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“Posterior Contraction Rate and Asymptotic
Bayes Optimality for One Group Global-Local
Shrinkage Priors in Sparse Normal Means

Problem”

Sayantan Paul and Arijit Chakrabarti

This document consists of two sections. In Section 1, we provide proofs
of Theorem 1 and some auxiliary Lemmas related to MMLE provided in
Section 2 of our main work. Section 2 provides the derivation of the posterior
distribution of κi given Xi and τ . But before going into the technical details,
let us restate the general class of one-group global-local priors that we are
interested in this work:

θi|λi, τ
ind∼ N (0, λ2i τ

2), λ2i
ind∼ π1(λ

2
i ), τ ∼ π2(τ), (1.1)

where the local shrinkage parameter λi is modeled as,

π1(λ
2
i ) = K(λ2i )

−a−1L(λ2i ), (1.2)

where K ∈ (0,∞) is the constant of proportionality, a is a positive real
number, and L : (0,∞) → (0,∞) is measurable non-constant slowly varying

function, i.e., for any α > 0, L(αx)
L(x)

→ 1 as x → ∞. For the theoretical
development of the paper, we consider slowly varying functions that satisfy
Assumption1 ((A1) and (A2)) discussed in Section 2 of the main paper.
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1 Proofs

1.1 Results related to the contraction rate of Empirical
Bayes Procedure–plug-in Estimator

Proof of Theorem 1. For proving Theorem 1, first we need to show that, the
total posterior variance using the empirical Bayes estimator of τ correspond-
ing to this class of priors satisfies, as n→ ∞,

sup
θ0∈l0[qn]

Eθ0

n∑
i=1

V ar(θi|Xi, τ̂) ≲ qn log n, (2)

where V ar(θi|Xi, τ̂) denotes V ar(θi|Xi, τ) evaluated at τ = τ̂ . We make
use of Markov’s inequality along with (2) and Theorem 2 of Ghosh and
Chakrabarti (2017).
Now we move towards establishing (2). Let us define q̃n =

∑n
i=1 1{θ0i ̸=0}.

Thus, q̃n ≤ qn. We then note

Eθ0

n∑
i=1

V ar(θi|Xi, τ̂) =
∑

i:θ0i ̸=0

Eθ0iV ar(θi|Xi, τ̂) +
∑

i:θ0i=0

Eθ0iV ar(θi|Xi, τ̂) .

(3)
We now prove that

∑
i:θ0i ̸=0 Eθ0iV ar(θi|Xi, τ̂) ≲ q̃n log n and

∑
i:θ0i=0 Eθ0iV ar(θi|Xi, τ̂) ≲

qn log n in Step-1 and Step-2 below respectively. Combining these results
we get the final result. Now let us prove Step-1 and Step-2.

Proof of Step-1: Fix any c > 1 and choose ρ > c. Define rn =
√

4aρ2 log n.
Fix any i such that θ0i ̸= 0. We split Eθ0iV ar(θi|Xi, τ̂) as

Eθ0iV ar(θi|Xi, τ̂) = Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|≤rn}]+Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>rn}] .
(4)

Since for any fixed xi ∈ R and τ > 0, V ar(θi|xi, τ) ≤ 1 + x2i .

Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|≤
√

4aρ2 logn}] ≤ 1 + 4aρ2 log n . (5)

Note that, for any fixed xi ∈ R, x2iE(κ2i |xi, τ) = x2iE(
1

(1+λ2
i τ

2)2
|xi, τ) is non-

increasing in τ . Also using Lemma A.1 in Ghosh and Chakrabarti (2017),
V ar(θi|xi, τ) ≤ 1 + x2iE(κ

2
i |xi, τ). Using these two results,

V ar(θi|xi, τ̂) ≤ 1 + x2iE(κ
2
i |xi, τ̂) ≤ 1 + x2iE(κ

2
i |xi,

1

n
) [Since τ̂ ≥ 1

n
] .
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Using arguments similar to Lemma 3 of Ghosh and Chakrabarti (2017), one
can show that for any fixed η ∈ (0, 1) and δ ∈ (0, 1), the r.h.s. above can be
bounded by a non-negative and measurable real-valued function h̃(xi, τ, η, δ)
satisfying h̃(xi, τ, η, δ) = 1 + h̃1(xi, τ) + h̃2(xi, τ, η, δ) with

h̃1(xi, τ) = C∗∗

[
x2i

∫ x2i
1+t0

0

exp(−u
2
)ua+

1
2
−1du

]−1

,

where C∗∗ is a global constant independent of both xi and τ and

h̃2(xi, τ, η, δ) = x2i
H(a, η, δ)

∆(τ 2, η, δ)
τ−2ae−

η(1−δ)x2i
2 ,

where H(a, η, δ) =
(a+ 1

2
)(1−ηδ)a

K(ηδ)(a+
1
2 )

and ∆(τ 2, η, δ) =

∫∞
1
τ2

( 1
ηδ

−1)
t−(a+3

2 )L(t)dt

(a+ 1
2
)−1( 1

τ2
( 1
ηδ

−1))
−(a+1

2 )
.

Since, h̃1(xi, τ) is strictly decreasing in |xi| for any fixed τ , one has,

sup
|xi|>

√
4aρ2 logn

h̃1(xi,
1

n
) ≤ C∗∗

[
ρ2 log n

∫ 4aρ2 logn
1+t0

0

exp(−u
2
)ua+

1
2
−1du

]−1

≲
1

log n
·

Also noting that h̃2(xi, τ, η, δ) is strictly decreasing in |xi| > C1 =
√

2
η(1−δ)

,

for any ρ > C1,

sup
|xi|>

√
4aρ2 logn

h̃2(xi,
1

n
, η, δ) ≤ 4aρ2

H(a, η, δ)

∆( 1
n2 , η, δ)

log n · n
−2a( 2ρ

2

C2
1

−1)
·

Using the definition of the slowly varying function L(·) and assumption (A1)
in the right-hand side of above, we have,

sup
|xi|>

√
4aρ2 logn

h̃2(xi,
1

n
, η, δ) = o(1)asn→ ∞.

