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  The proofs of Propositions 1-3 and Lemma 1 are given in this supplementary material. 



Sparse quantile regression via ℓ0-penalty 1

S.1 Appendix(to be the supplementary material)

We prove Propositions 1-3 and Lemma 1 here.

The proof of Proposition 1 is given here.

Proof of Proposition 1:
The proof is similar to those of Lemma 1 of Fan et al. (2014) and Lemma 4

of Honda et al. (2019). However, Γs(M) is more general than in those lemmas
due to S in (γS ,S) and the proof is more complicated.

We omit S in (γS ,S) ∈ Γs(M) for notational simplicity and note that
W T

iSγ
∗
S = W T

iS0
γ∗
S0
.

Due to the Lipschitz continuity of ρτ (u) and application of the concen-
tration inequalities (Theorems 14.3 and 14.4 in Bühlmann and van de Geer
(2011))), we have

E{Gs(M)} ≤ 2E
[

sup
γS∈Γs(M)

∣∣∣ 1
n

n∑
i=1

ξi{ρτ (Yi −W T
iSγS)− ρτ (Yi −W T

iSγ
∗
S)}

∣∣∣]
≤ 4E

[
sup

γS∈Γs(M)

∣∣∣ 1
n

n∑
i=1

ξiW
T
iS(γS − γ∗

S)
∣∣∣], (S.1)

where {ξj}nj=1 is a Rademacher sequence of and independent of {(Yj ,Xj)}nj=1.
Notice that∣∣∣ 1

n

n∑
i=1

ξiW
T
iS(γS − γ∗

S)
∣∣∣ ≤ max

j∈S

∥∥∥ 1
n

n∑
i=1

ξiWij

∥∥∥×
∑
j∈S

∥γj − γ∗
j ∥ (S.2)

≤ L1/2 max
j,l

∣∣∣ 1
n

n∑
i=1

ξiWijl

∣∣∣×√
sM

and

E
{
max
j,l

∣∣∣ 1
n

n∑
i=1

ξiWijl

∣∣∣} ≤ C1

√
2 log pn
nL

C2
Sp (S.3)

for some universal constant C1 by Lemmas 2.2.10 in van der Vaart and Wellner
(1996) and the facts on our spline basis. Note that j in the second line in (S.2)
and in (S.3) ranges from 1 to p, not restricted to S. We applied Bernstein’s
inequality to

∑n
i=1 ξiWijl like Lemmas 2.2.9 and 2.2.11 before we used Lemmas

2.2.10.
Thus by (S.1)-(S.3), we have

E{Gs(M)} ≤ 4
√
sLM × C1

√
2 log pn
nL

C2
Sp ≤ 4

√
2C1M

√
s log pnC2

Sp

n
. (S.4)

Next we apply Massart’s inequality (Theorem 14.2 in Bühlmann and van de
Geer (2011)) to evaluate the stochastic part Gs(M) − E{Gs(M)}. Write C2

for 4
√
2C1 in (S.4).
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Before we apply Massart’s inequality, notice that

|W T
iS(γS − γ∗

S)|2 ≤ ∥WiS∥2∥γS − γ∗
S∥2 ≤ sC2

SpM
2

and

1

n

n∑
i=1

∥WiS∥2M2 ≤ sC2
SpM

2.

Thus as in the proof of Lemma 1 of Fan et al. (2014), we have

P
(
Gs(M) ≥ C2M

√
sC2

Sp log pn

n
+ t

)
≤ exp

(
− nt2

8sC2
SpM

2

)
.

We used (S.4) to evaluate E{Gs(M)} inside the probability of Massart’s in-
equality.

Taking t2 = K2
AM

2sC2
Sp log pn/n, we obtain

P
(
Gs(M) ≥ (C2 +KA)M

√
sC2

Sp log pn

n

)
≤ exp

(
− K2

A log pn
8

)
.

Hence the proof of the proposition is complete. □

The proof of Proposition 2 is given here.

Proof of Proposition 2:
We follow those of Theorem 1 of Fan et al. (2014) and Proposition 1 of

Honda et al. (2019).
The following arguments uniformly apply to any S satisfying |S| = s and

S0 ⊂ S. Then Gs(M) appears only in (S.12) and we apply Proposition 1 to
that Gs(M) there. Besides, we can choose suitable KA and KB as in (S.13)
and (S.14) to ensure the uniformity in s satisfying s0 ≤ s ≤ s0 + k1. This
means that we are dealing with S uniformly satisfying the condition in the
proposition.

Taking Ms = KBL
√
sC2

Sp log pn/n, we evaluate the following expression

on Γs(Ms). Note that this Ms depends on s = |S|.

