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This document consists of two sections. In Section 1, we provide proofs
of Theorem 1 and some auxiliary Lemmas related to MMLE provided in
Section 2 of our main work. Section 2 provides the derivation of the posterior
distribution of k; given X; and 7. But before going into the technical details,
let us restate the general class of one-group global-local priors that we are
interested in this work:

Oulhi, 7 P N0, A272), A2 (A2), 7~ (7)), (1.1)
where the local shrinkage parameter \; is modeled as,
m(A7) = K(A?) " T'L(A)), (1.2)

where K € (0,00) is the constant of proportionality, a is a positive real
number, and L : (0,00) — (0, 00) is measurable non-constant slowly varying
function, i.e., for any a > 0, LIf(Of)) — 1 as * — oo. For the theoretical
development of the paper, we consider slowly varying functions that satisfy

Assumptionl ((A1l) and (A2)) discussed in Section 2 of the main paper.




1 Proofs

1.1 Results related to the contraction rate of Empirical
Bayes Procedure—plug-in Estimator

Proof of Theorem 1. For proving Theorem 1, first we need to show that, the
total posterior variance using the empirical Bayes estimator of 7 correspond-
ing to this class of priors satisfies, as n — oo,

sup Eg, > Var(6i]X.,7) S gulogn, (2)

60€lo[qn] i=1

where Var(6;|X;,7) denotes Var(0;|X;,7) evaluated at 7 = 7. We make
use of Markov’s inequality along with (2) and Theorem 2 of Ghosh and
Chakrabarti (2017).

Now we move towards establishing (2). Let us define G, = > 1{a,-0}-
Thus, ¢, < ¢,. We then note

Eq, ZV@T(Qi]Xi,?) = Z Eg,,Var(0;|X;, 7) + Z Eo,,Var(0;| X;,7T) .
i=1 3:600; 70 1:00;,=0
(3)

We now prove that Zi:eoﬁéo Eg,,Var(0;|X;,7) < ¢, logn and Zi:eOiZO Eg,, Var(0;] X;,7) <
gn logn in Step-1 and Step-2 below respectively. Combining these results
we get the final result. Now let us prove Step-1 and Step-2.

Proof of Step-1: Fix any ¢ > 1 and choose p > c. Define r, = \/m.

Fix any ¢ such that 6y; # 0. We split Eg,,Var(0;|X;,7) as

Eq,, Var(0;| X;, 7) = Eg,, [V ar(0;| X, ) Li1x,j<rad) B0, [V ar (05 Xs, T) L xi 5} -

Since for any fixed z; € R and 7 > 0, Var(0;|z;,7) <1+ 2. W
EQOi[Var(HAXi,?)1{|Xi|§\/m}] < 1+ 4ap*logn . (5)

Note that, for any fixed x; € R, 2? E(k?|z;, 7) = xfE(m\xz,T) is non-
increasing in 7. Also using Lemma A.1 in Ghosh and Chakrabarti (2017),
Var(0;|z;,7) <1+ 22E(k?|z;, 7). Using these two results,

].

1
Var(0;|x;,7) <1+ :L‘?E(Iiﬂ:)ﬁz, T)<1+ l‘?E(Iiﬂl’“ —) [Since T >
n

S|



Using arguments similar to Lemma 3 of Ghosh and Chakrabarti (2017), one
can show that for any fixed n € (0,1) and ¢ € (0,1), the r.h.s. above can be
bounded by a non-negative and measurable real-valued function B(az‘l, T,1,0)
satisfying h(x;, 7,1,0) = 1 + hy(xi, 7) + ho(x;, 7,1, 0) with

22

-1

fu(xi, 7) = Chs {x? /Hto eXp(—g)uH%*ldu ,
0

where C\, is a global constant independent of both x; and 7 and

~ H(a n 5) . n(1=8)a?
2 ) ' 2a —*
hQ(xia 7,1, 6) = Z; A(T2,77, 5)7- € )

_ 3
g0 Vo
T n

_ —(a+4)”
(a+ D) L(H (-1 2

Since, hy(x;, 7) is strictly decreasing in |z;| for any fixed 7, one has,

_ (a+3)(1—nd)° 2 _
where H(a,n,5) = W and A(T ,7’]75) =

4ap2 logn —1
. 1 B u 1
s ule 1) < Cufptlogn [ epl- Rt 5
|zi|>~/4ap? logn n 0 ogn
Also noting that ﬁg(aci, T,1,0) is strictly decreasing in |z;| > C) = n(12—5)’

for any p > (1,

7 1 H (5 9% 2/)2_1
Sup h2($i,ﬁ,77,5) §4ap2%10gn-n <Cﬁ1 ),

|z;|>~/4ap? logn

Using the definition of the slowly varying function L(-) and assumption (A1)
in the right-hand side of above, we have,

