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The proofs of Propositions 1-3 and Lemma 1 are given in this supplementary material.



Sparse quantile regression via £gp-penalty 1

S.1 Appendix(to be the supplementary material)

We prove Propositions 1-3 and Lemma 1 here.
The proof of Proposition 1 is given here.

Proof of Proposition 1:

The proof is similar to those of Lemma 1 of Fan et al. (2014) and Lemma 4
of Honda et al. (2019). However, I's(M) is more general than in those lemmas
due to S in (ys,S) and the proof is more complicated.

We omit S in (vs,8) € I's(M) for notational simplicity and note that
Wiss = Wis, 75,

Due to the Lipschitz continuity of pr(u) and application of the concen-
tration inequalities (Theorems 14.3 and 14.4 in Biihlmann and van de Geer
(2011))), we have

E{GS<M>}szELSesgp(M)\fZ@{pTZ W) = o (Vi - W)} |

§4E[ sup ‘f §iWis(vs —75)
s €T (M) Z s s

] (S.1)

where {¢;}7_; is a Rademacher sequence of and independent of {(Y;, X;)}}_,
Notice that

1 n
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Ll/2 max) Z{Z Ul‘

X Z v =il (52)

and

{max’—zgl Ul‘}<Cl 21ngnC2 (S.3)

for some universal constant C; by Lemmas 2.2.10 in van der Vaart and Wellner
(1996) and the facts on our spline basis. Note that j in the second line in (S.2)
and in (S.3) ranges from 1 to p, not restricted to S. We applied Bernstein’s
inequality to >, &W;j; like Lemmas 2.2.9 and 2.2.11 before we used Lemmas
2.2.10.

Thus by (S.1)-(S.3), we have

21 slog p, C?
E{G,(M)} < 4VsLM x C, ng”02 <4\/§clM\/TSz{ (S.4)
n

Next we apply Massart’s inequality (Theorem 14.2 in Bithlmann and van de
Geer (2011)) to evaluate the stochastic part G4(M) — E{Gs(M)}. Write Cy
for 44/2C in (S.4).




Before we apply Massart’s inequality, notice that

Wh(vs —v5)1? < [ WislPllvs — 5% < sC,M>

and

1 n
= [Wis|?M? < sC3,M>.
n

Thus as in the proof of Lemma 1 of Fan et al. (2014), we have

[sC2 logpy nt?
p

We used (S.4) to evaluate E{G (M)} inside the probability of Massart’s in-
equality.
Taking t* = K3 M?sCg, log py, /n, we obtain

50, logpn, K2 log pn
P(GL(M) > (€ + Ka)My| =) < exp (- =250,

Hence the proof of the proposition is complete. (Il
The proof of Proposition 2 is given here.

Proof of Proposition 2:

We follow those of Theorem 1 of Fan et al. (2014) and Proposition 1 of
Honda et al. (2019).

The following arguments uniformly apply to any S satisfying |S| = s and
Sp € S. Then G5(M) appears only in (S.12) and we apply Proposition 1 to
that Gs(M) there. Besides, we can choose suitable K4 and Kpg as in (S.13)
and (S.14) to ensure the uniformity in s satisfying so < s < so + k;. This
means that we are dealing with S uniformly satisfying the condition in the
proposition.

Taking My = KpL, /sC%p log p,/n, we evaluate the following expression

on I';(Mjy). Note that this M, depends on s = |S].
B{Ra(vs) ~ Ru(v2)} = B[ Z{pf —a)=pe()}],  (85)

where a; = Wk (vs —~%) and recall the symbols in (17). Besides, by Assump-
tion A5(1),

(2

If a; > 0, we have from the definition of p,(-) that

poleh = a) — pre) = [ 0 < € < shds +ai(I{e, <0} = 7).
0
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Then by Assumption A2, we obtain
o / 10 < ¢ < s}ds + ay(I{e} <0} — 7))
0
- / (Fi(s — 6) — Fi(~6:))ds + ay(r — 7)
0
1
= §fi(_5i>a’? + 0(a?) + O(a?(logn)~Y?) + O(|r — 7i|*(logn)*/?).
uniformly in i. Note that |7 — 7;]? < C1]6;] for some positive C; and that
we can deal with the case of a; < 0 in the same way. Note that this kind of
approximation is not accurate enough for the proof of Theorem 2 in the second

setup since sg — 00.
To evaluate (S.5), we need to consider

Zfz a+0< Zn:af)—&—O(n_l(logn)l/QZn:éf). (S.7)

=1

As for the first term of (S.7), we have

{ Zfz 6:)a? } = (VvasTE{ Zfl 5:)Wis W5 } (s — 75)

(S.8)
_ 2
2 2 57 s = sl
Recall Assumption A3 for the inequality in the second line here.
As for the third term of (S.7), we have
1 1/2 n
(ogm) 77 Y62 < Ci(logn) /2L (S.9)

n
1=1

for some positive constant C7 by Assumption Al.
By combining (S.7), (S.8), and (S.9), we obtain

E{Rn(vs) = Ra(vs)} = ;%(1 +o(1))llvs —5I° + O((logn) /2L™*). (S.10)

Note that the above inequality holds only locally, not globally in ~gs.
We define v§ by
78 = aFs + (1 - a); (S.11)

for
M,

=<1
M + [[7s = 5l

0<a=

Then for the same S,
7§ € Is(Msy).



