

Robust Variable Selection in High-dimensional Nonparametric Additive model

Suneel Babu Chatla and Abhijit Mandal

The University of Texas at El Paso, Texas

Supplementary Material

The supplementary material contains the proofs of Lemma 1 and Theorems 1 and 2. In the following lemma, we derive the maximal inequality for the product terms involving spline function and error. The proof requires results involving the Generalized Bernstein-Orlicz (GBO) norm. For completeness, we define it here. The function $\Psi_{\alpha,L}$ is defined in [5], with its inverse expressed as

$$\Psi_{\alpha,L}^{-1} := \sqrt{\log(1+t)} + L(\log(1+t))^{1/\alpha} \text{ for all } t \geq 0,$$

for fixed $\alpha > 0$ and $L \geq 0$. The GBO norm of a random variable X is then

$$\|X\|_{\Psi_{\alpha,L}} := \inf\{\eta > 0 : \mathbb{E}[\Psi_{\alpha,L}(|X|/\eta)] \leq 1\}.$$

Lemma 1. *Suppose assumptions (A1)–(A4) hold. Let*

$$T_{kj} = n^{-1/2} m_n^{1/2} \sum_{i=1}^n B_{kj}(X_{ij}) \epsilon_i, \quad 1 \leq k \leq m_n, 1 \leq j \leq p,$$

and $T_n = \max_{1 \leq j \leq p, 1 \leq k \leq m_n} |T_{kj}|$. Let $\alpha^* = \max\{0, \frac{\alpha-1}{\alpha}\}$. When $m_n \log(pm_n)/n \rightarrow 0$ as $n \rightarrow \infty$, we obtain the following bound:

$$\mathbb{E}[T_n] = \left(\sqrt{\log(pm_n)} + n^{-1/2+\alpha^*} m_n^{1/2-\alpha^*} (\log(pm_n))^{1/\alpha} \right) O(1).$$

Proof. From Remark A.1 in [5], conditional on X_{ij} 's, we obtain that

$$\begin{aligned} & \mathbb{E} \left[\max_{1 \leq j \leq p, 1 \leq k \leq m_n} |T_{kj}| \mid \{X_{ij}, 1 \leq j \leq p, 1 \leq i \leq n\} \right] \\ & \leq n^{-1/2} m_n^{1/2} \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|T_{kj}\|_{\Psi_{\alpha,L}} C_\alpha \left\{ \sqrt{\log(pm_n)} + L(\log(pm_n))^{1/\alpha} \right\}, \end{aligned} \quad (\text{S0.1})$$

for some constant C_α depending on α . Similarly, the application of Theorem 3.1 in [5] yields that

$$\|T_{kj}\|_{\Psi_{\alpha,L}} \leq 2eC_1(\alpha) \|b\|_2, \quad (\text{S0.2})$$

where $C_1(\alpha)$ is some constant involving α for which the explicit expression is given in Theorem 3.1 of [5], $\|b\|_2 = (\sum_{i=1}^n B_{kj}^2(X_{ij}) \|\epsilon_i\|_{\psi_\alpha}^2)^{1/2}$, and

$$L(\alpha) = \frac{4^{1/\alpha}}{\sqrt{2}\|b\|_2} \times \begin{cases} \|b\|_\infty, & \text{if } \alpha < 1, \\ 4e\|b\|_\infty/C_1(\alpha), & \text{if } \alpha \geq 1, \end{cases}$$

with ϖ is the Holder conjugate satisfying $1/\alpha + 1/\varpi = 1$. Therefore, combination of (S0.1) and (S0.2) yields

$$\begin{aligned} & \mathbb{E} \left[\max_{1 \leq j \leq p, 1 \leq k \leq m_n} |T_{kj}| \mid \{X_{ij}, 1 \leq j \leq p, 1 \leq i \leq n\} \right] \\ & \leq 2eC_\alpha C_1(\alpha) n^{-1/2} m_n^{1/2} \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_2 \sqrt{\log(pm_n)} \\ & \quad + n^{-1/2} m_n^{1/2} \begin{cases} D_1(\alpha) \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_\infty (\log(pm_n))^{1/\alpha} & \text{if } \alpha < 1, \\ D_2(\alpha) \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_\varpi (\log(pm_n))^{1/\alpha} & \text{if } \alpha \geq 1, \end{cases} \end{aligned} \quad (\text{S0.3})$$

where $D_1(\alpha) = \sqrt{2}eC_1(\alpha)C_\alpha 4^{1/\alpha}$ and $D_2(\alpha) = \sqrt{2}C_\alpha e^2 4^{1/\alpha+1}$.