E{Rn(γS)−Rn(γ
∗
S)} = E

[ 1
n

n∑
i=1

{ρτ (ϵ′i − ai)− ρτ (ϵ
′
i)}

]
, (S.5)

where ai = W T
iS(γS −γ∗

S) and recall the symbols in (17). Besides, by Assump-
tion A5(1),

|ai| ≤ ∥WiS∥Ms ≤
√
sCSpMs → 0. (S.6)

If ai > 0, we have from the definition of ρτ (·) that

ρτ (ϵ
′
i − ai)− ρτ (ϵ

′
i) =

∫ ai

0

I{0 < ϵ′i ≤ s}ds+ ai(I{ϵ′i ≤ 0} − τ).
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Then by Assumption A2, we obtain

Eϵ

[ ∫ ai

0

I{0 < ϵ′i ≤ s}ds+ ai(I{ϵ′i ≤ 0} − τ)
]

=

∫ ai

0

(Fi(s− δi)− Fi(−δi))ds+ ai(τi − τ)

=
1

2
fi(−δi)a

2
i + o(a2i ) +O(a2i (log n)

−1/2) +O(|τ − τi|2(log n)1/2).

uniformly in i. Note that |τ − τi|2 ≤ C1|δi|2 for some positive C1 and that
we can deal with the case of ai < 0 in the same way. Note that this kind of
approximation is not accurate enough for the proof of Theorem 2 in the second
setup since s0 → ∞.

To evaluate (S.5), we need to consider

1

2n

n∑
i=1

fi(−δi)a
2
i + o

(
n−1

n∑
i=1

a2i

)
+O

(
n−1(log n)1/2

n∑
i=1

δ2i

)
. (S.7)

As for the first term of (S.7), we have

E
{ 1

2n

n∑
i=1

fi(−δi)a
2
i

}
=

1

2
(γS − γ∗

S)
TE

{ 1

n

n∑
i=1

fi(−δi)WiSW
T
iS

}
(γS − γ∗

S)

(S.8)

≥ κm

2L
∥γS − γ∗

S∥2.

Recall Assumption A3 for the inequality in the second line here.
As for the third term of (S.7), we have

(log n)1/2

n

n∑
i=1

δ2i ≤ C1(log n)
1/2L−4 (S.9)

for some positive constant C1 by Assumption A1.
By combining (S.7), (S.8), and (S.9), we obtain

E{Rn(γS)−Rn(γ
∗
S)} ≥ κm

2L
(1+ o(1))∥γS −γ∗

S∥2 +O((log n)1/2L−4). (S.10)

Note that the above inequality holds only locally, not globally in γS .
We define γα

S by

γα
S = αγ̃S + (1− α)γ∗

S (S.11)

for

0 ≤ α =
Ms

Ms + ∥γ̃S − γ∗
S∥

≤ 1.

Then for the same S,
γα
S ∈ Γs(Ms).
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Noticing that due to the convexity of Rn(γS),

Rn(γ
α
S ) ≤ αRn(γ̃S) + (1− α)Rn(γ

∗
S) ≤ Rn(γ

∗
S),

and applying Proposition 1, we have with probability larger than or equal to
1− exp(−K2

A log pn/8) that

E[Rn(γS)−Rn(γ
∗
S)]γS=γα

S
(S.12)

=
1

n

n∑
i=1

ρτ (γ
∗
S)− E

{ 1

n

n∑
i=1

ρτ (γ
∗
S)
}
− 1

n

n∑
i=1

ρτ (γ
α
S ) + E

[ 1
n

n∑
i=1

ρτ (γS)
]
γS=γα

S

+Rn(γ
α
S )−Rn(γ

∗
S)

≤ Gs(Ms) ≤ (CPr1 +KA)Ms

√
sC2

Sp log pn

n
.

By (S.10) and (S.12), we have

∥γα
S − γ∗

S∥2 ≤ 3(CPr1 +KA)L

κm

{
Ms

√
sC2

Sp log pn

n
+ o

(L log pn
n

)}
≤ 4(CPr1 +KA)L

κm
Ms

√
sC2

Sp log pn

n

with probability larger than or equal to 1− exp(−K2
A log pn/8).

We should choose KA satisfying

k1 exp
(
− K2

A log pn
8

)
= O(n−KC ) (S.13)

and then choose KB satisfying

16(CPr1 +KA)

κm
< KB . (S.14)

Note that (S.13) gives an upper bound of the sum of probability from s = s0
to s = s0 + k1.

