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Appendix B contains proofs related to Construction I, Appendix C proofs related to Construction
II, Appendix D proofs related to the extension of Construction I, Appendix E a simulation study on
the proposed estimators, and Appendix F how to adapt the constructions and estimators to the null
sets (−∞, b] and [a, b].

B Proofs Related to Construction I

B.1 Proof of Theorem 2

Recall c̃n (θ) =
∫
xndGθ (x) and define

K†
1 (t, x) =

1

2πζ0

∫ b

a
tdy

∫ 1

−1
exp (−ιtsy)

∞∑
n=0

(ιtsxζ0ã1)
n

ãnn!
ds. (53)

By assumption, c̃n (θ) = ξn (θ) ζ (θ) ãn = ζ0ξn (θ) ãn, where ζ0 ≡ ζ ≡ 1. So, µ (θ) = ξ (θ) ζ (θ) ã1 =
ξ (θ) ζ0ã1 and

ψ1 (t, θ) =

∫
K†

1 (t, x) dGθ (x)

=
1

2πζ0

∫ b

a
tdy

∫ 1

−1
exp (−ιtsy)

∞∑
n=0

(ιtsζ0ã1)
n

ãnn!
c̃n (θ) ds

=
ζ (θ)

2πζ0

∫ b

a
tdy

∫ 1

−1
exp (−ιtsy)

∞∑
n=0

(ιtsζ0ã1)
n

n!
ξn (θ) ds

=
1

2π

∫ b

a
tdy

∫ 1

−1
exp [ιts {µ (θ)− y}] ds.

Since ψ1 is real, ψ1 = E
{
ℜ
(
K†

1

)}
. However,

K1 (t, x) = ℜ
{
K†

1 (t, x)
}

=
1

2πζ0

∫ b

a
tdy

∫ 1

−1

∞∑
n=0

(tsxζ0ã1)
n cos

(
2−1nπ − tsy

)
ãnn!

ds.

Since µ (θ) is smooth and strictly increasing in θ ∈ Θ, a ≤ µ ≤ b if and only if θa ≤ θ ≤ θb. By
Theorem 1, the pair (K,ψ) in (13) is as desired. ⊓⊔

B.2 Proof of Theorem 3

In order the present the proof, we quote Lemma 4 of Chen (2019) as follows: for a fixed σ > 0, let

w̃ (z, x) =
∞∑

n=0

(zx)n

n!Γ (σ + n)
for z, x > 0. (54)

If Z has CDF Gθ from the Gamma family with scale parameter σ, then

E
[
w̃2 (z, Z)

]
≤ C

(
z

1− θ

)3/4−σ

exp

(
4z

1− θ

)
(55)

for positive and sufficiently large z.
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Now we present the arguments. Firstly, we will obtain an upper bound for V {φ̂m (t, z)}. For Gamma
family, ζ (θ) ≡ ζ0 = 1, ã1 = σ and µ (θ) = σξ (θ). Define

w1 (t, x, y) = Γ (σ)

∞∑
n=0

(txσ)n cos
(
2−1nπ − ty

)
n!Γ (n+ σ)

for t ≥ 0 and x > 0,

and set S1,m (t, y) = m−1
∑m

i=1 [w1 (t, zi, y)− E {w1 (t, zi, y)}]. Recall ãn =
Γ (n+σ)
Γ (σ)

. Then

K1 (t, x) =
1

2π

∫ b

a
tdy

∫ 1

−1
w1 (ts, x, y) ds.

Define Ṽ1,m = V {φ̂1,m (t, z)}, where φ̂1,m (t, z) = m−1
∑m

i=1K1 (t, zi) and φ1,m (t,θ) = E {φ̂1,m (t, z)}.

Then, applying Hölder’s inequality to
∫ 1
−1 |S1,m (ts, y)| ds and then to

∫ b
a dy

[(∫ 1
−1 |S1,m (ts, y)|2 ds

)1/2]
,

Ṽ1,m = E

[{
1

2π

∫ b

a
tdy

∫ 1

−1
S1,m (ts, y) ds

}2
]

≤
t2

4π2
E

{∫ b

a
dy

[
√
2

(∫ 1

−1
|S1,m (ts, y)|2 ds

)1/2
]}2


=

t2

2π2
E

{∫ b

a

(∫ 1

−1
|S1,m (ts, y)|2 ds

)1/2

dy

}2


≤
t2

2π2
E
[
(b− a)

∫ b

a

∫ 1

−1
|S1,m (ts, y)|2 dy

]
=

(b− a) t2

2π2
E
{∫ b

a
dy

∫ 1

−1
|S1,m (ts, y)|2 ds

}
,

i.e.,

Ṽ1,m = E

[{
1

2π

∫ b

a
tdy

∫ 1

−1
S1,m (ts, y) ds

}2
]
≤

(b− a) t2

2π2
E
{∫ b

a
dy

∫ 1

−1
|S1,m (ts, y)|2 ds

}
. (56)

Since |w1 (t, x, y)| ≤ Γ (σ) w̃ (tσ, x) uniformly in (t, x, y), the inequality (55) implies, for t > 0 sufficiently
large,

Ṽ1,m ≤ Ct2E
{∫ b

a
dy

∫ 1

−1
|S1,m (ts, y)|2 ds

}
≤
Ct2

m2

m∑
i=1

E
[
w̃2 (tσ, zi)

]
≤
Ct2

m2

m∑
i=1

(
t

1− θi

)3/4−σ

exp

(
4tσ

1− θi

)
≤
Ct2

m
V1,m,

where we recall u3,m = min1≤i≤m {1− θi} and have set

V1,m =
1

m
exp

(
4tσ

u3,m

) m∑
i=1

(
t

1− θi

)3/4−σ

.

Recall for τ ∈ {a, b}

K3,0 (t, x; θτ ) =
Γ (σ)

ζ0

∫
[−1,1]

∞∑
n=0

(−tsx)n cos
{
2−1πn+ tsξ (θτ )

}
n!Γ (n+ σ)

ω (s) ds.

Define φ̂3,0,m (t, z; τ) = m−1
∑m

i=1K3,0 (t, zi; θτ ) and φ3,0,m (t,θ; τ) = E {φ̂3,0,m (t, z; τ)}. Then The-
orem 8 of Chen (2019) implies, for t > 0 sufficiently large,

V {φ̂3,0,m (t, z; τ)} ≤ Cm−1V0,m with V0,m =
1

m
exp

(
4t

u3,m

) m∑
i=1

t3/4−σ

(1− θi)
3/4−σ

.