Let $s_{n1} = \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_2$, $s_{n2} = \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_\infty$, and $s_{n3} = \max_{1 \leq j \leq p, 1 \leq k \leq m_n} \|b\|_\varpi$. It follows that

$$\begin{aligned} & \mathbb{E} \left[\max_{1 \leq j \leq p, 1 \leq k \leq m_n} |T_{kj}| \right] \\ & \leq 2eC_\alpha C_1(\alpha) n^{-1/2} m_n^{1/2} \mathbb{E}(s_{n1}) \sqrt{\log(pm_n)} \\ & \quad + n^{-1/2} m_n^{1/2} \begin{cases} D_1(\alpha) \mathbb{E}(s_{n2}) (\log(pm_n))^{1/\alpha} & \text{if } \alpha < 1, \\ D_2(\alpha) \mathbb{E}(s_{n3}) (\log(pm_n))^{1/\alpha} & \text{if } \alpha \geq 1. \end{cases} \end{aligned} \quad (\text{S0.4})$$

We now derive the upper bound for the $\mathbb{E}(s_{n3})$. From Theorem 4.2 of Chapter 5 in [1], we obtain that

$$\sum_{i=1}^n \mathbb{E} \left\{ B_{jk}^\varpi(X_{ij}) - \mathbb{E} B_{jk}^\varpi(X_{ij}) \right\}^2 \leq C_3 n m_n^{-1}, \quad |B_{jk}(X_{ij})| \leq 2, \quad (\text{S0.5})$$

and

$$\max_{1 \leq j \leq p, 1 \leq k \leq m_n} \sum_{i=1}^n \mathbb{E} B_{jk}^\varpi(X_{ij}) \leq C_4 n m_n^{-1}. \quad (\text{S0.6})$$

By Lemma A.1 of [3] and (S0.5) we obtain

$$\begin{aligned} & \mathbb{E} \left(\max_{1 \leq j \leq p, 1 \leq k \leq m_n} \left| \sum_{i=1}^n \mathbb{E} \left\{ B_{jk}^\varpi(X_{ij}) - \mathbb{E} B_{jk}^\varpi(X_{ij}) \right\} \right| \right) \\ & \leq \sqrt{2C_3 n m_n^{-1} \log(2pm_n)} + 2^\varpi \log(2pm_n). \end{aligned} \quad (\text{S0.7})$$

Now, an application of Triangle inequality using (S0.7) and (S0.6) gives

$$\mathbb{E}(s_{n3}^\varpi) \leq \sqrt{2C_3 n m_n^{-1} \log(2pm_n)} + 2^\varpi \log(2pm_n) + C_4 n m_n^{-1}.$$

Therefore, using Lyapunov's inequality, we obtain that, for $1 < \varpi < \infty$,

$$\mathbb{E}(s_{n3}) \leq \left(\sqrt{2C_3 n m_n^{-1} \log(2pm_n)} + 2^\varpi \log(2pm_n) + C_4 n m_n^{-1} \right)^{1/\varpi}. \quad (\text{S0.8})$$

Letting $\varpi = 2$ in (S0.8) yields the corresponding bound for $\mathbb{E}(s_{n1})$. By (S0.5), we can obtain that $\mathbb{E}(s_{n2}) \leq C_5$. Consequently,

$$\begin{aligned} \mathbb{E}[T_n] &\leq 2eC_\alpha C_1(\alpha)n^{-1/2}m_n^{1/2} \left(\sqrt{2C_3nm_n^{-1}\log(2pm_n)} \right. \\ &\quad \left. + 4\log(2pm_n) + C_4nm_n^{-1} \right)^{1/2} \sqrt{\log(pm_n)} + n^{-1/2}m_n^{1/2} \\ &\times \begin{cases} C_5D_1(\alpha)(\log(pm_n))^{1/\alpha} & \text{if } \alpha < 1, \\ D_2(\alpha) \left(\sqrt{2C_3nm_n^{-1}\log(2pm_n)} \right. \\ \left. + 2^\varpi\log(2pm_n) + C_4nm_n^{-1} \right)^{1/\varpi} (\log(pm_n))^{1/\alpha} & \text{if } \alpha \geq 1. \end{cases} \end{aligned} \quad (\text{S0.9})$$