~ 1
sup ho(zi, —,m,0) = o(1)asn — oc.
|zi|>/4ap? logn n
Therefore, we have,
- 1 - 1 = 1

n n
|zi|>~/4ap? logn |zi|>~/4ap? logn |z;|>~/4ap? logn

sup h(-’ﬂz‘y—ﬂ?»é) < 1+ sup h1($17_)+ sSup hZ(xia_anaé) 5 L
n



Using above arguments, as n — oo,

EGOi[VGT(9¢|Xi,?)1{|Xi|>\/m}] <1. (6)
Combining (4),(5) and (6), we obtain
Eo,, Var(0;|X;, 7) Slogn . (7)

Noting that < relation proved here actually holds uniformly in i’s such that
fo; # 0, in that the corresponding constants in the upper bounds can be
chosen to be the same for each i, we have

Z Eg,, Var(0;|X;, 7) < Gnlogn . (8)
1:00;7#0

Proof of Step-2: Fix any ¢ such that #p; = 0. Define v,, = \/¢; logn, where

¢1 is defined in (5) of the main document.

Case-1 First we consider the case when a € [3,1). Again, we split Eg,, Var(6;|X;,7)
as

E90¢VQT<91|X® /7:> = Ky, [Var(ei‘Xﬁ ?)1{|Xi|>vn}]+E90i [Var<9i’Xi7 7/:>1{|Xi|Svn}] )

(9)
Using Var(0;|z;,7) < 14 27 and the identity 22¢(z) = ¢(z) — L[z¢(z)], we
obtain,

Boo, [Var(0:] X, T) Ljx >0,y < 2/ (1+2%)(x)de S \/logn -n~7 .
VerTogn

(10)
Now let us choose some 7 > 1 such that coy —1 > 1. Next, we decompose
the second term as follows:

E90i [V&T(9i|Xi, ?)1{|Xz‘|§0n}] = ]Eeoi [VCLT(Qi‘Xi, 7/:>1{?>7q7"}1{\xi\§vn}]+
Eem [Var(gith ?)1{?§7%}1{|Xi|§vn}] . (11>
Note that

A ~ Qn
]E90i [Var(‘gip(i’ 7)1{?>7%}1{\X1‘\§vn}] < (1 +a log n)PGO [T > 7%7 |Xl| < Un]

1 < ny < n
< (1 + 1 IOgn)}P’go[CQ—n Z 1{|Xj|>\/m} > ’yg] S g lOgTL . (12)
J=1GA)



Inequality in the last line is due to employing similar arguments used for
proving Lemma A.7 in van der pas et al. (2014).

We will now bound Eg,, [V ar(0;| X, 7)1z<, 114 x, 1< verTogny]- Since for any
fixed ; € R and 7 > 0, Var(0;|x;,7) < E(1 — K|z, 7) + J(x;, 7) where
J(x;,7) = 2?E[(1 — K;)?|x;, 7). Since E(1 — k;|z;,7) is non-decreasing in T,
so, BE(1 — ki|z;,7) < E(1 — K|z, %) whenever 7 < v2*. Using Lemma 2

and A.2 of Ghosh and Chakrabarti (2017),

AN Qn a
Boo, [Var (0:1X: D)1y Ly svaromm] S G0 |

= (%")2“\/01 logn . (13)

Note that all these preceding arguments hold uniformly in ¢ such that 6y; = 0.
Combining all these results, for a € [1,1) using (9)-(13), we have,

> B, Var(6:)X:,7) S (n — Ga)[\/logn-n™ 7 + I ogn + (2220 /log ]
n n

’L’ZGO,L':O

Vel logn 2 2
eze 2dx

< qologn. (14)

The second inequality follows due to the fact that g, < ¢, and ¢, = o(n) as
n — oo.
Case-2 Now we assume a > 1 and split Eq,Var(0;|X;,7) as

Ego, Var(0;| X, 7) = Eq,, [V ar(6;|X;,7) 1{|Xi|>vn}]+E90i [Var(0:] X, ?)1{|X'ngvn}]7

(15)
where v, is the same as defined in Case-1. Using exactly the same arguments
used for the case a € [%, 1), we have the following for a > 1,

Ego, [Var(0:]1 X, P) x5 verogmy) S Viegn-n™ 2 . (16)
and q
Egm [Var(&i]Xi,?)1{?>7q7n}1{|xi|gm}] S En logn. (17)

For the part Eqy, [V ar(0;| Xi, 7)1 z<y a1 x,|< /erogny |- note that for fixed x; €
R and any 7 > 0,

Var(0|x;, 7) < E(1 — kil|zi, 7) + 22 E[(1 — K4)?| 20, 7]
E(l — ki|lzg, 7) + 22 E(1 — k|2, 7)
E

(1 = Ailas, )Ly <1y + 207 B(L = w52y, 7). (18)