So, for t > 0 sufficiently large,

V {φ̂m (t, z)} ≤ Cm−1V0,m + Ct2m−1V1,m ≤ Cm−1
(
1 + t2

)
Ṽ ∗
1,m, (57)
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where

Ṽ ∗
1,m =

1

m
exp

(
4tmax {σ, 1}

u3,m

) m∑
i=1

(
t

1− θi

)3/4−σ

. (58)

Secondly, we provide a uniform consistency class. If σ ≥ 3/4, then (58) induces

Ṽ ∗
1,m ≤ t3/4−σ exp

(
4max {σ, 1} t

u3,m

)
∥1− θ∥σ−3/4

∞ (59)

for t > 0 sufficiently large, where ∥1− θ∥∞ = max1≤i≤m (1− θi). Let ε > 0 be a constant and set

tm = (4max {σ, 1})−1 u3,mγ lnm for any fixed γ ∈ (0, 1). Then, (57) and (59) imply, for all m such
that tm is sufficiently large,

Pr

{
|φ̂m (tm, z)− φm (tm,θ)|

π1,m
≥ ε

}
≤
C ∥1− θ∥σ−3/4

∞
ε2m1−γπ2

1,m

(u3,m lnm)11/4−σ . (60)

Note that γ = 1 can be set when σ > 11/4 since limm→∞ (lnm)11/4−σ = 0 for all such σ. In contrast,
if σ ≤ 3/4, then (58) implies

Ṽ ∗
1,m ≤

(
t

u3,m

)3/4−σ

exp

(
4t

u3,m

)
for all t > 0 sufficiently large. Set tm = 4−1u3,mγ lnm for any fixed γ ∈ (0, 1). Then, for all m such
that tm is sufficiently large

Pr

{
|φ̂m (tm, z)− φm (tm,θ)|

π1,m
≥ ε

}
≤
C (lnm)11/4−σ u23,m

ε2m1−γπ2
1,m

. (61)

To determine a uniform consistency class, we only need to incorporate the speed of convergence of
φm (t,µ) to π1,m. Recall for τ ∈ {a, b}

ψ3,0 (t, θ; θτ ) =

∫
[−1,1]

cos [ts {ξ (θτ )− ξ (θ)}]ω (s) ds,

which is exactly

ψ̃1,0

(
t, µ;µ′

)
=

∫
[−1,1]

ω (s) cos
{
tsσ−1

(
µ− µ′

)}
ds

that is defined by (44) (in Lemma 5) but evaluated at µ′ = τ since ξ (θ) = (1− θ)−1 and µ (θ) =
σ (1− θ)−1 = σξ (θ). Recall ũ3,m = minτ∈{a,b} min{j:θj ̸=θτ} |ξ (θτ )− ξ (θi)|,

ψ1 (t, θ) =

∫
K1 (t, x) dGθ (x) =

1

π

∫ (µ(θ)−a)t

(µ(θ)−b)t

sin y

y
dy,

and um = minτ∈{a,b} min{j:µj ̸=τ} |µj − τ |, the last of which is defined in Lemma 5. Noticing µi =

µ (θi) , i = 1, . . . ,m, we have um = σũ3,m. Due to the differentiable, monotonic, bijection, µ (θ) =

σ (1− θ)−1, between the mean µ = µ (θ) and natural parameter θ = θ (µ) for the Gamma family,
Lemma 5 implies, when tum = tσũ3,m ≥ 2 and t (b− a) ≥ 2,∣∣∣∣φm (t,θ)

π1,m
− 1

∣∣∣∣ ≤ C

(
1

tπ1,m
+

1

tũ3,mπ1,m

)
for tσũ3,m ≥ 2. (62)

So, π−1
1,mφm (tm,θ) → 1 if t−1

m

(
1 + ũ−1

3,m

)
= o (π1,m). Therefore, by (60) a uniform consistency class

when σ ≥ 3/4 is

Q (F) =

 tm = 4−1(max {σ, 1})−1γu3,m lnm, t−1
m

(
1 + ũ−1

3,m

)
= o (π1,m) ,

tm → ∞, ∥1− θ∥σ−3/4
∞ t

11/4−σ
m = o

(
m1−γπ2

1,m

) 
for each γ ∈ (0, 1), for which γ = 1 can be set when σ > 11/4, and by (61) a uniform consistency class
when σ ≤ 3/4 is

Q (F) =

 tm = 4−1γu3,m lnm, t−1
m

(
1 + ũ−1

3,m

)
= o (π1,m) ,

tm → ∞, (lnm)11/4−σ u23,m = o
(
m1−γπ2

1,m

) 
for each γ ∈ (0, 1). ⊓⊔
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C Proofs Related to Construction II

C.1 Proof of Theorem 4

Recall c̃n (θ) =
∫
xndGθ (x) = ζ0ξn (θ) ãn for the constant ζ0 = 1 and µ (θ) = c̃1. Set

K†
4,0 (t, x) =

1

2πζ0

∫ t

0
dy

∫ 1

−1
exp (−ιysb)

∞∑
n=0

(ιys)n (ζ0ã1x)
n+1

ãn+1n!
ds.

Then

K†
4,0 (t, x) =

1

2πζ0

∫ 1

0
tdy

∫ 1

−1
exp (−ιtysb)

∞∑
n=0

(ιtys)n (ζ0ã1x)
n+1

ãn+1n!
ds. (63)

Further, ∫
K†

4,0 (t, x) dGθ (x) =
ζ (θ)

2πζ0

∫ t

0
dy

∫ 1

−1
exp (−ιysb)

∞∑
n=0

(ιys)n

n!
(ζ0ã1)

n+1 ξn+1 (θ) ds

=
1

2π

∫ t

0
µ (θ) dy

∫ 1

−1
exp (−ιysb) exp (ιysµ (θ)) ds

=
1

2π

∫ t

0
µ (θ) dy

∫ 1

−1
exp [ιys {µ (θ)− b}] ds.

On the other hand, set

K†
4,1 (t, x) = −

1

2πζ0

∫ t

0
dy

∫ 1

−1
b exp (−ιysb)

∞∑
n=0

(ιys)n (ζ0ã1x)
n

ãnn!
ds.

Then

K†
4,1 (t, x) = −

1

2πζ0

∫ 1

0
tdy

∫ 1

−1
b exp (−ιtysb)

∞∑
n=0

(ιtys)n (ζ0ã1x)
n

ãnn!
ds. (64)

Further, ∫
K†

4,1 (t, x) dGθ (x) = −
bζ (θ)

2πζ0

∫ t

0
dy

∫ 1

−1
exp (−ιysb)

∞∑
n=0

(ιys)n

n!
(ζ0ã1)

n ξn (θ) ds

= −
b

2π

∫ t

0
dy

∫ 1

−1
exp (−ιysb) exp (ιysµ (θ)) ds

= −
b

2π

∫ t

0
dy

∫ 1

−1
exp [ιys {µ (θ)− b}] ds.

Set K†
1 (t, x) = K†

4,0 (t, x) +K†
4,1 (t, x). Then

K†
1 (t, x) =

1

2πζ0

∫ 1

0
tdy

∫ 1

−1
exp (−ιtysb)

∞∑
n=0

(ιtys)n (ζ0ã1x)
n

n!

(
ζ0ã1x

ãn+1
−

b

ãn

)
ds.

and

ψ1 (t, θ) =

∫
K†

1 (t, x) dGθ (x) =
1

2π

∫ t

0
{µ (θ)− b} dy

∫ 1

−1
exp [ιys {µ (θ)− b}] ds.

Since ψ1 (t, θ) is real-valued, we also have ψ1 (t, θ) =
∫
K1 (t, x) dGθ (x), where

K1 (t, x) = ℜ
{
K†

1 (t, x)
}

=
1

2πζ0

∫ 1

0
tdy

∫ 1

−1

∞∑
n=0

cos
(
2−1πn− tysb

) (tys)n (ζ0ã1x)
n

n!

(
ζ0ã1x

ãn+1
−

b

ãn

)
ds.

