30.0        ! for xmin, ymin  

  21.  17.          ! for BXLX, BXLY  

  310              ! for NP (e.g., number of earthquakes)   

 

Parameters are read as free format. The above parameters are fragile for successful 
computation; see §6.4 to check. The error bound is already very small and can be 
larger, which makes the computation faster in the case where the number of 
(earthquake) data points NP is very large. A rough rule of thumb is that NEF0 should 
be approximately 0.8 times the number of data points NP, and NRG0 should be larger, 
especially in the case where points are highly clustered. Note that “21.” for BXLX is 
the width of the analysis region (degrees longitude), “17.” for BXLY is the height of 
the analysis region (degrees latitude), “310” for NP is the number of points, “128” for 
xmin is the western boundary (longitude), and “30” for ymin is the southern 
boundary (latitude). In western hemisphere xmin should be positive taking between 
180 and 360 degrees, and in the southern hemisphere ymin is negative, taking values 
between -90 and 0 degrees.  
 

6.3 Executing Delaunay Tessellation Program  

The required data are contained in etas2aniso.out3. The source code 
delone1.f requires the configuration file (i.e. delone1.conf).  
 
./delone1 |tee delone1.prt  

 

Running this job, we get the following output file (delone1.prt):  
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0          ***** input parameters *****  
           iperio=         0     np    =         0  
           dens  =   1.00000     eps=    0.10000E-14  
           nef0  =      1000     nrg0  =      7000  
           nclx1 =         3     ncly1 =         3  
           ilist =         1     ifile =         0  
           incard=         1     idpat =         1  
 
          32   149.000000000000        44.0300000000000      
         302   131.780000000000        30.0000000000000      
 np         308 
          *** input coordinates ***  
           np=   308   idpat=    1     bxlx,bxly=       21.00000       
17.00000   dens=        0.86835 
0*** detailed outputs ***          

<< skipped >>.  

          ***** result of voronoi division *****  
idpat  np   bxlx   bxly   brasq   sum of pol.ar. box area  
  1   308  21.0000   17.0000  50.820   3.57000000E+02  3.57000000E+02  
 number of delaunay triangle =     618  

 
Note here that the number of earthquakes in etas2aniso.conf (NP=310) is 

reduced to 308 because the two earthquakes on the rectangular boundary are removed 
in the computation.  

In particular, in the second to last line on the right-hand side are values of “sum 
of pol.ar.” and “box area”. The values for these should be the same if the 
Delaunay tessellation is correct. If they are not, then the values of NEF0 and NRG0 in 
the configuration file delone1.conf may need adjusting.  

 
Another output file delone1.out to be used for the next subsection writes as 

follows:  
 
  308    21.00000    17.00000   128.00000    30.00000 
    1 18.06954167 12.94617946     7.70000   167.16323   1.0000   1.0000   0.0000 
    2 18.03999678 12.70995838     6.00000   167.85969   1.0000   1.0000   0.0000 
    3 18.65051057 13.15371107     7.10000   174.11349   1.0000   1.0000   0.0000 
    4 18.56019533 13.17001224     6.60000   176.93889   1.0000   1.0000   0.0000 
    5 18.43048317 13.45037851     6.00000   220.44753   1.0000   1.0000   0.0000 

<< skipped >>  
  306 14.86989084  9.09956961     6.00000 13991.42554   1.0000   1.0000   0.0000 
  307 16.06046994  8.16971916     6.10000 14003.62383   1.0000   1.0000   0.0000 
  308 13.33026396  7.40966455     6.10000 14011.98325   1.0000   1.0000   0.0000 
       1       1    182    207       3 
       2       1      2    207       3 
       3       1      2       4       3 
       4       1      4    182       3 
       5       2    207    208       3 
       6       2    174    208       3 

<< skipped >>  
614     274    280    306       3 
615     275    280    306       3 
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616     275    282    306       3 
617     275    276    282       3 
618     275    276    280       3 

 

The first line contains the number of earthquakes (NP), lengths of longitude (bxlx) 
and latitude (bxly) spans, the origin longitude and latitude of the rectangular region, 
in the order from the left. Then, the following first block provides the same data as in 
etas2aniso.out3. Here the order of earthquakes is given in the first column up to 
the number NP=308. Also note here that the number of earthquakes in 
etas2aniso.conf (NP=310) is reduced to 308 because the two earthquakes on the 
rectangular boundary are removed in the computation. The second block lists the 
Delaunay triangles, numbered from 1 to 618 in the first column, vertex points, and 
the id-number of each triangle.  

6.4 Generation of the Map Data with Boundary Points  
The files associated with generating map data are as follows.  

 
Program: delone2.f  

Object:  delone2  

Reads:   delone1.out  

Writes:  delone2.out  
 

The above FORTRAN code can be executed by running the following shell script 
within the current program directory.  
 
./delone2 |tee delone2.prt  
 
An example of the delone2.prt is as follows:  
 
ss=   356.999999999999      tx*ty=   357.000000000000  

          10  

          12  
 
We can confirm the accuracy of the tessellation program by equality of the two 
calculated areas in the first line; where ss represents the sum of the Delaunay triangle 
areas and tx*ty represents the whole rectangular area. The second line is the largest 
number of following connected earthquakes by the Delaunay tessellation. The last line 
indicates the largest number of preceding and following connected earthquakes by the 
Delaunay tessellation. The Incomplete Cholesky Conjugate Gradient (ICCG) method, 
used later, requires that the maximum number of connected edge points of the 
Delaunay triangulation kkmax is 12, which is given in the last line of delone2.out, 
and the last line of delone2.prt in the above.  
 
An example of the delone2.out is as follows:  
 
     308       342       648    21.00000    17.00000 
    1 18.06954167 12.94617946    7.70   167.1632300   1.0000   1.0000   0.0000 
    2 18.03999678 12.70995838    6.00   167.8596900   1.0000   1.0000   0.0000 
    3 18.65051057 13.15371107    7.10   174.1134900   1.0000   1.0000   0.0000 
    4 18.56019533 13.17001224    6.60   176.9388900   1.0000   1.0000   0.0000 
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    5 18.43048317 13.45037851    6.00   220.4475300   1.0000   1.0000   0.0000  
 

<< skipped >>  
 

 221   8.70176461  7.25834122    6.70 12501.0291400   0.1139   0.0798   0.6972 
 222 10.55744694  7.48449001    6.60 12614.0509500   0.1070   0.0790   0.6728 
 223 14.02977645  8.50037863    6.10 12776.5865100   1.0000   1.0000   0.0000 
 224 13.53967847  6.18031260    6.20 12910.6680900   1.0000   1.0000   0.0000 
 225 13.75989075  6.15983542    6.10 12910.6782000   1.0000   1.0000   0.0000 
 226 13.71057900  6.17401699    6.90 12910.6981300   0.1863   0.1332  -0.4900 
 227 12.88007256  9.02951694    6.90 12947.9887200   0.0713   0.1116   0.7751 
 228 14.50513802  7.48206907    7.00 12983.1107500   1.0000   1.0000   0.0000 
 229 14.05029992  7.18993243    6.00 12985.4795100   1.0000   1.0000   0.0000 
 230 16.05360444 11.75244392    6.80 13037.0144800   0.1512   0.0716  -0.6874   
 

<< skipped >>  
 

305 12.30031094  5.60951590    6.20 13989.5673500   1.0000   1.0000   0.0000 
306 14.86989084  9.09956961    6.00 13991.4255400   1.0000   1.0000   0.0000 
307 16.06046994  8.16971916    6.10 14003.6238300   1.0000   1.0000   0.0000 
308 13.33026396  7.40966455    6.10 14011.9832500   1.0000   1.0000   0.0000 
309  0.00000000  0.00000000     0.00      0.0000000   0.0000   0.0000   0.0000 
310 21.00000000  0.00000000     0.00      0.0000000   0.0000   0.0000   0.0000 
311 21.00000000 17.00000000    0.00      0.0000000   0.0000   0.0000   0.0000  
 

<< skipped >>  
 

340 21.00000000  0.99002710    0.00     0.0000000   0.0000   0.0000   0.0000 
 341 21.00000000  7.05039114    0.00     0.0000000   0.0000   0.0000   0.0000 
 342 21.00000000  7.35957019    0.00     0.0000000   0.0000   0.0000   0.0000  

     1       1     182     207  0.796487629875D-01 
      2       1        2     207  0.113149385584D+00 
      3       1        2        4  0.546448113038D-01 

4       1        4     182  0.346708339754D-01  
 

<< skipped >>  
 

645     275     280     306  0.132964341353D-01 
 646     275     282     306  0.158110057792D-01 
 647     275     276     282  0.302560585723D-01 
 648     275     276     280  0.252603344595D-01 

      1      4        2      4    182    207  
      2      9        3      4     97    100    165    174    190    207    208  
      3      4        4     13     40    165  
      4      4       13     75    159    182  
      5      7       48     75    138    140    159    182    207  
      6      5       77    184    295    298    299  
      7      8       52     99    188    189    191    206    220    232  
 

<< skipped >>  
 
  335      1      339  
   336      0  
   337      1      338  
   338      0  
   339      0  
   340      1      341  
   341      1      342  
   342      0  

         12  
 

The first record gives the number of earthquakes (NP), number of points Delaunay 
tessellation including those on boundaries, number of Delaunay triangles, and lengths 
of longitude (BXUP) and latitude (BYUP) spans, in the order from the left. Then, the 
first block provides the same data as st-etas.out. Here the order of earthquakes 
are given in the first column up to the number NP=308. The second block of the index 
numbers from NP=309 to 342 includes the Delaunay vertex points on the boundary of 
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the rectangular region. The third block lists the Delaunay triangles numbered from 1 
to 648 in the first column, vertex points id-number of each triangle, and area of the 
triangle in the last column. The forth block indicates neighboring points connected by 
the sides of the triangle; the first record specifies the id-numbers of points, the second 
indicates the number of the connected points by the side of the triangles, and the rest 
of the columns show the id-numbers of the nearest points. The bottom raw number 
shows the largest numbers of the nearest points.  
  These provide necessary information to the Bayesian smoothing procedure, 
especially for the Hessian matrix and incomplete Cholesky conjugate gradient (ICCG) 
method: see Appendix B.2.  

6.5 Plotting Delaunay Tessellations 
The files associated with plotting the Delaunay tessellations using the R statistical 

language are as follows.  
 
Program: delone-plot.R  

Reads:   delone2.out  

Writes:  delone-plot.pdf  
 

The above R program can be executed by running R within the current program 
directory (Section6files), and executing the R function source to run the 
contents of the file interactively as:  
 
R  
> source(‘delone-plot.R’)  
 

The plot will be written into the file delone-plot.pdf.  

6.6 Example Output  

An example of the Delaunay tessellation plot example data is shown in the 
following figure (Fig.5).  
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Fig. 5: Delaunay tessellation plot, delone-plot.pdf  
 

7 Spatially Varying b-Value of Magnitude Frequency (b-values)  

These programs calculate and plot estimates of the b-value over a spatial region. 
The program calculates b-values at the nodes of the Delaunay tessellations (§6). 
Estimates at other spatial points can be made using the interpolation program. All the 
used files in this section are selected in the program directory of Section7files/ in 
the program package. Further mathematical detail can be found in §A.4.  

 

7.1 File Names  
For the estimation phase, done in FORTRAN:  

 
Program:        delo2d-bvalues.f  

Object:         delo2d-bvalues  

Configuration: delo2d-bvalues.conf  

Reads:          delone2.out  

Writes:         delo2d-bvalues.omap  
 

For the spatial plot, done in R:  
 
Program: delo2d-bvalues.R  

Reads:    delone2.out, delo2d-bvalues.omap  

Writes:   delo2d-bvalues.pdf.  
 
 

7.2 Configuration File Format 

The configuration file delo2d-bvalues.conf includes the following three lines: 
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128. 30. 5.95  !xmin, ymin, threshmag = magnitude threshold 

6.0d0        !w1 = initial weight of the penalty to be optimized. 

7           ! ipr 

containing the following records; the first line includes the origin of the considered 
region in longitude and latitude, and then magnitude threshold. The second line is an 
initial weight value for the penalty function. In the third line, if ipr = 7, more detailed 
output about the linear search procedure is given, and is not given if ipr = 1. 
Parameters are read as free format.  
 

Magnitude rounding issue: if magnitude data are rounded to 0.1 units, the 
threshold magnitude here should be modified to 5.95 (= Mc -0.05) to avoid the 
b-value MLE bias. This is because a rounded value of 6.0 may have been as small as 
5.95 or large as 6.05. This applies to the traditional catalogs such as the JMA, 
NEIC-PDE, and ISC catalog. Otherwise, namely, less than 0.01 magnitude unit, we 
can keep threshmag = 6.0 .  

7.3 Program Execution  
 
FORTRAN execution command:  
 
./delo2d-bvalues |tee delo2d-bvalues.prt  
 
The contents of delo2d-bvalues.prt includes the calculation processes as 
follows:  
 
xmin,ymin,threshmag=   128.000000000000        30.0000000000000  
   5.95000000000000      
 weight=   6.00000000000000      
 linear ipr           7  
         308         342         648   21.0000000000000      
   17.0000000000000      
 an =   1.00000000000000      
 npex         342  
 w1,w2,w3   6.00000000000000       0.000000000000000E+000  
  0.000000000000000E+000  
 ptdet = 0.1286030538956D+04  
 #1: w1 =  0.60000000D+01  
 penalized-log-likelihood =  0.463684636109451D+02  
 lambd2 =  0.5000000000D+00          e2 =  0.30828181796202939D+04 
 lambd4 =  0.5000000000D-01          e4 =  0.62135776017985577D+02 
 lambd4 =  0.5000000000D-02          e4 =  0.45023517036283550D+02 
 lambd5 =  0.1285750683D-01          e5 =  0.44224067911271810D+02 
 lambd6 =  0.1284875160D-01          e6 =  0.44224065397758963D+02 
 1      1 lambda =  0.1284875D-01   pell =  0.442240653977590D+02  0.33D+03 
 lambd2 =  0.1284875160D-01          e2 =  0.50878298842753544D+02 
 lambd4 =  0.1284875160D-02          e4 =  0.43818395118639856D+02 
 lambd5 =  0.2832311965D-02          e5 =  0.43645759409649770D+02 
 lambd6 =  0.2832374825D-02          e6 =  0.43645759408993605D+02 
 1      2 lambda =  0.2832375D-02   pell =  0.436457594089936D+02  0.41D+03 
 lambd2 =  0.2832374825D-02          e2 =  0.43616306798161546D+02 
 lambd3 =  0.5664749651D-02          e3 =  0.43586937733633853D+02 
 lambd3 =  0.1132949930D-01          e3 =  0.43528450272154494D+02 
 lambd3 =  0.2265899860D-01          e3 =  0.43412478220408836D+02 
 lambd3 =  0.4531799721D-01          e3 =  0.43184547213016458D+02 
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 lambd3 =  0.9063599442D-01          e3 =  0.42744750536460081D+02 
 lambd3 =  0.1812719888D+00          e3 =  0.41929523194600279D+02 
 lambd3 =  0.3625439777D+00          e3 =  0.40557386459155495D+02 
 lambd3 =  0.7250879553D+00          e3 =  0.38853488561817301D+02 
 lambd3 =  0.1450175911D+01          e3 =  0.39668601393578882D+02 
 lambd5 =  0.9826636726D+00          e5 =  0.38493436628796665D+02 
 lambd6 =  0.9834376482D+00          e6 =  0.38493427204469839D+02 
 1      3 lambda =  0.9834376D+00   pell =  0.384934272044698D+02  0.49D+01 
 lambd2 =  0.9834376482D+00          e2 =  0.38489324810747796D+02 
 lambd3 =  0.1966875296D+01          e3 =  0.38493117194215735D+02 
 lambd5 =  0.1002746347D+01          e5 =  0.38489323394303419D+02 
 lambd6 =  0.1002091162D+01          e6 =  0.38489323392487314D+02 
 1      4 lambda =  0.1002091D+01   pell =  0.384893233924873D+02  0.67D-02 
 lambd2 =  0.1002091162D+01          e2 =  0.38489323390150034D+02 
 lambd3 =  0.2004182325D+01          e3 =  0.38489323392506961D+02 
 lambd5 =  0.9999924475D+00          e5 =  0.38489323390150027D+02 
 lambd6 =  0.9992774566D+00          e6 =  0.38489323390150084D+02 
 1      5 lambda =  0.9999924D+00   pell =  0.384893233901500D+02  0.18D-08 
 penalized log likelihood =  0.384893233901500D+02 
 #e: w1 = 0.60000000D+01 
  abic = 0.8410057591D+02  -l =-0.2930057833D+03  pn = 0.1298666099D+04  

-------- xd -------   1.00000000000000    6.00000000000000   84.1005759128927  

<< skipped >>  

w1,w2,w3   2.00974825755177       0.000000000000000E+000  
  0.000000000000000E+000  
 ptdet = 0.9130617889564D+03  
 #1: w1 =  0.20097483D+01  
 penalized-log-likelihood =  0.287800079161731D+02  
 lambd2 =  0.5000000000D+00          e2 =  0.29546166935190861D+02 
 lambd4 =  0.5000000000D-01          e4 =  0.28777011048782104D+02 
 lambd5 =  0.3346968607D-01          e5 =  0.28776042319021148D+02 
 lambd6 =  0.3346159299D-01          e6 =  0.28776042318756339D+02 
 1      1 lambda =  0.3346159D-01   pell =  0.287760423187563D+02  0.24D+00  
 lambd2 =  0.3346159299D-01          e2 =  0.28782452945428989D+02 
 lambd4 =  0.3346159299D-02          e4 =  0.28775473430799885D+02 
 lambd5 =  0.8752834473D-02          e5 =  0.28775122438782077D+02 
 lambd6 =  0.8752857664D-02          e6 =  0.28775122438782141D+02 
 1      2 lambda =  0.8752834D-02   pell =  0.287751224387821D+02  0.21D+00  
 lambd2 =  0.8752834473D-02          e2 =  0.28775048199836448D+02 
 lambd3 =  0.1750566895D-01          e3 =  0.28774974613552200D+02 
 lambd3 =  0.3501133789D-01          e3 =  0.28774829398984622D+02 
 lambd3 =  0.7002267579D-01          e3 =  0.28774546801964874D+02 
 lambd3 =  0.1400453516D+00          e3 =  0.28774012937290273D+02 
 lambd3 =  0.2800907031D+00          e3 =  0.28773070532623031D+02 
 lambd3 =  0.5601814063D+00          e3 =  0.28771687079862836D+02 
 lambd3 =  0.1120362813D+01          e3 =  0.28770926064465890D+02 
 lambd3 =  0.2240725625D+01          e3 =  0.28777431321669166D+02 
 lambd5 =  0.9995936669D+00          e5 =  0.28770863947998595D+02 
 lambd6 =  0.9996405857D+00          e6 =  0.28770863947986673D+02 
 1      3 lambda =  0.9996406D+00   pell =  0.287708639479867D+02  0.39D-02  
 lambd2 =  0.9996405857D+00          e2 =  0.28770863945859837D+02 
 lambd3 =  0.1999281171D+01          e3 =  0.28770863947983585D+02 
 lambd5 =  0.1000003763D+01          e5 =  0.28770863945859844D+02 
 lambd6 =  0.9954337900D+00          e6 =  0.28770863945859880D+02 
 1      4 lambda =  0.9996406D+00   pell =  0.287708639458598D+02  0.38D-08  
 penalized log likelihood =  0.287708639458598D+02  
 #e: w1 = 0.20097483D+01  
  abic = 0.8153752949D+02  -l =-0.1162398678D+03  pn = 0.9425712218D+03  
 
 -------- xd -------   6.00000000000000        2.00974825755177       
   81.5375294926255      
 ####  iteration, f, epsilon =     6  0.81537529D+02  0.35904191D-03  
 x =   0.13960189D+01  
    0.20097E+01    0.81538E+02    342  
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The records including lambd# ('#' for a number) show linear search for the 

minimum of the negative penalized log likelihood (pell), and the rows including 
pell show the minimized value and the sum of squares of the gradient vector 
components of the pell function with respect to the minimizing parameters.  
Furthermore, the abic value is minimized with respect to a weight w1, assuming 
isotropic smoothing constraint. The rows with “-------- xd -------“ shows every step 
where the minimum was updated by the simplex algorithm. The third to last rows 
from the bottom starting at #### show that the iterated simplex algorithm updated the 
ABIC for 6 times with the minimum abic = 0.8153752949D+02 and the difference with the 
previous smallest ABIC is 0.82721787D-04. This is attained by w1 = 0.20097483D+01 
(5th row from the bottom), and the bottom row shows its logarithm. See Appendix A 
for the definitions and Appendix B for the numerical procedures.  
 