Let $\alpha^* = \max\{0, \frac{\alpha-1}{\alpha}\}$. When $m_n \log(pm_n)/n \rightarrow 0$ as $n \rightarrow \infty$, the above bound simplifies to the following bound:

$$\mathbb{E}[T_n] = \left(\sqrt{\log(pm_n)} + n^{-1/2+\alpha^*}m_n^{1/2-\alpha^*}(\log(pm_n))^{1/\alpha} \right) O(1).$$

□

Proof of Theorem 1. Note that the oracle estimator $\widehat{\beta}^0 = (\sqrt{m_n}\widehat{\mu}_0^0, \widehat{\beta}_1^0, \dots, \widehat{\beta}_q^0)^T \in \mathbb{R}^{qm_n+1}$, minimizes the DPD loss function

$$\ell_n(\beta) := \frac{1}{n} \sum_{i=1}^n V_i(\beta; \sigma^2, \nu), \quad (\text{S0.10})$$

where $V_i(\cdot)$ is defined in (7). We remark that penalization is not required for the oracle model as the true components are known. Using Taylor expansion, we have

$$\frac{\partial \ell_n(\beta)}{\partial \beta} \Big|_{\beta=\widehat{\beta}^0} = \frac{\partial \ell_n(\beta)}{\partial \beta} + \frac{\partial^2 \ell_n(\beta)}{\partial \beta \partial \beta^T} \Big|_{\beta=\overline{\beta}} (\widehat{\beta}^0 - \beta),$$

where $\overline{\beta} = t\widehat{\beta}^0 + (1-t)\beta$, $t \in [0, 1]$. Therefore,

$$\widehat{\beta}^0 - \beta = - \left(\frac{\partial^2 \ell_n(\beta)}{\partial \beta \partial \beta^T} \Big|_{\beta=\overline{\beta}} \right)^{-1} \frac{\partial \ell_n(\beta)}{\partial \beta}.$$

Let $Z_i^0 = (1/\sqrt{m_n}, B_{11}(X_{i1}), \dots, B_{m_nq}(X_{iq}))^T$ be the corresponding spline basis for the first q variables. By straightforward calculations, we have

$$\frac{\partial \ell_n(\beta)}{\partial \beta} = -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \times (Y_i - Z_i^{0T} \beta) Z_i^0, \quad (\text{S0.11})$$

and

$$\frac{\partial^2 \ell_n(\beta)}{\partial \beta \partial \beta^T} \Big|_{\beta=\overline{\beta}} = -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n \left\{ \frac{\nu}{\sigma^2} f_i^\nu \times (Y_i - Z_i^{0T} \overline{\beta})^2 Z_i^0 Z_i^{0T} - f_i^\nu Z_i^0 Z_i^{0T} \right\}. \quad (\text{S0.12})$$

First, we find the bound for (S0.11). Let $\delta_i = \sum_{j=1}^q g_j(X_i) - g_{nj}(X_i)$. Observe that

$$\begin{aligned} \left\| -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \times (Y_i - Z_i^{0T} \beta) Z_i^0 \right\| &= \left\| -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \times (\delta_i + \epsilon_i) Z_i^0 \right\| \\ &\leq \left\| -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \delta_i Z_i^0 \right\| + \left\| -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \epsilon_i Z_i^0 \right\|. \end{aligned}$$