Now set K (t, x) = 2−1 −K1 (t, x)− 2−1K3,0 (t, x; θb) with

K3,0 (t, x; θb) =
1

ζ0

∫
[−1,1]

∞∑
n=0

(−tsx)n cos
{

π
2
n+ tsξ (θb)

}
ãnn!

ω (s) ds
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given by Theorem 1. Then

ψ (t, θ) =

∫
K (t, x) dGθ (x) = 2−1 −

∫ t

0
{µ (θ)− b} dy

∫ 1

−1
exp [ιys {µ (θ)− b}] ds

− 2−1

∫
[−1,1]

cos [ts {ξ (θb)− ξ (θ)}]ω (s) ds.

By Theorem 1 the pair (K,ψ) in (18) is as desired. ⊓⊔

C.2 Proof of Theorem 5

We need the following:

Lemma 8 For a fixed σ > 0, let

w̃2 (t, x) = Γ (σ)
∞∑

n=0

tn

n!

xn+1

Γ (σ + n+ 1)
for t, x > 0.

If Z has CDF Gθ from the Gamma family with scale parameter σ, then

E
[
w̃2

2 (z, Z)
]
≤

Cz3/4−σ

(1− θ)11/4−σ
exp

(
8z/

√
2

1− θ

)
(65)

for positive and sufficiently large z.

The proof of Lemma 8 is provided in Section C.3. Now we provide the arguments. First, we obtain
an upper bound on V {φ̂m (t, z)}. Note that ζ0 = 1 and ã1 = σ. For y ∈ [0, 1] and t, x > 0, define

w3,1 (t, x, y) = Γ (σ)

∞∑
n=0

cos
(
2−1πn− tyb

) (ty)n
n!

(σx)n+1

Γ (σ + n+ 1)

and

w3,2 (t, x, y) = Γ (σ)

∞∑
n=0

cos
(
2−1πn− tyb

) (ty)n (σx)n

n!Γ (σ + n)
.

Then, uniformly for s ∈ [−1, 1] and y ∈ [0, 1],

|w3,1 (ts, x, y)| ≤ w̃3,1 (tσ, x) = σΓ (σ)
∞∑

n=0

|tσ|n

n!

|x|n+1

Γ (σ + n+ 1)
(66)

and

|w3,2 (ts, x, y)| ≤ w̃3,2 (tσ, x) = Γ (σ)

∞∑
n=0

|tσ|n |x|n

n!Γ (σ + n)
. (67)

Notice ãn = Γ (n+ σ) /Γ (σ). Recall the functions K†
4,0 (t, x) and K†

4,1 (t, x) defined by (63) and (64)

in the proof of Theorem 4 such that K1 (t, x) = ℜ
{
K†

4,0 (t, x)
}

+ ℜ
{
K†

4,1 (t, x)
}
. Let K4,0 (t, x) =

ℜ
{
K†

4,0 (t, x)
}

and K4,1 (t, x) = ℜ
{
K†

4,1 (t, x)
}
. Then

K4,0 (t, x) =
1

2π

∫ 1

0
tdy

∫ 1

−1
w3,1 (ts, x, y) dy

and

K4,1 (t, x) =
−b
2π

∫ 1

0
tdy

∫ 1

−1
w3,2 (ts, x, y) dy.

Set Ŝ3,m,1 (ts, y, z) = m−1
∑m

i=1 w3,1 (ts, zi, y), Ŝ3,m,2 (ts, y, z) = −bm−1
∑m

i=1 w3,2 (ts, zi, y) and

Ŝ3,m (ts, y, z) = Ŝ3,m,1 (ts, y, z)+Ŝ3,m,2 (ts, y, z) .

Recall φ̂1,m (t, z) = m−1
∑m

i=1K1 (t, zi) and φ1,m (t,θ) = m−1
∑m

i=1 E {K1 (t, zi)}. Then
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φ̂1,m (t, z) = m−1
m∑
i=1

K1 (t, zi) = m−1
m∑
i=1

K4,0 (t, zi) +m−1
m∑
i=1

K4,1 (t, zi)

= m−1
m∑
i=1

1

2π

∫ 1

0
tdy

∫ 1

−1
w3,1 (ts, zi, y) dy +m−1

m∑
i=1

−b
2π

∫ 1

0
tdy

∫ 1

−1
w3,2 (ts, x, y) dy

=
t

2π

∫ 1

0
dy

∫ 1

−1

[
Ŝ3,m,1 (ts, y, z) dy + Ŝ3,m,2 (ts, y, z)

]
ds

=
t

2π

∫ 1

0
dy

∫ 1

−1
Ŝ3,m (ts, y, z) ds,

and setting ∆3,m,j (ts, y, z) = Ŝ3,m,j (ts, y, z)− E
(
Ŝ3,m,j (ts, y, z)

)
, j = 1, 2

∆3,m (ts, y, z) = Ŝ3,m (ts, y, z)− E
(
Ŝ3,m (ts, y, z)

)
gives

φ̂1,m (t, z)− φ1,m (t,θ) =
t

2π

∫ 1

0
dy

∫ 1

−1
∆3,m,1 (ts, y, z) ds+

t

2π

∫ 1

0
dy

∫ 1

−1
∆3,m,2 (ts, y, z) ds

=
t

2π

∫ 1

0
dy

∫ 1

−1
∆3,m (ts, y, z) ds.

Therefore, using the same technique that obtained (56), we get

V {φ̂1,m (t, z)} ≤
t2

2π2
E
(∫ 1

0
dy

∫ 1

−1
∆2

3,m (ts, y, z) ds

)
=

t2

2π2

∫ 1

0
dy

∫ 1

−1
E
(
∆2

3,m (ts, y, z)
)
ds

≤
t2

π2

∫ 1

0
dy

∫ 1

−1

[
E
(
∆2

3,m,1 (ts, y, z)
)
+ E

(
∆2

3,m,2 (ts, y, z)
)]
ds, (68)

where to obtain the first inequality in (68) we have used the fact (due to Hõlder’s inequality)

E

[(∫ b1

a1

dy

∫ b2

a2

|X (s, y)| ds
)2
]

≤ E

(∫ b1

a1

dy
√
b2 − a2

[∫ b2

a2

|X (s, y)|2 ds
]1/2)2


≤
∏2

j=1
(bj − aj)E

(∫ b1

a1

dy

∫ b2

a2

|X (s, y)|2 ds
)

=
∏2

j=1
(bj − aj)

(∫ b1

a1

dy

∫ b2

a2

E
(
|X (s, y)|2

)
ds

)
(69)

for a random variable X (s, y) with parameters (s, y) and finite constants aj < bj with j = 1, 2, and to

obtain the second inequality in (68) we have used the fact (a∗ + b∗)
2 ≤ 2a2∗ + 2b2∗ for a∗, b∗ ∈ R. Note

that V
(
Ŝ3,m,j (ts, y, z)

)
= E

(
∆2

3,m,j (ts, y, z)
)

for j = 1, 2. By the inequalities (66), (67), (55) and

Lemma 8, we have, for t > 0 sufficiently large,

V
(
Ŝ3,m,1 (ts, y, z)

)
≤

1

m2

m∑
i=1

E
{
w̃2

3,1 (tσ, zi)
}
≤

C

m2

m∑
i=1

t3/4−σ

(1− θi)
11/4−σ

exp

(
8σt/

√
2

1− θi

)