Therefore, we have,

sup
|xi|>

√
4aρ2 logn

h̃(xi,
1

n
, η, δ) ≤ 1+ sup

|xi|>
√

4aρ2 logn

h̃1(xi,
1

n
)+ sup

|xi|>
√

4aρ2 logn

h̃2(xi,
1

n
, η, δ) ≲ 1 ·
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Using above arguments, as n→ ∞,

Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>
√

4aρ2 logn}] ≲ 1 . (6)

Combining (4),(5) and (6), we obtain

Eθ0iV ar(θi|Xi, τ̂) ≲ log n . (7)

Noting that ≲ relation proved here actually holds uniformly in i’s such that
θ0i ̸= 0, in that the corresponding constants in the upper bounds can be
chosen to be the same for each i, we have∑

i:θ0i ̸=0

Eθ0iV ar(θi|Xi, τ̂) ≲ q̃n log n . (8)

Proof of Step-2: Fix any i such that θ0i = 0. Define vn =
√
c1 log n, where

c1 is defined in (5) of the main document.
Case-1 First we consider the case when a ∈ [1

2
, 1). Again, we split Eθ0iV ar(θi|Xi, τ̂)

as

Eθ0iV ar(θi|Xi, τ̂) = Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>vn}]+Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|≤vn}] ·
(9)

Using V ar(θi|xi, τ̂) ≤ 1 + x2i and the identity x2ϕ(x) = ϕ(x)− d
dx
[xϕ(x)], we

obtain,

Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>vn}] ≤ 2

∫ ∞

√
c1 logn

(1 + x2)ϕ(x)dx ≲
√
log n · n− c1

2 .

(10)
Now let us choose some γ > 1 such that c2γ − 1 > 1. Next, we decompose
the second term as follows:

Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|≤vn}] = Eθ0i [V ar(θi|Xi, τ̂)1{τ̂>γ qn
n
}1{|Xi|≤vn}]+

Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn
n
}1{|Xi|≤vn}] . (11)

Note that

Eθ0i [V ar(θi|Xi, τ̂)1{τ̂>γ qn
n
}1{|Xi|≤vn}] ≤ (1 + c1 log n)Pθ0 [τ̂ > γ

qn
n
, |Xi| ≤ vn]

≤ (1 + c1 log n)Pθ0 [
1

c2n

n∑
j=1(̸=i)

1{|Xj |>
√
c1 logn} > γ

qn
n
] ≲

qn
n

log n . (12)
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Inequality in the last line is due to employing similar arguments used for
proving Lemma A.7 in van der pas et al. (2014).
We will now bound Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn

n
}1{|Xi|≤

√
c1 logn}]. Since for any

fixed xi ∈ R and τ > 0, V ar(θi|xi, τ) ≤ E(1 − κi|xi, τ) + J(xi, τ) where
J(xi, τ) = x2iE[(1 − κi)

2|xi, τ ]. Since E(1 − κi|xi, τ) is non-decreasing in τ ,
so, E(1 − κi|xi, τ̂) ≤ E(1 − κi|xi, γ qn

n
) whenever τ̂ ≤ γ qn

n
. Using Lemma 2

and A.2 of Ghosh and Chakrabarti (2017),

Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn
n
}1{|Xi|≤

√
c1 logn}] ≲ (

qn
n
)2a

∫ √
c1 logn

0

e
x2

2 e−
x2

2 dx

= (
qn
n
)2a

√
c1 log n . (13)

Note that all these preceding arguments hold uniformly in i such that θ0i = 0.
Combining all these results, for a ∈ [1

2
, 1) using (9)-(13), we have,∑

i:θ0i=0

Eθ0iV ar(θi|Xi, τ̂) ≲ (n− q̃n)[
√

log n · n− c1
2 +

qn
n

· log n+ (
qn
n
)2a

√
log n]

≲ qn log n . (14)

The second inequality follows due to the fact that q̃n ≤ qn and qn = o(n) as
n→ ∞.
Case-2 Now we assume a ≥ 1 and split Eθ0iV ar(θi|Xi, τ̂) as

Eθ0iV ar(θi|Xi, τ̂) = Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>vn}]+Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|≤vn}],
(15)

where vn is the same as defined inCase-1. Using exactly the same arguments
used for the case a ∈ [1

2
, 1), we have the following for a ≥ 1,

Eθ0i [V ar(θi|Xi, τ̂)1{|Xi|>
√
c1 logn}] ≲

√
log n · n− c1

2 . (16)

and
Eθ0i [V ar(θi|Xi, τ̂)1{τ̂>γ qn

n
}1{|Xi|≤

√
c1 logn}] ≲

qn
n

log n . (17)

For the part Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn
n
}1{|Xi|≤

√
c1 logn}], note that for fixed xi ∈

R and any τ > 0,

V ar(θi|xi, τ) ≤ E(1− κi|xi, τ) + x2iE[(1− κi)
2|xi, τ ]

≤ E(1− κi|xi, τ) + x2iE(1− κi|xi, τ)
≤ E(1− κi|xi, τ)1{|xi|≤1} + 2x2iE(1− κi|xi, τ) . (18)
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Since for fixed xi ∈ R and any τ > 0, E(1− κi|xi, τ) is non-decreasing in
τ , we have,

Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn
n
}1{|Xi|≤

√
c1 logn}] ≤ Eθ0i [E(1− κi|Xi, γ

qn
n
)1{|Xi|≤1}]+

2Eθ0i [X
2
i E(1− κi|Xi, γ

qn
n
)1{|Xi|≤

√
c1 logn}] . (19)

For bounding the first term in the r.h.s. of (19), we use Lemma 1. We

note that for any τ ∈ (0, 1), tτ2

1+tτ2
· 1√

1+tτ2
t−a−1 ≤ τt−(a+ 1

2
) and that L(t) is

bounded. Using the fact that the second term in the upper bound in Lemma
1 can be bounded

A2 ≤
2M

(2a− 1)
τe

x2i
2 ,

where A2 has been defined in the proof of Lemma 1 of the main document.
So, we have

Eθ0i [E(1− κi|Xi, γ
qn
n
)1{|Xi|≤1}] ≲

qn
n

∫ 1

0

e−
x2

4 dx+
qn
n
.

Hence,

Eθ0i [E(1− κi|Xi, γ
qn
n
)1{|Xi|≤1}] ≲

qn
n
. (20)

For the second term in the r.h.s. of (19) we shall use the upper bound of
E(1− κi|xi, τ) of the form (7) of the main article and hence,

Eθ0i [X
2
i E(1− κi|Xi, γ

qn
n
)1{|Xi|≤

√
c1 logn}] ≲

qn
n

∫ √
c1 logn

0

x2e
x2

4 ϕ(x)dx

+

∫ √
c1 logn

0

∫ ∞

1

t(γ qn
n
)2

1 + t(γ qn
n
)2

· 1√
1 + t(γ qn

n
)2
t−a−1L(t)e

x2

2
· t(γ

qn
n )2

1+t(γ
qn
n )2 x2ϕ(x)dtdx .