The file delo2d-bvalues.prt includes a large volume of output. It may be 
useful to use UNIX command egrep (grep) to restrict output to records of interest. 
For example,  
egrep xd delo2d-bvalues.prt  

and  
egrep xd |abic delo2d-bvalues.prt  

shows you a series of only the updated smallest ABIC values and of all searched 
ABIC values in the simplex minimization procedure, respectively.  
 
./delo2d-bvalues > delo2d-bvalues.omap  
 
R  
> source('delo2d-bvalues.R')  

 
The output shows Fig. 6. 

 
Fig. 6. bvalues.pdf; colors are ordered in frequency-linearized scale.  
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8 Spatial Occurrence Rate (delo2d-poisson) 

This program fits a nonhomogeneous spatial Poisson model with no time component 
to the location of earthquakes. This is done be estimating the Poisson rates at the 
nodes of the Delaunay tessellations (§6). All the used files in this section are selected 
in the program directory of Section8files/ in the program package. Further 
mathematical detail can be found in §A.5.2.  
 

8.1 File Names  
For the estimation phase, done in FORTRAN:  

 
Program: delo2d-poisson.f  

Object:  delo2d-poisson  

Configuration: delo2d-poisson.conf  

Reads:   delone2.out  

Writes:  delo2d-poisson.omap  
 

For the spatial plot, done in R:  
 
Program: delo2d-poisson.R 

Reads:   delone2.out, delo2d-poisson.omap  

Writes:  delo2d-poisson.pdf  

 
 

8.2 Configuration File Format  
 

The configuration file delo2d-poisson.conf includes the following three lines:  
 

128. 30. 5.95  ! xmin, ymin, threshmag = magnitude threshold  

6.0d0        !w1= initial weight of the penalty to be optimized.  

7         ! ipr  

 
containing the following records; the first line includes the origin of the considered 
region in longitude and latitude, and then magnitude threshold. The second line is an 
initial weight value for the penalty function. In the third line, if ipr = 7, more detailed 
output about the linear search procedure is given, and is not given if ipr = 0. 
Parameters are read as free format.  
 

8.3 Program Execution  
 

FORTRAN execution command:  
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./delo2d-poisson |tee delo2d-poisson.prt  
 
The example of delo2d-poisson.prt includes the calculation processes as 
follows:  
 
    308       342       648   16.434778690338135    17.000000000000000   
0.95798319327731085      
 an =   1.0000000000000000  
 tx,ty     16.435    17.000     nn,np,npex,nd =    308    308    342    648  
 ptdet = 0.1218006057961D+04 
 #1: w1,w2,w3,w4 =  0.60000000D+01 0.60000000D+01 0.00000000D+00 0.10000000D+01  
 wx,wy= 0.60000D+01wxx,wyy= 0.00000D+00   pell =  0.293388497473962D+03  
 lambda =  0.5000000000D+00          e2 =  0.27484230578836838D+03 
 lambda =  0.1000000000D+01          e3 =  0.26290412013045670D+03 
 lambda =  0.2000000000D+01          e3 =  0.25722684413266461D+03 
 lambda =  0.4000000000D+01          e3 =  0.31070799318271708D+03 
 lambda =  0.1762692124D+01          e5 =  0.25648282432909440D+03 
 lambda =  0.1745673777D+01          e6 =  0.25647816623906681D+03 
 lambda =  0.1745674D+01    pell =  0.256478166239067D+03  -0.44D+02   0.27D+04  
 cgres_0          31  2.51817502773355539E-009  5.18160438220919444E-013  
 #iteration=           1  
 cgres_0          35  8.16996669971836904E-010  4.73376310296145925E-013  
 lambda =  0.1745673777D+01          e2 =  0.12575332143434689D+04 
 lambda =  0.1745673777D+00          e4 =  0.18238027528344378D+03 
 lambda =  0.4214208914D+00          e5 =  0.10619977032668238D+03 
 lambda =  0.5037843862D+00          e6 =  0.89583483392868573D+02 
 lambda =  0.5037844D+00    pell =  0.895834833928686D+02  -0.47D+03   0.17D+04  
 cgres_0          31  1.96048463382195580E-010  4.13813896662551007E-013 
 #iteration=           2 
 cgres_0          31  3.02592639283617553E-010  7.26217704144932776E-013  
 lambda =  0.5037843862D+00          e2 =  0.69744102731447668D+02 
 lambda =  0.1007568772D+01          e3 =  0.63752199016021812D+02 
 lambda =  0.2015137545D+01          e3 =  0.96660591021549394D+02 
 lambda =  0.9574016612D+00          e5 =  0.63709613227398854D+02 
 lambda =  0.9673758963D+00          e6 =  0.63706622422671018D+02 
 lambda =  0.9673759D+00    pell =  0.637066224226710D+02  -0.53D+02   0.42D+03  
 cgres_0          29  9.76411103241434597E-011  2.51836405349217590E-013  
 #iteration=           3 
 cgres_0          33  8.39914763820138480E-013  3.42533485175028649E-013  
 lambda =  0.9673758963D+00          e2 =  0.63386328627224401D+02 
 lambda =  0.1934751793D+01          e3 =  0.63625716518613871D+02 
 lambda =  0.1037296374D+01          e5 =  0.63385217407971851D+02 
 lambda =  0.1029415522D+01          e6 =  0.63385196860218286D+02 
 lambda =  0.1029416D+01    pell =  0.633851968602183D+02  -0.63D+00   0.25D+01  
 cgres_0          33  1.23078004902940045E-012  5.04589483633406912E-013  
 #iteration=           4 
 cgres_0          36  1.23479568721858537E-015  6.82639669277830308E-013  
 lambda =  0.1029415522D+01          e2 =  0.63385147363602783D+02 
 lambda =  0.2058831044D+01          e3 =  0.63385202811382449D+02 
 lambda =  0.1000227585D+01          e5 =  0.63385147321246720D+02 
 lambda =  0.1000170025D+01          e6 =  0.63385147321246102D+02 
 lambda =  0.1000170D+01    pell =  0.633851473212461D+02  -0.99D-04   0.18D-02  
 cgres_0          36  1.38678649094504771E-015  7.66666188308590379E-013  
 #iteration=           5 
 cgres_0          41  3.70006474981530149E-023  7.93982954620509432E-013  
 penalized log likelihood =  0.633851473212461D+02     rss1 = 0.00000D+00  
 #2: w1,w2,w3,w4 = 0.60000000D+01 0.60000000D+01 0.00000000D+00 0.10000000D+01  
  abic = 0.1423320648D+03  -l =-0.2322598418D+03  pn = 0.1233567828D+04  
 
 -------- xd -------   1.0000000000000000        142.33206476053772  

<< skipped >>  
cgres_0          11  1.54020947332860286E-015  2.29884192443332537E-013  
 lambda =  0.1043609807D+01          e2 = -0.22403882242063287D+03 
 lambda =  0.2087219613D+01          e3 = -0.22403690586438574D+03 
 lambda =  0.9992959948D+00          e5 = -0.22403882557855775D+03 
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 lambda =  0.9994767724D+00          e6 = -0.22403882557861556D+03 
 lambda =  0.9994768D+00    pell = -0.224038825578616D+03  -0.32D-02   0.67D-02  
 cgres_0          11  1.30812015597880167E-015  1.95274516420379816E-013  
 #iteration=           2  
 cgres_0          15  3.46131678207414862E-021  5.61917090100347095E-013  
 penalized log likelihood = -0.224038825578616D+03     rss1 = 0.00000D+00  
 #2: w1,w2,w3,w4 = 0.24251537D+00 0.24251537D+00 0.00000000D+00 0.10000000D+01  
  abic =-0.2578557275D+03  -l = 0.2735685405D+02  pn = 0.3141466440D+03  
 
 -------- xd -------   7.0000000000000000       -257.85572753556761  
 ####  iteration, f, epsilon =    10 -0.25785573D+03  0.40149378D-02  

<<  skipped  >>  
ptdet = 0.1266242306393D+03 
 #1: w1,w2,w3,w4 =  0.24444285D+00 0.24444285D+00 0.00000000D+00 0.10000000D+01  
 wx,wy= 0.24444D+00wxx,wyy= 0.00000D+00   pell = -0.223521871356295D+03  
 lambda =  0.5000000000D+00          e2 = -0.22352266609096029D+03 
 lambda =  0.1000000000D+01          e3 = -0.22352295814051013D+03 
 lambda =  0.2000000000D+01          e3 = -0.22352203375141028D+03 
 lambda =  0.1040406199D+01          e5 = -0.22352295978543751D+03 
 lambda =  0.1040441881D+01          e6 = -0.22352295978543987D+03 
 lambda =  0.1040442D+01    pell = -0.223522959785440D+03  -0.21D-02   0.79D-02  
 cgres_0          11  1.61880861331118845E-015  1.50704974760771075E-013  
 #iteration=           1  
 cgres_0          11  3.85521606748695143E-016  2.26906058674522855E-013  
 lambda =  0.1040441881D+01          e2 = -0.22352336816547259D+03 
 lambda =  0.2080883761D+01          e3 = -0.22352289158507637D+03 
 lambda =  0.1000350532D+01          e5 = -0.22352336882549560D+03 
 lambda =  0.1000261750D+01          e6 = -0.22352336882549969D+03 
 lambda =  0.1000262D+01    pell = -0.223523368825500D+03  -0.82D-03   0.17D-02  
 cgres_0          11  3.70289506047125967E-016  2.17923635050981849E-013  
 #iteration=           2  
 cgres_0          16  3.06587908896622114E-023  7.84642264502102871E-014  
 penalized log likelihood = -0.223523368825500D+03     rss1 = 0.00000D+00  
 #2: w1,w2,w3,w4 = 0.24444285D+00 0.24444285D+00 0.00000000D+00 0.10000000D+01  
  abic =-0.2578532621D+03  -l = 0.2652255568D+02  pn = 0.3158177062D+03  
 
 ####  iteration, f, epsilon =    11 -0.25785573D+03  0.87167224D-03  
 x =   0.49245849D+00  

 

The rows including “lambda =” show values of the negative penalized log 
likelihood (pell) in the linear searching procedure. The rows including lambda 
without a number attached show the minimized value and sum of squares of the 
gradient vector components of the pell function with respect to the minimizing 
parameters.  Furthermore, the abic value is minimized with respect to a weight w1. 
The rows with “-------- xd -------“ shows every step where the minimum is updated 
by the simplex algorithm. The second to last rows show that the iterated simplex 
algorithm updated the ABIC for 11 times with the minimum abic = 
-0.2578532621D+03. This is attained by w1 = w2 = 0.24444285D+00 (4th row from 
the bottom in the last second block, and the bottom row shows its logarithm). See 
Appendix A for the definitions and Appendix B for the numerical procedures.  
 

The file delo2d-poisson.prt also includes a large volume of outputs. It may be 
useful to use UNIX command egrep (grep) to select specific items of interests. For 
example,  
egrep xd delo2dpoisson.prt  

 
egrep ‘xd|abic’ delo2d-poisson.prt  
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shows you just updated and all history of ABIC values, respectively.  
 

For the spatial plot, done in R:  
 
Program: delo2d-poisson.R  
Reads:   delone2.out, delo2d-poisson.omap  
Writes:  delo2d-poisson.pdf  
 
which gives the following plot.  

 
delo2d-poisson.pdf:  

 
Fig. 7. Rainbow colors are in frequency-linearlised associated with logarithmic scale values  
 

9 ETAS: Spatially Varying µ and K0 parameters (hist-etas-mk)  

This model in §A5.2 is almost the same as the space-time ETAS model as 
described in §5 except that the background rate µ and aftershock productivity K are 
location dependent. The parameters µ and K use a piecewise linear function defined 
on the Delaunay tessellations (§6). On the other hand, the location-independent 
parameters α, c, p, d and q are compensated from those obtained as the MLEs 
calculated by the above space-time ETAS program st-etas, depending on the 
estimation of location-dependent µ and K. All the used files in this section are 
selected in the program directory of Section9files/ in the program package.  

The program can take a considerable amount to time to converge, as the data size get 
large. An approximation of the model for a faster likelihood calculation is adjusted by 
bi2; that restrict the range of spatial distance of interaction between earthquakes; see 
“Line 4” of the configuration file in §5.2.  
 

9.1 File Names  

For the estimation phase, done in FORTRAN:  
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Program: hist-etas-mk.f  

Object:  hist-etas-mk  

Configuration: hist-etas-mk.conf  

Reads:   delone2.out  

Writes:  hist-etas-mk.prt  
          simplex.root  
          hist-etas-mk.upda  
          hist-etas-mk.omap  
 

9.2 Configuration File Format 
An example of the configuration file is as follows. Parameters are read as free 

format. Note that “” indicates that the record continues onto the following line, i.e. 
it is not split in the configuration file. It is not part of the input data configuration.  
 
./delone2.out                !maindata  
21.0  17.0  14012.0  308    !tx,ty,tz,nn=#erthquakes  
128.0 30.0 6.0 0.0 730.0 2.0 !xmin,ymin,xmg0,zmin,tstart,bi2  
0                              !init  
0                              !inits  
1                              !initf  
./hist-etas-mk.upda        !to be used in case init=1 to succeed calculations  
0.0 1.d0 1.d0               !w01,w1,w2  
7                              !n=#of parameters  
0. 29261E-06 0.21404E-01 0.17785E-02 0.10697E+01 0.86948E+00 0.18359E-01   
0.15210E+01                     ! µ0,K0,c, α,p,d,q  

0                              !if ipr = 7, printing the linear search  
0 1.d0 1.d-0                 !nhesapp, dist,eps ( in subroutine simplex)  
 

The data are interpreted as follows.  
Line 1: Name of the data file, preceded by ./.  
Line 2: Width of region (tx degrees longitude), height of region (ty degrees 

latitude), end of observation period (tz days), number of events (nn) in dataset.  
Line 3: Minimum longitude (xmin degrees), minimum latitude (ymin degrees), 

reference magnitude (xmg0) that can be usually a threshold magnitude of 
completely detected (cutm in §4.2), starting time of all data including 
precursory period for the history (zmin = 0 day), starting time of target period 
of estimation (tstart = 730 days, in the current case), and an adjustment 
parameter called bi2 (=2.0, in the current case), which restrict the range of 
spatial distance of interaction between earthquakes. For an explanation of bi2, 
see “Line 4” in §5.2.  

Line 4: Value of init. If init is 0, then estimation starts at the beginning using 
the data file specified in Line 1 and initial parameter estimates given in Line 10. 
If init is 1, estimation continues from where a previous run was terminated. 



35 

The results of the previous run are placed in the file specified in Line 8 
(hist-etas-mk.upda).  

Line5: Value of inits. If 1, the file containing the simplex optimization history 
from the previous run is used, 0 if it is not to be read. This information is 
contained in the file with simplex.root. There is a possibility that this will 
not work, in which case inits should be set to 0.  

Line 6: Value of initf. This is related to the grid search of the weights w3,w5, 
and w7 the “hist-etas5pa” model (see §5 and §11.5 and §A5).  

Line 7: File name containing estimation information from a previously incomplete 
run. It is the file hist-etas-mk.upda. This information can be used as a 
good starting point for the new run. This file includes the updated estimates of 
baseline parameters and the numbers in lines 10~11 are ignored in the case 
where init=1.  

Line 8: Weights for the flatness constraints (w1,w2) of Delaunay piecewise linear 
function. The first weight w01 represents the dumping penalty that is imposed 
only on the vertices on the boundary of the region. See A.6.2 for definition and 
details.   

Line 9: Number of initial model parameters listed on lines 10~11.  
Line 10~11: Initial estimates of baseline parameters. We recommend using the 

estimates is computed by the program st-etas given in st-etas.prt (see 
§5). These inputs estimates are ignored in the case where init=1  

Line 12: Index ipr for printing the linear search results in hist-etas-mk.prt. 
If ipr = 0, no printing, otherwise printing the linear search result.  

Line 13: Adoption of the approximated Hessian matrix (nhesapp=1); initial 
distance for simplex search; and error bounds for the criteria of the simplex 
convergence (penalized log-likelihood ) used in subroutine simplex. The 
other parameters that may require adjusting within the FORTRAN code are dist 
and eps. The first adjusts the search criterion (size of the simplex), and the 
second sets the convergence criterion.  

