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The supplementary material contains the proofs of Lemma 1 and Theorems 1 and 2. In the following
lemma, we derive the maximal inequality for the product terms involving spline function and error. The
proof requires results involving the Generalized Bernstein-Orlicz (GBO) norm. For completeness, we
define it here. The function ¥,  is defined in [5], with its inverse expressed as

U o= /log(1 +t) + L(log(1 +1))"/* for all t > 0,
for fixed o > 0 and L > 0. The GBO norm of a random variable X is then
[ Xlw, ,, =inf{n >0 : E[¥.r(|X|/n)] <1}

Lemma 1. Suppose assumptions (A1)-(A4) hold. Let

Ty =n~"’m)/*> " B(Xy)e, 1<k<m,1<j<p,
i=1
and T,, = max  |Tj;|. Let o* = max{0,%2*}. When m,log(pm,)/n — 0 as n — oo, we obtain

=>J PS>

the following bound:
E (1] = (vIoa(oma) +n ml/*= (log(pm, )" ) O(1).

Proof. From Remark A.1 in [5], conditional on X;;’s, we obtain that

E[ max |Tkj||{Xij,1§j§p,1§i§n}}

=J =Mt x>

< n_l/zm}/Q max | Tjllw. . Ca {\/log(pmn) + L(log(pmn))l/o‘} , (S0.1)

=J Pt =Shv >

for some constant C,, depending on «. Similarly, the application of Theorem 3.1 in [5] yields that
1 Tijllw,, . < 2eCi(a)]b]2, (S0.2)

where C(a) is some constant involving « for which the explicit expression is given in Theorem 3.1 of
n 1/2
B, M1l = (21 By (Xi)eillf,) ", and

L(a) = ave T lIble, if o < 1,
V2[[b]l2 dellb||»/Ci (), if a>1,



with @ is the Holder conjugate satisfying 1/a + 1/w = 1. Therefore, combination of (S0.1) and (S0.2)
yields

E max Tyl | {Xi;,1 <j<p,1<i<n}

=J Pt v >

<2eCoCi(a)n™?m)?  max  [|b]lay/log(pm,,)

=JPhAiShv >

Di(a)  max_ [blla(log(pma)Ve it a <1,

" 1 Dy(a) max ||bl|o(og(pm,))* ifa>1, (503)
j

where Di(a) = v2eC1 () Cod"/* and Dy(a) = v/2C, 41+,

Let s,; = max blla, Spo = max b||so, and s,3 = max b||o. It follows that
1

=>J i S > =>JSPhiShv > =>J i S

Pt S >

max |1}, |1
< 2eC,Cy(a)n?m2E (s,1) /log(pm,, )

4o Y22 {Dl(a)E (sn2) (log(pma))V/* if o < 1,

n DQ(Q)E (SnS) (10g(pmn))l/a if o Z 1. (SO4>

We now derive the upper bound for the E(s,3). From Theorem 4.2 of Chapter 5 in [1], we obtain that
- w W 2 —
Y E{B5(Xy) —EBZ(Xiy)} < Canm,',  [Bip(Xy)| <2, (50.5)
i=1

and

n

max Y EBF(X;) < Canm,,". (S0.6)

77777 i=1

< \/2Csnm; 1 log(2pmy,) 4 2% log(2pm,,). (50.7)

By Lemma A.1 of [3] and (S0.5) we obtain

E <1<j<?11a<’i<mn ZIE {Bﬁ(Xij) o EBﬁ(XU)}

=J Pt Shv >

Now, an application of Triangle inequality using (S0.7) and (S0.6) gives

E(s7%) < \/Zanmgl log(2pm.,) + 2% log(2pm,,) + C’4nm;1.

Therefore, using Lyapunov’s inequality, we obtain that, for 1 < w < oo,

1/w
E(sn3) < <\/2C'3nm;1 log(2pm,,) + 2% log(2pm,,) + C’4nm;1> ) (50.8)



Letting w = 2 in (S0.8) yields the corresponding bound for E(s,;). By (S0.5), we can obtain that
E(sp2) < C5. Consequently,

E[T,] < 2eC,Cy(a)n ?ml/? (\/Qanm,—Ll log(2pm.,)

1/2
+ 4log(2pm,,) + Cwm;l) log(pmy,) +n~2m}?
(05D (a)(log(pmn)) if @ <1,
Q) (\/Zanmgl log(2pm,,)

(S0.9)

1/w
+2% log(2pm,,) + C’4nmn1) (log(pmy))V/> if a > 1.

