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Supplementary Material

The supplementary material contains the proofs of Lemma 1 and Theorems 1 and 2. In the following
lemma, we derive the maximal inequality for the product terms involving spline function and error. The
proof requires results involving the Generalized Bernstein-Orlicz (GBO) norm. For completeness, we
define it here. The function Ψα,L is defined in [5], with its inverse expressed as

Ψ−1
α,L :=

√
log(1 + t) + L(log(1 + t))1/α for all t ≥ 0,

for fixed α > 0 and L ≥ 0. The GBO norm of a random variable X is then

∥X∥Ψα,L
:= inf{η > 0 : E[Ψα,L(|X|/η)] ≤ 1}.

Lemma 1. Suppose assumptions (A1)–(A4) hold. Let

Tkj = n−1/2m1/2
n

n∑
i=1

Bkj(Xij)ϵi, 1 ≤ k ≤ mn, 1 ≤ j ≤ p,

and Tn = max
1≤j≤p,1≤k≤mn

|Tkj|. Let α∗ = max{0, α−1
α

}. When mn log(pmn)/n → 0 as n → ∞, we obtain
the following bound:

E [Tn] =
(√

log(pmn) + n−1/2+α∗
m1/2−α∗

n (log(pmn))
1/α
)
O(1).

Proof. From Remark A.1 in [5], conditional on Xij’s, we obtain that

E
[

max
1≤j≤p,1≤k≤mn

|Tkj| | {Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n}
]

≤ n−1/2m1/2
n max

1≤j≤p,1≤k≤mn

∥Tkj∥Ψα,L
Cα

{√
log(pmn) + L(log(pmn))

1/α
}
, (S0.1)

for some constant Cα depending on α. Similarly, the application of Theorem 3.1 in [5] yields that

∥Tkj∥Ψα,L
≤ 2eC1(α)∥b∥2, (S0.2)

where C1(α) is some constant involving α for which the explicit expression is given in Theorem 3.1 of
[5], ∥b∥2 =

(∑n
i=1 B

2
kj(Xij)∥ϵi∥2ψα

)1/2, and

L(α) =
41/α√
2∥b∥2

×

{
∥b∥∞, if α < 1,

4e∥b∥ϖ/C1(α), if α ≥ 1,
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with ϖ is the Holder conjugate satisfying 1/α + 1/ϖ = 1. Therefore, combination of (S0.1) and (S0.2)
yields

E
[

max
1≤j≤p,1≤k≤mn

|Tkj| | {Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n}
]

≤ 2eCαC1(α)n
−1/2m1/2

n max
1≤j≤p,1≤k≤mn

∥b∥2
√

log(pmn)

+ n−1/2m1/2
n

D1(α) max
1≤j≤p,1≤k≤mn

∥b∥∞(log(pmn))
1/α if α < 1,

D2(α) max
1≤j≤p,1≤k≤mn

∥b∥ϖ(log(pmn))
1/α if α ≥ 1,

(S0.3)

where D1(α) =
√
2eC1(α)Cα4

1/α and D2(α) =
√
2Cαe

241/α+1.
Let sn1 = max

1≤j≤p,1≤k≤mn

∥b∥2, sn2 = max
1≤j≤p,1≤k≤mn

∥b∥∞, and sn3 = max
1≤j≤p,1≤k≤mn

∥b∥ϖ. It follows that

E
[

max
1≤j≤p,1≤k≤mn

|Tkj|
]

≤ 2eCαC1(α)n
−1/2m1/2

n E (sn1)
√

log(pmn)

+ n−1/2m1/2
n

{
D1(α)E (sn2) (log(pmn))

1/α if α < 1,

D2(α)E (sn3) (log(pmn))
1/α if α ≥ 1.