 

9.3 Executing the Program  
When init=0, parameter estimation does not start from where a previous run of 

hist-etas-mk terminated. Hence the file specified in Line 6 of the configuration 
file is not used. The model fitting starts from the initial parameter values specified in 
the configuration file. Execute as  
./hist-etas-mk |tee hist-etas-mk.prt  

When init=1 information from a previous run is used, namely that contained in 
the file hist-etas-mk.upda. For more accurate estimation, we set a larger value of 
bi2 such as 4 or 8, and we can use the previously obtained estimates. Since the new 
job will also write a file with the same name, we recommend copying and keeping the 
original hist-etas-mk.upda. Hence this name is specified on Line 9 of the 
configuration file.  
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9.4 Output of Calculation Process  

An example of the program output (hist-etas-mk.prt) is as follows.  
 
delone2.out  
      21.0      17.0   14012.0       308  
     730.0  
    128.00     30.00      6.00      0.00    730.00      2.00  
 input device        10  
 nfunct=          17  
 nn,ntstar,nnc         308          16         292  
 tx,ty,tz,xmin,ymin,xmg0,zmin,tsta  
    16.435    17.000 14012.000   128.000    30.000     6.000     0.000   730.000 
 nn =  308 nnc =  292  
 jmax          61  
 n=           7  
 para-init=   0.29261E-06   0.21404E-01   0.17785E-02   0.10697E+01   0.86948E+00    
0.18359E-01   0.15210E+01  
 linear ipr           0  
 nhesapp,simplex(dist,eps)           0   1.0000000000000000        1.0000000000000000  
 n=           7  
 non-pos diag.         339  -8.7469312074247600        586.78388345246196      
 non-pos diag.         339  -8.7469312074247600        586.78388345246196      
   588.42278020120909        588.42278020120909      
 ptdet = 0.1176845560402D+04  
 #s: w1,w2 =  0.100D+01  0.100D+01  
 Initial Penalized log likelihood =   10089.469022236997  
 lambda =  0.4228466D+00    pell =  0.478286492088103D+04  -0.51D+05   0.49D+06 
 lambda =  0.3465761D+00    pell =  0.303540668222858D+04  -0.36D+05   0.75D+05 
 lambda =  0.1063103D+01    pell =  0.194855632224969D+04  -0.18D+04   0.20D+05 
 lambda =  0.1064288D+01    pell =  0.185052756355960D+04  -0.16D+03   0.61D+03 
 lambda =  0.7674186D+00    pell =  0.183141972939415D+04  -0.52D+02   0.18D+03 
 lambda =  0.8041680D+00    pell =  0.182171531754999D+04  -0.23D+02   0.49D+02 
 lambda =  0.7680201D+00    pell =  0.181722348272042D+04  -0.12D+02   0.31D+02 
 lambda =  0.7644997D+00    pell =  0.181447949500491D+04  -0.69D+01   0.98D+01 
 lambda =  0.7265978D+00    pell =  0.181309094850632D+04  -0.39D+01   0.68D+01 
 lambda =  0.7025772D+00    pell =  0.181225563224721D+04  -0.23D+01   0.26D+01 
 lambda =  0.6575894D+00    pell =  0.181181504512178D+04  -0.14D+01   0.18D+01 
 lambda =  0.6419689D+00    pell =  0.181154264428305D+04  -0.82D+00   0.81D+00 
 lambda =  0.6188474D+00    pell =  0.181139001000143D+04  -0.50D+00   0.62D+00 
 lambda =  0.6180905D+00    pell =  0.181129162444832D+04  -0.31D+00   0.29D+00 
 lambda =  0.6092636D+00    pell =  0.181123423083046D+04  -0.19D+00   0.23D+00 
 lambda =  0.6101669D+00    pell =  0.181119729576200D+04  -0.12D+00   0.11D+00 
 lambda =  0.6068614D+00    pell =  0.181117528517862D+04  -0.73D-01   0.87D-01 
 lambda =  0.6069101D+00    pell =  0.181116129443409D+04  -0.46D-01   0.40D-01 
 lambda =  0.6059907D+00    pell =  0.181115284215355D+04  -0.28D-01   0.33D-01 
 lambda =  0.6053561D+00    pell =  0.181114752142969D+04  -0.17D-01   0.15D-01 
 lambda =  0.6055761D+00    pell =  0.181114427741159D+04  -0.11D-01   0.13D-01 
 lambda =  0.6045714D+00    pell =  0.181114224762131D+04  -0.67D-02   0.59D-02 
 lambda =  0.6053656D+00    pell =  0.181114100240355D+04  -0.41D-02   0.48D-02 
 lambda =  0.6041784D+00    pell =  0.181114022595194D+04  -0.26D-02   0.22D-02 
 lambda =  0.6052692D+00    pell =  0.181113974761236D+04  -0.16D-02   0.18D-02 
 lambda =  0.6039944D+00    pell =  0.181113944988561D+04  -0.98D-03   0.85D-03 
 lambda =  0.6052458D+00    pell =  0.181113926593057D+04  -0.61D-03   0.70D-03 
 lambda =  0.6039214D+00    pell =  0.181113915152839D+04  -0.38D-03   0.33D-03 
 lambda =  0.6052650D+00    pell =  0.181113908069490D+04  -0.23D-03   0.27D-03 
 lambda =  0.6039132D+00    pell =  0.181113903665419D+04  -0.15D-03   0.12D-03 
 lambda =  0.6053139D+00    pell =  0.181113900934350D+04  -0.90D-04   0.10D-03 
 lambda =  0.6039305D+00    pell =  0.181113899236161D+04  -0.56D-04   0.48D-04 
 lambda =  0.6054994D+00    pell =  0.181113898181821D+04  -0.35D-04   0.40D-04 
 lambda =  0.6035771D+00    pell =  0.181113897526049D+04  -0.22D-04   0.18D-04 
 lambda =  0.6059521D+00    pell =  0.181113897118520D+04  -0.13D-04   0.15D-04 
 lambda =  0.6035625D+00    pell =  0.181113896864956D+04  -0.84D-05   0.70D-05 
 lambda =  0.6059704D+00    pell =  0.181113896707257D+04  -0.52D-05   0.59D-05 
 lambda =  0.6035741D+00    pell =  0.181113896609097D+04  -0.33D-05   0.27D-05 
 lambda =  0.6060786D+00    pell =  0.181113896548008D+04  -0.20D-05   0.23D-05 
 lambda =  0.6035508D+00    pell =  0.181113896509967D+04  -0.13D-05   0.10D-05 
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 lambda =  0.6062551D+00    pell =  0.181113896486279D+04  -0.78D-06   0.87D-06 
 lambda =  0.6048568D+00    pell =  0.181113896471523D+04  -0.49D-06   0.40D-06 
 lambda =  0.6036937D+00    pell =  0.181113896462330D+04  -0.30D-06   0.34D-06 
 lambda =  0.6061852D+00    pell =  0.181113896456600D+04  -0.19D-06   0.16D-06 
 lambda =  0.6038110D+00    pell =  0.181113896453029D+04  -0.12D-06   0.13D-06 
 lambda =  0.6061742D+00    pell =  0.181113896450802D+04  -0.73D-07   0.60D-07 
 lambda =  0.6061742D+00    pell =  0.181113896449415D+04  -0.46D-07   0.50D-07 
 lambda =  0.6016804D+00    pell =  0.181113896448548D+04  -0.29D-07   0.23D-07 
 lambda =  0.6085610D+00    pell =  0.181113896448009D+04  -0.18D-07   0.20D-07 
 lambda =  0.5957944D+00    pell =  0.181113896447671D+04  -0.11D-07   0.90D-08 
 lambda =  0.6163351D+00    pell =  0.181113896447461D+04  -0.68D-08   0.75D-08 
 lambda =  0.5983139D+00    pell =  0.181113896447330D+04  -0.44D-08   0.35D-08 
 lambda =  0.6122871D+00    pell =  0.181113896447248D+04  -0.27D-08   0.29D-08 
 lambda =  0.6122871D+00    pell =  0.181113896447197D+04  -0.17D-08   0.13D-08 
 lambda =  0.5848831D+00    pell =  0.181113896447165D+04  -0.11D-08   0.11D-08 
 lambda =  0.5848831D+00    pell =  0.181113896447145D+04  -0.64D-09   0.52D-09 
 lambda =  0.6719067D+00    pell =  0.181113896447133D+04  -0.37D-09   0.43D-09 
 lambda =  0.5502216D+00    pell =  0.181113896447125D+04  -0.28D-09   0.20D-09 
 lambda =  0.5983607D+00    pell =  0.181113896447120D+04  -0.14D-09   0.17D-09 
 penalized log likelihood =  0.181113896447120D+04  
 #e: w1,w2 =  0.100D+01  0.100D+01  
  abic = 0.3655784386D+04 -l = 0.1850351202D+04 pn = 0.1210352017D+04  
 repeated davidn =           1  
 Surface Sliding: Old a1, a2=  2.92610000000000024E-007  2.14039999999999994E-002  
 Surface Sliding: sss1, sss2=   1678.3115727728357       -1349.0295398812370  
 Surface Sliding: New a1, a2=  3.95841650338503000E-005  4.14387812724830850E-004  
-------- xd -------     1  0.365578438575E+04      0.000  
 a1-7 0.396E-04 0.414E-03 0.178E-02 0.107E+01 0.869E+00 0.184E-01 0.152E+01  

 w1-2 0.100E+01 0.100E+01  

<< skipped >>  
lambda =  0.1591954D+00    pell =  0.167273796149464D+04  -0.64D-09   0.11D-09 

 lambda =  0.3881579D+00    pell =  0.167273796149461D+04  -0.16D-09   0.98D-10 
 lambda =  0.1665214D+00    pell =  0.167273796149459D+04  -0.27D-09   0.76D-10 
 lambda =  0.4590164D+00    pell =  0.167273796149457D+04  -0.95D-10   0.61D-10 
 lambda =  0.1529797D+00    pell =  0.167273796149455D+04  -0.22D-09   0.45D-10 
 penalized log likelihood =  0.167273796149455D+04  
 #e: w1,w2 =  0.823D-01  0.809D+00  
  abic = 0.3526282973D+04 -l = 0.2172458180D+04 pn = 0.4366366499D+03  
 repeated davidn =           1  
 Surface Sliding: Old a1, a2=  1.13588618541079640E-004  6.72600220400718243E-005  
 Surface Sliding: sss1, sss2=   2.5486238908657164       -238.50222149897596  
 Surface Sliding: New a1, a2=  1.14438256042319838E-004  3.34881323324280578E-005  
-------- xd -------     9  0.352628297294E+04     -5.110  
 a1-7 0.114E-03 0.335E-04 0.647E-02 0.146E+01 0.104E+01 0.210E-01 0.233E+01  
 w1-2 0.823E-01 0.809E+00 

<< skipped >> 
lambda =  0.2309417D+00    pell =  0.167026661988171D+04  -0.11D-09   0.47D-10 

 lambda =  0.3459302D+00    pell =  0.167026661988169D+04  -0.84D-10   0.42D-10 
 lambda =  0.1827652D+00    pell =  0.167026661988168D+04  -0.13D-09   0.38D-10 
 lambda =  0.4000000D+00    pell =  0.167026661988167D+04  -0.58D-10   0.33D-10 
 lambda =  0.1842672D+00    pell =  0.167026661988166D+04  -0.11D-09   0.30D-10 
 penalized log likelihood =  0.167026661988166D+04  
 #e: w1,w2 =  0.916D-01  0.443D+00  
  abic = 0.3533595745D+04 -l = 0.2254182084D+04 pn = 0.2805016139D+03  
 repeated davidn =           1  
 ####  iteration, f, epsilon =    43  0.35262830D+04  0.96234391D+00  
 x =  -0.24971914D+01 -0.21167911D+00 -0.50405642D+01  0.37993810D+00  
 x =   0.37616517D-01 -0.38631250D+01  0.84729410D+00 
 

The above lists ABIC values, the final parameter estimates, and the penalised 
log-likelihoods. The numbers in last column are the sum of squares of all the gradient 
vector components of the coefficients. The progression to smaller values as one goes 
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down the output indicates that the computations are converging. The third to last rows 
show that the iterated (7-dimensional) simplex algorithm updated the ABIC value, 9 
times updates, out of 43 ABIC calculation trials to get the smallest value of ABIC = 
0.352628297294E+04(indicated by ‘– xd –‘; the 16th row from the output bottom) 
which is attained by w1 = 0.823E-01 and w2 = 0.809E+00 (‘w1-2’; the 15th row from the 
bottom), and the third last row (indicated by ####) from the output bottom 
summarizes iterated numbers, the smallest ABIC value, and the difference from the 
second smallest ABIC is 0.96234391D+00. The 16th row from the output bottom 
(‘a1-7’) shows the baseline parameters of µ, K0, c, α, p, d and q, and the bottom two 
rows show their logarithmic values. See Appendix A for the definitions and Appendix 
B for the numerical procedures.  

The file hist-etas-mk.prt includes a large amount of output. It may be useful 
to use the UNIX command egrep(grep) to extract items of interest, as done earlier,  
  egrep xd hist-etas-mk.prt  
  egrep xd|abic hist-etas-mk.prt  

These will show you just the updated and all history of ABIC values, respectively.  
 

An example of the program output (hist-etas-mk.omap) is as follows.  
 
-0.2497E+01   -0.2117E+00    3533.60    684  
 0.114438261954E-03  0.334881320043E-04  0.647009682182E-02  0.146219408001E+01 
 0.103833297334E+01  0.210022642758E-01  0.233332455954E+01  
 -0.768090420081E+01 -0.980188281878E+01 -0.830621370392E+01 -0.797115464193E+01 
 -0.893480205512E+01 -0.695269893920E+01 -0.889522839754E+01 -0.867387791505E+01 
 -0.935157675729E+01 -0.898946493741E+01 -0.679076775508E+01 -0.912639592929E+01 
 -0.793894681451E+01 -0.944728426317E+01 -0.942753542139E+01 -0.848239207321E+01 

<< skipped till the end >> 

Here the first line writes ln(w1), ln(w2), abic and twice of the number of coefficients 
in the Delaunay functions representing µ and K. The second and third lines give the 
optimized baseline parameters µ0,K0,c, α,p,d and q. The fourth and following 
lines down to the bottom give logarithm of deviations from the baseline parameters µ0 

and K0.  
See R display procedure and example figures of the optimal maximum a posterior 

(OMAP) estimate in §11.5.  
For a good initial estimation with the program hist-etas5pa in the next section, 

and the forecasting in §13.1, the following is the updated output file 
hist-etas-mk.upda:  
 

    0.82316E-01    0.80922E+00    3526.28    684  

  0.114438256042E-03  0.334881323324E-04  0.647009682182E-02  0.146219408001E+01 

  0.103833297334E+01  0.210022642758E-01  0.233332455954E+01  

  0.139457092658E+01 -0.726407678229E+00  0.769261411269E+00  0.110432047804E+01 

  0.140673083157E+00  0.212277617056E+01  0.180246755834E+00  0.401597166657E+00 

 -0.276101629785E+00  0.860101851354E-01  0.228470737143E+01 -0.509208017719E-01 

  0.113652828785E+01 -0.371809145881E+00 -0.352060305758E+00  0.593083039677E+00 

 -0.683893507324E+00 -0.816700951127E+00  0.902848610295E-01  0.557331993929E+00 

 -0.138820519275E+01  0.108533576988E+01 -0.180759606983E+00 -0.107075073680E+00  

<< skipped >>  
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  0.241695424598E+00  0.511075481092E+00 -0.283118737557E+00  0.953208296924E+00 

  0.114626199422E+00  0.231870568842E+00 -0.398161180796E+00 -0.180628788391E+00 

 -0.114291272430E+01 -0.378213066618E+00 -0.859583923866E-01 -0.129659654388E+00 

 -0.117930858809E+00 -0.528690530145E+00 -0.605507186335E+00 -0.173845062437E+00 

 -0.152130753387E+00 -0.108836609546E+01 -0.907255257880E+00 -0.737753342053E+00 

 -0.460987874419E+00 -0.232974758562E+00 -0.557155856504E+00 -0.591710718465E+00 

 -0.471950174999E+00 -0.289090736345E+00 -0.239500503238E+00 -0.261449294363E+00 

 -0.377911671516E+00 -0.547351463463E+00 -0.225341192861E+00 -0.606005843722E+00 

 -0.246721505150E+00 -0.638621609165E+00 -0.383947873387E+00 -0.540608762369E+00 

 -0.244800152526E+00 -0.179074966412E+00 -0.137299967512E+00 -0.135008778881E+00 

 
Here the first line has w1, w2, abic and twice of number of coefficients in the 
Delaunay functions representing µ and K. The second and third lines give the 
optimized baseline parameters µ0,K0,c, α,p,d  and q. The fourth line down to 
the bottom give logarithm of the OMAP estimates taking account of the baseline 
parameters µ0 and K0.  
 
 

9.5 Additional Advice  
   The current program hist-etas-mk is the most time consuming because of the 7 
dimensional simplex optimization procedure for the reference parameters of µ, K0, c, 
α, p, d and q besides the high-dimensional quasi-Newton and Newton optimizations. 
Nevertheless, assuming that we can use initial reference parameters with the MLEs of 
(st-etas) in §5 that converged well (see §5.4), it can take a shorter time in 
converging the hist-etas-mk program than the default case; specifically, try a short 
distance in the step-size of the simplex procedure. This implementation corresponds 
to replacing dist=1.0 (the default) by dist=0.05, for example, in the last line of 
hist-etas-mk.conf and then run it.  
 
 

10 ETAS: Spatial Variation in 5 Parameters (hist-etas5pa) 

This model is referred to as the five-parameter model because it allows five of the 
parameters to vary in space, i.e. µ, K0, α, p and q. The parameters c and d are 
assumed to be constant in space, and fixed throughout the computation procedure. For 
further mathematical detail, see §A.5.3. This program should be undertaken after 
having obtained the optimal estimates by hist-etas-mk as described in the previous 
section. All the used files in this section are selected in the program directory of 
Section10files/ in the program package.   
 

10.1 File Names  
For the estimation phase, done in FORTRAN:  

 
Program:         hist-etas5pa.f  

Object:          hist-etas5pa  
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Configuration:  hist-etas5pa.conf  

Reads:           delone2.out, hist-etas-mk.upda  

Writes:          hist-etas5pa.upda,  
hist-etas5pa.omap  

 

10.2 Configuration File Format 
The program can take a considerable amount of time to converge, depending on the 

number of earthquakes. It is possible that a job may exceed queue time and be 
terminated by the system before it has converged. An approximation of the model, 
giving a faster likelihood calculation, is provided by bi2; see “Line 5” in §5.2. To 
restart the job at roughly the same place, specifically where it last wrote solution 
information to the disk, the configuration file needs modification. The files that track 
the convergence process are hist-etas5pa.prt and simplex.rootu (simplex 
root information).  

An example of the configuration file hist-etas5pa.conf is as follows. 
Parameters are read as free format. Note that “” indicates that the record continues 
onto the following line, i.e. it is not split in the configuration file. It is not part of the 
input data. The configuration file would generally have the following format when 
one first runs this program (see detailed explanation of each line below). Notice that, 
unlike the previous programs, init on line 6 is generally set to one. In the present 
example, this has the effect of using the output in file hist-etas-mk.omap.  
 