From Fact 1 in (19) and Lemma 1 in [4], we have $\max_i \delta_i \leq C_{12} q m_n^{-d}$ for some constant C_{12} . Using the fact that $\max_i f_i^\nu \leq 1$, we obtain

$$\begin{aligned} &\left\| -\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu (Y_i - Z_i^{0T} \beta^0) Z_i^0 \right\| \\ &\leq C_{12} q m_n^{-d} \frac{1+\nu}{\sigma^2} \left\| \frac{1}{n} \sum_{i=1}^n Z_i^0 \right\| + \frac{1+\nu}{\sigma^2} \left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i^0 \right\| \\ &= C_{12} q m_n^{-d-1/2} \frac{1+\nu}{\sigma^2} + \frac{1+\nu}{\sigma^2} \left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i^0 \right\| \end{aligned} \tag{S0.13}$$

where the second step follows because of $n^{-1} \sum_{i=1}^n B_{kj}(X_{ij}) = 0$, for $1 \leq k \leq m_n, 1 \leq j \leq q$. Consider

$$\begin{aligned} &\left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i Z_i^0 \right\|^2 \\ &= \sum_{j=1}^q \sum_{k=1}^{m_n} \left(\frac{1}{n} \sum_{i=1}^n \epsilon_i B_{kj}(X_{ij}) \right)^2 + \left(\frac{1}{n\sqrt{m_n}} \sum_{i=1}^n \epsilon_i \right)^2 \\ &\leq \max_{1 \leq j \leq q, 1 \leq k \leq m_n} \frac{q}{n} \left(\frac{m_n^{1/2}}{n^{1/2}} \sum_{i=1}^n \epsilon_i B_{kj}(X_{ij}) \right)^2 + \left(\frac{1}{n\sqrt{m_n}} \sum_{i=1}^n \epsilon_i \right)^2 \\ &= O_p(1)(q/n) (\log(qm_n) + n^{-1+2\alpha^*} m_n^{1-2\alpha^*} (\log(qm_n))^{2/\alpha}) + O_p(1/nm_n), \end{aligned} \tag{S0.14}$$

where the first term in the last step follows from Lemma 1 and the second term follows from Condition (A4). Combination of (S0.11), (S0.13), and (S0.14) yields

$$\begin{aligned} &\left\| \frac{\partial \ell_n(\beta)}{\partial \beta} \right\| \\ &= O(m_n^{-d-1/2}) + O_p \left(\sqrt{\frac{\log(qm_n) + n^{-1+2\alpha^*} m_n^{1-2\alpha^*} (\log(qm_n))^{2/\alpha}}{n}} + \frac{1}{nm_n} \right). \end{aligned} \tag{S0.15}$$

We now show that,

$$\left\| \left(-\frac{1+\nu}{n\sigma^2} \sum_{i=1}^n \left\{ \frac{\nu}{\sigma^2} f_i^\nu \times (Y_i - Z_i^{0T} \bar{\beta})^2 Z_i^0 Z_i^{0T} - f_i^\nu Z_i^0 Z_i^{0T} \right\} \right)^{-1} \right\| = O(m_n). \tag{S0.16}$$

From (S0.12), we write

$$\sum_{i=1}^n \frac{1+\nu}{n} \left\{ \frac{1}{\sigma^2} f_i^\nu \times \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right] \right\} Z_i^0 Z_i^{0T}.$$

First, observe that $\left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right] \leq \exp\left\{ -\frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{2\sigma^2} \right\} \leq 1$ for $i = 1, \dots, n$. Consequently $f_i^\nu \times \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right] \leq 1/\sigma\sqrt{2\pi}$. Further, since $\exp\left\{ \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{2\sigma^2} \right\} \geq \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right]$, we have the following lower bound

$$f_i^\nu \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right] \geq \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right]^2 / \sigma\sqrt{2\pi},$$

which is always positive and takes zero when $(Y_i - Z_i^{0T} \bar{\beta})^2 = \sigma^2/\nu$. Together, we have,

$$1/\sigma\sqrt{2\pi} \geq f_i^\nu \times \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right] \geq \left[1 - \frac{\nu(Y_i - Z_i^{0T} \bar{\beta})^2}{\sigma^2} \right]^2 / \sigma\sqrt{2\pi}, \quad (\text{S0.17})$$

which concludes that the weights are positive and bounded. Therefore, by Lemma 3 in [4], we prove (S0.16). Consequently, the result (21) follows from (S0.15) and (S0.16). \square

Proof of Theorem 2. The main idea of the proof is similar to Theorem 3 in [2]. However, the details are more involved due to the group penalty and the basis functions. Without loss of generality, we assume the first q components, g_j , $j = 1, \dots, q$, are nonzero. Let $\beta = (\beta^{(1)T}, \beta^{(2)T})^T \in \mathbb{R}^{pm_n+1}$ with $\beta^{(1)} = (\mu, \beta_1^T, \dots, \beta_q^T)^T$ and $\beta^{(2)} = 0$.