(21)

Note that the first integral is bounded by a constant. Using Fubini’s theorem
and the transformation y = x√

1+t(γ qn
n
)2
, the second integral becomes

1√
2π

∫ ∞

1

t−a−1L(t)t(γ
qn
n
)2
(∫ √

c1 logn

1+t(γ
qn
n )2

0

y2e−
y2

2 dy

)
dt .
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We handle the above integral separately for a = 1 and a > 1. For a > 1,
using the boundedness of L(t) it is easy to show that,

1√
2π

∫ ∞

1

t−a−1L(t)t(γ
qn
n
)2
(∫ √

c1 logn

1+t(γ
qn
n )2

0

y2e−
y2

2 dy

)
dt ≲

qn
n
. (22)

For a = 1 note that,∫ ∞

1

t−a−1L(t)t(γ
qn
n
)2
(∫ √

c1 logn

1+t(γ
qn
n )2

0

y2e−
y2

2 dy

)
dt

≤ (γ
qn
n
)2
√
2π

∫ c1 logn

(γ
qn
n )2(2π)

1
3

1

1

t
L(t)dt+ (

√
c1 log n)

3(γ
qn
n
)2
∫ ∞

c1 logn

(γ
qn
n )2(2π)

1
3

L(t)

t
· 1

(t(γ qn
n
)2)

3
2

dt .

(23)

Here the division in the range of t in (23) occurs due to the fact the integral

(
∫√

c1 logn

t(γ
qn
n )2

0 y2e−
y2

2 dy) can be bounded by ( c1 logn
t(γ qn

n
)2
)
3
2 when t ≥ c1 logn

(γ qn
n
)2(2π)

1
3
and

by
√
2π when t ≤ c1 logn

(γ qn
n
)2(2π)

1
3
. For the first term in (23) with the boundedness

of L(t),

(γ
qn
n
)2
∫ c1 logn

(γ
qn
n )2(2π)

1
3

1

1

t
L(t)dt ≤ (γ

qn
n
)2M log

(
c1 log n

(γ qn
n
)2(2π)

1
3

)
.

Hence for sufficiently large n with qn ∝ nβ, 0 < β < 1,

(γ
qn
n
)2
∫ c1 logn

(γ
qn
n )2(2π)

1
3

1

1

t
L(t)dt ≲

qn
n

√
log n . (24)

Now for the second term in (23) again using the boundedness of L(t),

(
√
c1 log n)

3(γ
qn
n
)2
∫ ∞

c1 logn

(γ
qn
n )2(2π)

1
3

t · t−2L(t) · 1

(t(γ qn
n
)2)

3
2

dt ≲
qn
n
. (25)

So, using (23)-(25), for a = 1,∫ ∞

1

t−a−1L(t)t(γ
qn
n
)2
(∫ √

c1 logn

1+t(γ
qn
n )2

0

y2e−
y2

2 dy

)
dt ≲

qn
n

√
log n . (26)
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With the help of (22) and (26), we have, for a ≥ 1

∫ ∞

1

t−a−1L(t)t(γ
qn
n
)2
(∫ √

c1 logn

1+t(γ
qn
n )2

0

y2e−
y2

2 dy

)
dt ≲

qn
n

√
log n . (27)

Combining these facts, we finally have

Eθ0i [X
2
i E(1− κi|Xi, γ

qn
n
)1{|Xi|≤

√
c1 logn}] ≲

qn
n

√
log n . (28)

Note that all these preceding arguments hold uniformly in i such that θ0i = 0.
Combining all these results, for a ≥ 1, using (15)-(28), we have,∑

i:θ0i=0

Eθ0iV ar(θi|Xi, τ̂) ≲ (n− q̃n)[
√

log n · n− c1
2 +

qn
n

· log n+
qn
n

√
log n]

≲ qn log n . (29)

Using (14) and (29), for a ≥ 1
2
, we have,∑

i:θ0i=0

Eθ0iV ar(θi|Xi, τ̂) ≲ qn log n . (30)

Now using (3), (8) and (30), for sufficiently large n,

Eθ0

n∑
i=1

V ar(θi|Xi, τ̂) ≲ qn log n .

Finally, taking supremum over all θ0 ∈ l0[qn], the result is obtained.

Remark 1. Note that, we have used different bounds on V ar(θi|Xi, τ) for
two different ranges of a. When a ∈ [1

2
, 1), we have used the upper bound

of J(Xi, τ) provided by Ghosh and Chakrabarti (2017). However using the
same arguments when a ≥ 1 yields an upper bound on V ar(θi|Xi, τ) such
that Eθ0i [V ar(θi|Xi, τ̂)1{τ̂≤γ qn

n
}1{|Xi|≤

√
c1 logn}] exceeds near minimax rate. As

a result, we need to come up with a sharper upper bound, and hence (18) and
Lemma 1 of the main document come in very handy.
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1.2 Lemmas related to MMLE

Lemma 1. The derivative of the log-likelihood function is of the form

d

dτ
Mτ (X) =

1

τ

n∑
i=1

mτ (xi), (31)

where

mτ (x) = x2
Jα+1,a(x)− Jα+2,a(x)

Iα,a(x)
− Jα+1,a(x)

Iα,a(x)
, (32)

and Iα,a(x) and for k = 1, 2, Jα+k,a(x) are defined as follows

Iα,a(x) =

∫ 1

0

e
x2z
2 zα−1(1− z)a−

1
2

(
1

τ 2 + (1− τ 2)z

)a+α

dz (33)

and

Jα+k,a(x) =

∫ 1

0

e
x2z
2 zα+k−1(1− z)a−

1
2

(
1

τ 2 + (1− τ 2)z

)a+α

dz. (34)

Proof. Since, Xi|θi
ind∼ N (θi, 1) and θi|λi, τ

ind∼ N (0, λ2i τ
2), the marginal den-

sity of Xi given τ is of the form

ψτ (x) = K

∫ ∞

0

e
− 1

2
x2

(1+λ2τ2)

√
1 + λ2τ 2

√
2π

(λ2)−a−1L(λ2)dλ2

= K
τ 2a√
2π

∫ 1

0

e−
x2(1−z)