(S0.4)

We now derive the upper bound for the E(sn3). From Theorem 4.2 of Chapter 5 in [1], we obtain that
n∑
i=1

E
{
Bϖ
jk(Xij)− EBϖ

jk(Xij)
}2 ≤ C3nm

−1
n , |Bjk(Xij)| ≤ 2, (S0.5)

and

max
1≤j≤p,1≤k≤mn

n∑
i=1

EBϖ
jk(Xij) ≤ C4nm

−1
n . (S0.6)

By Lemma A.1 of [3] and (S0.5) we obtain

E

(
max

1≤j≤p,1≤k≤mn

∣∣∣∣∣
n∑
i=1

E
{
Bϖ
jk(Xij)− EBϖ

jk(Xij)
}∣∣∣∣∣
)

≤
√

2C3nm−1
n log(2pmn) + 2ϖ log(2pmn). (S0.7)

Now, an application of Triangle inequality using (S0.7) and (S0.6) gives

E(sϖn3) ≤
√
2C3nm−1

n log(2pmn) + 2ϖ log(2pmn) + C4nm
−1
n .

Therefore, using Lyapunov’s inequality, we obtain that, for 1 < ϖ < ∞,

E(sn3) ≤
(√

2C3nm−1
n log(2pmn) + 2ϖ log(2pmn) + C4nm

−1
n

)1/ϖ
. (S0.8)
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Letting ϖ = 2 in (S0.8) yields the corresponding bound for E(sn1). By (S0.5), we can obtain that
E(sn2) ≤ C5. Consequently,

E [Tn] ≤ 2eCαC1(α)n
−1/2m1/2

n

(√
2C3nm−1

n log(2pmn)

+ 4 log(2pmn) + C4nm
−1
n

)1/2√
log(pmn) + n−1/2m1/2

n

×


C5D1(α)(log(pmn))

1/α if α < 1,

D2(α)

(√
2C3nm−1

n log(2pmn)

+2ϖ log(2pmn) + C4nm
−1
n

)1/ϖ

(log(pmn))
1/α if α ≥ 1.

(S0.9)

Let α∗ = max{0, α−1
α

}. When mn log(pmn)/n → 0 as n → ∞, the above bound simplifies to the
following bound:

E [Tn] =
(√

log(pmn) + n−1/2+α∗
m1/2−α∗

n (log(pmn))
1/α
)
O(1).

Proof of Theorem 1. Note that the oracle estimator β̂0 = (
√
mnµ̂

0
0, β̂

0
1 , . . . , β̂

0
q )
T ∈ Rqmn+1, minimizes

the DPD loss function

ℓn(β) :=
1

n

n∑
i=1

Vi(β; σ
2, ν), (S0.10)

where Vi(·) is defined in (7). We remark that penalization is not required for the oracle model as the
true components are known. Using Taylor expansion, we have

∂ℓn(β)

∂β

∣∣∣∣
β=β̂0

=
∂ℓn(β)

∂β
+

∂2ℓn(β)

∂β∂βT

∣∣∣∣
β=β

(β̂0 − β),

where β = tβ̂0 + (1− t)β, t ∈ [0, 1]. Therefore,

β̂0 − β = −

(
∂2ℓn(β)

∂β∂βT

∣∣∣∣
β=β

)−1
∂ℓn(β)

∂β
.

Let Z0
i = (1/

√
mn, B11(Xi1), . . . , Bmnq(Xiq))

T be the corresponding spline basis for the first q variables.
By straightforward calculations, we have

∂ℓn(β)

∂β
= −1 + ν

nσ2

n∑
i=1

f νi × (Yi − Z0T

i β)Z0
i , (S0.11)

and

∂2ℓn(β)

∂β∂βT

∣∣∣∣
β=β

= −1 + ν

nσ2

n∑
i=1

{ ν

σ2
f νi × (Yi − Z0T

i β)2Z0
i Z

0T

i − f νi Z
0
i Z

0T

i

}
. (S0.12)
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First, we find the bound for (S0.11). Let δi =
∑q