./delone2.out                  !main data  
21.0  17.0  14012.0  308       !tx,ty,tz,nn=#earthquakes  
128.0 30.0  6.0  0.0 730.0 2.0  !xmin,ymin,xmg0,zmin,tstart,bi2  
0                                    !init  
0                                    !inits  
1                                    !initf  
./hist-etas-mk.upda              !approximate solution for initial estimate 
0. 1000.                           !w00, w01,  
10. 100. 1000.                    !w3, w4, w5 
0                                 !if ipr = 7, printing the linear search results 
0.1d-3  0.1d-3                     !tau1,tau2(davidn)  
0.1d-3  0.1d-3                     !eps1,eps2(davidn)  
0 1.d0 0.5d-0                 !nhesapp, dist,eps ( in subroutine simplex)  
 

The data are interpreted as follows:  
Line 1: Name of the data file, preceded by ./.  
Line 2: Width of region (tx degrees longitude), height of region (ty degrees 

latitude), end of observation period (tz days), number of events (nn) in dataset.  
Line 3: Minimum longitude (xmin degrees), minimum latitude (ymin degrees), 

threshold magnitude (xmg0), minimum time (zmin), starting time (tstart 730 
days), and an adjustment parameter called bi2. For and explanation of bi2, see 
“Line 5” in §5.2.  

Line 4: Value of init. If init is 0, then estimation starts at the beginning using 
the data file delone2.out as specified in Line 1 and hist-etas-mk.upda as 
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given in Line 7. If init is 1, estimation starts by replacing 
hist-etas-mk.upda in Line 7 by hist-etas5pa.upda.  

Line 5: Value of inits. If 1, the file containing the simplex optimization history 
from a previous run is used, 0 if it is not to be read. This information is 
contained in the file with simplex.root. There is a possibility that this will 
not work, in which case inits should be set to 0.  

Line 6: Value of initf. If initf = 1 then the program will only utilise the 
weights w3,w4, and w5 as given in line 8. If initf = 0 then the simplex program 
searches for optimal weights (w1, w2, w3, w4, w5) by minimizing ABIC, which 
takes a substantial CPU time. For the grid search of (w3, w4, w5) with the fixed 
(w1, w2) that are optimized by hist-etas-mk .f the former should be used.  

     The coefficient parameters may not always be converged in case of initf = 
1 because the Hessian matrix does not become positive-definite, when, for 
example, the weights of (w3, w4, w5) is too small. Usually, weights for α, p and 
q of the HIST-ETAS model are not necessary to seek the values in accurate, and 
it is not bad idea to make a grid search. To execute grid searches, set initf = 0. 
Regarding grid exploration, the ninth line provides the default weights, but if 
the data size is a large, they can be (1000., 1000., 1000.), for example, to 
converge it in one loop, so remember its ABIC value for the comparisons as 
follows: namely, in addition for example, (1000., 10000., 10000.), (100., 100., 
10000.), (100., 1000., 10000.) (10., 10., 1000.), and so on, to find the smaller 
ABIC value. Ignore combinations of smaller weights that still do not converge. 
In our experience, if the weight of (w3, w4, w5) is too small, the Hessian matrix 
will not be positive-definite and the coefficient parameters will not converge. 
Especially, the weight w5 may be large because the variable parameter q does 
not likely change so much.  

Line 7: File name containing estimation information from a previously incomplete 
run. It is the file with the suffix.upda. This information can be used as a 
starting point for the new run. In the case where init is 0, 
hist-etas-mk.upda as given in Line 7 provides an optimal initial estimates 
of the baseline parameters µ0, K0, c, α, p, d and q, and the coefficients of 
Delaunay functions representing µ and K. The coefficients of the Delaunay 
functions representing α, p and q are all set to 0 in the program. In the case 
where init is 1, the baseline parameters are the same, but the coefficients of 
Delaunay functions representing µ, K, α, p and q are all going to be updated, 
starting from those in hist-etas5pa.upda.  

Line 8: Weights for the flatness constraints of Delaunay piecewise linear function. 
The first weight w00 represents the dumping penalty for all parameters at all 
vertices of Delaunay triangles, and w01 represents the same dumping penalty 
imposed only on the vertices on the boundary of the region. See A.6.2 for 
definition and details.  

Line 9: Initial weights for the flatness constraints (w3,w4,w5)of the Delaunay 
piecewise linear functions. See A.6.2 for definition and details. In the case of 
grid search of weights w3, w4 and w5 for the penalty of α, p and q, these are 
different by exponential orders as given in Line 8, according to our experience 
in finding optimal weights by minimizing ABIC value.  
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Line 10: Index ipr for printing the linear search results in hist-etas5pa.prt. 
If ipr = 0, no printing, otherwise printing the linear search result.  

Lines 11 and 12: convergence criteria in subroutine davidn.  
Line 13 Adoption of the approximated Hessian matrix (nhesapp=1); initial 

distance for simplex search; and error bounds for the criteria of the simplex 
convergence (penalized log-likelihood ) used in subroutine simplex. The 
other parameters that may require adjusting within the FORTRAN code are dist 
and eps. The first adjusts the search criterion (size of the simplex), and the 
second sets the convergence criterion.  

 

10.3 Executing the Program 
The following command executes the compiled FORTRAN code.  
./hist-etas5pa |tee hist-etas5pa.prt  

 

10.4 Output Produced by Program 

An example of the program output (hist-etas5pa.prt) is as follows.  
 
delone2.out                                                                      
      21.0      17.0   14012.0       308  
      128.       30.        6.        0.      730.        2.  
 input device        10  
0tx,ty,tz,xmin,ymin,xmg0,zmin,tsta  
    16.435    17.000 14012.000   128.000    30.000     6.000     0.000   730.000  
 nn =  308 nnc =  292  
 jmax,bi2          61   2.00000000000000  
         308  
 w00-w7  0.000000000000000E+000   1000.00000000000       8.232000000000000E-002  
  0.809200000000000        10.0000000000000        100.000000000000  
   1000.00000000000  
 linear ipr           0 
 davidn tau  1.000000000000000E-004  1.000000000000000E-004  
 davidn eps  1.000000000000000E-004  1.000000000000000E-004  
 nhesapp,simplex(dist,eps)           0   1.00000000000000    0.500000000000000  
 n=           7  
 w1-w7  8.232000000000000E-002  0.809200000000000        10.0000000000000  
   100.000000000000        1000.00000000000  
 a1-a7  1.144382542340000E-004  3.348813210360000E-005  6.470096821820000E-003   
  1.46219408001000  1.03833297334000  2.100226427580000E-002  2.33332455954000      
 w00, w01 =  0.000000000000000E+000   1000.00000000000  
 non-pos diag.         339  -106.26040147013342       -257.26626201915627  
 non-pos diag.         339  -10.809089255604786        515.23453657230607  
 ptdet = 0.7637790019860D+04  
 repeated davidn =           1  
 #s: w1,w2,w4,w5,w7 =  0.823D-01  0.809D+00  0.100D+02  0.100D+03  0.100D+04  
 Initial Penalized log likelihood =   1672.7379602189433  
 lambda =  0.8744497D+00    pell =  0.167044234940854D+04  -0.52D+01   0.60D+04 
 lambda =  0.9592622D+00    pell =  0.166605016259747D+04  -0.93D+01   0.27D+04 
 lambda =  0.3613464D+00    pell =  0.166533962998344D+04  -0.38D+01   0.22D+04 
 lambda =  0.1055977D+01    pell =  0.166495986340342D+04  -0.73D+00   0.47D+02 
 lambda =  0.3649882D+00    pell =  0.166475860787496D+04  -0.11D+01   0.79D+03 
 lambda =  0.6678868D+00    pell =  0.166467378583788D+04  -0.25D+00   0.19D+02     

<<skipped>>  
lambda =  0.9000000D+00    pell =  0.166426648388209D+04  -0.55D-10   0.32D-07 
lambda =  0.1377750D+00    pell =  0.166426648388207D+04  -0.31D-09   0.25D-07 
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lambda =  0.1152778D+01    pell =  0.166426648388205D+04  -0.41D-10   0.24D-07 
lambda =  0.1151316D+00    pell =  0.166426648388203D+04  -0.32D-09   0.18D-07 
lambda =  0.2285714D+01    pell =  0.166426648388200D+04  -0.28D-10   0.17D-07 
penalized log likelihood =  0.166426648388199D+04  
#e: w1,...,w5 =  0.823D-01  0.809D+00  0.100D+02  0.100D+03  0.100D+04  
 abic=  0.3569086244E+04  -l= -0.5841625728E+03  pn=  0.7878343296E+04  
-------- xd -------           1   3569.0862435900335  
a1-7 0.114E-03 0.335E-04 0.647E-02 0.146E+01 0.104E+01 0.210E-01 0.233E+01  
w1-7 0.000E+00 0.100E+04 0.823E-01 0.809E+00 0.100E+02 0.100E+03 0.100E+04  

<< skipped >>  
lambda =  0.7812500D+00    pell =  0.167574329557346D+04  -0.60D-10   0.34D-07 

 lambda =  0.1547237D+00    pell =  0.167574329557345D+04  -0.23D-09   0.27D-07 
 lambda =  0.1063830D+01    pell =  0.167574329557342D+04  -0.44D-10   0.26D-07 
 lambda =  0.1424074D+00    pell =  0.167574329557340D+04  -0.27D-09   0.18D-07 
 lambda =  0.1904255D+01    pell =  0.167574329557337D+04  -0.28D-10   0.18D-07 
 penalized log likelihood =  0.167574329557337D+04  
 #e: w1,...,w5 =  0.125D+00  0.599D+00  0.152D+02  0.415D+02  0.152D+04  
  abic=  0.3562608863E+04  -l= -0.5869629136E+03  pn=  0.7877466597E+04  
 -------- xd -------           4   3562.6088628260377  
 a1-7 0.114E-03 0.335E-04 0.647E-02 0.146E+01 0.104E+01 0.210E-01 0.233E+01  
 w1-7 0.000E+00 0.100E+04 0.125E+00 0.599E+00 0.152E+02 0.415E+02 0.152E+04  
 
 ####  iteration, f, epsilon =     2  0.35626089D+04  0.10703394D+01  
 x =  -0.41543796D+01 -0.10233689D+01  0.54451702D+01  0.74503404D+01   
 x =   0.14655511D+02 

<< skipped >> 

lambda =  0.1500000D+00    pell =  0.168438504518700D+04  -0.78D-09   0.25D-07 
lambda =  0.1542857D+01    pell =  0.168438504518697D+04  -0.39D-10   0.24D-07 
lambda =  0.1542857D+00    pell =  0.168438504518694D+04  -0.30D-09   0.15D-07 
lambda =  0.1266667D+01    pell =  0.168438504518693D+04  -0.24D-10   0.15D-07 
lambda =  0.1449091D+00    pell =  0.168438504518692D+04  -0.16D-09   0.10D-07 
penalized log likelihood =  0.168438504518692D+04  
#e: w1,...,w5 =  0.159D+00  0.506D+00  0.130D+02  0.670D+02  0.135D+04  
 abic=  0.3563238642E+04  -l= -0.6202776694E+03  pn=  0.7944725887E+04  
####  iteration, f, epsilon =     5  0.35626089D+04  0.30092985D+00  
x =  -0.41543796D+01 -0.10233689D+01  0.54451702D+01  0.74503404D+01   
x =   0.14655511D+02  

 

The numbers in last column are the sum of squares of all the gradient vector 
components of the coefficients. The progression to smaller values as one goes down 
the output indicates that the computations are converging. The second to last row 
shows that the iterated simplex algorithm updated the ABIC for 16 times with the 
smallest abic= 0.3562608863E+04. This is attained by w1,...,w5 =  0.125D+00  0.599D+00  

0.152D+02  0.415D+02  0.152D+04 (in the two lines before “ -------- xd -------   4   

3562.6088628260377”), and the bottom row shows their logarithms. See Appendix A for 
the definitions and Appendix B for the numerical procedures.  

The file hist-etas5pa.prt includes a large amount of output. It may be useful 
to use the UNIX command egrep (grep) to extract lines of interest, for example,  
egrep xd hist-etas5pa.prt  

egrep ‘xd | abic’ hist-etas5pa.prt  

show you just updated and all history of ABIC values, respectively.  
An example of the program output (hist-etas5pa.omap) is as follows.  

 
  0.125287875259E+00  0.599470104176E+00  0.152196155562E+02  0.414782911682E+02   

  0.152196155562E+04  0.356323892700E+04      1710            0.100000000000E+04 
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  0.114438254234E-03  0.334881321036E-04  0.647009682182E-02  0.146219408001E+01   

  0.103833297334E+01  0.210022642758E-01  0.233332455954E+01  

  0.374513210667E-03  0.675979122716E-04  0.265190771687E-03  0.354908735402E-03 

  0.146433535062E-03  0.916947720816E-03  0.146338679517E-03  0.177204790397E-03 

  0.922917100686E-04  0.114314194061E-03  0.106254935918E-02  0.112398922637E-03 

  0.359109874846E-03  0.917853243391E-04  0.926876136674E-04  0.210983087983E-03 

  0.513378081538E-04  0.610030246154E-04  0.151535542538E-03  0.237911207613E-03 

<< skipped >>  

Here the first and second lines contain w1, w2, w4, w5, w7, abic, and number of all 
coefficients 1710 = 5 * (308+34) where 308 represents the number of earthquake and 
34 represents Delaunay apex on the boundary of the region; the last column represents 
the fixed dumping weight w01 in the 8th row of the configuration file 
hist-etas5pa.conf.  

The third and fourth lines give the optimized baseline parameters µ0,K0,c, α,p,d 
and q. The remaining values from fifth line to the bottom give logarithm of the 
location-dependent deviations from the baseline parameter values µ0,K0,α,p and q.  

See R display procedure and example figures of the optimal maximum a posterior 
(OMAP) estimate in §11.5.  

 
 

Part III. PLOTTING SPATIAL PARAMETER ESTIMATES  

11 Plot Spatial Variation of Parameters  

This R program plots the Delaunay tessellation of various datasets; spatial intensity 
rate, location-dependent b-values of Gutenberg-Richter magnitude distribution, the 
spatial estimates of the ETAS parameters µ and K0, and location-dependent 5 
parameters µ, K0, α, p and q. All of these are defined based on the Delaunay 
tessellations, over the observed spatial region. Incidentally, the users can use any 
available graphical packages for the display such as Matlab, Mathematica, GMT, etc., 
by making their own program scripts using the present Fortran programs. The 
provided R and below figures are to show the examples. All the used files in this 
section are selected in the program directory of Section11files/ in the program 
package.  
 

11.1 Delaunay Tessellation for Spatial Variation  
 
Program:   delone-plot.R  

Reads:     delone2.out  

Requires:  drawmap.R, f2.R  

Writes:    delone-plot.pdf; see §6.5 for an example figure.  
 

11.2 Spatial Occurrence Rate  
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Program:   delo2d-poisson.R  

Reads:     delone2.out, delo2d-poisson.omap  

Requires:  drawmap.R, f2.R  

Writes:    delo2d-poisson.pdf; see §8.3 for an example figure.  
 

11.3 Spatially Varying b-Value of Magnitude Frequency  
 
Program:   delo2d-bvalues.R  

Reads:     delone2.out, delo2d-bvalues.omap  

Requires:  drawmap.R, f2.R  

Writes:    delo2d-bvalues.pdf; see §7.3 for an example figure.  
 

11.4 ETAS: Spatially Varying µ and K0  

 
Program:   hist-etas-mk.R  

Reads:   delone2.out, hist-etas-mk.omap  

Requires:  drawmap.R, f2.R  

Writes:  hist-etas-mk.pdf; see the following for an example figure (Fig. 8).  
 

  
Fig. 8. hist-etas-mk.pdf: µ and K0 in the order from the left to the right. The color 
table of K0-values indicate that range of K0-values change are very narrow.  
 

11.5 ETAS: Spatial Variation in 5 Parameters  
 
Program:   hist-etas5pa.R  

Reads:   delone2.out, hist-etas5pa.omap  

Requires:  drawmap.R, f2.R  

Writes:  hist-etas5pa.pdf; see the following for an example figure (Fig. 9).  
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Fig. 9. hist-etas5pa.pdf: The estimated parameters(µ, K, α, p and q) in the order 
from the left to the right. The color table of K0-values and q-values indicate that range of 
K0-values and q-values change are very narrow.  

 

12 Plot interpolated images by Delaunay triangles  
The plotted color points in the last section shows the optimal maximum a posteri 

(MAP) estimates on earthquake event locations which are also vertices of the 
Delaunay triangles (see the figure in §6.6). The MAP estimates are subject to the 
interpolation on any lattice points by the Delaunay triangles which include the lattice 
point.  

Note: The R-plotting procedures have been partly modified because the sub-module 
“filled1.contour” that was used in the previous version is no more available in 
the current R programme. Please use the followings from the program directory 
“estimations” in HIST-PPM-V2. In this version, we use f2.r instead, and to 
understand the new module, please consult “help(filled contour)” in R command. 
All the used files in this section are selected in the program directory of 
Section12files/ in the program package.  
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Program: interpolated.f ! Interpolation of the optimal MAP solution to lattice 
image  

Reads:     interpolated.conf, delone2.out, and  

either delo2d-bvalues.omap or delo2d-poisson.omap  

Writes:  interplated.pixel ! Output pixel images on lattice points  
 
The FORTRAN program interpolated.f works for both b-value images and 
Poisson intensity-rate image, whose configuration file interpolated.conf 
includes the following three lines:  
 
delone2.out  

delo2d-bvalues.omap  

128.0 30.0 141. 144. 35. 41. 100 100!lon0, lat0, minlon maxlon, minlat, maxlat, nx, ny  

 
For b-value images, this contains the following records; the first line includes the 
Delone structural data, and the second line includes the optimal MAP solution of 
b-values. The first two items (128.0, 30.0) in the third line indicate the origin of the 
considered region in longitude and latitude, and the following four items are 
longitudes and latitudes for the restricted region, and the last two numbers indicate 
division of the restricted rectangular region into pixels.  
 
Then the following are output example of interpolated.f, with filename 
Interplated.pixel.  
 
141.01  35.03  0.299E+00 
141.01  35.09  0.306E+00 
141.01  35.15  0.312E+00 
141.01  35.21  0.319E+00 
141.01  35.27  0.325E+00 
141.01  35.33  0.331E+00 

<< skipped >>  
143.99  40.73  0.727E-01 
143.99  40.79  0.773E-01 
143.99  40.85  0.727E-01 
143.99  40.91  0.682E-01 
143.99  40.97  0.636E-01 
 
 
Then we can use:  
 
Program:   interpolated-bvalues.R  

Reads:     interplated-bvalue.pixel, interpolated-bvalues-conf  

Requires:  drawmap.R, delone2.out  

Writes:    interpolated-bvalues.pdf; see the right side for an example 
figure (Fig. 10).  
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Also, we can use:  
 
Program:   enlarge.R  

Reads:   delone2.out, interpolated.conf  

Requires:  drawmap.R, f2.R  

Writes: enlarged.pdf (= enlarged-bvalues.pdf); see the left-hand-side 
figure (Fig. 10).  
 