2 z−a−1(1− z)a−
1
2L(

1

τ 2
z

1− z
)dz,

where equality in the second line follows due to the substitution 1 − z =
(1 + λ2τ 2)−1. Next, noting that L(t) = (1 + 1

t
)−(a+α),

ψτ (x) = Kτ 2a
∫ 1

0

e−
x2(1−z)

2

√
2π

zα−1(1− z)a−
1
2 [

1

τ 2 + (1− τ 2)z
]a+αdz

= Kτ 2aIα,a(x)ϕ(x), (35)
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where ϕ(x) denotes the standard normal density. Using (35),

ψ̇τ

ψτ

=
2aτ 2a−1Iα,a(x) + τ 2aİα,a(x)

τ 2aIα,a(x)

=
2aIα,a(x) + τ İα,a(x)

τIα,a(x)
(36)

=

∫ 1

0
e

x2z
2 zα−1(1− z)a−

1
2 ( 1

N(z)
)a+α+1[2aN(z)− 2τ 2(α + a)(1− z)]dz

τIα,a(x)
,

where N(z) = τ 2+(1− τ 2)z. On the other hand, using integration by parts,

x2(Jα+1,a(x)− Jα+2,a(x)) =

∫ 1

0

x2e
x2z
2 zα(1− z)a+

1
2 (

1

N(z)
)a+αdz

=

∫ 1

0

e
x2z
2
zα−1(1− z)a−

1
2

(N(z))a+α+1
[N(z){−2α(1− z) + 2(a+

1

2
)z}+ 2z(1− z)(1− τ 2)(α + a)]dz.

As a consequence of this,

x2(Jα+1,a(x)− Jα+2,a(x))− Jα+1,a(x)

=

∫ 1

0

e
x2z
2
zα−1(1− z)a−

1
2

(N(z))a+α+1
[N(z){−2α(1− z) + 2az}+ 2(α + a)(1− z)(N(z)− τ 2)]dz.

(37)

On Simplification the r.h.s. of (37) matches with the numerator of (36) and
completes the proof.

Lemma 2. Let κτ be the solution to the equation ex
2/2

x2/2
= 1

τ
where 0 < τ < 1.

Choose any B ≥ 1. There exist functions Rτ with supx |Rτ (x)| = O(τ
1
2 ) as

τ → 0, such that, for α ≥ 1
2
,

Iα, 1
2
(x) =


(
K−1

τ
+

(
x2

2

) 1
2 ∫ x2

2

1
evv−

3
2dv

)
(1 +Rτ (x)), uniformly in |x| ≤ Bκτ ,(

x2

2

) 1
2 ∫ x2

2

1
evv−

3
2dv(1 +Rτ (x)), uniformly in |x| > Bκτ .

(38)
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Further, given ϵτ → 0, there exist functions Sτ with supx≥1/ϵτ |Sτ (x)| =

O(τ
1
2 + ϵ2τ ), such that as τ → 0,

Iα, 1
2
(x) =

ex
2/2

x2/2
(1 + Sτ (x)), (39)

where K =
Γ( 1

2
+α)√

πΓ(α)
·

Proof. We consider the cases separately when |x| ≤ Bκτ and |x| > Bκτ .
Note, as observed in van der pas et al. (2017), κτ ∼ ζτ +

2 log ζτ
ζτ

as τ → 0

where ζτ =
√

2 log( 1
τ
).

Case 1:- When |x| ≤ Bκτ , the range of the integration in Iα, 1
2
(x) is divided

into three parts, namely,

I1 =

∫ τ

0

e
x2z
2 zα−1

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz,

I2 =

∫ ( 2
x2

)∧1

τ

e
x2z
2 zα−1

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz

and

I3 =

∫ 1

( 2
x2

)∧1
e

x2z
2 zα−1

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz,

where y1 ∧ y2 denotes the minimum of y1 and y2. Next, making the substi-
tution z = uτ 2 in I1, we have

I1 = τ−1

∫ 1
τ

0

uα−1(1 + u(1− τ 2))−( 1
2
+α)e

x2τ2u
2 du. (40)

Next, define

I∗1 = τ−1

∫ 1
τ

0

uα−1(1 + u(1− τ 2))−( 1
2
+α)du.

Our target is to show that
I1−I∗1
I∗1

→ 0 as τ → 0. Now following the argument

same as that used in Lemma C.9 of van der pas et al. (2017), for |x| ≤ Bκτ ,
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the exponent in the integral tends to 1, uniformly in u ≤ 1
τ
. Since, for any

y ≥ 0, ey − 1 ≤ yey,

I1 − I∗1 = τ−1

∫ 1
τ

0

uα−1(1 + u(1− τ 2))−( 1
2
+α)[e

x2τ2u
2 − 1]du

≲ x2τe
x2τ
2

∫ 1
τ

0

u−
1
2du ≲ τ

1
2 log(

1

τ
)(1 + o(1)).

Now we want to find the asymptotic order of I∗1 Towards this, observe that,
replacing 1

1+(1−τ2)u
by 1

(1+u)(1−τ2)
provides a multiplicative error of the order

1 +O(τ 2), i.e., 1
1+(1−τ2)u

= 1
(1+u)(1−τ2)

(1 +O(τ 2)). Since,∫ ∞

0

uα−1(1 + u)−(α+ 1
2
)du =

∫ ∞

0

u−
3
2 (1 +

1

u
)−

1
2
−αdu = K−1 (41)

and ∫ ∞

1
τ

uα−1(1 + u)−(α+ 1
2
)du ≲ τ

1
2 , (42)

we have as τ → 0,

I∗1 =
K−1

τ
[1 +O(τ

1
2 )],

uniformly in |x| ≤ Bκτ . This implies

0 <
I1 − I∗1
I∗1

≲ τ
3
2 log(

1

τ
)(1 + o(1)),

and hence
I1−I∗1
I∗1

→ 0 as τ → 0. Combining all these arguments along with

(41) and (42), we obtain

I1 =
K−1

τ
[1 +O(τ

1
2 )], (43)

uniformly in |x| ≤ Bκτ . Moving towards the second integral, first, we make
a transformation x2z

2
= v and hence

I2 =

(
x2

2

) 1
2
∫ x2

2
∧1

x2τ
2

evvα−1

(
τ 2x2

2
+ (1− τ 2)v

)−( 1
2
+α)

dv.