j=1 gj(Xi)− gnj(Xi). Observe that∥∥∥∥∥−1 + ν

nσ2

n∑
i=1

f νi × (Yi − Z0T

i β)Z0
i

∥∥∥∥∥ =

∥∥∥∥∥−1 + ν

nσ2

n∑
i=1

f νi × (δi + ϵi)Z
0
i

∥∥∥∥∥
≤

∥∥∥∥∥−1 + ν

nσ2

n∑
i=1

f νi δiZ
0
i

∥∥∥∥∥+
∥∥∥∥∥−1 + ν

nσ2

n∑
i=1

f νi ϵiZ
0
i

∥∥∥∥∥ .
From Fact 1 in (19) and Lemma 1 in [4], we have max

i
δi ≤ C12qm

−d
n for some constant C12. Using the

fact that max
i

f νi ≤ 1, we obtain∥∥∥∥∥−1 + ν

nσ2

n∑
i=1

f νi (Yi − Z0T

i β0)Z0
i

∥∥∥∥∥
≤ C12qm

−d
n

1 + ν

σ2

∥∥∥∥∥ 1n
n∑
i=1

Z0
i

∥∥∥∥∥+ 1 + ν

σ2

∥∥∥∥∥ 1n
n∑
i=1

ϵiZ
0
i

∥∥∥∥∥
= C12qm

−d−1/2
n

1 + ν

σ2
+

1 + ν

σ2

∥∥∥∥∥ 1n
n∑
i=1

ϵiZ
0
i

∥∥∥∥∥ (S0.13)

where the second step follows because of n−1
∑n

i=1 Bkj(Xij) = 0, for 1 ≤ k ≤ mn, 1 ≤ j ≤ q. Consider∥∥∥∥∥ 1n
n∑
i=1

ϵiZ
0
i

∥∥∥∥∥
2

=

q∑
j=1

mn∑
k=1

(
1

n

n∑
i=1

ϵiBkj(Xij)

)2

+

(
1

n
√
mn

n∑
i=1

ϵi

)2

≤ max
1≤j≤q,1≤k≤mn

q

n

(
m

1/2
n

n1/2

n∑
i=1

ϵiBkj(Xij)

)2

+

(
1

n
√
mn

n∑
i=1

ϵi

)2

= Op(1)(q/n)
(
log(qmn) + n−1+2α∗

m1−2α∗

n (log(qmn))
2/α
)
+Op(1/nmn), (S0.14)

where the first term in the last step follows from Lemma 1 and the second term follows from Condition
(A4). Combination of (S0.11), (S0.13), and (S0.14) yields∥∥∥∥∂ℓn(β)∂β

∥∥∥∥
= O

(
m−d−1/2
n

)
+Op

√ log(qmn) + n−1+2α∗m1−2α∗
n (log(qmn))2/α

n
+

1

nmn

 . (S0.15)

We now show that,∥∥∥∥∥∥
(
−1 + ν

nσ2

n∑
i=1

{ ν

σ2
f νi × (Yi − Z0T

i β)2Z0
i Z

0T

i − f νi Z
0
i Z

0T

i

})−1
∥∥∥∥∥∥ = O (mn) . (S0.16)
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From (S0.12), we write
n∑
i=1

1 + ν

n

{
1

σ2
f νi ×

[
1− ν(Yi − Z0T

i β)2

σ2

]}
Z0
i Z

0T

i .

First, observe that
[
1− ν(Yi−Z0T

i β)2

σ2

]
≤ exp{−ν(Yi−Z0T

i β)2

2σ2 } ≤ 1 for i = 1, . . . , n. Consequently f νi ×[
1− ν(Yi−Z0T

i β)2

σ2

]
≤ 1/σ

√
2π. Further, since exp{ν(Yi−Z

0T

i β)2

2σ2 } ≥
[
1− ν(Yi−Z0T

i β)2

σ2

]
, we have the following

lower bound

f νi

[
1− ν(Yi − Z0T

i β)2

σ2

]
≥

[
1− ν(Yi − Z0T

i β)2

σ2

]2
/σ

√
2π,

which is always positive and takes zero when (Yi − Z0T

i β)2 = σ2/ν. Together, we have,

1/σ
√
2π ≥ f νi ×

[
1− ν(Yi − Z0T

i β)2

σ2

]
≥

[
1− ν(Yi − Z0T

i β)2

σ2

]2
/σ

√
2π, (S0.17)

which concludes that the weights are positive and bounded. Therefore, by Lemma 3 in [4], we prove
(S0.16). Consequently, the result (21) follows from (S0.15) and (S0.16).