Noticing that due to the convexity of R, (vs),

Rn(vs) < aRn(3s) + (1 — @) Ra(v5) < Ra(73),

and applying Proposition 1, we have with probability larger than or equal to
1 — exp(—K? logp,/8) that

E[R,(vs) — Rn(’YE)]‘Ysz'yé‘ (S.12)
- % N ECHE E{% ZPT(“K&)} - % > pr(8) + EE ZpT(WS)]
=t =1 i=1 i=1

+R,(V5) — Rn(75)

sC%_ log py,
< Gy(M,) < (Cpry + Ka) M,y | =222
n

By (S.10) and (S.12), we have

Ys=7§

A

3(Cpp1 + Ka)L sC% logpy, Llogp,
g — sl < 2O P KL £y J5C5 08P (Lo

Km n n

< 4(0}371 + KA)LM ch‘p log p,,
Bom n

with probability larger than or equal to 1 — exp(—K?3 log p,/8).
We should choose K 4 satisfying

K3 log pn,

klexp(— 3

) — O(nKe) (S.13)

and then choose Kp satisfying

16(Cppr1 + Ka)

Km

< Kp. (814)

Note that (S.13) gives an upper bound of the sum of probability from s = s
to s = sg + k1.
Then we have with probability 1 — O(n~%¢) that uniformly in S,

. 1 o1
Ivs = 5l* < M7 and [lv§ =5l < 5 (S-15)
(S.11), (S.15), and simple algebra yield

1¥s =5l < My = KpLy/sCF log pn/n

with probability 1 — (n=5¢). We write Cp,o for KpCls,.
Hence the proof of the proposition is complete. ([l

The proof of Proposition 3 is given here.
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Proof of Proposition 3:
We give another expression of D;(vs) as

Dj(vs) = Di(vs) — E{Di(vs)} (5.16)

where

Di(vs) = pr(Yi = Wiss) = pr(Yi = Wisys) + Wis(vs —v5) (1 — I{e; < 0})

and notice that
pr(e; — ai) = pr(€) = —ai(1 — I{e; <0}) — (¢ — ai)[I{e; < ai} — I{e; < 0}],

(S.17)
where a; = Wk (ys —~%). The second term of the RHS in (S.17) is Lipschitz
continuous. The argument based on the Lipschitz continuity, the symmetriza-
tion theorem, and the contraction theorem does not yield the desired order
and we have to reply on (S.20) below.

By using (S.17) and the facts on our spline basis, we have the following

three facts uniformly in vs and S. C; and Cy are some positive constants.

max [Wis| < Cs, /18] (8.18)

s Diys)| < o [Wisl|Cpya (18] oy /) (8.19)

qﬁZ@mm}{ Z|s%ﬂﬂ} (5.20)
i=1

C
< 2 CspV/ISHCPr2L (S| 10g pn /1) Aunax(25)

2
< C2OSPCP/7-2)‘2M sgLQ(

3/2

n~tlogpy,
We used Assumptions A2 and A6 here. The second term of the RHS in (S.17)
is crucial to the first line of (S.20). We may be able to improve (S.20) and
replace s2 with s3/? for linear models. Then 1!/ in (19) is replaced with n!/.
However, considering the upper bound in (S.20) and the necessity of uniformity
in vs and S, further improvements seem to be impossible.

By using (S.18)-(S.20) and Bernstein’s inequality, we obtain

P(|n *ZD 16)| 2 LIOBEnY g o f - Callogpn)?

nlogn s3(logn)? } (8:21)
for any fixed vs and S, where C3 and C4 are some positive constants which
are independent of vs and S.

To verify the uniformity in -«ys, we appeal to the standard small-block
argument based on the Lipschitz continuity and the number of blocks is
O(exp(CsspLlogn)). To obtain the uniformity in S, we have to calculate the
number of § and it is O(exp(Cssglogpy)).



This implies that we should have

(nlogpn)'/?

s3(logn)?

1 n1/2
) and  (1logpn) *

.22
s3(logn)3 — oo (5:22)

(soL1ogn) V (sologpn) = of
to establish the statement for Proposition 3. Actually they are assured by
Assumption A5’, especially the former in (S.22) by Assumption A5’(2). Hence
the proof of the proposition is complete. O

The proof of Lemma 1 is given here.
Proof of Lemma 1:
With a; = (vs — %

% zj: lai(ti — 7)| < (n_l Z:L: a?) i (n_l zn:(n - 7)2) 1/2. (S.23)

i=1

)TW,s, we have

Note that

SOL logpn

1 — ~ .
- Za? < Amax (2s)[vs — 751> = Op( ) (S.24)

i=1

uniformly in S, where ﬁg =n! Z:L:l WiSWg; and we applied the standard
argument based on Bernstein’s inequality with Assumption A6 to get an upper
bound of Apax(£2s).

By Assumption A2’, we also have

> (ri=7)=0,(L7°). (S.25)

Then the desired result follows from (S.23)-(S.25) and Assumption A5’(2).
O
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