IA N CIA



Since for fixed z; € R and any 7 > 0, E(1 — k;|z;, 7) is non-decreasing in
T, we have,

Eew [Var<0"Xi7?)1{?<"/L” 1{|Xi|§\/c1 logn}] < E90¢ [E(l - Kz’X1>7 )1{|X |<1}]‘|‘
2E90i [X;E(l - Hlle? 7 )1{|X |<Ver logn}] (19>

For bounding the first term in the r.h.s. of (19), we use Lemma 1. We
note that for any 7 € (0,1), 1+t7-2 . \/Wt o=l < 7¢=(+3) and that L(t) is
bounded. Using the fact that the second term in the upper bound in Lemma
1 can be bounded

2M
Ay < ——=Te?
(2a —1)

T

where A, has been defined in the proof of Lemma 1 of the main document.
So, we have

T q
Eg,, [E(1 /‘iz’Xw”Y )1{|X <) S —/ e Tdr+ 2.
n Jo n

Hence,
an
B, [E(1 f<01,|X177 )1{\X <] S (20)

For the second term in the r.h.s. of (19) we shall use the upper bound of
E(1 — Ki|z;, 7) of the form (7) of the main article and hence,

e T ¢(x)dx

; G [V
Eeoi [Xz E(l - ’%Z|X277 )1{|X |<m}] /

n Jo

by %)?

Vecilogn q_) 1 ﬁ.
) . tiailL e 2 1+ I)2 :[;2 x)dtdx .
/ / L+t(v3)? 1T+t %) " "
(21)

Note that the first integral is bounded by a constant. Using Fubini’s theorem

and the transformation y = ﬁ, the second integral becomes

cqlogn

_ qn 1+t(,YQn)2 2 _ﬁ
t1L(t) e 2dy |dt.
\/271'/ </ )




We handle the above integral separately for a = 1 and a > 1. For a > 1,
using the boundedness of L(t) it is easy to show that,

cqlogn

_ Qn 1t(y )2 2 _y? ) qn
t=LL(t) / e~ zdy |dt < 2. 22
— / ( )™ (@)

For a = 1 note that,

cqlogn

—_

/ i 1L Qn </ 1+¢(v )2 e_yjdy) dt
1
__cplogn
n (iny2onE 1 e [ L(t
< (yvar [Pt Lumde (Vatognra e [
n ) s T )
(v42)2(2m)3
(23)
Here the division in the range of ¢ in (23) occurs due to the fact the integral
cqlogn
I e dy) can be bounded b clon ) when ¢ > —2n_ ang
(Jo T dy) can be bounde v (5 )2)2wen Wan
by V21 when t < % For the first term in (23) with the boundedness
v ) (2
of L(t),
(,yq_n)Q\/(—y‘;’ﬂl;;er:ré lL( )dt < ( Qn) MlOg( Cl lOgn >
noh t n (y%2)2(2m)5

Hence for sufficiently large n with ¢, o< n®,0 < 8 < 1,

cylogn

o Tamao 11 n
(WQ_)2/<”)2<2¢>3 ZL(t)dt < %\/logn. (24)

n 1
Now for the second term in (23) again using the boundedness of L(t),

Vel oLy [© L ——sa s @)

e (t0%)7):

(’Yqﬁn)Z(Qﬂ)%
So, using (23)-(25), for a = 1,

cqlogn

t(r4m)2 42 n
/ t (1) qn </ e 26_2dy) dt S q—\/logn . (26)
. n

7

o

dt .



With the help of (22) and (26), we have, for a > 1

cqlogn

t,yqin2 2 n
/ t1L(t) qn </ e y26y2dy)dt,§ q—\/logn. (27)
. n

Combining these facts, we finally have

In
Eg,, [X2E(1 — /@]ley )1{|X <verTogn)) S \/logn (28)

Note that all these preceding arguments hold uniformly in ¢ such that 6y; = 0.
Combining all these results, for a > 1, using (15)-(28), we have,

Z Eo,, Var(0;|X;,7) < (n — Gn)[v/1ogn - n~d I -logn + q—n\/logn]
n n

1:00;,=0

< qnlogn . (29)

Using (14) and (29), for a > 3, we have,

> Eo, Var(0;|X;,7) < gulogn. (30)

7:00;=0

Now using (3), (8) and (30), for sufficiently large n,

EOO Z VCLT‘(@AXZ', ?) S dn logn .

=1

Finally, taking supremum over all 8y € ly[g,], the result is obtained.
O

Remark 1. Note that, we have used different bounds on Var(0;|X;,T) for
two different ranges of a. When a € [%, 1), we have used the upper bound
of J(X;,7) provided by Ghosh and Chakrabarti (2017). However using the
same arguments when a > 1 yields an upper bound on Var(6;|X;, ) such
that B, [Var(0;]X;, T)Lp<yany 1 x,|<\/erTogny) €Tceeds near minimaz rate. As
a result, we need to come up with a sharper upper bound, and hence (18) and

Lemma 1 of the main document come in very handy.