Proof of Theorem 2. The main idea of the proof is similar to Theorem 3 in [2]. However, the details
are more involved due to the group penalty and the basis functions. Without loss of generality, we
assume the first q components, gj, j = 1, . . . , q, are nonzero. Let β = (β(1)T , β(2)T )T ∈ Rpmn+1 with
β(1) = (µ, βT1 , . . . , β

T
q )

T and β(2) = 0.

Step1: Consistency in the q−dimensional space:
Let Z

(1)
i = (1, B11(Xi1), . . . , Bmnq(Xiq))

T and
Z

(2)
i = (B1q+1(Xiq+1), . . . , Bmnp(Xip))

T be the basis functions corresponding to first q nonzero functions
(including intercept) and p − q zero functions, respectively. First, we constrain the likelihood Lν to
qmn + 1 dimensional subspace as the following:

Lν(δ) = −ℓn(δ)−
q∑
j=1

Pλ(∥δj∥2), (S0.18)

where δ = (1, δT1 , . . . , δ
T
q )

T with δj = (δ1j, . . . , δmnj)
T and ℓn is defined in (S0.10). Note that we take

negative signs in Lν(δ) so that we now maximize the likelihood instead of minimizing Lν in (6). We
show that there exists a local maximizer β̂(1) of Lν(δ) such that ∥β̂(1) − β(1)∥ = Op(γn). Define an event

Hn =

{
max
δ∈∂Nτ

Lν(δ) < Lν(β
(1))

}
, (S0.19)

where ∂Nτ is the boundary of the closed set

Nτ = {δ ∈ Rqmn+1 : ∥δ − β(1)∥ ≤ γnτ},
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and τ ∈ (0,∞) and rate γn. Note that on event, Hn there exists a local maximizer β̂(1) of Lν(δ) in Nτ .
Therefore, it is sufficient to show that P (Hn) approaches to 1 as n → ∞.

By Taylor expansion, for any δ ∈ Nτ , we have

Lν(δ)− Lν(β
(1)) = (δ − β(1))TV − 1

2
(δ − β(1))TD(δ − β(1)), (S0.20)

where

V := ∇Lν(β
(1)) =

1 + ν

nσ2

n∑
i=1

f νi · (Yi − Z
(1)T

i β(1))Z
(1)
i − P λ(β

(1)),

with P λ(β
(1)) = (P ′

λ(∥β1∥2)(D1β1)
T/∥β1∥2, . . . , P ′

λ(∥βq∥2)(Dqβq)
T/∥βq∥2)T where P ′

λ is the derivative of
the penalty function, and

D := −∇2Lν(β
∗) =

n∑
i=1

1 + ν

n

{
1

σ2
f νi

[
1− ν(Yi − Z

(1)T

i β∗)2

σ2

]}
Z

(1)
i Z

(1)T

i

+ diag
{
P ′
λ(∥β∗

j ∥2)
∥β∗

j ∥2
Dj +

[
P

′′

λ (∥β∗
j ∥2)

∥β∗
j ∥22

−
P ′
λ(∥β∗

j ∥2)
∥β∗

j ∥32

]
Djβ

∗
jβ

∗T
j Dj

}
, (S0.21)

where β∗ is on the line segment joining β(1) and δ. We note that the matrix Dj is positive definite, and
its eigenvalues are of order m−1

n . For any δ ∈ ∂Nτ , we have ∥δ − β(1)∥ = γnτ and β∗ ∈ Nτ . By doing
calculations analogous to (S0.16), we obtain from (S0.21) that

λmin(D) ≥ C21(m
−1
n − λκ0m

−2
n ). (S0.22)

Thus by (S0.20), we have

max
δ∈∂Nτ

Lν(δ)− Lν(β
(1)) ≤ γnτ [∥V ∥ − C21γnτ(m

−1
n − λκ0m

−2
n )],

which, together with Markov’s inequality, gives

P (Hn) ≥ P
(
∥V ∥2 < C2

21γ
2
nτ

2(m−1
n − λκ0m

−2
n )2

)
≥ 1− E∥V ∥2

C2
21γ

2
nτ

2(m−1
n − λκ0m−2

n )2
.