12



Now, we bound τ2x2

2
+ (1 − τ 2)v below by (1 − τ 2)v and observe that the

upper limit of the range of integration can be bounded by 1 irrespective of
whether x2

2
≤ 1 or not. Hence, we can show that

I2 ≲ τ−
1
2

and this contributes negligibly compared to I1. Finally, for I3, again after
the same transformation

I3 =

(
x2

2

) 1
2
∫ x2

2

1

evvα−1

(
τ 2x2

2
+ (1− τ 2)v

)−( 1
2
+α)

dv.

Here observe that, the integral contributes nothing when x2

2
≤ 1, hence we

are only interested when x2

2
> 1. Next, we define

I∗3 =

(
x2

2

) 1
2
∫ x2

2

1

evv−
3
2dv.

Now our target is to show that the difference between I3 and I
∗
3 is negligible

compared to I∗3 as τ → 0. In order to prove that, first note,(
1

τ2x2

2
+ (1− τ 2)v

) 1
2
+α

≤
(
1

v

) 1
2
+α[

1 +
τ 2(v + x2)

v(1− τ 2)

] 1
2
+α

. (44)

Now, first, consider the case when α + 1
2
is a positive integer. Hence using

the Binomial theorem, we have(
1

τ2x2

2
+ (1− τ 2)v

) 1
2
+α

− v−( 1
2
+α) ≤ v−( 1

2
+α)

1
2
+α∑

j=1

(
1
2
+ α

j

)[
τ 2

(1− τ 2)

(
1 +

x2

v

)]j
Next, observing that for 1 ≤ v ≤ x2

2
, 2 ≤ x2

v
≤ x2, for |x| ≤ Bκτ , the

difference between I3 and I∗3 can be bounded as

I3 − I∗3 ≲

(
τ 2

1− τ 2

)
log

(
1

τ

)
(1 + o(1))

(
x2

2

) 1
2
∫ x2

2

1

evv−
3
2dv,

which implies

I3 − I∗3 ≲

(
τ 2

1− τ 2

)
log

(
1

τ

)
(1 + o(1))I∗3 .
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On the other hand, observe that,

I3 − I∗3 =

(
x2

2

) 1
2
∫ x2

2

1

evv−
3
2

[
(
τ 2x2

2
+ 1− τ 2)−(α+ 1

2
) − 1

]
dv

≳

[
(
τ 2ζ2τ
2

(1 + o(1)) + 1− τ 2)−(α+ 1
2
) − 1

]
I∗3 .

These two bounds ensure
I3−I∗3
I∗3

→ 0 as τ → 0 since I∗3 ∼ ex
2/2

x2/2
by Lemma C.8

of van der pas et al. (2017). Next, consider the case when α+ 1
2
is a fraction.

When α + 1
2
is a fraction, then there exists another fraction b > 0 such that

α + 1
2
+ b is a positive integer. Hence, in this case,

[
1 + τ2(v+x2)

v(1−τ2)

] 1
2
+α

≤[
1 + τ2(v+x2)

v(1−τ2)

]α+ 1
2
+b

. Now, applying exactly the same set of arguments on

α + 1
2
+ b in place of α + 1

2
, we again can show that,

I3−I∗3
I∗3

→ 0 as τ → 0.

This completes the proof for |x| ≤ Bκτ .
Case 2:- When |x| > Bκτ , choose any A ∈ (0, 1). In this case, the range of
the integration in Iα, 1

2
(x) is divided into two parts, namely,

I4 =

∫ A

0

e
x2z
2 zα−1

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz

and

I5 =

∫ 1

A

e
x2z
2 zα−1

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz.

Note that

I4 ≤ e
x2A
2

(
1

τ 2

) 1
2
+α ∫ A

0

zα−1dz

≲ τ−1−2αe
x2A
2 .

One can choose B ≥ 1 and A ∈ (0, 1) such that B2(1− A) > 2α + 3
2
, which

implies I4 ≪ τ
1
2
ex

2/2

x2/2
, and hence the contribution is negligible compared to

the second term in the expression of Iα, 1
2
(x) as given in (38). Finally, for I5,

14



we use that, for z ≥ A, 1
τ2+(1−τ2)z

= 1
z
[1 + O(τ 2)]. This implies I5 is of the

form

I5 =

∫ 1

A

z−
3
2 e

x2z
2 dz[1 +O(τ 2)]

1
2
+α. (45)

Next, note that, with the transformation x2z
2

= v,

∫ 1

A

z−
3
2 e

x2z
2 dz =

(
x2

2

) 1
2
∫ x2

2

x2A
2

evv−
3
2dv

=

(
x2

2

) 1
2
[ ∫ x2

2

1

−
∫ x2A

2

1

]
evv−

3
2dv. (46)

Now, using the first assertion of Lemma C.8 of van der pas et al. (2017), the
second integral is bounded above by a multiple of (x2/2)−1ex

2A/2, which is
negligible compared to the first (this is of the order of (x2/2)−1ex

2/2). Hence,
combining (45) and (46), we immediately have

I5 =

(
x2

2

) 1
2
∫ x2

2

1

evv−
3
2dv

[
1 +O(τ 2)

]
. (47)

Combining (43) and (47), the r.h.s. of (38) is established.
On the other hand, expanding the integral given in (38) with the help of
Lemma C.8 of van der pas et al. (2017) provides (39).

Lemma 3. There exist functions Rτ,1 with supx |Rτ,1(x)| = O(τ
1
2 ) as τ → 0,

such that for α ≥ 1
2
,

Jα+1, 1
2
(x) =

(
x2

2

)− 1
2
∫ x2

2

0

evv−
1
2dv(1 +Rτ,1(x)) ≲ (1 ∧ x−2)e

x2

2 (48)

and

Jα+1, 1
2
(x)−Jα+2, 1

2
(x) =

(
x2

2

)− 1
2
∫ x2

2

0

evv−
1
2

(
1−2v

x2

)
dv(1+Rτ,1(x)) ≲ (1∧x−4)e

x2

2 .

(49)
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Proof. Recall that Jα+1, 1
2
(x) is defined as

Jα+1, 1
2
(x) =

∫ 1

0

e
x2z
2 zα

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz. (50)

Next, we split the range of the integration into [0, τ ] and [τ, 1]. Note that,
the contribution of the first integral obtained from (50) is bounded by∫ τ

0

e
x2z
2 zα

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz ≲ e
x2τ
2 τ

1
2 . (51)

On the other hand, note that, when z ≥ τ , 1
τ2+(1−τ2)z

= 1
z
[1 +O(τ)]. There-

fore, we have∫ 1

τ

e
x2z
2 zα

(
1

τ 2 + (1− τ 2)z

) 1
2
+α

dz =

∫ 1

τ

e
x2z
2 z−

1
2dz[1 +O(τ)]

1
2
+α

≳ exp(
x2

2
τ)(1− τ

1
2 )[1 +O(τ)]. (52)

Combining (51) and (52) we see that the contribution of the first integral is
negligible compared to the second one. Hence, one has

Jα+1, 1
2
(x) =

∫ 1

τ

e
x2z
2 z−

1
2dz(1 +O(τ) +O(τ

1
2 )).