 

  
Fig. 10: enlarged-bvalues.pdf,image.pdf(=interpolated-bvalues.pdf)  
 
 

For Poisson intensity rate image, the configuration file 
interplated-poisson.conf includes the following three lines:  
 
delone2.out  

delo2d-poisson.omap   

128.0 30.0 141. 144. 35. 41. 100 100 !lon0, lat0, minlon maxlon, minlat, maxlat, nx, ny  

 
containing the following records; the first line includes the Delone data, and the 
second line includes the OMAP solution of Poisson intensity rates. The first two items 
(128.0, 30.0) in the third line indicate the origin (longitude, latitude) of the full 
region, and the following four items are longitude and latitude for the enlarged region, 
and the last two numbers indicate division of the enlarged rectangular region into 
pixels.  
 
Then the following interpolated.poisson.pixel are output example of 
interpolated.f.  
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141.01  35.03  0.129E+01 
141.01  35.09  0.134E+01 
141.01  35.15  0.140E+01 
141.01  35.21  0.145E+01 
141.01  35.27  0.150E+01 

<< skipped >>  
143.99  40.73  0.162E+01 
143.99  40.79  0.166E+01 
143.99  40.85  0.163E+01 
143.99  40.91  0.160E+01 
143.99  40.97  0.157E+01 
 

Then we can use:  
 
Program:   interplated-poisson.R  

Reads:     interplated-poisson.pixel, interplated-poisson.conf  

Requires:  drawmap.R, f2.R  

Writes: image.pdf (= interpolated-poisson.pdf); see the right-side figure 
(Fig. 11).  
 
Also, we can use:  
 
Program:   enlarge.R  

Reads:   delone2.out, interpolated.conf  

Requires:  drawmap.R, f2.R  

Writes: enlarged.pdf(=enlarged-poisson.pdf);see left-side figure below 
(Fig. 11).  
 

 
 
Fig. 11: enlarged-poisson.pdf, image.pdf (=interpolated-poisson.pdf)  
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Part IV. Short-Term Earthquake Forecasting  
The estimated HIST-ETAS models of the previous period until a certain time 

instant is used to implement space-time forecasting of history-dependent seismicity 
rate after the previous period as moving images. Here, we assume that the model 
parameters do not change during the updated data until the present, and that the 
predictions are made on the basis of consecutively observed earthquakes.  

The diagram (Fig. 12) below shows the flow chart of programs for estimations of 
the HIST-ETAS models and their forecasting. The hypocenter data hypo.ts and 
hypo.dat is connecting in time, that the first row of hypocenter data is last date of 
the hypo.dat in the same region. The flow chart details in the top block is the 
estimating procedure that were already explained in the above sections.  
   A job can be submitted interactively or in batch mode. Batch mode allows the user 
to log out of the system while the job continues to run in the background. The job 
could consist of a shell script (e.g. job.sh) or it may simply be a compiled FORTRAN 
binary file. The advantage of a shell script is that it can do other things before and 
after calling the compiled FORTRAN object.  
 
 
  

 
Fig. 12: The diagram shows the flow of output from each program to subsequent programs. 
Rectangular shapes represent programs, which are explained below. Elliptical shapes 
represent input/output files.  
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13 Seismicity forecasts by the HIST-ETAS models  

All the used files in this section are selected in the program directory of 
Section13files/ in the program package.  
 

13.1 hist-etas-mk forecast  
Specifically, assume the estimated hist-etas-mk model 

(hist-etas-mk.upda) calculated in §9 based on the data configuration in §9.2 for 
the whole Japan M ≥ 6 earthquake data as illustrated in §4.3. Remember that the last 
date of the data was the end of May 2011. After that, consider the following 
hypocenter data of earthquakes of M ≥ 4 in the same Japan region as §11.4. The 
following explains the consecutive implementation of unix (linux) shell script of 
[japan.sh]:  
 
ifort tseis2etas.f -o tseis2etas  

./tseis2etas < hypo.dat (output-file, work.etas)  

 

ifort etas2aniso.f -o etas2aniso  

./etas2aniso (input-files, work.etas, etas2aniso.conf; output-file, 

etas2aniso.out2, etas2aniso.out3, etas2aniso.out4, 

etas2aniso.out8, etas2aniso.out9)  

 

ifort  workpara7pa.f -o  workpara7pa   

./workpara7pa (input-files,, hist-etas-mk-forecast.conf, 

hist-etas-mk.upda, delone2.out, node.dat, etas2aniso.out3; output-file, 

work.para)  

 
ifort node.f -o node  

./node (input-files, node.conf, work.etas; output-file, node.dat)  

 

ifort intensityday2magnod.f  -o intensityday2magnod   

./intensityday2magnod (input-files, time.conf, hist-etas-mk.conf, 

hist-etas-mk.upda, node.dat, work.para; output-file, img1.data) 

 

Instead of Intel-Fortran, gfortran can be also used here.  
 

Firstly, by using the HIST-ETAS model estimations based on [hypo.ts] in §3.2, 
we will forecast sequentially using the following updating earthquake data 
[hypo.ts]:  
 
2011 06 01 01 26   7.97  143.3522  40.2497   11.65  5.1 
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2011 06 01 01 30  57.07  143.2218  35.2540   76.00  4.4 
2011 06 01 01 41  19.63  141.7620  37.6593   43.71  4.2 
2011 06 01 02 15  17.19  141.9967  38.8785   49.52  4.1 
2011 06 01 06 27  33.93  143.4100  39.8478   27.23  4.5 
2011 06 01 07 07  45.40  143.4283  39.8302   20.98  4.1 
2011 06 01 07 28  40.90  143.8588  37.6817   36.00  4.1 
2011 06 01 08 53  59.04  141.9093  38.6377   48.79  4.2 
2011 06 01 12 14  11.03  143.7070  39.7765   33.00  5.1 
2011 06 01 13 00   1.01  142.2350  36.7177   16.24  4.5  
 

・・・  
2018 09 25 14 19  23.31  148.1022  43.9925    0.00  4.4 
2018 09 25 22 03  13.75  148.4427  44.0177    0.00  4.0 
2018 09 26 01 22  13.29  148.2313  44.0835    0.00  4.0 
2018 09 27 10 25  21.45  141.9518  34.1040   34.65  4.3 
2018 09 28 04 32  25.27  141.1032  37.1130   52.21  4.0 
2018 09 28 10 01   2.37  148.3172  44.0750    0.00  4.2 
2018 09 29 18 25  54.33  142.0007  42.7707   35.36  4.2 
2018 09 29 20 56  34.07  140.9535  35.8075   29.75  4.0 
2018 09 30 17 54   4.49  141.9897  42.5498   36.86  4.9 
2018 10 01 11 22   3.35  142.0100  42.7940   34.81  4.7 
 
Here, to save file memory size, we restrict hypo.dat to including only M ≥ 4 
earthquakes, but practically for accuracy of the analysis of the anisotropy, it is 
certainly preferred to take all detected earthquakes with hypocenter data.  

Then, the program tseis2etas transforms this data to [work.etas] as given in 
the same format as given in §3.2. We use same program etas2aniso with the same 
configuration file, etas2aniso.conf:  
 
./work.etas   !input data 

6.0  6.0       !clms cutm  

0.04666667    !xxx(day)= time span for analyzing centroid and anisotropy  

 
Here, from a real-time forecasting perspective, we usually set ”xxx =1/24 = 
0.041666667 day = one hour “to quickly determine the centroid location and 
orientation characteristics of the impending aftershock sequence after a main shock 
event. For the recent catalog, events within an hour interval after the main shock to 
give a reasonably good estimate of the centroid and orientation characteristics of the 
evolving aftershock sequence.  

Then, by implementing the program etas2aniso that is actually the same 
program in §3 and §4, we get the output etas2aniso.out3:  
 
      82  0.128E+03  0.149E+03  0.209E+02  0.300E+02  0.469E+02  0.169E+02 

      31  143.83320   37.30250  6.10      2.37850   1.00000   1.00000   0.00000 

     125  143.58270   37.81170  6.00     13.92144   1.00000   1.00000   0.00000 

     155  141.82130   37.61770  6.00     17.85491   1.00000   1.00000   0.00000 

     187  142.59080   39.94780  6.90     22.28531   1.00000   1.00000   0.00000 

     289  143.29852   38.06312  7.30     39.41467   1.00000   1.00000   0.00000 

     405  142.09120   38.87370  6.40     52.56555   1.00000   1.00000   0.00000 

     414  141.62670   37.70870  6.30     54.16071   1.00000   1.00000   0.00000 

     457  141.22130   36.90320  6.50     60.16239   1.00000   1.00000   0.00000 
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     473  138.54880   34.70700  6.20     61.99874   1.00000   1.00000   0.00000  

・・・  
    5379  144.48870   38.03600  6.30   2304.06758   1.00000   1.00000   0.00000 

    5387  142.45530   40.26670  6.10   2310.22374   1.00000   1.00000   0.00000 

    5396  143.94830   37.43530  6.30   2319.70802   1.00000   1.00000   0.00000 

    5468  144.80580   38.00620  6.00   2357.30843   1.00000   1.00000   0.00000 

    5473  140.74530   32.35200  6.00   2360.78026   1.00000   1.00000   0.00000 

    5568  142.44800   41.00970  6.30   2429.82731   1.00000   1.00000   0.00000 

    5646  132.58320   35.17803  6.10   2504.06425   0.00546   0.00724  -0.73698 

    5733  135.62170   34.84430  6.10   2574.33234   1.00000   1.00000   0.00000 

    5760  140.59200   35.16530  6.00   2593.84987   1.00000   1.00000   0.00000 

    5840  142.00670   42.69080  6.70   2654.13055   0.02837   0.06975   0.52842  

 
contains the centroid locations and normalized ellipsoidal coefficients for all event 
with magnitude not less than the cutoff magnitude, except for the first row that is the 
number of the additional M ≥ 6 data, ranges of longitudes and latitudes (see 
hist-etas-mk-forecast.conf). The other outputs, etas2aniso.out2, 
etas2aniso.out4, etas2aniso.out8, and etas2aniso.out9 are also explained in 
§4.1.  
 

We then use the input configuration file hist-etas-mk-forecast.conf:  
 
21.0  17.0  14012.0  308  !longitude span, latitude span, time span, starting time (days) 

of forecasting (= end time of the estimated period) for the hist-etas-mk model, and 
number of M ≥ 6 earthquakes to forecast.  

128.0  30.0  6.0   0.0 730.0  2.0 !origin of the target rectangular region, cutoff 
magnitude, origin of time and end time of the short-term forecasting period. for the ranges of 
spatial rectangular region, time span, magnitude cutoff, etc.  
 
  We also use the Delaunay tessellation of the precursory period [delone2.out] in 
§6.4 to obtain [work.para] above by interpolating the hist-etas-mk coefficients 
[hist-etas-mk.upda] for each node; these coefficients are unchanged for the data.  
   Then we apply the program workpara7pa to make the summarized file 
[work.para]:   
 
  -0.195903E+01  -0.770966E-01   143.8332 37.3025 6.1 14014.37850   1.0000   1.0000   0.0000 

  -0.114274E+01   0.493784E-01   143.5827 37.8117 6.0 14025.92144   1.0000   1.0000   0.0000 

   0.143420E+01   0.690773E-01   141.8213 37.6177 6.0 14029.85491   1.0000   1.0000   0.0000 

   0.252823E+00   0.274905E+00   142.5908 39.9478 6.9 14034.28531   1.0000   1.0000   0.0000 

  -0.156295E+00   0.200900E+00   143.2985 38.0631 7.3 14051.41467   1.0000   1.0000   0.0000 

   0.180846E+01   0.622751E+00   142.0912 38.8737 6.4 14064.56555   1.0000   1.0000   0.0000 

   0.167737E+01  -0.147276E-01   141.6267 37.7087 6.3 14066.16071   1.0000   1.0000   0.0000 

  -0.204882E-01   0.155726E+00   141.2213 36.9032 6.5 14072.16239   1.0000   1.0000   0.0000 

  -0.497493E+00  -0.208164E+00   138.5488 34.7070 6.2 14073.99874   1.0000   1.0000   0.0000 

  -0.391050E-01   0.153219E+00   141.1610 36.9688 6.1 14084.14033   1.0000   1.0000   0.0000  
・・・  

  -0.205721E+01   0.309927E-01   144.4887 38.0360 6.3 16316.06758   1.0000   1.0000   0.0000 

   0.325441E+00   0.119500E+00   142.4553 40.2667 6.1 16322.22374   1.0000   1.0000   0.0000 

  -0.203715E+01  -0.457134E-01   143.9483 37.4353 6.3 16331.70802   1.0000   1.0000   0.0000 
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  -0.215702E+01  -0.979918E-01   144.8058 38.0062 6.0 16369.30843   1.0000   1.0000   0.0000 

  -0.392149E+00  -0.275451E+00   140.7453 32.3520 6.0 16372.78026   1.0000   1.0000   0.0000 

   0.453226E+00  -0.209358E+00   142.4480 41.0097 6.3 16441.82731   1.0000   1.0000   0.0000 

  -0.312373E+01  -0.554472E+00   132.5832 35.1780 6.1 16516.06425   0.0055   0.0072  -0.7370 

  -0.179847E+01  -0.457204E+00   135.6217 34.8443 6.1 16586.33234   1.0000   1.0000   0.0000 

   0.471500E+00  -0.303005E+00   140.5920 35.1653 6.0 16605.84987   1.0000   1.0000   0.0000 

  -0.148886E+01  -0.325565E+00   142.0067 42.6908 6.7 16666.13055   0.0284   0.0698   0.5284  

 
for the additional earthquake in each raw, and the first two columns represent location 
dependent deviations from the baseline parameters log(µ0) and log(K0) of the 
hist-etas-mk model, respectively; 3 - 6 column stands for longitudes, latitudes, 
magnitudes and occurrence times in days unit, respectively. The last three columns 
indicate the anisotropic information of triggered descendants (same as those of 
etas2aniso.out3 in the above); and hist-etas-mk.upda is the estimated 
coefficients of µ and K by the program hist-etas-mk in §9 for each M ≥ 6 
earthquakes and some added points including those of boundaries from precursory 
period for the estimation.  
   Finally, given the time of the snapshot image time.conf:  
 
1780.05  ! one-hour after M6.5; time of intensity in days = see work.etas for the 

time in days  
 
in addition to the program node set coordinates of pixel node on which predicted 
intensity rate are given where the input configuration file is node.conf:  
 
128. 149. 30. 47.   ! longitude and latitude ranges for all Japan Area  
210 170               ! number of pixels for image,  
 
which means that the resolution degree of the intensity image is unit pixel of 0.12 deg2 
and unit time of 1 day, so that the each probability of M ≥ 6 earthquake in the 
space-time unit is 100−1 times of the intensity value; note that the estimated intensity 
values are per 1.0 deg2 and per day.  

The output file is given in such a way that node.dat:  
 
   128.0500    30.0500 
   128.0500    30.1500 
   128.0500    30.2500 
   128.0500    30.3500 
   128.0500    30.4500 
   128.0500    30.5500 
   128.0500    30.6500 
   128.0500    30.7500 
   128.0500    30.8500 
   128.0500    30.9500  

・・・  

   148.9500    46.0500 
   148.9500    46.1500 
   148.9500    46.2500 
   148.9500    46.3500 
   148.9500    46.4500 
   148.9500    46.5500 
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   148.9500    46.6500 
   148.9500    46.7500 
   148.9500    46.8500 
   148.9500    46.9500  
 
for the locations at which the intensity is calculated.  

For the snapshot at the time instances in time.conf, the program 
intensityday2magnod provides the location-dependent seismicity rates on the 
given node locations as the output [img1.data]:  
 
1780.05000 128.0500  30.0500  -4.48152 
 1780.05000 128.0500  30.1500  -4.35851 
 1780.05000 128.0500  30.2500  -4.22291 
 1780.05000 128.0500  30.3500  -4.07589 
 1780.05000 128.0500  30.4500  -3.92018 
 1780.05000 128.0500  30.5500  -3.76075 
 1780.05000 128.0500  30.6500  -3.60562 
 1780.05000 128.0500  30.7500  -3.46630 
 1780.05000 128.0500  30.8500  -3.35696 
 1780.05000 128.0500  30.9500  -3.29134  

・・・  

1780.05000 148.9500  46.0500  -5.00901 
1780.05000 148.9500  46.1500  -5.04269 
1780.05000 148.9500  46.2500  -5.14049 
 1780.05000 148.9500  46.3500  -5.17804 
 1780.05000 148.9500  46.4500  -5.21446 
 1780.05000 148.9500  46.5500  -5.24642 
 1780.05000 148.9500  46.6500  -5.27794 
 1780.05000 148.9500  46.7500  -5.31176 
 1780.05000 148.9500  46.8500  -5.34829 
 1780.05000 148.9500  46.9500  -5.38806  
 
for the forecasting based on hist-etas-mk model, where the last column represents 
the ordinary logarithm of the intensity values.  
 
 

13.2 hist-etas-5pa forecast  
The shell script japan.sh provides the same procedure as the above japan.sh 

except for using workpara5pa instead of workpara7pa, and 
intensityday2magnod5pa instead of intensityday2magnod. The program 
workpara7pa make the summarized file [work.para]:  
 
  -0.173143E+01  -0.235180E+00  -0.177008E-01   0.525061E-01   0.450011E-02   143.8332 37.3025 6.1 14014.37850   1.0000   1.0000   0.0000 

  -0.968881E+00  -0.969090E-01  -0.150673E-01   0.472810E-01   0.520681E-02   143.5827 37.8117 6.0 14025.92144   1.0000   1.0000   0.0000 

   0.141514E+01  -0.370253E-01  -0.112767E-01   0.830377E-02   0.581182E-02   141.8213 37.6177 6.0 14029.85491   1.0000   1.0000   0.0000 

   0.308055E+00   0.249292E+00  -0.574826E-01   0.147485E-01   0.628059E-02   142.5908 39.9478 6.9 14034.28531   1.0000   1.0000   0.0000 

  -0.105439E+00   0.816887E-01  -0.764281E-02   0.320480E-01   0.580723E-02   143.2985 38.0631 7.3 14051.41467   1.0000   1.0000   0.0000 

   0.178974E+01   0.628283E+00  -0.426934E-01   0.234688E-01   0.707487E-02   142.0912 38.8737 6.4 14064.56555   1.0000   1.0000   0.0000 

   0.156352E+01  -0.108644E+00  -0.226194E-01   0.775780E-02   0.544244E-02   141.6267 37.7087 6.3 14066.16071   1.0000   1.0000   0.0000 

   0.174968E+00   0.100107E+00  -0.824457E-02   0.477913E-01   0.566260E-02   141.2213 36.9032 6.5 14072.16239   1.0000   1.0000   0.0000 

  -0.457258E+00  -0.190316E+00  -0.559044E-01  -0.398870E-02   0.304299E-02   138.5488 34.7070 6.2 14073.99874   1.0000   1.0000   0.0000 

0.149485E+00   0.993812E-01  -0.990510E-02   0.416871E-01   0.569163E-02   141.1610 36.9688 6.1 14084.14033   1.0000   1.0000   0.0000  



57 

・・・. 