1.2 Lemmas related to MMLE

Lemma 1. The derivative of the log-likelihood function is of the form

%MT(X) = %ZmT(xi), (31)

where

mT(l‘) — 72 Ja+1,a($[i7a_(;)a+2,a($) _ J;;:?a(j)’ (32)

and 1o o(x) and for k =1,2, Jorra(x) are defined as follows

122

Loa(z) = /0 a1 —z)“_2(7_2 - (11_ 72)Z>a+adz (33)

and

1 22 hl . 1 ata
Jatk,a(T) _/0 ez (1—2)2 <7_2 gy TQ)Z) dz. (34)

ind ind

Proof. Since, X;|0; ~ N (0;,1) and ;| \;, 7 ~ N(0,\?7%), the marginal den-
sity of X; given 7 is of the form

xQ
5[ e T A) = 1L (A2)dN2
B A N

T2 b 20y 1 1 =z
=K ——g el _er (= d
V2r Jo ‘ =2 <7'2 1-— z) =

where equality in the second line follows due to the substitution 1 — z =
(14 X272)71. Next, noting that L(t) = (14 1)~(a+e),

1e_x2(12_z) 1
_ 2a a—1 _ a—% ata
ol = Kt [t = 2 s
= KTQ“Ia,a(xW(x), (35)



where ¢(x) denotes the standard normal density. Using (35),

¢T B 2a7? 7, () + Tzal'aﬂa(x)

¥r TQaIaia<x>
_ QaIa,aSZ j(;)la,a(:c) (36)
fo erzzz (1 - Z>a_%(ﬁ)a+a+l[2a~]\[(2) - 272(0‘ +a)(l—z)ldz

71 4(2) ’

where N(z) = 72+ (1 —72)z. On the other hand, using integration by parts,

1 32'22 1 1
2 _ = 277 2%(1 — 2)%T2 (——)*te
P anale) = Tasna@)) = [ (1= 2 (s

e a1 2) 4 20t D)} 4 2501 — 2)(1 = )+ @)z
_/0 (N (z))etot! [N(2){—2a(1 )+ 2( +2) }+22(1 )(1 )+ a)dz.

As a consequence of this,

( a+1a( ) a+2a( ))_Ja+1,a(x>
2, 2@ 1(1—2)“’%

:AE (N )yt

[N(2){—2a(1 — 2) + 2az} + 2(a + a)(1 — 2)(N(z) — 7%)]d=.
(37)

On Simplification the r.h.s. of (37) matches with the numerator of (36) and
completes the proof. O

2
Lemma 2. Let k., be the solution to the equation 2//22 = % where 0 < 7 < 1.

Choose any B > 1. There exist functions R, with sup, |R-(z)] = O(72) as
T — 0, such that, for a > %

S
_l’_

1 2
(%2> ;¥ ev=2dv) (1 + R (x)), uniformly in |x| < Br,,

1
(%) 1% o bdott + Reto), uniformly in ] > B
(38)

10



Further, given e, — 0, there exist functions S; with sup,sy,., |S-(7)| =
O(r2 + €2), such that as T — 0,

xz2/2
e
Lo () = 751+ 5:(2)). (39
_ TGta)
where K = \/fr(a)
Proof. We consider the cases separately when |z| < Bk, and |z| > Bk,.
Note, as observed in van der pas et al. (2017), k., ~ (; + 212.—547 as T — 0

where ¢; = 1/2log(2).
Case 1:- When |z| < Bk,, the range of the integration in 1,1 (x) is divided
into three parts, namely,

and

1 2. ) 1 1ta
[ = eTZai ClZ,
’ /22)/\1 <7'2 +(1 - 7'2)2)

where y; A yo denotes the minimum of y; and ys. Next, making the substi-
tution z = ur? in I;, we have

1
; :027‘2u
L=7" / u (14 u(l — 7))@t T gy, (40)
0
Next, define
1
I = 7'_1/ w1+ u(l — 72))_(%+a)du.
0
Our target is to show that 11[;11 — 0 as 7 — 0. Now following the argument

same as that used in Lemma C.9 of van der pas et al. (2017), for |z| < Bk,

11



the exponent in the integral tends to 1, uniformly in v < % Since, for any
y20,€y—1§y€y’

il

11_1527—1/ w1 4 u(l — 72) G Z5 gy
0

T

1
127' T 1
< alre’? / w2du < 72 log(=)(1 + o(1)).
0

Now we want to find the asymptotic order of I; Towards this, observe that,
replacing 7 +(1£T2)u by a +u)%142) provides a multiplicative error of the order