Also note that, τ = O(τ
1
2 ) as τ → 0. Observe that, (51) and (52) also imply

that, ∫ 1

τ

e
x2z
2 z−

1
2dz =

∫ 1

0

e
x2z
2 z−

1
2dz[1 +O(τ

1
2 )] → 0 as τ → 0.

As a result,

Jα+1, 1
2
(x) =

∫ 1

0

e
x2z
2 z−

1
2dz(1 +O(τ

1
2 )).

The equality in (48) follows due to the change of variable x2z
2

= v. The
second assertion in (48) is due to exactly the same set of arguments used in
Lemma C.10 of van der pas et al. (2017).
Proof of (49) follows using a similar set of arguments.
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Lemma 4. The function x 7→ mτ (x) is symmetric about 0 and non-decreasing
in [0,∞) with
(i)− 2α ≤ mτ (x) ≤ 2a, for all x ∈ R and τ ∈ (0, 1).
(ii)|mτ (x)| ≲ τex

2/2(x−2 ∧ 1), as τ → 0, for every x.

Proof. The symmetric behavior follows from the definition of mτ (x) as given
in (31).
For monotonicity, using (36) of Lemma 1, it readily follows that

mτ (x) = 2a+ τ
İα,a(x)
Iα,a(x)

= 2a− 2τ 2(a+ α)

∫ 1

0
e

x2z
2 zα−1(1− z)a+

1
2 ( 1

N(z
)a+α+1dz∫ 1

0
e

x2z
2 zα−1(1− z)a−

1
2 ( 1

N(z
)a+αdz

(53)

= 2a+ 2τ 2(a+ α)

∫ 1

0
e

x2z
2 ( z−1

τ2+(1−τ2)z
)zα−1(1− z)a−

1
2 ( 1

N(z
)a+αdz∫ 1

0
zα−1e

x2z
2 (1− z)a−

1
2 ( 1

N(z
)a+αdz

= 2a+ 2τ 2(a+ α)

∫ 1

0

(
z − 1

τ 2 + (1− τ 2)z

)
gx(z)dz,

where z 7→ gx(z) is a probability density function on [0, 1] with gx(z) ∝
zα−1e

x2z
2 (1 − z)a−

1
2

(
1

N(z)

)a+α
. Next, following the same set of arguments as

used in Lemma C.7 of van der pas et al. (2017), the proof of monotonicity of
mτ (x) follows. We now prove statements (i) and (ii) of the lemma.
(i) The upper bound is obvious by using (53). For the lower bound, note
that

τ
İα,a(x)
Iα,a(x)

= −2(α + a)

∫ 1

0

(
(1− z)τ 2

τ 2 + (1− τ 2)z

)
gx(z)dz.

Since, for any 0 ≤ z ≤ 1, τ 2+(1−τ 2)z ≥ τ 2 implies (1−z)τ2

τ2+(1−τ2)z
≤ 1, the lower

bound follows from it.
(ii) Using the definition of mτ (x) as given in (31) followed by the triangle
inequality, an upper bound on |mτ (x)| is obtained as

|mτ (x)| ≤ x2
|Jα+1,a(x)− Jα+2,a(x)|

Iα,a(x)
+

|Jα+1,a(x)|
Iα,a(x)

.

The assertion is proved by using (48) and (49) of Lemma 3, (38) of Lemma

2 and finally noting that ex
2/2

x2/2
≥ 1

τ
for |x| ≥ Bκτ for B ≥ 1 as τ → 0.
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As an immediate consequence of Lemma 4, we have the following corol-
lary.

Corollary 1. Let X ∼ N (θ, 1). Then, as τ → 0,

Eθm
2
τ (X) =

{
O(τζ−2

τ ), |θ| ≲ ζ−1
τ ,

O(τ
1
16 ζ−2

τ ), |θ| ≤ ζτ
4
.

Proof. Noting that the upper bound of the absolute value of mτ (x) as ob-
tained in (ii) of Lemma 4 matches that of (vii) of Lemma C.7 of van der pas
et al. (2017), the proof is immediate using the same set of arguments used
in Lemma C.5 of van der pas et al. (2017).

Lemma 5. Let X ∼ N (θ, 1). For |θ| ≲ ζ−1
τ , and τ ≤ τ1 < τ2 and τ2 → 0,

Eθ

(
ζτ1
τ1
mτ1(X)− ζτ2

τ2
mτ2(X)

)2

≲ (τ2 − τ1)
2τ−3

1 . (54)

Further, for |θ| ≤ ζτ
4
, and ϵ = 1

16
, and τ ≤ τ1 < τ2 and τ2 → 0,

Eθ

(
ζτ1
τ ϵ1
mτ1(X)− ζτ2

τ ϵ2
mτ2(X)

)2

≲ (τ2 − τ1)
2τ−2−ϵ

1 . (55)

Proof. Using Lemma C.11 of van der pas et al. (2017) with Vτ = ζτ
τ
mτ (X),

the l.h.s. of (54) can be upper bounded as

Eθ

(
ζτ1
τ1
mτ1(X)− ζτ2

τ2
mτ2(X)

)2

≤ (τ2 − τ1)
2 sup
τ∈[τ1,τ2]

Eθ

(
ζτ
τ
ṁτ (X)− ζτ + ζ−1

τ

τ 2
mτ (X)

)2

≤ 2(τ2 − τ1)
2

[
sup

τ∈[τ1,τ2]
Eθ

(
ζτ
τ
ṁτ (X)

)2

+ sup
τ∈[τ1,τ2]

Eθ

(
ζτ + ζ−1

τ

τ 2
mτ (X)

)2]
.

(56)

Note that, with the help of the first part of Corollary 1, the second term in
the r.h.s. of (56) is bounded above by a constant times supτ∈[τ1,τ2] τ

−3 ≲ τ−3
1 .