  -0.187238E+01  -0.790851E-01  -0.247511E-01   0.697094E-01   0.493365E-02   144.4887 38.0360 6.3 16316.06758   1.0000   1.0000   0.0000 

   0.330056E+00   0.121612E+00  -0.695166E-01   0.102073E-01   0.592056E-02   142.4553 40.2667 6.1 16322.22374   1.0000   1.0000   0.0000 

  -0.180773E+01  -0.188937E+00  -0.187992E-01   0.553893E-01   0.458487E-02   143.9483 37.4353 6.3 16331.70802   1.0000   1.0000   0.0000 

  -0.202072E+01  -0.218767E+00  -0.327643E-01   0.612950E-01   0.439912E-02   144.8058 38.0062 6.0 16369.30843   1.0000   1.0000   0.0000 

  -0.463733E+00  -0.276171E+00  -0.344978E-01   0.223125E-02   0.136756E-02   140.7453 32.3520 6.0 16372.78026   1.0000   1.0000   0.0000 

   0.375490E+00  -0.212455E+00  -0.715324E-01  -0.159353E-01   0.450233E-02   142.4480 41.0097 6.3 16441.82731   1.0000   1.0000   0.0000 

  -0.300655E+01  -0.604138E+00  -0.335803E-01   0.646442E-02   0.977202E-03   132.5832 35.1780 6.1 16516.06425   0.0055   0.0072  -0.7370 

  -0.180156E+01  -0.483693E+00  -0.572613E-01   0.122522E-01   0.188226E-02   135.6217 34.8443 6.1 16586.33234   1.0000   1.0000   0.0000 

   0.486403E+00  -0.386306E+00  -0.298320E-01   0.209163E-01   0.284362E-02   140.5920 35.1653 6.0 16605.84987   1.0000   1.0000   0.0000 

  -0.140339E+01  -0.302433E+00  -0.730526E-01  -0.172558E-01   0.320788E-02   142.0067 42.6908 6.7 16666.13055   0.0284   0.0698   0.5284  

 

for the additional earthquakes in each raw, where the first 5 columns represent 
location dependent deviations from the logarithm of reference values µ0, K0, α0, p0 
and q0 (the top five numbers in hist-etas5pa.upda), respectively, at each 
hypocenter location of longitudes, latitudes, magnitudes and occurrence times in days 
unit, respectively, given in 6 - 9 columns. The last three columns indicate the 
anisotropic information of triggered descendants (same as etas2aniso.out3). The 
input files are:  
[hist-etas5pa-forecast.conf]  
 
21.0      17.0     14012.   308  

128.0     30.0      6.0     0.0    730.0     2.0  

 
for the ranges of spatial rectangular region, time span, magnitude cutoff, etc., as 
explained for hist-etas7pa-forecast.conf in the above.  
 

The program intensityday2magnod provides the location-dependent 
seismicity rates on the given node locations as the output [img1.data]:  
 
1780.05000 128.0500  30.0500  -4.47764 
 1780.05000 128.0500  30.1500  -4.35814 
 1780.05000 128.0500  30.2500  -4.22522 
 1780.05000 128.0500  30.3500  -4.08007 
 1780.05000 128.0500  30.4500  -3.92552 
 1780.05000 128.0500  30.5500  -3.76672 
 1780.05000 128.0500  30.6500  -3.61197 
 1780.05000 128.0500  30.7500  -3.47310 
 1780.05000 128.0500  30.8500  -3.36457 
 1780.05000 128.0500  30.9500  -3.30022  

・・・ . 

1780.05000 148.9500  46.0500  -4.90040 
 1780.05000 148.9500  46.1500  -4.93188 
 1780.05000 148.9500  46.2500  -5.01747 
 1780.05000 148.9500  46.3500  -5.05222 
 1780.05000 148.9500  46.4500  -5.08627 
 1780.05000 148.9500  46.5500  -5.11626 
 1780.05000 148.9500  46.6500  -5.14587 
 1780.05000 148.9500  46.7500  -5.17757 
 1780.05000 148.9500  46.8500  -5.21170 
 1780.05000 148.9500  46.9500  -5.24869   
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for the forecasting based on hist-etas-5pa model.  
 
 

13.3 Magnified forecasting image in a localized region  

The shell script kumamoto.sh provides the same procedure as the above japan.sh 
except for the restriction of regions as given by node.conf:  
 
130. 132. 32. 34.   !longitude and latitude ranges for Kumamoto Area  

200 200          ! number of pixels for image  

 
where the number of pixels adjust the resolution of image.  
 
 

13.4 Plotting Snapshots of Short-Term Forecast Images 

   The example output images with relevant maps are given by R language:  

Program: japan.r  

Reads: img1.data, work.para, node.conf  

Requires: drawmap.r, f2.r > filled2contour.r > see 
help(filled.contour) in R command.  

Writes: Rplots.pdf; see the left-hand-side figure below (Fig. 13).  
 

The example output images for the magnified region can be seen in:  
 
Program:   kumamoto.r  

Reads:     img1.data, work.para, nodekuma.conf  

Requires:  drawmap.r, f2.r  

Writes: Rplors.pdf; see the right-hand-side of the below figure (Fig.13).  
 

We get the following panels of Rplot.pdf that delineates snapshots of the 
short-term probability forecast at the time of one-hour after the M6.5 Kumamoto 
Earthquake (see time.conf above). These are conditional intensity function 

( , , | )λ tt x y H  as mathematically defined in §A.5  
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Fig. 13: Snapshots of probability forecasts of M ≥ 6 earthquakes at one-hour after the largest 
M6.4 foreshock before the 2016 M7.3 Kumamoto earthquake; image in the main Japan area 
and enlarged image in Kyushu area. The circles indicate actual M ≥ 6 earthquakes occurring 
during the forecast periods. The histograms show the frequency of intensity values at each 
pixel against the ordinary logarithm of the intensity. Color scale of the image shows expected 
number of M ≥ 6 earthquakes per one square degree (~ 100km2) per day.  
 
 
Part V. Simulations 
 
This chapter provides the simulation of hypocenters using the nonhomogeneous 
Poisson model, spatial magnitudes using by space-dependent b-values, 
HIST-ETAS-mk model and HIST-ETAS-5pa model. Examples here use the intensity 
b-values and conditional intensities estimated in §7 ~ §10.  
 
14. Nonhomogeneous Poisson simulation by spatial intensity rate 
function  
This program fits a nonhomogeneous spatial Poisson model with stationary Poisson 
time component to the location of earthquakes. The simulation is done using the 2D 
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spatial Poisson intensity given by coefficients at the nodes of the Delaunay 
tessellations (§6) and their interpolations can be found §12. All the used files in this 
section are in the program directory of Section14files/ in the program package.  

Mathematical explanation of Poissonian spatial intensity is described in §A.3.  

 

14.1 File Names  
For the example we use the intensity estimated in §8:  
Program: simNHPoisson.f  

Object:  simNHPoisson  

Configuration: poisson.conf  

Reads: delone2.out, delo2d-poisson.omap  

Writes: fort.2 (= simNHPoi.hypo)  

 

For the spatial plot, done in R:  

Program: fort2.R  

Reads: fort.2, drawmap.r, ../MapsData/jp.br.dat & jp.pp.dat  

Writes: Rplots.pdf (= 1993.1119.1046.pdf)  

 

14.2 Configuration File Format  
The configuration file poisson.conf includes the following three lines:  

128.0 21.0 30.0 17.0 ! xmin, ymin, tx, ty  

1993 1119 1046 !4 digit seeds of for a series of uniform random numbers, where different 

seeds are expected to provide mutually independent random number series.  

 

14.3 Program Execution  
For the simulations, done in FORTRAN:  

./simNHPoisson |tee simNHPoisson.prt !which is given in Section14files/.  

 

For the spatial plot, done in R:  
> source('r. fort2’)  

Writes:  Rplots.pdf (= 1993.1119.1046.pdf); which shows the following plot (Fig. 

14):  
 



61 

 
delo2d-poisson.pdf:  

Fig. 14. Simulated epicenter coordinates by the nonhomogeneous Poisson intensity §8.3 in and 
around mainland Japan. Sizes of circle radii are proportional to exponential of the same magnitude 
series (M ≥ 6) of the original JMA data.  
 

After simulation we can make reestimation of nonhomogeneous Poisson intensity, 
starting from constructing the new Delone tessellation of the simulated data.  
 
 
15. Magnitude simulation given spatially varying b-values of G-R law  

These programs simulate magnitudes given the b-value over a spatial region. 
Magnitude are simulated by GR-law at any location based on b-values interpolated on 
the Delaunay tessellations (§6). All used files in this section are selected in the 
program directory of Section15files/ in the program package.  
 

15.1 File Names  

For the simulations, done in FORTRAN:  

Program:        bvalue2magsim.f  

Object:         bvalue2magsim  

Configuration: delo2d-bvalues.conf !same as poisson.conf in §14.2  

Reads:          delone2.out  

Writes:         fort.2 (= fort.2Mc595, fort.2.Poiconfig) 

 

For the spatial plot, done in R:  
Program: fort2.R  

Reads:    fort.2, drawmap.r,../MapsData/jp.br.dat & jp.pp.dat  

Writes:   Rplots.pdf (= original2magsim.pdf, binterpo2magsim.pdf)  
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15.2 Configuration File Format  

The configuration file delo2d-bvalues.conf includes the following three lines:  

128. 30. 5.95 !xmin, ymin, threshmag = magnitude threshold  

6.0d0 !w1, which used in §8, but not used here.  

7  !ipr, which used in §8, but not used here. 

 

Magnitude rounding issue: if magnitude data are rounded to 0.1 units, the threshold 
magnitude here should be modified to 5.95 (= Mc－0.05) to avoid the b-value MLE 
bias. This is because a rounded value of 6.0 may have been as small as 5.95 or large 
as 6.05. This applies to the traditional catalogs such as the JMA, NEIC-PDE, and ISC 
catalogs. Otherwise, namely, less than 0.01 magnitude unit, we can keep threshmag = 
6.0 .  

 

15.3 Program Execution  
FORTRAN execution command:  

./delo2d-bvalues |tee delo2d-bvalues.prt !which is given in 
Section16files/. 

 

For the spatial plot, done in R:  

> source('delo2d-bvalues.R') ; which shows the following two plots (Fig. 15): 
 

 
Fig. 15. Simulated earthquake magnitudes on the epicenter coordinates of the JMA data (left 
panel) and on the locations (right panel) simulated by the nonhomogeneous Poisson intensity. 
Sizes of circle radius is proportional to exponential of simulated magnitudes (M>5.95) by the 
interpolated b-values in §7.3. 
 

After simulation we can make re-estimation of b-values, starting from 
constructing the new Delaunay tessellation of the simulated data. 
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16. HIST-ETAS simulation  

The programs in this section produce simulated data files for given sets of 
parameters in the point process model used in HIST-ETAS models (See Ogata, 1981, 
1998) for theoretical basis. It is noted that the intensity defined by a combination of 
parameter values should be well-defined; due to some combinations of parameter 
values, the simulated data can be explosive (Zhuang and Ogata, 2006).  

There are two options; either using magnitudes in delone2.out or simulating 
magnitude by (modified) Gutenberg-Richter’s Law. The first option simulates the 
same number of events that are not less than threshold magnitude in the data, this is 
the present option, and therefore the parameter b-value is not used in this particular 
example. For the second option, you have to provide b-value of G-R law and number 
of events to be simulated; you can simply modify the FORTRAN program 
histetasim.f below by changing the commented line to execute for simulating 
magnitude sequence.  

   Furthermore, simulation can start based on an occurrence history of precursory 
period; the users may also extend these program.   

   Finally, the program histetasim.f here support only the case of isotropic 
clustering that ignores the last three columns of delone2.out, but, if necessary, this can 
be extended by modifying histetasim.f in reference of subroutine func17 of the 
optimization programs hist-etas-mk.f or hist-etas5pa.f in sections 9 and 10 
or forecasting programs in Section 13, with the same the format of the current 
delone2.out.  

 

   The FORTRAN program histetasim.f needs configuration histetasim.conf 
as explained below. The example of input file is the same as hist-etas-mk.upda or 
hist-etas5pa.upda which was the output in sections 9 and 10, respectively. All used 
files in this section are selected in the program directory of Section16files/ in the 
program package.  
 
 
16.1 File names  

For the simulation, done in FORTRAN: 
Program: histetasim.f  

Object: histetasim  

Configuration: histetasim.conf  

Reads: delone2.out, 

hist-etas-mk.upda, or  

hist-etas5pa.upda  
Writes: histetasim.prt, fort.7, fort.2  

 

For the spatial plot, done in R:  
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Program: histetasim.R 

Reads: fort.2, fort.7,  

drawmap.r, ../MapsData/jp.br.dat & jp.pp.dat  

Writes:   Rplots.pdf (= 7pa1993,1119,1046.pdf or 5pa1993,1119,1046.pdf) 
 
 
16.2 Configuration File Format  

Explanation of the configuration file histetasim.conf consists of:  

5 !Choose either of simulation model 7 or 5 for hist-etas-mk or 

hist-etas5pa,respectively  
1.1 6.0 128.0 21.0 30.0 17.0 14012.0 !bmg,cm0,tx0,tx,ty0,ty,tend  

1993 1119 1046 !Seeds of uniform random number series; triplet four digits.  

The variable bmg and cm0 stand for b-value, lower cutoff magnitude, respectively;tx0 
and ty0 stand for the longitude and latitude origin of the focal region, respectively; 
tx and ty stand for the length of the rectangular region, respectively; and tend stands 
for the time length.  

   Different random number seeds are assumed working independent simulation 
experiments.  

 
 
16.3 Executing the Program  

The following command executes the compiled FORTRAN code.  

./histetasim |tee histetasim.prt (= histetasimuk.prt or 

histetasim5pa.prt),  

where all output files listed below are selected in the program directory of 

Section17files.  

 

16.4 Output Produced by Program with configuration file of different first line  

16.4.1 hist-etas-mk case:  

If the number in the first line of histetasim.conf is 7, representing 
hist-etas-mk model simulation, then the output files are:  

histetasim.prt (= histetasimuk.prt), fort.2(= fort.2.muk), 
fort.7 (= fort.7.muk) which are all selected in the program directory of 
Section17files/, and they have the same format as those by the simulation of 
hist-etas-mk model. Calculated record of the program histetasim is stored 
by the name histetasim.prt (= histetasimuk.prt) which shows some 
key parameters to compare with the key parameters for checking consistency together 
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with hypocenter data that are same as fort.7.  
 

fort.2 includes: 
  308    21.00000    17.00000     6.00000  1701.00000 
    1   146.37236    43.22112     7.70000    33.96782 
    2   147.45493    43.47246     6.00000    34.02402 
    3   145.96078    43.80458     7.10000    34.12867 
    4   140.58100    36.19143     6.60000    37.06475 
    5   143.57109    41.56049     6.00000    39.57438 

…… 
  304   142.19733    35.97812     6.10000  1680.84593 
  305   141.96287    40.80838     6.20000  1683.40119 
  306   140.64088    33.22854     6.00000  1684.12163 
  307   143.43240    39.97664     6.10000  1692.37786 
  308   148.13354    44.18092     6.10000  1700.54208 
 
where the first line shows the number of events, rectangular side lengths in degrees, 
cutoff magnitude and the entire time span. The rest lines indicate the serial number of 
events, epicenter coodinates, magnitude that are same as those in delone2.out in 
§13.1.  
 

fort.7 (= fort.7.muk) includes: 
         308 
     1   146.372   43.221  7.70      33.96782     0 0.00     1 
     2   147.455   43.472  6.00      34.02402     1 7.70     1 
     3   145.961   43.805  7.10      34.12867     1 7.70     1 
     4   140.581   36.191  6.60      37.06475     0 0.00     2 
     5   143.571   41.560  6.00      39.57438     0 0.00     3 
     6   147.592   43.674  6.50      40.59455     0 0.00     4 
     7   146.909   44.236  6.10      40.61836     6 6.50     4 
     8   143.568   41.716  6.00      41.64508     5 6.00     4 
     9   140.782   35.176  6.70      47.89052     0 0.00     5 
    10   140.718   35.286  6.10      48.30271     9 6.70     5 

…… 
   299   142.177   36.975  6.00    1613.69128   298 6.10   183 
   300   142.531   38.418  7.10    1651.89759   128 7.30   183 
   301   145.575   43.010  6.60    1656.22287     0 0.00   184 
   302   141.519   34.460  6.20    1671.84874     0 0.00   185 
   303   146.391   43.451  6.00    1680.62511     0 0.00   186 
   304   142.197   35.978  6.10    1680.84593   241 9.00   186 
   305   141.963   40.808  6.20    1683.40119     0 0.00   187 
   306   140.641   33.229  6.00    1684.12163     0 0.00   188 
   307   143.432   39.977  6.10    1692.37786     0 0.00   189 
   308   148.134   44.181  6.10    1700.54208     0 0.00   190 

 

where the first to five columns are same as those of fort.2, sixth and seventh columns 
represent shows the identification of parent and its magnitude, where 0 represents the 
0-generation event that is simulated by the contribution of background intensity 
µ(x,y); and the last columns show cluster number of the same family trees.  
 

For the plot, done in R, then R.plots.pdf(7pa1993,1119,1046.pdf) shows 
below plots (Fig. 16):  
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Fig. 16: Simulated data by the HIST-ETAS-mK model. Left panel shows epicenters with sizes of 
circle radii are proportional to exponential of the same magnitude series (M>5.95) of the original 
JMA data. Middle panel shows latitude versus time plots. Right panel shows the cumulative 
number curve and magnitude versus time plots. In all panels, red ones indicate 0-th generation 
earthquake events generated by the background intensity.  
 
After simulation we can make reestimation starting from constructing 2D Delaunay 
tessellation for the simulated data sets.  
 

16.4.2 hist-etas-5pa case: 

If the number in the first line of histetasim.conf is 5 representing 
hist-etas-5pa model simulation, then the output files are:  

histetasim.prt (= histetasim5pa.prt), fort.2(= fort.2.5pa), and fort.7 (= 
fort.7.5pa) which are selected in the program directory of Section16files/, 
and have the same format as those by the simulation of hist-etas-mk model. 
 

For the plot, done in R, then R.plots.pdf (5pa1993,1119,1046.pdf) show below 
plots (Fig. 17):  
 

 
 
Fig. 17: Simulated data by the HIST-ETAS-5pa model. Left panel shows epicenters with sizes 
of circle radii are proportional to exponential of the same magnitude series (M>5.95) of the 
original JMA data. Middle panel shows latitude versus time plots. Right panel shows the 
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cumulative number curve and magnitude versus time plots. In all panels, red ones indicate 0-th 
generation earthquake events generated by the background intensity.  
 

After simulation we can make re-estimation, but we need to start from 
constructing new 2D Delaunay tessellation for the simulated data sets.  
 