Then we have with probability 1−O(n−KC ) that uniformly in S,

∥γα
S − γ∗

S∥2 ≤ 1

4
M2

s and ∥γα
S − γ∗

S∥ ≤ 1

2
Ms. (S.15)

(S.11), (S.15), and simple algebra yield

∥γ̃S − γ∗
S∥ ≤ Ms = KBL

√
sC2

Sp log pn/n

with probability 1− (n−KC ). We write CPr2 for KBCSp.
Hence the proof of the proposition is complete. □

The proof of Proposition 3 is given here.
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Proof of Proposition 3:
We give another expression of Di(γS) as

Di(γS) = Di(γS)− E{Di(γS)}, (S.16)

where

Di(γS) = ρτ (Yi −W T
iSγS)− ρτ (Yi −W T

iSγ
∗
S) +W T

iS(γS − γ∗
S)(τ − I{ϵ′i ≤ 0})

and notice that

ρτ (ϵ
′
i − ai)− ρτ (ϵ

′
i) = −ai(τ − I{ϵ′i ≤ 0})− (ϵ′i − ai)[I{ϵ′i ≤ ai} − I{ϵ′i ≤ 0}],

(S.17)
where ai = W T

iS(γS − γ∗
S). The second term of the RHS in (S.17) is Lipschitz

continuous. The argument based on the Lipschitz continuity, the symmetriza-
tion theorem, and the contraction theorem does not yield the desired order
and we have to reply on (S.20) below.

By using (S.17) and the facts on our spline basis, we have the following
three facts uniformly in γS and S. C1 and C2 are some positive constants.

max
1≤i≤n

∥WiS∥ ≤ CSp

√
|S| (S.18)

max
1≤i≤n

|Di(γS)| ≤ max
1≤i≤n

∥WiS∥CPr2L(|S| log pn/n)1/2 (S.19)

E
[ 1

n2

n∑
i=1

{Di(γS)}2
]
≤ E

{C1

n2

n∑
i=1

|W T
iS(γS − γ∗

S)|3
}

(S.20)

≤ C1

n
CSp

√
|S|{CPr2L(|S| log pn/n)1/2}3λmax(ΩS)

≤
C2CSpC

3/2
Pr2λ2M

n
s20L

2(n−1 log pn)
3/2.

We used Assumptions A2 and A6 here. The second term of the RHS in (S.17)
is crucial to the first line of (S.20). We may be able to improve (S.20) and

replace s20 with s
3/2
0 for linear models. Then n1/6 in (19) is replaced with n1/5.

However, considering the upper bound in (S.20) and the necessity of uniformity
in γS and S, further improvements seem to be impossible.

By using (S.18)-(S.20) and Bernstein’s inequality, we obtain

P
(∣∣∣n−1

n∑
i=1

Di(γS)
∣∣∣ ≥ L log pn

n log n

)
≤ C3 exp

{
− C4(n log pn)

1/2

s20(log n)
2

}
(S.21)

for any fixed γS and S, where C3 and C4 are some positive constants which
are independent of γS and S.

To verify the uniformity in γS , we appeal to the standard small-block
argument based on the Lipschitz continuity and the number of blocks is
O(exp(C5s0L log n)). To obtain the uniformity in S, we have to calculate the
number of S and it is O(exp(C6s0 log pn)).
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This implies that we should have

(s0L log n)∨ (s0 log pn) = o
( (n log pn)

1/2

s20(log n)
2

)
and

(n log pn)
1/2

s20(log n)
3

→ ∞ (S.22)

to establish the statement for Proposition 3. Actually they are assured by
Assumption A5’, especially the former in (S.22) by Assumption A5’(2). Hence
the proof of the proposition is complete. □

The proof of Lemma 1 is given here.
Proof of Lemma 1:

With ai = (γS − γ∗
S)

TWiS , we have

1

n

n∑
i=1

|ai(τi − τ)| ≤
(
n−1

n∑
i=1

a2i

)1/2(
n−1

n∑
i=1

(τi − τ)2
)1/2

. (S.23)

Note that

1

n

n∑
i=1

a2i ≤ λmax(Ω̂S)∥γS − γ∗
S∥2 = Op(

s0L log pn
n

) (S.24)

uniformly in S, where Ω̂S = n−1
∑n

i=1 WiSW
T
iS and we applied the standard

argument based on Bernstein’s inequality with Assumption A6 to get an upper
bound of λmax(Ω̂S).

By Assumption A2’, we also have

1

n

n∑
i=1

(τi − τ)2 = Op(L
−6). (S.25)

Then the desired result follows from (S.23)-(S.25) and Assumption A5’(2).
□
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