Step1: Consistency in the q -dimensional space:

Let $Z_i^{(1)} = (1, B_{11}(X_{i1}), \dots, B_{m_n q}(X_{iq}))^T$ and $Z_i^{(2)} = (B_{1q+1}(X_{iq+1}), \dots, B_{m_n p}(X_{ip}))^T$ be the basis functions corresponding to first q nonzero functions (including intercept) and $p - q$ zero functions, respectively. First, we constrain the likelihood L_ν to $qm_n + 1$ dimensional subspace as the following:

$$\bar{L}_\nu(\delta) = -\ell_n(\delta) - \sum_{j=1}^q P_\lambda(\|\delta_j\|_2), \quad (\text{S0.18})$$

where $\delta = (1, \delta_1^T, \dots, \delta_q^T)^T$ with $\delta_j = (\delta_{1j}, \dots, \delta_{m_n j})^T$ and ℓ_n is defined in (S0.10). Note that we take negative signs in $\bar{L}_\nu(\delta)$ so that we now maximize the likelihood instead of minimizing L_ν in (6). We show that there exists a local maximizer $\hat{\beta}^{(1)}$ of $\bar{L}_\nu(\delta)$ such that $\|\hat{\beta}^{(1)} - \beta^{(1)}\| = O_p(\gamma_n)$. Define an event

$$H_n = \left\{ \max_{\delta \in \partial N_\tau} \bar{L}_\nu(\delta) < \bar{L}_\nu(\beta^{(1)}) \right\}, \quad (\text{S0.19})$$

where ∂N_τ is the boundary of the closed set

$$N_\tau = \{\delta \in \mathbb{R}^{qm_n+1} : \|\delta - \beta^{(1)}\| \leq \gamma_n \tau\},$$

and $\tau \in (0, \infty)$ and rate γ_n . Note that on event, H_n there exists a local maximizer $\widehat{\beta}^{(1)}$ of $\overline{L}_\nu(\delta)$ in N_τ . Therefore, it is sufficient to show that $P(H_n)$ approaches to 1 as $n \rightarrow \infty$.

By Taylor expansion, for any $\delta \in N_\tau$, we have

$$\overline{L}_\nu(\delta) - \overline{L}_\nu(\beta^{(1)}) = (\delta - \beta^{(1)})^T V - \frac{1}{2}(\delta - \beta^{(1)})^T D(\delta - \beta^{(1)}), \quad (\text{S0.20})$$

where

$$V := \nabla \overline{L}_\nu(\beta^{(1)}) = \frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \cdot (Y_i - Z_i^{(1)T} \beta^{(1)}) Z_i^{(1)} - \overline{P}_\lambda(\beta^{(1)}),$$

with $\overline{P}_\lambda(\beta^{(1)}) = (P'_\lambda(\|\beta_1\|_2)(D_1\beta_1)^T / \|\beta_1\|_2, \dots, P'_\lambda(\|\beta_q\|_2)(D_q\beta_q)^T / \|\beta_q\|_2)^T$ where P'_λ is the derivative of the penalty function, and

$$\begin{aligned} D := -\nabla^2 \overline{L}_\nu(\beta^*) &= \sum_{i=1}^n \frac{1+\nu}{n} \left\{ \frac{1}{\sigma^2} f_i^\nu \left[1 - \frac{\nu(Y_i - Z_i^{(1)T} \beta^*)^2}{\sigma^2} \right] \right\} Z_i^{(1)} Z_i^{(1)T} \\ &+ \text{diag} \left\{ \frac{P'_\lambda(\|\beta_j^*\|_2)}{\|\beta_j^*\|_2} D_j + \left[\frac{P''_\lambda(\|\beta_j^*\|_2)}{\|\beta_j^*\|_2^2} - \frac{P'_\lambda(\|\beta_j^*\|_2)}{\|\beta_j^*\|_2^3} \right] D_j \beta_j^* \beta_j^{*T} D_j \right\}, \end{aligned} \quad (\text{S0.21})$$

where β^* is on the line segment joining $\beta^{(1)}$ and δ . We note that the matrix D_j is positive definite, and its eigenvalues are of order m_n^{-1} . For any $\delta \in \partial N_\tau$, we have $\|\delta - \beta^{(1)}\| = \gamma_n \tau$ and $\beta^* \in N_\tau$. By doing calculations analogous to (S0.16), we obtain from (S0.21) that

$$\lambda_{\min}(D) \geq C_{21}(m_n^{-1} - \lambda \kappa_0 m_n^{-2}). \quad (\text{S0.22})$$