 

APPENDICES 

A. Mathematical Outline of Models 
The ETAS model (Ogata, 1985, 1988, 1989) was extended for space-time data, and 

among the possible modelings for the space component, the best form described in 
§A.3 (Ogata, 1998) is selected by the goodness-of-fit comparison using the Akaike 
information criterion (AIC: Akaike, 1974). Incidentally, see Zhuang et al. (2005) and 
Ogata and Zhuang (2006) for further improvement of the space-time ETAS model, 
but we do not consider this for the hierarchical extensions of the parameters. 

We give a brief outline here of the space-time ETAS models that are fitted by this 
software. We initially define the space-time ETAS model in a general way that 
encompasses all of the specific models fitted by this software. We then describe what 
constraints are imposed by specific models. Further details are available in Ogata 
(2010) for an example. 

A.1 Determination of Anisotropic Clusters 
Before fitting the space-time ETAS models with anisotropic spatial clustering 

effect, we aim at compiling similar solution as the centroid Moment tensor solution 
(Dziewonski et al.1981) using early aftershocks activity, which was first investigated 
by Utsu and Seki (1955) and Utsu (1969). Also, see Ogata et al. (1995) and Ogata 
(1998).  
 The large earthquakes of mM M≥ in the catalogue are selected, and their immediate 
aftershocks are determined. The threshold magnitude Mｍ of the main shocks is 
determined appropriately, taking account of the cutoff magnitude Mc of the 
earthquakes in the catalog, such as Mm = Mc + 1.0. For example, the space window is 
a square centered at the epicenter of the main shock, with sides of length 3.33x100.5M-2 
+ε centered at the epicenter location, where M is the magnitude of the main shock. 
The last term ε is to quantify the error of epicenter estimates, usually takes 0 but we 
take ε =66.6 km (0.3 degree in latitude) in early days in offshore Japanese events. For 
the time span for estimation purpose, we can set one day (24 hours) or the shorter. 
The time window can be longer than 1 day in a low detection region or during an 
earlier period. On the other hand, from a forecasting perspective nowadays, one might 
set “0.05”, i.e. about one hour, to quickly determine the centroid location and 
orientation characteristics of the impending aftershock sequence after a main shock 
event using all detected earthquakes.  

For each main shock and its aftershock sequence, a bivariate normal distribution is 
fitted to the spatial values. In particular, for each, the covariance matrix  



68 

 S= 










 
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

 

and the centroid of the main shock and its aftershock sequence are estimated.  
The null model assumes that S is the identity matrix, and the cluster center is at 

the location of the main shock. There are three possible alternative models:  
1. S is different to the identity matrix but the cluster center is not different to that 

of the main shock;  
2. S is not different to the identity matrix but the cluster centre is located at the 

centroid;  
3. S is different to the identity matrix and the cluster center is located at the 

centroid.  
Cases 2 and 3 are achieved by relocating the main shock to the centroid location. For 
each of the four models of a given cluster, the AIC is calculated. That model with the 
smallest AIC is selected for each cluster.  
See Ogata (1998, 2010), Ogata (2004, Appendix B) and Ogata and Zhuang (2006, 
Appendix A) for more details. This procedure is executed by the program 
aniso2etas. 
 
The procedure is illustrated below (Fig. 18): 

 

 
Fig. 18: These panels show aftershocks occurring during the first hour after the main shock that is 
indicated by a small red circle (x1, y1). The occurrence date and magnitude of the main shock are 
printed. The AIC values of Models (1) ~ (4) relative to the largest one are listed in each panel, 
where the model of the smallest value is adopted for the forecast of the aftershock cluster 
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anisotropy. Namely, we compare the goodness-of-fit of the following four 2-dimensional Normal 
distributions by the AIC. The model (1) stands for isotropic cluster with the centroid as the original 
epicenter. The model (2) stands for isotropic cluster, but the centroid coordinates are different from the 
original epicenter. The model (3) stands for anisotropic cluster with the centroid as the original 
epicenter. And the model (4) stands for anisotropic cluster but the centroid coordinates are different 
from original epicenter. The model with the smallest AIC value is adopted, and each panel illustrates a 
contour of the selected model.  
 
The isotropic Space-Time Epidemic-Type Aftershock Sequence (ST-ETAS) model  
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can be extended to non-isotropic clusters for the earthquakes indicated by the output 
aniso2etas.out3, aiming at a better fit of the models to an earthquake catalog. For this, 
each response function is extended in such a way that the isotropic term in the 
response functions is replaced by  

2 22 1
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1 2

1 2
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x xy yσ σρ
σ σρ

 
− + 

−  
, 

so that the corresponding iso-circle and iso-ellipse as a cross-section of the function at 
the same height have the same area as each other. Namely, the corresponding circle 
and ellipse as a cross-section of cz z= have the same area to each other. Then the 
integral of the above conditional intensity function remains the same (cf., Ogata, 
1998).  
 

A.2 Delaunay Tessellation 
The Delaunay tessellation is a rather elegant method that can be used to estimate 

background seismicity or, in fact, to get estimates of anything that may vary in space 
where we have values of the entity of interest at any given points. It involves drawing 
triangles where the vertices are points, and no point falls within any of the 
circumcircles of the drawn triangles. Algorithms for the implementation of the 
techniques can be found in the Wikipedia, for example. 

In the case of a two-dimensional surface, each triangle provides a flat surface where 
the height of the surface is known at the three vertices. At any other point on the 
surface within a triangle, the height of the surface can be estimated using linear 
interpolation. The program interpolated.f performs such an interpolation. In 
regions where point density is large, the triangles will be very small and hence the 
interpolation error will be small, and conversely, where the point density is small the 
interpolation error will be relatively larger. Further, the rate at which points occur in a 
given region will be inversely proportional to the area of the triangles within that 
region. 

Consider the Delaunay triangulation (e.g., Green and Sibson, 1978); that is to say, 
the whole rectangular region A is tessellated by triangles with the vertex locations of 
earthquakes and some additional points {(x , y ), i=1,…,N+n}, as given in Fig. 19, 
where N is the number of earthquakes and n is the number of the additional points on 
the rectangular boundary including the corners. Here, for successfully fulfilling a 
Delaunay tessellation, we sometimes need very small perturbation of epicenters to 
avoid lattice structure or duplicated locations in a local domain. The panel below 

i i

http://en.wikipedia.org/wiki/Delaunay_tessellation
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shows such a tessellation based on the epicenters of a JMA dataset and the additional 
points on the boundaries. Then, define the piecewise linear function on the 
tessellated region such that its value at any location in each triangle is linearly 
interpolated by the three values at the vertices. Specifically, consider a Delaunay 
triangle and the coordinates of its vertices ( x , y ), i = 1, 2, 3. Then, for the values 

, i =1, 2, 3, the function value at any location inside the triangle is given 
as follows: Consider the linear equations  

  
  

  

to obtain the non-negative solution  and  so that we have  
.  

Such a function suitably represents the variation of the samples on a highly 
non-homogeneous or clustered point pattern. That is to say, we can estimate detailed 
changes of rate in a region where the observations are densely populated.  

For further details on Delaunay tessellations, see the Wikipedia, Tanemura et al. 
(1983), Ogata (2004), Ogata et al. (2003), and Green and Sibson (1978).  
 
 

 
Fig. 19: (a) Epicenter locations (dots) of earthquakes of M ≥ 5.0 in and around Japan for the 
target period 1926-1995 together with those of M ≥ 6.0 from the period 1885-1925 that are 
used as the history of the ETAS model, and (b) Delaunay tessellation connecting the 

( , )x yφ
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i i
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1321 =++ aaa
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http://en.wikipedia.org/wiki/Delaunay_tessellation
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epicenters and some points on the boundary.  

 
 

A.3 Spatial Non-homogeneous Poisson Model 
An objective method is developed for the estimation of the spatial intensity of the 

point locations. Consider superimposed epicenters throughout a period. Let us 
estimate the spatial seismicity from the earthquake locations. Now, we can consider 
two possible parameterizations for an intensity function ( , )x yθλ  of the 
nonhomogeneous Poisson processes. The first one is a bi-linear cubic spline function 
(Ogata and Katsura, 1988). However, this does not work efficiently relative to the 
number of necessary coefficients unless the locations are rather uniformly distributed 
throughout the region. The alternative is the Delaunay triangulation of this region 
tessellated by the earthquake locations, namely, a 2-dimensional piecewise linear 
function defined on the tessellation where the function value at any location is 
determined by the values at the vertices of Delaunay triangles. The modelling using 
Delaunay tessellation is suited for observations of clustered points. Namely, we can 
see detailed changes in the region where the observations are densely populated while 
smoother changes are expected in the sparsely populated regions. For the random 
location data { }( , ); 1, 2, ,i ix y i n=  in a region A, we can write the log-likelihood 
function as  

1
ln ( ) ln ( , ) ( , )

n

i i A
i

L x y x y dxdyθ θθ λ λ
=

= −∑ ∫∫   

where we have about the same number of parameters, or even more, as the number of 
earthquakes. Hence, we consider the penalized log likelihood  

( | ) ln ( ) ( | )R w L Q wθ θ θ= − ,  
where, in the case of a Delaunay piecewise function, 

22( , ) ( , )( | )
A

x y x yQ w w dxdy
x y

θ θλ λθ
  ∂ ∂  = +   ∂ ∂     

∫∫   
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The objective tuning of the weight w is carried out by the Bayesian method 
described in §A6 below, hence we obtain unique solutions of both the optimal weight 
and then the maximum a posterior estimate (in short, the MAP estimate) of the 
intensity function.  
 

A.4 b-value estimate and forecasting seismicity  
Initially assume that the b-value of the Gutenberg-Richter’s magnitude frequency law 
(Gutenberg and Richter, 1944) is location independent. Historically, based on the 
moment method, Utsu (1965) proposed the estimator 

1
ˆ log / ( )N

i ci
b N e M M

=
= −∑  

for the observation of magnitude sequence {Mi, i=1,..., N} where Mc is usually the 
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lowest bound of the magnitudes above which almost all the earthquakes are detected. 
This is modified by Utsu (1970) to replace Mc by Mc − 0.05 for the unbiased estimate 
of the b–values in case when the given magnitudes are rounded into values with 0.1 
unit, and hereafter we follow this modification for the JMA catalog. Aki (1965) 
showed that the Utsu’s b-estimator is nothing but the maximum likelihood estimate 
(MLE) that maximizes the likelihood function  

( )
1

( ) i c
N M M
i

L b e bb − −

=
= ∏ , Mi > Mc and b = b ln 10.  

Here, we want to assume that the b-value, or coefficient of the exponential 
distribution of magnitude, is dependent on the location in such a way that bθ(x, y) = 
bθ(x, y) ln10 where θ is a parameter vector characterizing the function (Ogata et al., 
1991). We will solve these problems by a Bayesian procedure. Having observed the 
magnitude data Mi for each hypocenter's coordinates (xi, yi) with i = 1,2,..., N, the 
current likelihood function of θ can be written by  

( , )( )

1

( ) ( , ) i i i c

N
x y M M

i i
i

L x y e bb − −

=

= ∏ θ
θθ   

for Mi > Mc. Since b, or b, is positive valued, we make the re-parameterization of the 
function ( , )

10( , ) / logx yx y e eφb = θ
θ , so that the estimate of the b-values in space is 

given by ( , )( , ) x yb x y eφ= θ
θ , where theφ -function is piecewise linear on the Delaunay 

tessellation, as given above. For a set of clusters of earthquakes, the Delaunay-based 
function fits better than the bi-cubic B-spline function that was used in Ogata & 
Katsura (1988) and Ogata et al. (1991). The estimation of the coefficients is 
undertaken by the penalized log-likelihood,  

22( , ) ( , )( | ) ln ( )
A

x y x yR w L w dxdy
x y

θ θb bθ θ
  ∂ ∂  = − +   ∂ ∂     

∫∫   

where the penalty weight w is tuned by a similar Bayesian procedure based on the 
ABIC (see Appendix B).  
 

A.5 Space-Time ETAS Models: General Model Formulation  
Denote the history of the process up to but not including time t as Ht where  

 { }( , , , ) :t i i i i iH t x y M t t= <   
and where (ti,xi,yi,Mi) represents the time-space-magnitude outcome of the i-th event. 
The model parameters are µ, K0, c, α, p, d, and q. In the fitted models, some or all of 
these parameters will vary in space, and will be denoted as µ(x,y), K(x,y), c, α(x,y), 
p(x,y), d, and q(x,y).  

Let  
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where M0 is a reference magnitude (xmg0) that can be usually a threshold magnitude 
of completely detected (cutm in §4.2), (xj,yj) is the centroid location of the main 
shock-aftershock sequence associated with the jth event, and Sj describes the major 
and minor axes of the spatial intensity associated with the jth event. Note that in many 
cases, Sj will just be the identity matrix and (xj,yj) will be the location of the 
epicenter in the original catalog. Alternative spatial response functions to (a1) are 
examined in Ogata (1998) to show the predominance of (a1) in and around Japan.  

The conditional intensity function can now be written as  

 0
{ : }

( , , | ) ( , ) ( , ) ( , ) ( , , )
j

t j j
j t t

t x y H x y K x y g x y f t x yλ µ
<

= + ∑   

Using the Delaunay tessellations, the spatial versions of the model parameters can 
be expressed as  

           1 ( , )( , ) x yx y eφµ µ=                         (a2) 
 2 ( , )

0 0( , ) x yK x y K eφ=                       (a3) 
3 ( , )( , ) x yx y eφα α=                         (a4) 
5 ( , )( , ) x yp x y p eφ=                         (a5) 
7 ( , )( , ) x yq x y q eφ=                         (a6) 

In the programs, we assume that the temporal scaling parameter c and the scaling 
parameter d are location independent. See Ogata et al. (2003) and Ogata (2004).  

 

A.5.1 Anisotropic space-time ETAS model (etas2aniso)  

The simplest model (st-etas) is where no model parameters vary in space, i.e.  
 
 1 2 3 5 7( , ) ( , ) ( , ) ( , ) ( , ) 0x y x y x y x y x yφ φ φ φ φ= = = = = ,  

for all x and y for functions in (a2) – (a6).   
This model includes an approximate version to shorten the long computation time 

by considering a range within a certain prescribed distance for each earthquake that is 
useful for the application to seismicity in wide regions. For this version, we need to 
indicate a spatial distance bound of the triggering range. The input parameter is how 
many times of the Utsu Spatial Distance USD = 3.33 x 100.5M-2 km (cf., §A.1). As the 
default value, it is set to be 2 times of USD in the configuration file. Hence, for the 
exact calculation, we put the parameter bi2 such that bi2 x USD exceeds the largest 
distance between earthquakes in the region.  
 

A.5.2 HIST-ETAS model of location dependent µ and K0-parameters  

In this model (hist-etas-mk), we assume that only µ and K0 vary over space, 
i.e.  
 3 5 7( , ) ( , ) ( , ) 0x y x y x yφ φ φ= = =   
and φ1(x,y) and φ2(x,y) are not zero for all x and y for functions in (a2) – (a6). The 
model is fitted by using the values of the other parameters as estimated by the model 
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in §A.5.1, as the initial values to start, and fitting the two spatial functions given by 
Eqs. 1 and 2. Here, all seven baseline parameters 0, , , , , , andK c p d qµ α  are 
re-estimated along with φ1(x,y) and φ2(x,y) ; i.e., Eqs. (a2) ~ (a6).  

A.5.3. HIST-ETAS model (hist-etas5pa)  

In this model, we assume that five of the parameters vary in space: µ, K0, α, p and q, 
i.e. Equations 1~ 5, respectively. The values of the two constant parameters (c and d) 
are those as estimated by the model in §A.5.1. In addition to the parameters c and d, 
the baseline parameters of α, p and q as estimated by the model in §A.5.1 are fixed 
throughout the computation. Namely, those are same as obtained in hist-etas-mk. 
Effectively we are fixing the parameter values to those estimated in A.5.2 and only 
estimating the φi’s, i = 1, 2, 3, 5, 7.  
 

A.5.4. Forecasting by HIST-ETAS models  
In a short-term span after a large earthquake j, we can make space-time forecast of 

aftershock activity. First, we only make a real time forecast using the isotropic matrix 
Sj (see §A1) within one hour after the occurrence of the earthquake j; but during the 
same period, a cluster analysis for the Sj is carried out. Specifically, the centroid 
hypocenter and variance-covariance matrix of a spatial cluster of aftershocks are 
formed using all detected and located earthquakes during the first hour, say, after the 
large earthquake. Then, based on this, the general non-isotropic space-time 
forecasting is performed after that.  

Then, in principle, the short-term probability forecast in space-time-magnitude bin 
is calculated, by the simple joint distribution of the separable combination between 
seismicity and magnitude, given by:  

( )ˆ ( , )ˆ( , , ; | ) ( , , | ) ( , ) ,bλ λ b −−= ⋅t t
M Mcx yt x y M H dtdxdy t x y H x y e dtdxdy   

where the estimation procedure of the location-dependent parameter 
ˆˆ( , ) ( , ) ln10b =x y b x y for magnitude frequency could be applied.  

However, the ˆ( , )b x y -values represent the frequency feature near the small 
earthquake near the threshold magnitude, but the magnitude distribution in many local 
regions do not follow the GR law for larger magnitudes such as taking shapes of 
tapering or characteristic earthquake type. For example, maximum likelihood 
estimates are obtained for many modified Gutenberg-Richter magnitude frequency 
distributions (see Utsu, 1999). Another issue is that b-values for the mainshocks and 
aftershocks can be significantly different (Utsu, 1971). Also, Ogata et al. (2018) did 
not confirm that the magnitude forecasts by location dependent b-value throughout 
Japan region outperform the baseline G–R law with the b value of 0.9. Hence, at this 
moment, we may rather assume generic magnitude frequency ˆˆ ln10b = b  with  
ˆ 0.9=b  throughout the entire target region, instead of location-dependent estimate
ˆ( , )b x y , for a stable forecasting.  
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A.6 Likelihoods and Penalized Likelihoods  

A.6.1 log-likelihood function and its maximization  
Now we start with the simplest space-time ETAS model in which all the parameters 

θ = (µ. K, c, α, p, d, q) of the ASTETAS model in §A3.1 are constant throughout the 
whole region, equivalently, all the functions ( , )k x yφ , k =1, 2, 3, 5, 7 defined are equal 
to zero. The maximum likelihood estimates (MLE) are obtained by the maximizing 
the log-likelihood function  

ln L(θ ) = 
{ ; }

ln ( , , | ) ( , , | )
i

i

T

i i i t tS A
i S t T

t x y H t x y H dxdydtθ θλ λ
< <

−∑ ∫ ∫∫ ,           (a7) 

for the earthquakes in the target period [S, T], where Ht is the history of earthquake 
occurrences before time t including those from the precursory period [0, S]. For the 
detailed numerical description of the log-likelihood function, especially of the second 
integral term in (a7), the reader is referred to Ogata (1998). Then we use a 
quasi-Newton method (Fletcher and Powell, 1963; Kowalik and Osborne, 1968, etc.) 
for the numerical maximization.  