≤ V3,1,m =
C

m2
exp

(
8σt/

√
2

u3,m

)
m∑
i=1

t3/4−σ

(1− θi)
11/4−σ

(70)

and

V
(
Ŝ3,m,2 (ts, y, z)

)
≤

b2

m2

m∑
i=1

E
{
w̃2

3,2 (tσ, zi)
}
≤

b2

m2

m∑
i=1

t3/4−σ

(1− θi)
3/4−σ

exp

(
4σt

1− θi

)

≤ V3,2,m =
C

m2
exp

(
4σt

u3,m

) m∑
i=1

t3/4−σ

(1− θi)
3/4−σ

, (71)
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where u3,m = min1≤i≤m {1− θi}. Combining (68), (70) and (71) gives, for t > 0 sufficiently large,

V {φ̂1,m (t, z)} ≤
Ct11/4−σ

m2
exp

(
4
√
2σt

u3,m

)
m∑
i=1

l (θi, σ)

where
l (θi, σ) = max

{
(1− θi)

σ−11/4 , (1− θi)
σ−3/4

}
. (72)

Recall

K3,0 (t, x; θb) =
Γ (σ)

ζ0

∫
[−1,1]

∞∑
n=0

(−tsx)n cos
{
2−1πn+ tsξ (θb)

}
n!Γ (n+ σ)

ω (s) ds.

and φ̂3,0,m (t, z; θb) = m−1
∑m

i=1K3,0 (t, zi; θb) and φ3,0,m (t,θ; τ) = E {φ̂3,0,m (t, z; θb)}. Then Theo-
rem 8 of Chen (2019) asserts, for t > 0 sufficiently large,

V {φ̂3,0,m (t, z; θb)} ≤
C

m2
exp

(
4t

u3,m

) m∑
i=1

t3/4−σ

(1− θi)
3/4−σ

.

Recall K (t, x) = 2−1 −K1 (t, x)− 2−1K3,0 (t, x; θb). Then, for t > 0 sufficiently large,

V {φ̂m (t, z)} ≤ 2V {φ̂1,m (t, z)}+ 2−1V {φ̂3,0,m (t, z; θb)}

≤ V3,m =
Ct11/4−σ

m2
exp

4tmax
{
1,

√
2σ
}

u3,m

 m∑
i=1

l (θi, σ) , (73)

and

V3,m ≤ V ∗
3,m =

Ct11/4−σ

m2u23,m
exp

4tmax
{
1,

√
2σ
}

u3,m

 m∑
i=1

(1− θi)
σ−3/4 (74)

since l (θi, σ) in (72) is upper bounded by Cu−2
3,m (1− θi)

σ−3/4 regardless of whether lim infm→∞ u3,m =
0 or not.

Secondly, we provide a uniform consistency class. When σ ≥ 3/4, then (73) and (74) imply

V ∗
3,m ≤ V ∗†

3,m =
Ct11/4−σ

mu23,m
exp

4tmax
{
1,

√
2σ
}

u3,m

 ∥1− θ∥σ−3/4
∞ ,

and that setting tm =
(
4max

{
1,

√
2σ
})−1

u3,mγ lnm for any fixed γ ∈ (0, 1) gives

Pr

{∣∣∣∣ φ̂m (tm, z)− φm (tm,θ)

π1,m

∣∣∣∣ ≥ ε

}
≤
Cu

3/4−σ
3,m (lnm)11/4−σ

π2
1,mm

1−γε2
∥1− θ∥σ−3/4

∞ ,

both for t and tm sufficiently large. Note that γ = 1 can be set when σ > 11/4 since limm→∞ (lnm)11/4−σ =
0 for all such σ. In contrast, when σ ≤ 3/4, then (73) and (74) imply

V ∗
3,m ≤ Ṽ ∗∗

3,m =
Ct11/4−σ

mu23,m
exp

4tmax
{
1,

√
2σ
}

u3,m

u
σ−3/4
3,m ,

and that choosing the same sequence tm for any fixed γ ∈ (0, 1) gives

Pr

{∣∣∣∣ φ̂m (tm, z)− φm (tm,θ)

π1,m

∣∣∣∣ ≥ ε

}
≤
C (lnm)11/4−σ

π2
1,mm

1−γε2
,

both for t and tm sufficiently large.
Recall

ψ3,0 (t, θ; θb) =

∫
[−1,1]

cos [ts {ξ (θb)− ξ (θ)}]ω (s) ds,

which is exactly

ψ̃1,0

(
t, µ;µ′

)
=

∫
[−1,1]

ω (s) cos
{
tsσ−1

(
µ− µ′

)}
ds
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that is defined by (44) (in Lemma 5) but evaluated at µ′ = b since ξ (θ) = (1− θ)−1 and µ (θ) =
σ (1− θ)−1 = σξ (θ). Also recall{

ψ (t, θ) = 2−1 − ψ1 (t, θ)− 2−1ψ3,0 (t, θ; θb)

ψ1 (t, θ) =
1
π

∫ t
0

sin{(µ(θ)−b)y}
y

dy
,

ǔ3,m = min{j:θj ̸=θb} |ξ (θb)− ξ (θj)|, and ũm (b) = min{j:µj ̸=b} |µj − b| (the last of which is defined

in Lemma 6), where µi = µ (θi) , i = 1, . . . ,m. We have ũm (b) = σǔ3,m. Due to the differentiable,

monotonic, bijection, µ (θ) = σ (1− θ)−1, between the mean µ = µ (θ) and natural parameter θ = θ (µ)
for the Gamma family, Lemma 6 implies, when tũm (b) = tσǔ3,m ≥ 2,∣∣∣π−1

1,mφm (t,θ)− 1
∣∣∣ ≤ C

tǔ3,mπ1,m
.

So, π−1
1,mφm (tm,θ) → 1 when t−1

m ǔ−1
3,m = o (π1,m). Therefore, a uniform consistency class is

Q (F) =

 tm =
(
4max

{
1,

√
2σ
})−1

u3,mγ lnm, t
−1
m ǔ−1

3,m = o (π1,m) ,

tm → ∞, u
3/4−σ
3,m (lnm)11/4−σ ∥1− θ∥σ−3/4

∞ = o
(
π2
1,mm

1−γ
)


when σ ≥ 3/4 for each γ ∈ (0, 1), for which γ = 1 can be set when σ > 11/4,, and it is

Q (F) =

 tm =
(
4max

{
1,

√
2σ
})−1

u3,mγ lnm, t
−1
m ǔ−1

3,m = o (π1,m) ,

tm → ∞, (lnm)11/4−σ = o
(
π2
1,mm

1−γ
)


when σ ≤ 3/4 for each γ ∈ (0, 1). ⊓⊔

C.3 Proof of Lemma 8

Recall (54), i.e.,

w̃ (z, x) =

∞∑
n=0

(zx)n

n!Γ (σ + n)
for z, x > 0.

From the proof of Lemma 4 of Chen (2019), we have

w̃ (z, x) = (zx)
1
4
−σ

2 exp
(
2
√
zx
) [

1 +O
{
(zx)−1

}]
when zx→ ∞. So, when zx→ ∞,

w̃2 (z, x) = Γ (σ)

∞∑
n=0

zn

n!

xn+1

Γ (σ + n+ 1)

≤ Γ (σ)x (zx)
1
4
−σ

2 exp
(
2
√
zx
) [

1 +O
{
(zx)−1

}]
.