Hence, in order to show that (54) holds, it is enough to show that the first
term in the r.h.s. of (54) is bounded above by a constant times τ−3

1 .
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For the first term, observe that using (32) with a = 1
2
,

ṁτ (x) =
Iα, 1

2
(x)[(x2 − 1)J̇α+1, 1

2
(x)− x2J̇α+2, 1

2
(x)]− İα, 1

2
(x)mτ (x)Iα, 1

2
(x)

(Iα, 1
2
(x))2

= (x2 − 1)
J̇α+1, 1

2
(x)

Iα, 1
2
(x)

− x2
J̇α+2, 1

2
(x)

Iα, 1
2
(x)

−
İα, 1

2
(x)

Iα, 1
2
(x)

mτ (x). (57)

Now, note that, using the definition of Jα+1, 1
2
(x), J̇α+1, 1

2
(x) = 2τ(α+1

2
)(Hα+2, 1

2
(x)−

Hα+1, 1
2
(x)) and J̇α+2, 1

2
(x) = 2τ(α+1

2
)(Hα+3, 1

2
(x)−Hα+2, 1

2
(x)) whereHα+k, 1

2
(x) =∫ 1

0
e

x2z
2 zα+k−1(1 − z)a−

1
2

(
1

τ2+(1−τ2)z

)α+ 3
2

dz. Next, note that, Hα+k, 1
2
(x) is a

decreasing function of k. Also, observe that, Hα+1, 1
2
(x) ≤ Iα, 1

2
(x). Finally,

for the third term in the r.h.s. of (57), the definition of Iα, 1
2
(x) implies

−
İα, 1

2
(x)

Iα, 1
2
(x)

≤ 2τ(α +
1

2
).
1

τ 2
.

Combining all these arguments provides an upper bound for the r.h.s. of
(57) as

ṁτ (x) ≤ 2τ(α +
1

2
)[1 + x2 +

1

τ 2
mτ (x)].

As a consequence of this,

Eθṁ
2
τ (X) ≲ τ 2[1 + EθX

4 +
1

τ 4
Eθm

2
τ (X)]. (58)

Note that, in this case, EθX
4 is bounded by a constant and from the first part

of Corollary 1, Eθm
2
τ (X) is bounded by τζ−2

τ . This shows that ( ζτ
τ
)2Eθṁ

2
τ (X)

is bounded above by a multiple of τ−3 and (54) is established.
For proving (55), we again use Lemma C.11 of van der pas et al. (2017), but
with Vτ = ζτ

τϵ
mτ (X). As a result, we have

Eθ

(
ζτ1
τ ϵ1
mτ1(X)− ζτ2

τ ϵ2
mτ2(X)

)2

≤ 2(τ2 − τ1)
2

[
sup

τ∈[τ1,τ2]
Eθ

(
ζτ
τ ϵ
ṁτ (X)

)2

+ sup
τ∈[τ1,τ2]

Eθ

(
ϵζτ + ζ−1

τ

τ 1+ϵ
mτ (X)

)2]
.
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Using the second part of Corollary 1, the second term in the r.h.s. of the
above inequality is bounded above by a constant times τ−2−ϵ. Next, we follow
the same steps as before and obtain an expression same as (58). In this case,
EθX

4 is bounded by ζ4τ and from second part of Corollary 1, Eθm
2
τ (X) is

bounded by τ ϵζ−2
τ . This implies that ( ζτ

τ1+ϵ )
2Eθṁ

2
τ (X) is bounded above by

a multiple of τ−2−ϵ completing the proof of (55).

Next, we provide a corollary which becomes very important to study the
relationship between mτ (Xi) and its expectation for zero means.

Corollary 2. If the cardinality of I0 := {i : θ0,i = 0} tends to infinity, then

sup
1
n
≤τ≤ 1

logn

1

|I0|
|
∑
i∈I0

mτ (Xi)−
∑
i∈I0

Eθ0mτ (Xi)|
Pθ0−−→ 0.

Proof. The proof of this result follows using a similar set of arguments to
those of Lemma C.6 of van der pas et al. (2017) with some modifications.
The main difference lies in calculating the entropy of the process Gn(τ) =
|I0|−1

∑
i∈I0 mτ (Xi). Here, instead of covering the interval [ 1

n
, 1] as given

in Lemma C.6 of van der pas et al. (2017), we need to cover the interval

[ 1
n
, 1
logn

]. We use dyadic rationals [2
i

n
, 2

i+1

n
] to cover this interval with i =

0, 1, 2, · · · , [log2( n
logn

)]. Next, we follow steps similar to Lemma C.6 of van

der pas et al. (2017) along with Lemma 5.

Lemma 6. Let X ∼ N (θ, 1). Then as τ → 0

Eθmτ (X) =

{
− 2

K−1
√
2π

τ
ζτ
(1 + o(1)), |θ| = o(ζ−2

τ ),

o(τ
1
16 ζ−1

τ ), |θ| ≤ ζτ
4
.

Proof. For proving the first assertion, following the steps of Proposition C.2
of van der pas et al. (2017), we can show that both

∫
|x|≥κτ

mτ (x)ϕ(x−θ)dx =

o( τ
ζτ
) and∫

ζτ≤|x|≤κτ
mτ (x)ϕ(x − θ)dx = o( τ

ζτ
),where κτ ∼ ζτ +

2 log ζτ
ζτ

as τ → 0, where

κτ is defined in Lemma 2. The remaining argument also follows using similar
sets of arguments used in Proposition C.2 of van der pas et al. (2017) along
with some algebraic manipulations. However, for the sake of completeness,
we present all the steps.
Note that, from (38) of Lemma 2, when x2

2
≤ 1, Iα, 1

2
(x) = K−1

τ
[1 + O(

√
τ)].
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On the other hand, since, e
x2

2

x2 is increasing for large values of x and attains

the value τ
ζ2τ

at x = ζτ , by (38) of Lemma 2, Iα, 1
2
(x) = K−1

τ
[1 + O( 1

ζ2τ
)],

when 1 ≤ x2

2
≤ log( 1

τ
). Combining these two facts, we get that, Iα, 1

2
(x) =

K−1

τ
[1 +O( 1

ζ2τ
)], uniformly in x ∈ (0, ζτ ). Hence,∫

|x|≤ζτ

mτ (x)ϕ(x− θ)dx =

∫ ζτ

0

x2(Jα+1, 1
2
(x)− Jα+2, 1

2
(x))− Jα+1, 1

2
(x)