1+ O(7?), i.e. (1+ O(7%)). Since,

_ 1

P 1+(1-72)u T (14w)(1-72)
o0 o0 1

/ w1+ u) @) gy = / w14+ 2% =K (41)
0 0 u

and -
a—1 —(a+13) < -3
u (1 4+ u) Ydu S T2, (42)
1

we have as 7 — 0,
-1

K
If = =——[1+0(r3)],
uniformly in |z| < Bk,. This implies

LI
Iy

< rHlog(L)(1 + o(1),

T

0<

and hence h[_ﬁ — 0 as 7 — 0. Combining all these arguments along with

(41) and (42): we obtain

-1

L=2"[ 400, (43)

-
uniformly in |z| < Bk,. Moving towards the second integral, first, we make

. 2
a transformation % = v and hence

2

22\? [*
]2:(7) EN
2

—(3+a)

+(1— 7'2)2}) dv.

vl
s\
|
>
=
o
<
e
Q
N
VR
\1
no
8
no

12



Now, we bound Z2° + (1 — 72)v below by (1 — 7%)v and observe that the

upper limit of the range of integration can be bounded by 1 irrespective of
2

whether ‘% < 1 or not. Hence, we can show that

NI

1257'7

and this contributes negligibly compared to I;. Finally, for I3, again after
the same transformation

N 2.2 —(3+a)
I3 = <x_> / e'v® ! (l +(1— 7'2)v> dv.
2 ) J, 2

Here observe that, the integral contributes nothing when %2 < 1, hence we
are only interested when % > 1. Next, we define

2

2\ 3 &
2
I:?Z(%)/ e 2 dw.
1

Now our target is to show that the difference between I3 and I3 is negligible
compared to I3 as 7 — 0. In order to prove that, first note,

Now, first, consider the case when o + % is a positive integer. Hence using
the Binomial theorem, we have

lia 3t+a 1 2 2 j
( 2.2 ! )2 - U_(%Jra) S U_(%—i_a) Z (2 +Oé> |:T—2 (1 + :E—):|
7—21 —}-(1—7’2)1} o i (1—’/‘) (%

2

Next, observing that for 1 < v < %,2 <= < 22, for |z| < Bk,, the
difference between I3 and I can be bounded as

N
N

22

% T2 1 .CE2 % 2 v 3
Iy -1 < <1_7_2)10g (;)(1+0(1))<?) /1 e’v™2dv,

which implies

2

L-I < (1 - 72> log (%) (1+ o(1))13.

13




On the other hand, observe that,

i (3) [

> {( S (1+o0(1)) +1— 7)) — 1] I3

I\D\C»J

2 2 )
[—+1—T )(a+2)—1]dv

1
These two bounds ensure 5 — 0 as 7 — 0 since I3

2/2 by Lemma C.8

of van der pas et al. (2017). Next consider the case when o+ 1 is a fraction.
When o + % is a fraction, then there exists another fraction b > ( such that

1 . .. . . . 72(v+x2) 2
a + 5 + b is a positive integer. Hence, in this case, |1 + o(1=r2) <

at+3+b
] . Now, applying exactly the same set of arguments on

72 (v4a2)
|:1 + v(1—72)
o+ 5 L 4 bin place of a + 1 5, We again can show that, 513

75 —0as 71— 0.
3

This completes the proof for |z| < Bk,.
Case 2:- When |z| > Bk,, choose any A € (0,1). In this case, the range of
the integration in Ioé’%(x) is divided into two parts, namely,

A 2 1 %"'O‘
L= [ 727" d
! / (r2+<1—r2>z> :

and

Note that

One can choose B > 1 and A € (0,1) such that B*(1 — A) > 2a + 2, which

implies I < T3¢ and hence the contribution is negligible compared to

@2 /2
2/2 Y
the second term in the expression of Ia,%(@ as given in (38). Finally, for I5,

14



we use that, for z > A,
form

1[1+ O(7%)]. This implies I5 is of the

1 —
PRI

1 2, 1
Is = / z_%elez[l +O(r?)]z 1, (45)
A

Next, note that, with the transformation % =,

1 3 x2z CC'2 % % 3
/ 2z 2¢ 2 dz = <—> / e®v2dv
A 2 22A
2\ 3 z2 224
- (T /2 —/ C o3, (46)
2 1 1

Now, using the first assertion of Lemma C.8 of van der pas et al. (2017), the
second integral is bounded above by a multiple of (x2/2)~'e”*4/2, which is
negligible compared to the first (this is of the order of (22/2)~'e**/2). Hence,
combining (45) and (46), we immediately have

1 22

Iy = (“’;) ’ /12 e"v~2dv[1 + O(r2)]. (47)

Combining (43) and (47), the r.h.s. of (38) is established.
On the other hand, expanding the integral given in (38) with the help of
Lemma C.8 of van der pas et al. (2017) provides (39). O

Lemma 3. There exist functions R,y with sup, |R,1(z)] = O(r2) as 7 — 0,
such that for a > %,