Note fθ (x) ≤ C (1− θ)σ xσ−1 for all θ < 1 and x > 0. Pick a constant A > 0 such that

w̃2 (z, x) ≤ 2Γ (σ)x (zx)
1
4
−σ

2 exp
(
2
√
zx
)

for all zx > A,

and define A1,z =
[
0, Az−1

]
and A2,z =

(
Az−1,∞

)
for each fixed z > 0. Then, w̃ (z, x) ≤ Cezx = O (1)

and w̃2 (z, x) ≤ xΓ (σ) ezx ≤ Cx on the set A1,z . Therefore,∫
A1,z

w̃2
2 (z, x) dGθ (x) ≤ C (1− θ)σ

∫
A1,z

x2xσ−1dx ≤ C (1− θ)σ z−(σ+2). (75)

On the other hand,∫
A2,z

w̃2
2 (z, x) dGθ (x) ≤ C

∫
A2,z

x2 (zx)
1
2
−σ exp

(
4
√
zx
)
dGθ (x)

= C

∫
A2,z

x2 (zx)
1
2
−σ

∞∑
n=0

(
4
√
zx
)n

n!
dGθ (x) = Cz

1
2
−σB3 (z) , (76)
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where

B3 (z) =

∞∑
n=0

4nzn/2

n!
c̃∗
2−1(n+5)

and c̃∗
2−1(n+5)

=

∫
x2

−1(n+5)−σdGθ (x) .

By the formula,

(1− θ)σ

Γ (σ)

∫ ∞

0
xβeθxxσ−1e−xdx =

Γ (β + σ)

Γ (σ)

(1− θ)σ

(1− θ)β+σ
for α, β > 0,

we have

c̃∗
2−1(n+5)

=
Γ
(
2−1n+ 2−1 × 5

)
Γ (σ)

(1− θ)σ− 5
2

(1− θ)2
−1n

.

By Theorem 1 of Karatsuba (2001) that implies “Ramanujan’s double inequality” as(
8x3 + 4x2 + x+

1

100

)1/6

<
Γ (x+ 1)
√
π
(
x
e

)x <

(
8x3 + 4x2 + x+

1

30

)1/6

for x ≥ 1

and which implies Stirling’s formula,

Γ
(
n+5
2

)
n!

≤ C

√
π (n+ 3)

(
n+3
2

)n+3
2

e
n+3
2

√
2πn

(
n
e

)n ≤ Ce
n
2 2−

n
2
(n+ 3)n/2

nn/2

(n+ 3)3/2

nn/2

≤ Ce
n
2 2−

n
2
(n+ 3)7/4

nn/2
≤ C2−

n
4

1
√
n!
, ∀n ≥ 1.

Therefore,

B3 (z) ≤ C (1− θ)σ− 5
2

∞∑
n=0

4nzn/22−n/4

(1− θ)n/2

1
√
n!

= C (1− θ)σ− 5
2 Q∗

(
16z/

√
2

1− θ

)
, (77)

where Q∗ (z) =
∑∞

n=0
zn/2
√
n!

. By definition (8.01) and identity (8.07) in Chapter 8 of Olver (1974),

Q∗ (z) =
√
2 (2πz)1/4 exp

(
2−1z

) {
1 +O

(
z−1

)}
. (78)

Combining (76) through (78) gives∫
A2,z

w̃2
2 (z, x) dGθ (x) ≤ C (1− θ)σ− 5

2 z
1
2
−σ

(
z

1− θ

)1/4

exp

(
8z/

√
2

1− θ

)

for all positive and sufficiently large z. Recall (75). Thus, when 1− θ > 0, σ > 0 and z is positive and
sufficiently large,

E
[
w̃2

2 (z, Z)
]
≤
∫
A1,z

w̃2
2 (z, x) dGθ (x) +

∫
A2,z

w̃2
2 (z, x) dGθ (x)

≤ C

{
(1− θ)σ z−(σ+2) +

z3/4−σ

(1− θ)11/4−σ
exp

(
8z/

√
2

1− θ

)}

≤
Cz3/4−σ

(1− θ)11/4−σ
exp

(
8z/

√
2

1− θ

)
.

⊓⊔

D Proofs Related to the Extension

D.1 Proof of Theorem 6

Recall c̃n (θ) =
∫
xndGθ (x) = ζ0ξn (θ) ãn and µ (θ) = ζ0ξ (θ) ã1 and ζ0 = 1. Define

K†
1 (t, x) =

t

2πζ0

∫ b

a
ϕ (y) dy

∫ 1

−1
exp (−ιtsy)

∞∑
n=0

(ιtsxζ0ã1)
n

ãnn!
ds.
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Then,

ψ1 (t, θ) =

∫
K†

1 (t, x) dGθ (x)

=
t

2πζ0

∫ 1

−1
ϕ̂ (ts)

∞∑
n=0

(ιts)n

ãnn!
(ζ0ã1)

n c̃n (θ) ds

=
t

2π

∫ b

a
ϕ (y) dy

∫ 1

−1
exp (−ιtsy)

∞∑
n=0

(ιts)n

n!
µn (θ) ds

=
t

2π

∫ b

a
ϕ (y) dy

∫ 1

−1
exp [ιts {µ (θ)− y}] ds.

Since ψ1 is real, ψ1 = E
{
ℜ
(
K†

1

)}
. However,

K1 (t, x) = ℜ
{
K†

1 (t, x)
}

=
t

2πζ0

∫ b

a
ϕ (y) dy

∫ 1

−1

∞∑
n=0

(tsxζ0ã1)
n cos

(
2−1nπ − tsy

)
ãnn!

ds.

By Theorem 1, the pair (K,ψ) in (29) is as desired. ⊓⊔

D.2 Proof of Theorem 7

The proof uses almost identical arguments as those for the proof of Theorem 3. Take t > 0. Recall

K1 (t, x) =
t

2π

∫ b

a
ϕ (y) dy

∫ 1

−1

∞∑
n=0

(tsxã1)
n cos

(
2−1nπ − tsy

)
ãnn!

ds

with ã1 = σ and ãn = Γ (n+ σ) /Γ (σ) and

ψ1 (t, θ) =

∫
K1 (t, x) dGθ (x) = Dϕ (t, µ (θ) ; a, b) =

1

π

∫ b

a

sin {(µ (θ)− y) t}
µ (θ)− y

ϕ (y) dy.

Take t > 0 to be sufficiently large. Recall the following from the proof of Theorem 3:

w1 (t, x, y) = Γ (σ)

∞∑
n=0

(txσ)n cos
(
2−1nπ − ty

)
n!Γ (n+ σ)

for t ≥ 0 and x > 0,

and S1,m (t, y) = m−1
∑m

i=1 [w1 (t, zi, y)− E {w1 (t, zi, y)}]. Then

K1 (t, x) =
t

2π

∫ b

a
ϕ (y) dy

∫ 1

−1
w1 (ts, x, y) ds

and

φ̂1,m (t, z)− E (φ̂1,m (t, z)) =
t

2π

∫ b

a
ϕ (y) dy

∫ 1

−1
S1,m (ts, y) ds.