Thus by (S0.20), we have

$$\max_{\delta \in \partial N_\tau} \overline{L}_\nu(\delta) - \overline{L}_\nu(\beta^{(1)}) \leq \gamma_n \tau [\|V\| - C_{21} \gamma_n \tau (m_n^{-1} - \lambda \kappa_0 m_n^{-2})],$$

which, together with Markov's inequality, gives

$$\begin{aligned} P(H_n) &\geq P(\|V\|^2 < C_{21}^2 \gamma_n^2 \tau^2 (m_n^{-1} - \lambda \kappa_0 m_n^{-2})^2) \\ &\geq 1 - \frac{\mathbb{E}\|V\|^2}{C_{21}^2 \gamma_n^2 \tau^2 (m_n^{-1} - \lambda \kappa_0 m_n^{-2})^2}. \end{aligned}$$

Calculations analogous to (S0.15) in Theorem 1 yield that

$$\begin{aligned} \mathbb{E}\|V\|^2 &\leq \mathbb{E} \left\| \frac{1+\nu}{n\sigma^2} \sum_{i=1}^n f_i^\nu \cdot (Y_i - Z_i^{(1)T} \beta^{(1)}) Z_i^{(1)} \right\|^2 + \|\overline{P}_\lambda(\beta^{(1)})\|^2 \\ &\leq O \left(m_n^{-2d-1} + \frac{\log(pm_n)}{n} + \frac{m_n^{1-2\alpha^*} (\log(pm_n))^{2/\alpha}}{n^{2-2\alpha^*}} + \frac{1}{nm_n} \right) + O(q\lambda^2 m_n^{-2}). \end{aligned}$$

Consequently,

$$P(H_n) \geq 1 - \frac{O \left(m_n^{-2d+1} + \frac{m_n^2 \log(pm_n)}{n} + \frac{m_n^{3-2\alpha^*} (\log(pm_n))^{2/\alpha}}{n^{2-2\alpha^*}} + \frac{m_n}{n} + q\lambda^2 \right)}{C_{21}^2 \gamma_n^2 \tau^2 (1 - \lambda \kappa_0 m_n^{-1})^2}.$$

By choosing $\gamma_n^2 = m_n^{-2d+1} + \frac{m_n^2 \log(pm_n)}{n} + \frac{m_n^{3-2\alpha^*} (\log(pm_n))^{2/\alpha}}{n^{2-2\alpha^*}} + \frac{m_n}{n} + q\lambda^2$ and based on $\lambda\kappa_0 = o(1)$ (condition (A5)), we have

$$P(H_n) \geq 1 - o(\tau^{-2}).$$

It proves

$$\begin{aligned} \sum_{j=1}^q \|\widehat{\beta}_j - \beta_j\|^2 &= O_p \left(\frac{m_n^2 \log(pm_n)}{n} + \frac{m_n^{3-2\alpha^*} (\log(pm_n))^{2/\alpha}}{n^{2-2\alpha^*}} + \frac{m_n}{n} \right) \\ &\quad + O(m_n^{-2d+1} + q\lambda^2). \end{aligned}$$

Step 2: Sparsity:

From Step 1 we have $\widehat{\beta}^{(1)} \in \mathbb{R}^{qm_n+1}$ is a local maximizer of \bar{L}_ν on N_τ . We now prove that $\widehat{\beta} = (\widehat{\beta}^{(1)T}, 0^T)^T$ is indeed a maximizer of $-L_\nu$ on the space \mathbb{R}^{pm_n+1} . Let $\xi = (1, \xi_1^T, \dots, \xi_p^T)^T = \sum_{i=1}^n f_i^\nu \cdot (Y_i - Z_i^T \beta) Z_i$. Let $\widehat{\beta}_{S_0} = \widehat{\beta}^{(1)}$ and $\widehat{\beta}_{S_0^c} = \widehat{\beta}^{(2)} = 0$. Consider the event,