2 —% -5 1 22
Jaﬂ,;(:v):(%) /026%2dv(1+Rf,1<w))§<1Aw2>e'2 (48)

22

2 *% é 2
Joap1,2 (@)= Iy 1 (2) = (—) /O v (1—;2) dv(1+R,1(2)) < (1A e,
(49)

15



Proof. Recall that J, ) 1 (x) is defined as

1 22 1 %‘f’a
Joins (@) :/0 e Za<72+(1_72)z) dz. (50)

Next, we split the range of the integration into [0, 7] and [, 1]. Note that,
the contribution of the first integral obtained from (50) is bounded by

ez z z €2 T2,
/0 24+ (1—-172)z ~

On the other hand, note that, when z > 7, m = 1[14 O(7)]. There-
fore, we have

1
1 z2z a 1 §+a ! 122 _1 lJra
/T ez z (72—1—(1—72)2) dz:/T ez z 2dz[14 O(1)]2

Zexp(GT)1-mH)L+0()].  (52)

D=

(51)

Combining (51) and (52) we see that the contribution of the first integral is
negligible compared to the second one. Hence, one has

! 2. 1 1
Jo1 (@) = / e 2 2dz(140(r) + O(72)).

Also note that, 7 = O(72) as 7 — 0. Observe that, (51) and (52) also imply
that,

1 22 1 (EQZ
/ e T 2 2dz = / eTz_%dz[l + O(T%)] — 0 as 7 — 0.
T 0

As a result,

1 122 1
Tusl@) = [ eF a0+ o),

The equality in (48) follows due to the change of variable % = v. The
second assertion in (48) is due to exactly the same set of arguments used in
Lemma C.10 of van der pas et al. (2017).

Proof of (49) follows using a similar set of arguments. O
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Lemma 4. The function x — m.(x) is symmetric about 0 and non-decreasing
in [0, 00) with

(i) — 2a < m,(x) < 2a, for allx € R and 7 € (0,1).

(i) |m(z)] S 1e**/2("2 A1), as T — 0, for every z.

Proof. The symmetric behavior follows from the definition of m.(x) as given
n (31).
For monotonicity, using (36) of Lemma 1, it readily follows that

jaa €T
m,(x) = 2a + TS ’ ((:13))
1 = sa—l a+i ata+1
ez (1—2)""2(<x=) dz
=2a — 27%(a + ) Jo - - (& (53)
f,eT 2 1(1 —2)%72 N(z)“+adz
1 a2 1 -1/
ez ( )2 (1 - 2)° 3 ( ) Tdz
=2a + 27%(a + a) Jo 2+(1 2) M
1 a—1 a—1 ata
Jyzter (1—2 2( -)etedz

z—1

:2“+2#“*””Lf(ﬂ+¢1—T%{%h@”%

where z — ¢,(2) is a probability density function on [0, 1] with g,(z)

"JU2Z
227 le™ (1 — 2)o %( N%Z))‘Ha. Next, following the same set of arguments as
used in Lemma C.7 of van der pas et al. (2017), the proof of monotonicity of
m,(x) follows. We now prove statements (i) and (ii) of the lemma.

(i) The upper bound is obvious by using (53). For the lower bound, note

that ) )
Loa() (1—z)7*
— =-2 2 (2)dz.
TLM(:L') (ot a)/o <72 + (1 —72)z 9:(2)dz
Since, for any 0 < 2z < 1, 724 (1 —72)z > 72 implies T)) < 1, the lower
bound follows from it.

(ii) Using the definition of m.(z) as given in (31) followed by the triangle
inequality, an upper bound on |m.(z)| is obtained as

Ja+1,a($) - Ja+27a(x)| + |Ja+1,a(x)|

o (2)] < 2!

I, q(x) I, q(x)
The assertion is proved by using (48) and (49) of Lemma 3, (38) of Lemma
2 and finally noting that 62//2 > % for |x| > Bk, for B>1as T — 0. O

17



As an immediate consequence of Lemma 4, we have the following corol-
lary.

Corollary 1. Let X ~ N(6,1). Then, as 7 — 0,

-2 < -1
Eim?(X) = {ggc“g) |)9||eT o
T Y — 4
Proof. Noting that the upper bound of the absolute value of m,(x) as ob-
tained in (ii) of Lemma 4 matches that of (vii) of Lemma C.7 of van der pas
et al. (2017), the proof is immediate using the same set of arguments used
in Lemma C.5 of van der pas et al. (2017). O

Lemma 5. Let X ~ N (0,1). For|0]| <S¢ and 7 <711 <7 and 5 — 0,

2
o (S () = S (0) £ (- (54
T1 T2
Further, for |0| < %, and € = %, and 7 < 11 < 19 and 75 — 0,
2
Ey (C—m (X) - Z2m,, <X>) S (= ), (55)
T Ty

Proof. Using Lemma C.11 of van der pas et al. (2017) with V, = <m, (X)),
the Lh.s. of (54) can be upper bounded as

B (o (%) = 20 (0)) < (2= s Bl (1)

T1 T2 TE[T1,72] T T

32(72—71)2[ sup Eg(&mT(X))2+ sup E9<Q+—fflmT(X))2].