So,
V {φ̂1,m (t, z)} ≤ ∥ϕ∥2∞ Ṽ1,m, (79)

where as in the proof of Theorem 3

Ṽ1,m = E

[{
1

2π

∫ b

a
tdy

∫ 1

−1
S1,m (ts, y) ds

}2
]
≤
Ct2

m

1

m
exp

(
4tσ

u3,m

) m∑
i=1

(
t

1− θi

)3/4−σ

and u3,m = min1≤i≤m {1− θi}.
From the proof of Theorem 3, recall, for τ ∈ {a, b},

K3,0 (t, x; θτ ) = Γ (σ)

∫
[−1,1]

∞∑
n=0

(−tsx)n cos
{
2−1πn+ tsξ (θτ )

}
n!Γ (n+ σ)

ω (s) ds

and φ̂3,0,m (t, z; τ) = m−1
∑m

i=1K3,0 (t, zi; θτ ). Since{
K (t, x) = K1 (t, x)− 2−1 {ϕ (a)K3,0 (t, x; θa) + ϕ (b)K3,0 (t, x; θb)}
ψ (t, µ) = ψ1 (t, µ)− 2−1 {ϕ (a)ψ3,0 (t, µ; θa) + ϕ (b)ψ3,0 (t, µ; θb)}

,
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then the bound derived in the proof of Theorem 3, i.e.,

V {φ̂3,0,m (t, z; τ)} ≤ Cm−1V0,m with V0,m =
1

m
exp

(
4t

u3,m

) m∑
i=1

t3/4−σ

(1− θi)
3/4−σ

together with (79), implies

V {φ̂m (t, z)} ≤ V †
2,m =

C ∥ϕ∥2∞
(
1 + t2

)
m2

exp

(
4tmax {σ, 1}

u3,m

) m∑
i=1

(
t

1− θi

)3/4−σ

. (80)

So, when σ ≥ 3/4, (80) implies

Pr

{
|φ̂m (tm, z)− φm (tm,θ)|

π̌0,m
≥ ε

}
≤
C ∥1− θ∥σ−3/4

∞
ε2m1−γ π̌2

0,m

(u3,m lnm)11/4−σ (81)

by setting tm = 4−1 (max {σ, 1})−1 u3,mγ lnm for any fixed γ ∈ (0, 1), whereas, when σ ≤ 3/4, (80)
implies

Pr

{
|φ̂m (tm, z)− φm (tm,θ)|

π̌0,m
≥ ε

}
≤
C (lnm)11/4−σ u23,m

ε2m1−γ π̌2
0,m

(82)

by setting tm = 4−1u3,mγ lnm for any fixed γ ∈ (0, 1), both for tm sufficiently large. Note that γ = 1

can be set in (81) when σ > 11/4 since limm→∞ (lnm)11/4−σ = 0 for all such σ.
Finally, recall ũ3,m = minτ∈{a,b} min{j:θj ̸=θτ} |ξ (θτ )− ξ (θi)| and for τ ∈ {a, b}

ψ3,0 (t, θ; θτ ) =

∫
[−1,1]

cos [ts {ξ (θτ )− ξ (θ)}]ω (s) ds,

which is exactly

ψ̃1,0

(
t, µ;µ′

)
=

∫
[−1,1]

ω (s) cos
{
tsσ−1

(
µ− µ′

)}
ds

that is defined by (44) (in Lemma 5) but evaluated at µ′ = τ since ξ (θ) = (1− θ)−1 and µ (θ) =
σ (1− θ)−1 = σξ (θ). Further, um = σũ3,m. So, Lemma 7, i.e.,∣∣∣π̌−1

0,mφm (t,µ)− 1
∣∣∣ ≤ C

tπ̌0,m

(
1 + ∥ϕ∥1,∞ +

1

um

)
becomes ∣∣∣π̌−1

0,mφm (t,θ)− 1
∣∣∣ ≤ C

tπ̌0,m

(
1 + ∥ϕ∥1,∞ +

1

ũ3,m

)
. (83)

Thus, π̌−1
0,mφm (tm,µ) → 1 when t−1

m

(
1 + ũ−1

3,m

)
= o (π̌0,m). Since (81), (82) and (83) asymptotically

are identical to (60), (61) and (62) respectively, we obtain from (81), (82) and (83) the claimed uniform
consistency class for σ ≥ 3/4 and σ ≤ 3/4 respectively, for which γ = 1 can be set when σ > 11/4. ⊓⊔

E Simulation study

We will present a simulation study on the proposed estimators, with a comparison to the “MR” estimator
of Meinshausen and Rice (2006) or Storey’s estimator of Storey et al. (2004) for the case of a one-
sided null. For one-sided null Θ0 = (−∞, b) ∩ U , when X0 is an observation from a random variable
X with CDF Fµ, µ ∈ U , its one-sided p-value is computed as 1 − Fb (X0). We will not include a
comparison with the two estimators of Dickhaus (2013); Hoang and Dickhaus (2021b,a), since it is not
an aim here to investigate for Gamma random variables whether the definition of randomized p-value
of Dickhaus (2013); Hoang and Dickhaus (2021b,a) leads to valid randomized p-values that can be
practically computed.

We numerically implement the solution (ψ,K) in two cases as follows: (a) if ψ or K is defined by a
univariate integral, then the univariate integral is approximated by a Riemann sum based on an equally
spaced partition with norm 0.01 of the corresponding domain of integration; (b) if ψ or K is defined by
a double integral, then the double integral is computed as an iterated integral, for which each univariate
integral is computed as if it were case (a). We choose norm 0.01 for a partition so as to reduce a bit
the computational complexity of the proposed estimators when the number of hypotheses to test is
very large. However, we will not explore here how much more accurate these estimators can be when
finer partitions are used to obtain the Riemman sums, or explore here which density function ω(s) on



Proportion estimation via integral equations: Gamma random variables 39

[−1, 1] should be used to give the best performances to the proposed estimators among all continuous
densities on [−1, 1] that are of bounded variation. By default, we will choose the triangular density
ω (s) = (1− |s|) 1[−1,1] (s), since numerical evidence in Jin (2008); Chen (2019) shows that this density
leads to good performances of the proposed estimators for the setting of a point null.

The MR estimator (designed for continuous p-values) is implemented as follows: let the ascendingly

ordered p-values be p(1) < p(2) < · · · < p(m) for m > 4, set b∗m = m−1/2
√
2 ln lnm, and define

q∗i =
(
1− p(i)

)−1
{
im−1 − p(i) − b∗m

√
p(i)

(
1− p(i)

)}
;

then π̂MR
1,m = min

{
1,max

{
0,max2≤i≤m−2 q

∗
i

}}
is the MR estimator. Storey’s estimator will be imple-

mented by the qvalue package (version 2.14.1) via the ‘pi0.method=smoother’ option. All simulations
will be done with R version 3.5.0.

For an estimator π̂1,m of π1,m or an estimator π̂0,m of π̃0,m, its accuracy is measured by the excess

δ̃m = π̂1,mπ
−1
1,m − 1 or δ̃m = π̂0,mπ̃

−1
0,m − 1. For each experiment, the mean µ∗m and standard deviation

σ∗
m of δ̃m is estimated from independent realizations of the experiment. Among two estimators, the one

that has smaller σ∗
m is taken to be more stable, and the one that has both smaller σ∗

m and smaller |µ∗m|
is better. In each boxplot in each figure of simulation results to be presented later, the horizontal bar
has been programmed to represent the mean of the quantity being plotted and the black dots represent
the outliers from the quantity being plotted.