When the number of earthquakes (say, n) in the data is large, the computing take a 
substantial time due to the double sum of n2/2 terms in the first part of the log 
likelihood (a7). Unlike the computation using the Markovian recursive relation in the 
conditional intensity of the ETAS model (Ogata et al., 1993), such a recursive 
calculation of the conditional intensity of the space-time ETAS is not available. 
Instead, one may be interested in a quicker spatially approximate computation by only 
taking the double sum of the earthquake pairs closer than a certain distance, such as 2 
times the Utsu Spatial Distance 3.33 x 100.5M−2 km (cf., §A.1). The HIST-ETAS 
models in A5 and A6 use this restriction.  
 

A.6.2 Penalised log-likelihood function and its optimization  
Here we consider the hierarchical models with location dependent parameters in §A.3 
to describe spatial heterogeneity. These models require a large number of further 
parameters for the coefficients of functions ( , )k x yφ , k =1, 2,…, 5. Let such 
coefficients be described by the parameter set { ( ) }iθ= ∈Θθ , and let the likelihood 
function be given by ( data).L θ∣  To estimate the parameters, we frequently use the 
penalised log likelihood (Good and Gaskins, 1971)  

 ( , | data) ln ( data) ( )R L Q= −θ τ θ θ τ∣ ∣ ,                   (a8) 
where the functionQ represents a positive valued penalty function, and 1 2( , )w w=τ  
or 1 5( , , )w w=τ   is a vector of the hyper-parameters that control the strength of 
some constraints between the parameters bundled by .θ Greater constraints will 
impose more smoothness in ( , )k x yφ , less constraints allows greater roughness. For 
the penalties, besides the simplest penalty in §A3 and §A4, we can consider  

2 2

( | )
A

Q w dxdy
x y

φ φθ τ
    ∂ ∂ = +    ∂ ∂     

∫∫  
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for b-values of the location-dependent G-R law and non-homogeneous Poisson 
processes, we use  

2 2
2

1( | ) k k
kk A

Q w dxdy
x y

φ φθ τ =

    ∂ ∂ = +    ∂ ∂     
∑ ∫∫             (a9) 

for the HIST-ETAS with location dependent µ and K parameters, and  

2 2
5

1
( | ) k k

kk A
Q w dxdy

x y
φ φθ τ

=

    ∂ ∂ = +    ∂ ∂     
∑ ∫∫              (a10) 

for the HIST-ETAS with location dependent µ, K, α, p and q parameters. Furthermore, 

in addition to each penalty, we sometimes need damping constraints for 1φ and 2φ

corresponding to µ and K0, 22
01 ( , )kk A

w x y dxdyφ
∂=∑ ∫∫ , only on the boundary of the 

region A∂ , where w0 is fixed throughout the optimization procedure of other 

hyperparameters (weights).  

The penalized log-likelihood in (a8) defines a trade-off between the goodness of fit to 
the data and the uniformity of each function, namely, the facets of the piecewise linear 
function being as flat as possible. A smaller weight leads to a higher regional 
variability of the φ-functions. The crucial point here is the tuning of the vector τ . 
From the Bayesian viewpoint, the penalty function is related to the prior probability 
density  

( ) ) (/( ) Q Qe eπ − −
Θ∫= θ τ θ τ dθθ τ ∣ ∣∣ ,  

and the exponential to the penalized log likelihood function R is proportional to the 
posterior function. For determining suitable values of the hyper-parameters τ, 
consider the posterior probability density function  

( data; ) ( data) ( ) ( data)p L π= Lθ τ θ θ τ τ∣ ∣ ∣ ∣   

with normalizing factor  

.( data) ( data) ( )L π
Θ

L = ∫τ θ θ τ dθ∣ ∣ ∣                    (a11) 

The maximization of this normalizing factor or its logarithm with respect to the 
hyper- parameters τ is called the method of the Type II maximum likelihood due to 
Good (1965). Given a set of data, one seeks to compare the goodness-of-fit of 
Bayesian models that have distinct likelihoods or distinct priors and to search for the 
optimal hyper-parameter values. For instance, Ogata et al. (1991) compared the use of 
different priors for isotropic and anisotropic smoothness constraints, which need two 
and five hyper-parameters, respectively. For such a purpose, Akaike (1980) justified 
and developed Good’s method based on the entropy maximization principle (Akaike, 
1978) and defined  
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ABIC = −2maxτ  ln L(τ| data) +2dim(τ )              (a12) 
for consistent use with the Akaike Information Criterion (AIC; Akaike, 1974). Here, 
dim(τ) is the number of the hyper-parameters . Both ABIC and AIC are to be 
minimized for the comparison of Bayesian and ordinary likelihood-based models, 
respectively, for better fit to the data. The normalizing factor L(τ| data) in (a11) is 
called the likelihood of the Bayesian model with respect to the hyper-parameters τ.  
   For practical computation of the normalizing factor L(τ| data) in (a11), see the 
§B.2 below.  

B Background to Computation Algorithms  

This Appendix gives a description of the computing algorithms that are used to fit the 
models.  

B.1 Nonlinear optimization for the maximum likelihood estimates (MLE)  

For the maximum likelihood procedure of a space-time ETAS model 
(etasSelectAniso) in §A3.1, we use a quasi-Newton optimization for non-linear 
functions called Davidon-Fletcher- Powell algorithm (Fletcher and Powell, 1963). 
Also see Kowalik and Osborne (1968) or Wikipedia for an introduction.  

To get the optimal parameters, we repeat the following steps (A) - (D):  

(A) For a given fixed τ , calculate the negative log-likelihood and its gradient vector 
u at an initially given parameter vector 0θ .  

(B) Search the smallest negative log likelihood function (a7) with respect toθ  on the 
one-dimensional straight line determined by the initial parameter vector 0θ and the 
gradient vector u (Linear Search; e.g., Kowalik and Osborne, 1968).  

(C) Replace the minimizing parameter θ̂ in step (B) by 0θ . Then, compute the gradient 
vector u 0  at 0θ . Solve the equation TH u = u 0 by an estimated Hessian to get a 
vector u for the direction of the next linear search in step (B).  

(D) Repeat A-C until the negative log-likelihood function T attains the minimum 
overall θ , which is the maximum likelihood estimate (MLE).  
 
In quasi-Newton methods the Hessian matrix (second derivatives of the function) 

need not be computed. An estimated inverse Hessian matrix is calculated by using the 
gradients during the steps of searching for the minimum of the negative log-likelihood 
function.  
 

B.2 Computations of Bayesian models through Gaussian approximations 
In general, it is hard to get the high dimensional integration (a11) analytically 

unless the posterior distribution is Gaussian. This is because the likelihood function of 
the point-process model is not Gaussian distributed. Nevertheless, by virtue of the 
Gaussian prior distribution, Gaussian approximation of the posterior function is useful. 
Namely, we take the Gaussian approximation of the posterior distribution, utilising 
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the quadratic form around the log-posterior maximum solution. That is to say, the 
penalized log-likelihood is well approximated by the quadratic form  

1ˆ ˆ ˆ ˆ( ) ln ( ) ln ( ) ( ) ( ) ( )( )
2

tT L T HTπ≡ + ≈ − − −θ τ θ Y θ τ θ τ θ θ θ τ θ θ∣ ∣ ∣ ∣ ∣      (b1) 

around ˆ arg{max ( )},T= θθ θ τ∣ and ( )TH θ τ∣  is the Hessian of ( )T θ τ∣  consisting of 
its negative second-order partial derivatives with respect toθ .  

We further assume that the Hessian matrix in (b1) is well approximated by a block 
diagonal matrix of five sub-matrices, TH =diag{ 54321 ,,,, TTTTT HHHHH }, relying on 
the Hessian of the prior where each block relates the model parameters µ. K0, α, p, 
and q, respectively. Namely, we assume independency between the coefficients of the 
different kφ -functions in the penalized log-likelihood (a8). Thus, the logarithm of the 
likelihood (11) of the Bayesian model is given by  

ln ( ) log ( | ) ( | )

1 1ˆ ˆ( | ) ln det{ ( | )} dim{ }log 2
2 2
1 1ˆ ˆ ˆ( | ) ln det{ ( | )} ln det{ ( | )},
2 2

T

R Q

L

T H

R H H

π

π

Θ
L =

≈ − +

= − +

∫Y θ Y θ τ dθ

θ τ θ τ θ

θ τ θ τ θ τ

 

where RH and QH is the block diagonal Hessian matrix of the function R and Q in 
(a8), respectively, and ‘det{.}’ indicates the determinant of the matrices.  

Then, we implement the maximization of the penalized log-likelihood (a8) with 
respect to the coefficients of the φ-functions.  

 In the maximization with respect to the 2(N+n) dimensional coefficient vectors, we 
alternately adopt a linear search procedure and the incomplete Cholesky conjugate 
gradient (ICCG) method by inverting a block diagonal Hessian matrix ˆ( )RH θ τ∣  (see 
§B.2), where N is the number of earthquakes and n is the number of the additional 
points on the rectangular boundary including the corners (see §6.4 and the figure in 
§6.5). This procedure makes the convergence very rapid regardless of the high 
dimensionality of θ  if the Gaussian approximation at Equation (b1) is adequate for 
the posterior function.  

Having attained such convergence for a given hyper-parameter τ , we further need 
to perform the maximization of L(τ) defined in (a11) with respect to τ by a direct 
search such as the simplex method (e.g., Kowalik and Osborn, 1968) in either 2 or 7 
dimensional space depending on the programs. Thus, we perform the double 
optimizations with respect the parameters (coefficients)θ and the hyper-parameters 
(weights) τ . These are alternately repeated until the latter maximization converges 
(see the diagram in Fig. 20 below). The whole optimization procedure usually 
converges when initial vector values for τ are set in such a way that the penalty is 
reasonably close to the correct value; otherwise, it may take very many steps to reach 
the solution, or it may even diverge. Eventually, we obtain the optimal maximum 
posterior (OMAP) solutionθ for the maximum likelihood estimate τ .  
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Fig. 20. Diagram of Double Optimizations. (I) performs the maximization of the function R 
with respect to θ. (II) calculates the log likelihood of the Bayesian model using the quadratic 
approximation expanded at θ̂ . (III) maximizes the log likelihood with respect to τ.  
 

To get the optimal hyper-parameters, we repeat the following steps (A) - (D):  

(A) For a givenτ being fixed, set the gradient of the penalized log-likelihood, u =
/T∂ ∂θat an initial parameter 0θ .  

(B) Maximize T in (b1) with respect toθ , that is, on the one-dimensional straight line 
determined by the initial parameter vector 0θ and the gradient vector u (Linear Search; 
e.g., Kowalik and Osborne, 1968).  

(C) Replace the maximizing parameter θ̂ in step (B) by 0θ . Then, compute the gradient 
vector u 0 = /T∂ ∂θ  at 0θ . Solve the equation TH u = u 0 by the Incomplete Cholesky 
Conjugate Gradient (ICCG) method (e.g., Mori, 1986) to get the vector u for the 
direction of the next linear search in step (B) until the function T attains the overall 
maximum θ , which is the maximum posterior (MAP) solution for the given τ .  

(D) Calculate log ( )L τ  using the quadratic approximation around the MAP θ̂ , and 
go to step (A) with the other τ  to maximize log ( )L τ  by the direct-search 
maximizing method, such as the simplex method (e.g., Kowalik and Osborne, 1968; 
and Murata, 1992). The steps (A) ~ (D) are repeated in turn until log ( )L τ  
converges.  

  According to our experience, the convergence rate in step (C) is very fast in spite 
of the very high dimensionality of θ . This is expected when the quadratic 
approximations of T are adequate in a region around the MAP solution, otherwise it is 
likely to take endless iterations or even diverge. After all, by assuming a uni-modal 
posterior function, we can get the optimal MAP solution θ̂  for the maximum 
likelihood estimate τ̂ of the hyper-parameters. The reader is referred to Ogata and 
Katsura (1988, 1993), Ogata et al. (1991, 2000, 2001), and related references therein 
which further describe computational details. 
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B.3 Notes on location-dependent µ and K0 ETAS fitting (hist-etas-mk) 
The penalized log-likelihood in (a8) defines a trade-off between the goodness of fit 

to the data and the uniformity of each parameter function. We obtain the optimal 
weights τ̂ = 1 2ˆ ˆ( , )w w  together with the maximizing baseline parameters ( µ , K



) for 
the first two programs or ( µ , K



, c, α, p, d, q) for the last two, by the principle of 
maximizing the integrated posterior function (a11). Here note that the baseline 
parameters µ and K



are automatically determined by the zero-sum constraint of the 
corresponding φ-function. This overall maximization can be eventually attained by 
repeating alternate procedures of the separated maximizations with respect to the 
parameters (coefficients) and hyper-parameters (weights) described as follows. 
First of all, for the initial inputs, we use the MLEs θ̂ = ( ˆˆ ˆˆ ˆ ˆ ˆ, , , , , ,K c p d qµ α ) obtained 

by the primary space-time ETAS model (st-etas), for the baseline parameter, and 
also set all the coefficients of φ-functions to be zero such that 1 2( , ) ( , ) 0x y x yφ φ= = .    

Since the penalty functions already have the quadratic form with respect to the 
parameters ,θ the prior density is of a multivariate Gaussian distribution, in which the 
Hessian matrix QH consists of the elements of the negative second order partial 
derivatives of the penalty function Q. Actually, the present penalty function implies 
that the Hessian is a block diagonal matrix of five sub-matrices corresponding to each

kφ -function in (a2)~(a6) such that QH =diag{ 1 2,H Hµ κ }. This is because we do not 
consider any restrictions a priori between the different 1φ and 2φ -functions. Here, all 
sub-matrices of k

QH are sparse, and have the same configuration of non-zero elements. 
Specifically, the ),( ji -element is non-zero if and only if the pair of points i and j are 
vertices of the same Delaunay triangle; cf., §6.3.  

B.4 Notes on location-dependent µ, K,α, p and q ETAS fitting (hist-etas5pa) 
Having obtained the optimal weights τ̂ = 1 2ˆ ˆ( , )w w  and the MAP coefficients of 

1̂( , )x yφ  and 2̂ ( , )x yφ  with the baseline parameters dpcK ˆ,ˆ,ˆ,ˆ,ˆ,ˆ αµ , q̂ in the 
µK-HIST-ETAS model, we use all of these for initial inputs to stably estimate the 
HIST-ETAS model in §A.3 with five spatially varying parameters in (a2) - (a6). Also, 
set other coefficients of α, p and q parameter functions being zero such that 3 ( , )x yφ =

4 ( , )x yφ = 5 ( , )x yφ = 0 with the estimated baseline values dpcK ˆ,ˆ,ˆ,ˆ,ˆ,ˆ αµ  and q̂ of 
the µK-HIST-ETAS model (hist-etas-mk).  

Here, we consider the penalized log-likelihood function (a8) with the penalty 
function  

2 2
5

1
( | ) k k

kk A
Q w dxdy

x y
φ φθ τ

=

    ∂ ∂ = +    ∂ ∂     
∑ ∫∫                (b2) 

of 1 5( , ..., )w w=τ . In addition, we need damping constraints for 1φ and 2φ  

corresponding to µ and K0; { } { }2 22
1 ( , ) ( , )k kkk A
w x y x x y y dxdyφ φ

∂= ∂ ∂ + ∂ ∂∑ ∫∫  only 

on the boundary of the region A∂ . For technical reasons, the baseline values
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dpcK ˆ,ˆ,ˆ,ˆ,ˆ,ˆ αµ , q̂ and w0 in the programs are fixed throughout the whole 

computations. Thus the optimal weights τ̂ = 1 2 3 4 5ˆ ˆ ˆ ˆ ˆ( , , , , )w w w w w  are obtained by the 

similar procedure of maximizing the integrated posterior function (see A.5.2) to that 

of the µK-HIST-ETAS model in §B.3.  

 Since the penalty function in (b1) already has the quadratic form with respect to the 
parameters ,θ the prior density is of a multivariate Gaussian distribution, in which the 
Hessian matrix QH consists of the elements of the negative second order partial 
derivatives of the penalty function Q. Actually, the present penalty function implies 
that the Hessian is a block diagonal matrix of five sub-matrices corresponding to each

kφ -function in (a2)~(a6) such that QH =diag{ 54321 ,,,, QQQQQ HHHHH }. This is because 
we do not consider any restrictions a priori between the different kφ -functions. Here, 
all sub-matrices of k

QH are sparse, and have the same configuration of non-zero 
elements. Specifically, the ),( ji -element is non-zero if and only if the pair of points i 
and j are vertices of the same Delaunay triangle; cf., §6.3.  

Specifically, this maximization is performed sequentially and alternately as 
follows. First, we implement the maximization of the penalized log-likelihood (a8) 
with respect to the coefficients of the φ-functions; see Eqs. (a2) - (a6). For the 
calculation, we adopt a linear search using the incomplete Cholesky conjugate 
gradient (ICCG) method for 5(N+n) dimensional coefficient vectors, where N+n is the 
same number as given in §6.3. Alternately, we implement the simplex algorithm in the 
5-dimensional space of 1 2 3 4 5ˆ ˆ ˆ ˆ ˆ( , , , , )w w w w w to maximize L(τ) until this converges. Here, 
before doing the 5-dimensional simplex search, we recommend to firstly make a 
lattice search of 3 4 5( , , )w w w  in the logarithmic orders, such as (10i, 10j, 10k), for 
possible sets of integers i, j and k to compare the respective ABIC values h, while 

1 2( , )w w remain fixed to those 1 2ˆ ˆ( , )w w obtained in §9.3. It is a limitation of this 
procedure that this maximization may not converge for small sets of integers because 
the convergence relies on the quadratic approximation penalized log likelihood (see 
Appendix and the ICCG method). From our experience, selection from 2 or 3 or 4 for 
the above i, j and k, can be a good choice of the starting values. Then, using the set of 
weights with the smallest ABIC value, we can implement the 3-dimensional simplex 
search of 3 4 5( , , )w w w or even the 5-dimensional simplex search of 1 2 3 4 5( , , , , )w w w w w
for a global minimum. Here it is important to make use of the previously converged 
solutions of parameters (coefficients) for the next initial parameters of such large 
dimensions. 
It is also useful to examine whether or not the characteristic parameters, particularly
α (x,y)= 3ˆ exp{ ( , )}x yα φ , p (x,y)= 4ˆ exp{ ( , )}p x yφ and q (x,y) = 5ˆ exp{ ( , )}q x yφ are 
significantly uniform (i.e., spatially invariant). For this we can calculate the Akaike 
Bayesian Information Criterion (ABIC; see Appendix) as a byproduct of the above 
simplex optimization. A model with a smaller ABIC value indicates a better fit. For 
example, we can compare the ABIC values of the HIST-ETAS model for the optimal 
weights 1 2 3 4 5ˆ ˆ ˆ ˆ ˆ( , , , , )w w w w w  with the one for 8

1 2 3 4ˆ ˆ ˆ ˆ( , , , ,10 )w w w w  to examine whether 
q-value is location dependent or not.  
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