TE[T1,72] T TE[T1,72] T
(56)

Note that, with the help of the first part of Corollary 1, the second term in
the r.h.s. of (56) is bounded above by a constant times sup, ¢, ] 73 <8,
Hence, in order to show that (54) holds, it is enough to show that the first

term in the r.h.s. of (54) is bounded above by a constant times 7, .

18
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For the first term, observe that using (32) with a = 3,

I (@)@ = Dy 1 (2) = 02,01 (2)] = Ly s (0)me (@)1, 1 (2)
1,1 (@)

Now, note that, using the definition of J,, ,, 1 (x), Jyira(z) = 27(04—{—%)([-[,1”,% (x)—

(x)) where Ha%é(:c) =

1
, 3
Ha+1,%('r>) and Ja+2,%(x> = 2T<O‘+%>(Ha+3,é<x>_Ha+2,
Jy ez 2ot (1 - 2)% s <+ dz. Next, note that, Ha+k,%(:v) is a

1
2

T2+ (1-72)z
decreasing function of k. Also, observe that, H, ;1 (x) < 1, 1 (x). Finally,
for the third term in the r.h.s. of (57), the definition of Ia,%(x) implies

I,
IO(

(z) 1.1
@ < 27(a + §)§

VI

[N

Combining all these arguments provides an upper bound for the r.h.s. of
(57) as

m,(x) < 27(a+ %)[1 + 2 + %mT(x)]

As a consequence of thiS,
Egi?(X <721+EX4+—1E 0.4 58
ng( ) ~ [ 0 4 emT( )] ( )

Note that, in this case, FyX* is bounded by a constant and from the first part
of Corollary 1, Egm?2(X) is bounded by 7¢;2. This shows that (=)?Eyri?(X)
is bounded above by a multiple of 772 and (54) is established.

For proving (55), we again use Lemma C.11 of van der pas et al. (2017), but
with V, = <m,(X). As a result, we have

T€

CTl CTZ ?

o (S () = 2 (0))
2 -1 2

< 2(1p — 71)2[ sup Ep <%mT(X)> + sup Ey <6<T7_—1i_—+§7mr(X)> ]

TE[T1,72) TE[T1,72]
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Using the second part of Corollary 1, the second term in the r.h.s. of the
above inequality is bounded above by a constant times 7727¢. Next, we follow
the same steps as before and obtain an expression same as (58). In this case,
FEpX* is bounded by ¢ and from second part of Corollary 1, Egm?2(X) is
bounded by 7¢¢72. This implies that (=55 )2Egm2(X) is bounded above by
a multiple of 7727¢ completing the proof of (55). O

Next, we provide a corollary which becomes very important to study the
relationship between m,(X;) and its expectation for zero means.

Corollary 2. If the cardinality of Iy := {i : 6y, = 0} tends to infinity, then

1

sup ’]0’

L<r<
S <7<

1S ma (X0 = S By (X0)] 22 0.

1
logn iEIO ie[o

Proof. The proof of this result follows using a similar set of arguments to
those of Lemma C.6 of van der pas et al. (2017) with some modifications.
The main difference lies in calculating the entropy of the process G, (1) =
[To] ™" > s, m-(X;). Here, instead of covering the interval [1,1] as given
in Lemma C.6 of van der pas et al. (2017), we need to cover the interval

[, loén]' We use dyadic rationals [%, %] to cover this interval with i =
0,1,2,---, [logQ(ﬁ)]. Next, we follow steps similar to Lemma C.6 of van
der pas et al. (2017) along with Lemma 5. O

Lemma 6. Let X ~ N (0,1). Then as T — 0

— i+ o(1), 0] =o(C?),
o(r15¢ 1), 0] < <.

Eng(X) = {

Proof. For proving the first assertion, following the steps of Proposition C.2
of van der pas et al. (2017), we can show that both f|$|>,’i mq(x)p(x—0)de =

o(Z) and
f<T<|x\<,{T m(v)p(x — 0)dr = O(é),where Ky ~ G+ 212—§CT as 7 — 0, where

kr is defined in Lemma 2. The remaining argument also follows using similar
sets of arguments used in Proposition C.2 of van der pas et al. (2017) along
with some algebraic manipulations. However, for the sake of completeness,

we present all the steps.
Note that, from (38) of Lemma 2, when £ < 1, I,1(z) = Kj 1+ O(V/7)]