K−1

τ

ϕ(x)dx+Rτ ,

(59)

where the absolute value of Rτ is bounded by
∫ ζτ
0

|x2(Jα+1, 1
2
(x)−Jα+2, 1

2
(x))−

Jα+1, 1
2
(x)|ϕ(x)dx times sup|x|≤ζτ |

ϕ(x−θ)
I
α, 12

(x)ϕ(x)
− K

τ−1 |. By using Lemma 3, the

integrand is bounded above by a constant for x near 0 and by a multiple of
x−2 otherwise, which makes the integral to be bounded. Next, observe that,

sup
|x|≤ζτ

| ϕ(x− θ)

Iα, 1
2
(x)ϕ(x)

− K

τ−1
| = sup

|x|≤ζτ

τK

Iα, 1
2
(x)

|τ−1K−1(exθ−
θ2

2 )− Iα, 1
2
(x)|

= sup
|x|≤ζτ

τK| exθ−
θ2

2

1 +O( 1
ζ2τ
)
− 1| ≲ τ [

1

ζ2τ
+ eζτ θ−

θ2

2 − 1].

Observe that, for |θ| = o(ζ−2
τ ), ζτ |θ|− θ2

2
= o(ζ−1

τ ) and using the fact ey−1 ∼ y
as y → 0, we have

sup
|x|≤ζτ

| ϕ(x− θ)

Iα, 1
2
(x)ϕ(x)

− K

τ−1
| ≲ τ [

1

ζ2τ
+ o(ζ−1

τ )] = o(
τ

ζτ
).

These two arguments show that Rτ is negligible compared to τ
ζτ
.

Next, using Fubini’s Theorem, the integral in (59) can be rewritten as∫ ζτ

0

x2(Jα+1, 1
2
(x)− Jα+2, 1

2
(x))− Jα+1, 1

2
(x)

K−1

τ

ϕ(x)dx

= Kτ

∫ 1

0

∫ ζτ

0

zα
(

1

N(z)

) 1
2
+α

e
x2z
2 [x2(1− z)− 1]

e−
x2

2

√
2π
dx dz (60)

= Kτ

∫ 1

0

zα
(

1

N(z)

) 1
2
+α ∫ ζτ

0

[x2(1− z)− 1]
e−

x2(1−z)
2

√
2π

dx dz.
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Note that the inner integral becomes zero if the range of integration is (0,∞)
instead of (0, ζτ ). Hence, we have∫ ζτ

0

x2(Jα+1, 1
2
(x)− Jα+2, 1

2
(x))− Jα+1, 1

2
(x)

K−1

τ

ϕ(x)dx

= −Kτ
∫ 1

0

zα
(

1

N(z)

) 1
2
+α ∫ ∞

ζτ

[x2(1− z)− 1]
e−

x2(1−z)
2

√
2π

dx dz

= −Kτ
∫ 1

0

zα
(

1

N(z)

) 1
2
+α

ζτ√
2π
e−

ζ2τ (1−z)

2 dz.

In the last line above, we use the fact
∫∞
y
[(vb)2 − 1]ϕ(vb)dv = yϕ(yb). Next,

similar to Proposition C.2 of van der pas et al. (2017), we split the range of
integration in (0, 1

2
] and (1

2
, 1). When 0 ≤ z ≤ 1

2
, the absolute value of the

integral is bounded above by

Kτ

∫ 1
2

0

zα
(

1

N(z)

) 1
2
+α

ζτ√
2π
e−

ζ2τ (1−z)

2 dz ≲ K
e−

ζ2τ
4 τζτ√

2π(1− τ 2)
1
2
+α

∫ 1
2

0

z−
1
2dz

= O(e−
ζ2τ
4 τζτ ) = o(

τ

ζτ
).

On the other hand, when 1
2
≤ z ≤ 1, we again use, 1

τ2+(1−τ2)z
= 1

z
[1+O(τ 2)].

This implies

−Kτ

∫ 1

1
2

zα
(

1

N(z)

) 1
2
+α

ζτ√
2π
e−

ζ2τ (1−z)

2 dz

= −Kτζτ√
2π

∫ 1

1
2

z−
1
2 e−

ζ2τ (1−z)

2 dz[1 +O(τ 2)]

= − K√
2π

τ

ζτ

∫ ζ2τ
2

0

e−
u
2

1

(1− u
ζ2τ
)
1
2

du[1 +O(τ 2)],

where the equality is due to the substitution ζ2τ (1−z) = u. Finally, following
the same argument as used in Proposition C.2 of van der pas et al. (2017), the
integral tends to

∫∞
0
e−

u
2 du = 2, completing the proof of the first assertion.

For proving the second statement, we follow the steps mentioned in Propo-
sition C.2 of van der pas et al. (2017).
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2 Derivation of the posterior distribution of

κi given Xi and τ

Recall that, the hierarchical formulation is given as

Xi|θi
ind∼ N (θi, 1)

θi|κi
ind∼ N (0,

1− κi
κi

), (61)

where κi = 1/(1+ λ2i τ
2). Due to the change of variable, prior distribution of

κi given τ is of the form,

π(κi|τ) ∝ κa−1
i (1− κi)

−a−1L(
1

τ 2
(
1

κi
− 1)). (62)

Hence, combining (61), (62) and using Bayes theorem, the joint posterior
distribution of (θi, κi) given Xi and τ is obtained as

π(θi, κi|Xi, τ) ∝ (
1− κi
κi

)−
1
2 exp[− κiθ

2
i

2(1− κi)
− (θi −Xi)

2

2
]κa−1

i (1− κi)
−a−1L(

1

τ 2
(
1

κi
− 1))

∝ κ
a− 1

2
i (1− κi)

−a− 3
2L(

1

τ 2
(
1

κi
− 1)) exp[− θ2i

2(1− κi)
+ θiXi].

(63)

Integrating out θi, from (63) the posterior distribution of κi is given by

π(κi|Xi, τ) ∝ κ
a− 1

2
i (1− κi)

−a− 3
2L(

1

τ 2
(
1

κi
− 1))

∫ ∞

−∞
exp[− θ2i

2(1− κi)
+ θiXi]dθi

∝ κ
a− 1

2
i (1− κi)

−a− 3
2L(

1

τ 2
(
1

κi
− 1))(1− κi)

1
2 exp

(1− κi)X
2
i

2

= κ
a− 1

2
i (1− κi)

−a−1L(
1

τ 2
(
1

κi
− 1)) exp

(1− κi)X
2
i

2
.
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