E.1 Simulation design and results

For a < b, let U (a, b) be the uniform distribution on the closed interval [a, b]. When implementing
the estimator in Theorem 2 or Theorem 4, the power series in the definition of K in (13) or (18) is
replaced by the partial sum of its first 26 terms, i.e., the power series is truncated at n = 25. However,
the double integral in K in (13) or (18) has to be approximated by a Riemann sum (using the scheme
described in the beginning of Appendix E) for each zi for a total of m times. This greatly increases the
computational complexity of applying K to {zi}mi=1 when m is very large. So, we only consider 4 values
for m, i.e., m = 103, 5 × 103, 104 or 5 × 104, together with 2 sparsity levels π1,m = 0.2 (indicating

the “dense regime”) or (ln lnm)−1 (indicating the “moderately sparse regime”). We set σ = 4 for the
simulated Gamma random variables. The speed of the proposed estimators tm =

√
0.25σ−1u3,m lnm

(i.e., γ = 1 is set for tm) for a bounded null and tm = 2−5/4σ−1/2
√
u3,m lnm (i.e., γ = 1 is set for tm)

for a one-side null, both with u3,m = 0.2/ ln lnm, so that the consistency conditions in Theorem 3 and
Theorem 5 are satisfied. The simulated data are generated as follows:

– Scenario I “estimating π1,m for a bounded null”: set θa = 0, θb = 0.35, θ∗ = −0.2 and θ∗ =
0.55; generate m0 θi’s independently from U (θa + u3,m, θb − u3,m), m11 θi’s independently from
U (θb + u3,m, θ∗), andm11 θi’s independently from U (θ∗, θa − u3,m), wherem11 = max{1, ⌊0.5m1⌋−
⌊m/ ln lnm⌋} and ⌊x⌋ is the integer part of x ∈ R; set half of the remaining m−m0 − 2m11 θi’s to
be θa, and the rest to be θb.

– Scenario II “estimating π1,m for a one-sided null”: generate m0 µi’s independently from U(θ∗, θb −
u3,m), and ⌊0.9m1⌋ µi’s independently from U (θb + u3,m, θ∗); set the rest θi’s to be θb.

Each triple of (m,π1,m, Θ0) determines an experiment, and there are 16 experiments in total. Each
experiment is repeated independently 100 times. The assessment method for an estimator π̂1,m of π1,m
is again based on the mean and standard deviation of the excess δ̃m = π̂1,mπ

−1
1,m − 1. As mentioned

earlier in this section, to numerically approximate K and hence the new estimators (since they are
defined by integrals and power series), we computed a 26-term partial sum of each of those power
series and computed Riemann sums based on an equally spaced one-dimensional domain partition with
norm 0.01 for those integrals. Namely, the new estimators are implemented by this scheme of numerical
approximation, which we call “numerical versions”. Even with this simple approximation scheme of
relatively low computational complexity, the sequential nature of computing an approximation to K
and evaluating this approximation at each of the m observations via “for” loops and the sequential
nature of repeating an experiment via a “for” loop took much time, and the simulations took around
45 days to complete on a computer with 8-core CPU and 64GB of RAM. Note that this numerical
implementation/approximation causes numerical error and that the simulations are for the “numerical
versions” of the new estimators rather than the new estimators themselves.

Figure F.1 visualizes the simulation results, for which Storey’s estimator is not shown since it is
always 0 for all experiments in Scenario II, and Table 1 provides numerical summaries that complement
the visualizations in Figure F.1. Please note again that these results are for the numerical implementa-
tion, i.e., numerical approximation, of the new estimators, rather than the new estimators themselves,
even though the interpretations of the results will be for the new estimators. The following three ob-
servations can be made: (i) for estimating the alternative proportion for a one-sided null, the proposed
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estimator is more accurate than the MR estimator, is very stable, and in the dense regime shows a
clear trend of convergence towards consistency. In contrast, the MR estimator is always very close to 0
regardless of the sparsity regime for π1,m, either failing to detect the existence of alternative hypotheses
or very inaccurately estimating the alternative proportion. This largely explains why for a one-side null
in the dense regime, our new estimators have slightly larger standard deviation than the MR estimator
(because the latter almost always gives an estimate that is very close to 0). (ii) for estimating the alter-
native proportion for a bounded null, the proposed estimator is stable and reasonably accurate, and in
the dense regime shows a clear trend of convergence towards consistency. (iii) the proposed estimator
seems to be much more accurate in the moderately sparse regime than in the dense regime. We remark
that the accuracy and speed of convergence of the proposed estimators can be improved by employing
more accurate Riemann sums for the integrals and more accurate partial sums of the power series in
the computation of the matching function than currently used. (iv) non-asymptotically the new esti-
mator φ̂m (t,µ) of the proportion of false nulls π1,m often over-estimates π1,m, meaning that its dual

ψ̂m (t,µ), which estimates the proportion of true nulls π0,m = 1− π1,m, usually under-estimates π0,m.
In terms of false discovery rate (FDR) control in nonasymptotic settings, an adaptive FDR procedure

that uses the new estimators ψ̂m (t,µ) may fail to maintain a prespecified nominal FDR, even though
such a procedure may have larger power compared to its non-adaptive counterparts.

Now let us explain why in the moderately sparse regime, i.e., π1,m = 1/ ln (lnm), Figure F.1 does
not provide numerical evidence that our “New” estimators are consistent but does not undermine our
rigorous theory, and why in the dense regime, i.e., π1,m = 0.2, Figure F.1 provides numerical evidence
that our “New” estimators are consistent but not with a fast enough speed of convergence. Recall
that we have truncated the power series (that define K and our “New” estimators) to a 26-term finite
sum and used Riemannian sums of one-dimensional partition norm 0.01 to approximate integrals (that
define K and our “New” estimators) when implementing these estimators, which gives the actual “New”

estimators as, e.g., π̂†,New
1,m . Let π̂New

1,m specifically denote our “New” estimators. Then, the numerical

error of the “New” estimators π̂new
1,m is ẽNew

m = π̂New
1,m − π̂†,New

1,m .

Recall δ̃m = π̂1,m/π1,m − 1, where π̂1,m is an estimate of π1,m, and that δ̃m converges to 0 as m→ ∞
is equivalent to the consistency of the estimator π̂1,m. Due to our numerical approximation, for our

“New” estimator, δ̃m is actually computed as

δ̃m =
π̂†,New
1,m

π1,m
− 1 =

π̂New
1,m

π1,m
−
ẽNew
m

π1,m
− 1.

Since our theory has rigorously proved that π̂New
1,m /π1,m − 1 converges to 0 in probability as m → ∞,

we see the actual δ̃m computed for our “New” estimator π̂New
1,m , as given above, satisfies

δ̃m ≈
ẽNew
m

π1,m
with high probability for large m.