Calculations analogous to (S0.15) in Theorem 1 yield that

E∥V ∥2 ≤ E

∥∥∥∥∥1 + ν

nσ2

n∑
i=1

f νi · (Yi − Z
(1)T

i β(1))Z
(1)
i

∥∥∥∥∥
2

+ ∥P λ(β
(1))∥2

≤ O

(
m−2d−1
n +

log(pmn)

n
+

m1−2α∗
n (log(pmn))

2/α

n2−2α∗ +
1

nmn

)
+O(qλ2m−2

n ).

Consequently,

P (Hn) ≥ 1−
O
(
m−2d+1
n + m2

n log(pmn)
n

+ m3−2α∗
n (log(pmn))2/α

n2−2α∗ + mn

n
+ qλ2

)
C2

21γ
2
nτ

2(1− λκ0m−1
n )2

.
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By choosing γ2
n = m−2d+1

n + m2
n log(pmn)

n
+ m3−2α∗

n (log(pmn))2/α

n2−2α∗ + mn

n
+qλ2 and based on λκ0 = o(1) (condition

(A5)), we have

P (Hn) ≥ 1− o(τ−2).

It proves
q∑
j=1

∥β̂j − βj∥2 =Op

(
m2
n log(pmn)

n
+

m3−2α∗
n (log(pmn))

2/α

n2−2α∗ +
mn

n

)
+O

(
m−2d+1
n + qλ2

)
.

Step 2: Sparsity:
From Step 1 we have β̂(1) ∈ Rqmn+1 is a local maximizer of Lν on Nτ . We now prove that β̂ =

(β̂(1)T , 0T )T is indeed a maximizer of −Lν on the space Rpmn+1. Let ξ = (1, ξT1 , . . . , ξ
T
p )

T =
∑n

i=1 f
ν
i ·

(Yi − ZT
i β)Zi. Let β̂S0 = β̂(1) and β̂Sc

0
= β̂(2) = 0. Consider the event,

E2 =
{
∥ξSc

0
∥∞ ≤ un

}
.

consider

∥ξSc
0
∥∞ = ∥

n∑
i=1

f νi · (Yi − ZT
i β)Z

(2)
i ∥∞

≤ n1/2m−1/2
n · max

1≤j≤p,1≤k≤mn

|n−1/2m1/2
n

n∑
i=1

(Yi − ZT
i β)Bkj(Xij)|

= n1/2m−1/2
n · Tn,

where Tn = max
1≤j≤p,1≤k≤mn

|n−1/2m
1/2
n

∑n
i=1(Yi − ZT

i β)Bkj(Xij)|. We have,

P (E2) ≥ P

(
Tn ≤ un

(n/mn)1/2

)
≥ 1− ETn

un
(n/mn)

1/2

≥ 1−

(√
log(pmn) + n−1/2+α∗

m
1/2−α∗
n (log(pmn))

1/α
)
(n/mn)

1/2

un
,

which follows from Lemma 2 in [4] after ignoring the small spline approximation error. Choosing
un = n/mn, we obtain

P (E2) ≥ 1−

(√
mn log(pmn)

n
+

m1−α∗
n (log(pmn))

1/α

n1−α∗

)
→ 1,
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under the assumption that mn log(pmn)/n → 0 as n → ∞. Following Theorem 2 in [2], it is sufficient
to show that,

∥W∥∞ := n−1∥
n∑
i=1

f νi · (Yi − ZT
i (−β + β̂ + β))Z

(2)
i ∥∞

≤ n−1

[
∥ξSc

0
∥∞ + ∥

n∑
i=1

f νi · (ZT
i (β̂ − β))Z

(2)
i ∥∞

]

≤ o(1) + n−1∥
n∑
i=1

ZT
i (β̂ − β)Z

(2)
i ∥

≤ o(1) + n−1∥
n∑
i=1

Z
(1)T

i (β̂(1) − β(1))Z
(2)
i ∥

= o(1) + O(m−1
n )∥(β̂(1) − β(1))∥

= o(1),

which concludes the proof.
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