$$\mathcal{E}_2 = \{\|\xi_{S_0^c}\|_\infty \leq u_n\}.$$

consider

$$\begin{aligned} \|\xi_{S_0^c}\|_\infty &= \left\| \sum_{i=1}^n f_i^\nu \cdot (Y_i - Z_i^T \beta) Z_i^{(2)} \right\|_\infty \\ &\leq n^{1/2} m_n^{-1/2} \cdot \max_{1 \leq j \leq p, 1 \leq k \leq m_n} |n^{-1/2} m_n^{1/2} \sum_{i=1}^n (Y_i - Z_i^T \beta) B_{kj}(X_{ij})| \\ &= n^{1/2} m_n^{-1/2} \cdot T_n, \end{aligned}$$

where $T_n = \max_{1 \leq j \leq p, 1 \leq k \leq m_n} |n^{-1/2} m_n^{1/2} \sum_{i=1}^n (Y_i - Z_i^T \beta) B_{kj}(X_{ij})|$. We have,

$$\begin{aligned} P(\mathcal{E}_2) &\geq P\left(T_n \leq \frac{u_n}{(n/m_n)^{1/2}}\right) \\ &\geq 1 - \frac{\mathbb{E} T_n}{u_n} (n/m_n)^{1/2} \\ &\geq 1 - \frac{\left(\sqrt{\log(pm_n)} + n^{-1/2+\alpha^*} m_n^{1/2-\alpha^*} (\log(pm_n))^{1/\alpha}\right) (n/m_n)^{1/2}}{u_n}, \end{aligned}$$

which follows from Lemma 2 in [4] after ignoring the small spline approximation error. Choosing $u_n = n/m_n$, we obtain

$$P(\mathcal{E}_2) \geq 1 - \left(\sqrt{\frac{m_n \log(pm_n)}{n}} + \frac{m_n^{1-\alpha^*} (\log(pm_n))^{1/\alpha}}{n^{1-\alpha^*}} \right) \rightarrow 1,$$

under the assumption that $m_n \log(pm_n)/n \rightarrow 0$ as $n \rightarrow \infty$. Following Theorem 2 in [2], it is sufficient to show that,

$$\begin{aligned}
\|W\|_\infty &:= n^{-1} \left\| \sum_{i=1}^n f_i^\nu \cdot (Y_i - Z_i^T(-\beta + \widehat{\beta} + \beta)) Z_i^{(2)} \right\|_\infty \\
&\leq n^{-1} \left[\|\xi_{S_0^c}\|_\infty + \left\| \sum_{i=1}^n f_i^\nu \cdot (Z_i^T(\widehat{\beta} - \beta)) Z_i^{(2)} \right\|_\infty \right] \\
&\leq o(1) + n^{-1} \left\| \sum_{i=1}^n Z_i^T(\widehat{\beta} - \beta) Z_i^{(2)} \right\| \\
&\leq o(1) + n^{-1} \left\| \sum_{i=1}^n Z_i^{(1)^T}(\widehat{\beta}^{(1)} - \beta^{(1)}) Z_i^{(2)} \right\| \\
&= o(1) + O(m_n^{-1}) \|(\widehat{\beta}^{(1)} - \beta^{(1)})\| \\
&= o(1),
\end{aligned}$$

which concludes the proof. \square

References

- [1] DeVore RA, Lorentz GG (1993) Constructive approximation, vol 303. Springer Science & Business Media
- [2] Fan J, Lv J (2011) Nonconcave penalized likelihood with np-dimensionality. *IEEE Transactions on Information Theory* 57(8):5467–5484
- [3] van de Geer SA (2008) High-dimensional generalized linear models and the lasso. *Annals of Statistics* 36(2):614–645, DOI 10.1214/009053607000000929, URL <https://doi.org/10.1214/009053607000000929>
- [4] Huang J, Horowitz JL, Wei F (2010) Variable selection in nonparametric additive models. *Annals of Statistics* 38(4):2282–2313
- [5] Kuchibhotla AK, Chakrabortty A (2022) Moving beyond sub-gaussianity in high-dimensional statistics: Applications in covariance estimation and linear regression. *Information and Inference: A Journal of the IMA* 11(4):1389–1456