\

Let o = max{0, 21}, When m,log(pm,)/n — 0 as n — oo, the above bound simplifies to the
following bound:

E[T,] = ( log(pmy) +n~ /27" m)/>=" (log(pm.,))/ a) o(1).

]

Proof of Theorem 1. Note that the oracle estimator BO = (Vma i), Al, . ,BS)T € R+ minimizes
the DPD loss function

AT (50.10)
i=1

where V;(-) is defined in (7). We remark that penalization is not required for the oracle model as the
true components are known. Using Taylor expansion, we have

aen(@)‘ _ 96(B)  OLu(P)
ap B=f0 s opopr B=B

—~,

(B8° = B),

where 3 = t3° + (1 —=1t)3, t €[0,1]. Therefore,

Pl _ 82&1(5)
S <8665T

) AG)
s-5) 9P

Let Z? = (1/y/mn, B11(Xi1), ..., Bm,q(Xig))" be the corresponding spline basis for the first ¢ variables.
By straightforward calculations, we have

(%n 1—}- 1% Y T
WA o
and
a2€n ﬁ 1 + v - 14 v T— T y T
aﬁa(ﬁT) 5y no® 2 {ﬁfi < (Yi— 2} B2}z — f72)Z) } (S0.12)
= i=1




First, we find the bound for (S0.11). Let &; = > 7_; g;(X;) — gn;j(Xi). Observe that

H 1+szy ZOTﬁ)ZZQ

no?

1
:H +”Zf“ (5. + )

1+v R

From Fact 1 in (19) and Lemma 1 in [4], we have max &; < Ciagm, ¢ for some constant C}5. Using the
fact that max f/ <1, we obtain

no? 4
=1

1+v V
H zf e

no?
41 1 1 &
< Cragmyi—" ZZO A qzt
n
=1
1+ y 1 —|— v
—d-1/2t TV 0
= Coqm, p Z A (S0.13)

where the second step follows because of n=! >"" | By;(X;;) =0, for 1 <k <m,, 1 < j < ¢. Consider
1< i
S
n <

2 . " 2
S5 (A ) + (=3

7=1 k=1
q m1/2 n 2 1 n 2
< ‘ iBij (Xij i
= 1<j<qiSh<man <n1/2 — €i B J)) + (n\/mn ;E>
= 0,(1)(g/n) (log(gmy) + n~ "2 ml =2 (log(qm,))¥®) + O,(1/nm,,), (S0.14)

where the first term in the last step follows from Lemma 1 and the second term follows from Condition

(A4). Combination of (S0.11), (S0.13), and (S0.14) yields

9L, (B)
op
1 —1+2a* ¢ 1-2a* (] 2/a 1
=0 (m,""?) + 0, \/Og(qm"Hn Zl” (log(gmn)) . (S0.15)
We now show that,
1+ v — !
_ v 0T 7% 0 OT_ v O QT _
( o2 Zl{ SfEx (Y= 20 B2 7Y — 127, }) O (my,) . (S0.16)



From (S0.12), we write

n 2
=1

" 1+V{ [1_ (Yi—Z?TB)Q

T

} 707"
1 1 *
Y;,—Z9" B)?

First, observe that [1 — V(_O—Q} < exp{— u} < 1fori=1,...,n. Consequently f! x

T —. T—.
1-— —”m*gZ; ﬁ)z] < 1/o+/27. Further, since exp{%} > [ - M] , we have the following

o2

lower bound

f [l_vm—z%?] . [1 (Y; - ZOTm] Jov/2m

o2 o2

which is always positive and takes zero when (Y; — Z?TB)Z = 0% /v. Together, we have,

o2

ovar > ¥ x [1 (Y = 20 B)?

> [1— v(Y: UZOTm] JoV2r, (S0.17)

which concludes that the weights are positive and bounded. Therefore, by Lemma 3 in [4], we prove
(S0.16). Consequently, the result (21) follows from (S0.15) and (S0.16). O

Proof of Theorem 2. The main idea of the proof is similar to Theorem 3 in [2]. However, the details
are more involved due to the group penalty and the basis functions. Without loss of generality, we
assume the first ¢ components, ¢;, j = 1,...,¢, are nonzero. Let § = (BT, B@ONT ¢ Remntl with

BV = (u, B, B])" and f®) =

Step1: Consistency in the q—dimensional space:

Let ZY = (1, Bit(Xi1), - - -, Bmnng(Xig))T and
ZZ-(Q) = (B1g11(Xigs1)s - -+ B, p(Xip))T be the basis functions corresponding to first ¢ nonzero functions
(including intercept) and p — ¢ zero functions, respectively. First, we constrain the likelihood L, to
gm, + 1 dimensional subspace as the following:

L,(6) = ~a(8) = > Pr(ld ), (S0.18)

where 0 = (1,07,...,0,)" with 6; = (01j,...,0m,;)" and £, is defined in (S0.10). Note that we take
negative signs in L,(§) so that we now maximize the likelihood instead of minimizing L, in (6). We
show that there exists a local maximizer 3 of L,(d) such that |3V — 8| = O,(v,). Define an event

H, {;gg@(é) < E(ﬁ(”)} , (30.19)

where 0N, is the boundary of the closed set
Ny = {6 e R™ Lo [|0 — B < a7},



and 7 € (0,00) and rate v,. Note that on event, H, there exists a local maximizer 5(1) of L,(8) in N;.
Therefore, it is sufficient to show that P(H,) approaches to 1 as n — oc.
By Taylor expansion, for any § € N,, we have

L(6) = Tu(5®) = (5 — BO)V — £(5 — 69)7D(5 — p), (50.20)
where
_ 1 _
V= VI = Z g (= 205020 —Pa(s®),

with PA(BY) = (PA(I1B1]12) (D180 /1| Bullz, - -, PX(1|Byll2)(DgBy) /11 Byll2)" where P s the derivative of
the penalty function, and

B N "1+v [ 1 , V<Yz — ZZ,(l)Tﬁ*>2 1) ()T
(BB, | [RUs  BUSI]
i lag{ A N R A E ] 4363 } 02

where $* is on the line segment joining 3" and §. We note that the matrix D is positive definite, and
its eigenvalues are of order m_'. For any § € ON,, we have ||6 — 31| = 4,7 and #* € N,. By doing
calculations analogous to (S0.16), we obtain from (S0.21) that

Amin(D) > Cor(my,' — Akom,,?). (50.22)
Thus by (S0.20), we have
max L, (6) — L, (8Y) < 7tV = Corvur(my,t = Akom;, ),

5€ON,
which, together with Markov’s inequality, gives
P(H,) > P (|V|* < C3ypr®(my,

E|[V
C317272(myt — Akomy, )2

m, " — Akom,, 2)2)

>1-—

Calculations analogous to (S0.15) in Theorem 1 yield that

2

+[IPA(BM)?

E|V|*<E

n K3
1 " 1-2a* (] " 2/« 1
<0 (m;Qd—l i og(pm,,) T my (g§§§km ) i > +O(q)\2m;2).
n n nm,,

Consequently,

3—2a

0 (1 4 stk | 120)
- Chyam?(1 = Aromy, 1)2 '




By choosing 72 = m;; %+ 4 ™ loi(p mn) 4 é;ﬁgz(ffn )i a4 g\? and based on Aky = o(1) (condition
(A5)), we have

P(H,) >1—o(r2).

It proves

2‘1: ||B\ — 8|2 =0 m: log(pm,,) i m3~>*" (log(pmn))* + Mn
j il =Yp n n2—20" n
j=1

+ O (m;2d+l + q)\2) )

Step 2: Sparsity: R R

From Step 1 we have () € R *! is a local maximizer of L, on N,. We now prove that 3 =
S(1\T . . . . m n v
(BH7 01T is 1ndeeAd a m/z\lmmlzeerf —LA,, on the space RP™ 1. Let & = (1,&f,...,60)" = >0 f/-
(Y; = ZI'B)Z;. Let Bs, = B and Bse = 5® = 0. Consider the event,

consider
v 2
lesslloo = 1D £ - (Vi = 278) 22|
i—1

< /2,0 -1/2 . “1/2, 1/2 T v

<nmt?e max !y 2(1@ Z]'B) B (Xy)))|

— 22T,
where T, = max  |[n~Y2m)/* 2" (V; — ZTB)By;(X,;)|. We have,

=J Pt =Shv >

ET,
> 1= —"(nfm,)"/?

Un

(+/Togpma) + n=V/2+ mi/> = (log(pm,))/* ) (n/m) 2
>1-—

)
Up

which follows from Lemma 2 in [4] after ignoring the small spline approximation error. Choosing
Up, = n/m,, we obtain

W1 " Ll—a* (] " 1/«
PE) > 1 - < my log(prmn) (Olgi(p*m ) ) Y
n n-—«



under the assumption that m,, log(pm,)/n — 0 as n — oco. Following Theorem 2 in [2], it is sufficient
to show that,

||W||oo.—n-1||2f“ (Y = Z5 (=B + B+ 8) 2|
||£scHoo+HZf”- VAN VA
o(1) +n7| Z ZI(B - 822

)40 Zz (39 =27

= o(1) + (mn )H( — B

= o(1),
which concludes the proof. O
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