2
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On the other hand, since, % is increasing for large values of x and attains
the value % at z = (-, by (38) of Lemma 2, Iaé(x) = K;I 1+ O(é)],
When 1< ’““ < log(2). Combining these two facts, we get that, Iaé(x) =
- 1+ O(@)], uniformly in = € (0, ¢;). Hence,

23 (J g1 (x) — T —J 1
/ o ()6 — 0)dz = /C z*( a+1,§($> a+2,5(=’75)) aH’i(I)qﬁ(m)dm—l— R..
|z|<(r 0

K—l
T

(59)

where the absolute value of R is bounded by [07 |[2%(J,4.1 (x) —Josa1 (x))—

Jat1,1(2)|¢(z)dx times supy, . |% — £|. By using Lemma 3, the
’2

integrand is bounded above by a constant for x near 0 and by a multiple of
22 otherwise, which makes the integral to be bounded. Next, observe that,

¢(z —0) K A1/ 26—
sup — = sup 7K e o) — 1, 1(x
|| <¢r ’]aé(l‘)gb(l’) T | |lz|<¢r ]a ;(I)| ( ) ’2( )|
20— 1
= sup TK|— 1| <7l + S0 —1].
e 1+ 0(%) ¢2
Observe that, for |0] = o((7?), (0| —% = o(¢;!) and using the fact e¥—1 ~ y
as y — 0, we have
¢($ _ 9) K 1 1 T
sup - S 71l 4+ o(CH)] = o).
S e i STl el =)

These two arguments show that R, is negligible compared to CL
Next, using Fubini’s Theorem, the integral in (59) can be rewritten as

T

/CT :EQ(JOH_L%(x) - Ja+2 %(x» - Ja+1 ;(:L’)

22

—KT/ /G <N1 )%Jraegczz[xz(l—z)—l]i;%dxdz (60)

_ 12(172)

:KT/O (Niz) /OCT[ 21— 2) —1]%@: dz.
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Note that the inner integral becomes zero if the range of integration is (0, 0o)
instead of (0, (). Hence, we have

r g () Tooag () = Joway(@)

_ z2(17z)

_ ks /01 ZQ(NEZ))M /j[:ﬁu -2 = 1) e a:

K /1 a( ; )ém\/—g g
=—-K7 | 2% —= e 2.
0 N(z) 27

In the last line above, we use the fact [ *[(vb)® — 1]é(vb)dv = yé(yb). Next,
similar to Proposition C.2 of van der pas et al. (2017), we split the range of
integration in (0,1] and (3,1). When 0 < z < 1, the absolute value of the
integral is bounded above by

KT/
0

2

D=

2 1

1\ ¢ 2o e Fr¢ 3
20 _1
2% T e 2 dz<K - 27 2dz
3t 0

(SIS

N(z) V2r V2r(1 - 72)
— 09 7¢) = o<£>.

On the other hand, when £ < z < 1, we again use, = =11+ 0(?)).

1
T24+(1-72)2
This implies

1 1 %+a C C72—(17z)
— K7 24 —— "2 dz
[ (N(Z)) V2T

K T 1 3. 1—z
= — 7¢ z_%e_¥dz[1 + O(1%)]

_ —il/z et auli +0()],
0 - @)

—~
[
[N

where the equality is due to the substitution (?(1—z) = u. Finally, following
the same argument as used in Proposition C.2 of van der pas et al. (2017), the
integral tends to fooo e~ 2du = 2, completing the proof of the first assertion.

For proving the second statement, we follow the steps mentioned in Propo-
sition C.2 of van der pas et al. (2017). O
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2 Derivation of the posterior distribution of
k; given X; and 7

Recall that, the hierarchical formulation is given as
X,10; % N(6;,1)
97;’/%7; ’\fl N(O, P

—), (61)
where x; = 1/(1+4 A?72). Due to the change of variable, prior distribution of
k; given T is of the form,
r(ralr) o K21 — )t L (2~ 1)), (62)
! T2 Ky
Hence, combining (61), (62) and using Bayes theorem, the joint posterior
distribution of (0;, ;) given X; and 7 is obtained as

1—k; 1 KZZQZQ (61 — Xz)2 1 1

T\ —1 a—1 —a—1
m(0i, ki X, 7) o ( s )z eXp[_Q(l ~ ) - B Jri (1 = Ky) L(ﬁ(; - 1))
a—% S | 1 1 9?
(63)
Integrating out 6;, from (63) the posterior distribution of «; is given by
(ki X, T) /{ai%(l - /~§~)_a_%L(i(l - 1)) /Oo ex [—i + 6, X;]d;
i iy i 7 7_2 K . P 2(1 — K/i) i<\q i
a—1x : 1 1 1 1—k; X2
x Kr; 21— ﬁi)’“’%L(ﬁ(ﬁ—i — 1))(1 — k;)2 exp %
. a—1 —a—1 11 (1 - ’%Z)XE
=K =R L — D) e
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