However, the numerical error ẽNew
m may not converge to 0 as m → ∞. So, in the dense regime when

π1,m = 0.2, we will see a trend of convergence for δ̃m as m increases. But such a convergence may stall if
ẽNew
m does not decrease with m. Non-monotone decreasing or not small enough ẽNew

m also creates a feel-
ing that |δ̃m| is larger for the “New” estimator than the “MR” estimator, which is not true for all m but
may be true for small m. This is exactly what happened for the dense regime in Figure F.1. In contrast,
in the moderately sparse regime when π1,m = 1/ ln (lnm), π1,m monotonically decreases as m increases
and π1,m converges to 0 as m→ ∞. So, when ẽNew

m is not of smaller order than π1,m = 1/ ln (lnm) as

m increases, we may see the actual δ̃m on average increases with m. This is exactly what happened for
the moderately sparse regime in Figure F.1.
Unless we increase the numerical precision or equivalently reduce the numerical error ẽNew

m (dynami-
cally also with respect to m), increasing m but keeping the current numerical approximation scheme as
described earlier will not allow us to see a clear trend of convergence of our “New” estimators in the
moderately sparse regime where limm→∞ π1,m = 0. In fact, how to rigorously and precisely control the
numerical error when truncating a power series and using Riemann sums to approximate integrals when
implementing our proposed estimator requires very delicate analysis, may well form another manuscript,
and unfortunately cannot be fully numerically explored in this work. Nevertheless, for practical applica-
tions where we do not need to repeat an experiment many times as is done in the simulations here, we
recommend keeping as many terms and using as fine partitions as one’s computational recourses allow
when respectively truncating the power series and forming Riemann sums that numerically approximate
the definitions of the new estimators.

F Estimators for closed or half-closed nulls and their consistency

Let us discuss how to adapt the constructions, the estimators, their concentration inequalities, and their
consistency results to estimating the proportion π1,m when the null hypotheses are closed or half-closed
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sets. For the Gamma family, the mean parameter µ is a function of the natural parameter θ, such that
µ = µ (θ) = σ (1− θ)−1 for θ < 1, and this function is differentiable and strictly monotone with inverse
θ = θ (µ) = 1− σµ−1. Here σ > 0 is the scale parameter. Further, ξ (θ) = (1− θ)−1, ξ (θ) = σ−1µ (θ),
µi = µ (θi) and θτ is such that µ (θτ ) = τ for τ ∈ {a, b}.

Recall {
ψ3,0 (t, θ; θ′) =

∫
[−1,1] cos [ts {ξ (θ

′)− ξ (θ)}]ω (s) ds

ψ̃1,0 (t, µ;µ′) =
∫
[−1,1]ω (s) cos

{
tsσ−1 (µ− µ′)

}
ds

,

where ψ̃1,0 (t, µ;µ′) is defined in Section A.4. We see that µ = µ (θ) = σ (1− θ)−1 implies ψ3,0 (t, θ; θ′) =

ψ̃1,0 (t, µ;µ′). This fact will be used in our discussion on the quantity φm (t,θ) or its equivalent φm (t,µ),
where θ = (θ1, . . . , θm), θi = θ (µi), θ (µ) = (θ (µ1) , . . . , θ (µm)) and µ = (µ1, . . . , µm).

F.1 The case of a bounded null

When Θ0 = [a, b], we can just set{
K (t, x) = K1 (t, x) + 2−1 {K3,0 (t, x; θa) +K3,0 (t, x; θb)}
ψ (t, θ) = ψ1 (t, θ) + 2−1 {ψ3,0 (t, θ; θa) + ψ3,0 (t, θ; θb)}

(84)

in comparison to the construction when Θ0 = (a, b) as{
K (t, x) = K1 (t, x)− 2−1 {K3,0 (t, x; θa) +K3,0 (t, x; θb)}
ψ (t, θ) = ψ1 (t, θ)− 2−1 {ψ3,0 (t, θ; θa) + ψ3,0 (t, θ; θb)}

. (85)

The definitions of the estimator and its expectation for either Θ0 = (a, b) or Θ0 = [a, b] remain identical
as

φ̂m (t, z) = m−1
m∑
i=1

{1−K (t, zi)} and φm (t,θ) = m−1
m∑
i=1

{1− ψ (t, µi)} .

When Θ0 = (a, b), in the proofs for the estimator φ̂m (t, z), we have used e1,m (t) := φ̂1,m (t, z) −
φ1,m (t,θ), where

φ̂1,m (t, z) = m−1
m∑
i=1

K1 (t, zi) and φ1,m (t,θ) = E {φ̂1,m (t, z)} ,

e3,0,m (t, τ) := φ̂3,0,m (t, z; τ)− φ3,0,m (t,θ; τ), τ ∈ {a, b}, where

φ̂3,0,m (t, z; τ) = m−1
m∑
i=1

K3,0 (t, zi; θτ ) and φ3,0,m (t,θ; τ) = E {φ̂3,0,m (t, z; τ)} ,

em (t) := φ̂m (t, z)− φm (t,θ) and

em (t) = −e1,m (t) + 2−1e3,0,m (t, a) + 2−1e3,0,m (t, b) . (86)

Further, to upper bound the variance of −em (t), which is also the variance of em (t), we have upper
bounded the variances of e1,m (t), e3,0,m (t, a) and e3,0,m (t, b) individually, and then directly replaced
each variance in each summand on the right-hand side of the inequality

V [em (t)] ≤ 2V {e1,m (t)}+ V [e3,0,m (t, a)] + V [e3,0,m (t, b)] (87)

with these individual variance upper bounds. In addition, concentration of |em (t)| is derived by Cheby-
shev’s inequality based on the upper bound for the variance of em (t).

In the setting of the closed null Θ0 = [a, b], (84) implies that (86) becomes

em (t) = φ̂m (t, z)− φm (t,θ) = −e1,m (t)− 2−1e3,0,m (t, a)− 2−1e3,0,m (t, b) . (88)

However, (87) remains valid for em (t) in (88). So, the upper bound on the variance of em (t) and the
concentration of |em (t)| we have derived for the setting Θ0 = (a, b) and construction (85) remain valid
for em (t) and |em (t)| for the setting Θ0 = [a, b] and construction (84).

Now let us discuss φm (t,µ), which is equivalent to φm (t,θ) due to the mapping µ = µ (θ) =
σ (1− θ)−1 for θ < 1. When Θ0 = (a, b),

φm (t,µ) = 1− φ1,m (t,µ) + 2−1φ1,0,m (t,µ; a) + 2−1φ1,0,m (t,µ; b) =

5∑
i=1

d̃1,m (89)
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and
π−1
1,mφm (t,µ)− 1 = π−1

1,md̃1,m − 1 + π−1
1,md̃2,m + π−1

1,md̃3,m + π−1
1,md̃4,m + π−1

1,md̃5,m,

where 

d̃1,m = 1−m−1
∑

{j:µj∈(a,b)} ψ1 (t, µj)

d̃2,m = −m−1
∑

{j:µj=a} ψ1 (t, µj) + 2−1m−1
∑

{j:µj=a} ψ̃1,0 (t, µj ; a)

d̃3,m = −m−1
∑

{j:µj=b} ψ1 (t, µj) + 2−1m−1
∑

{j:µj=b} ψ̃1,0 (t, µj ; b)

d̃4,m = 2−1m−1
∑

{j:µj ̸=a} ψ̃1,0 (t, µj ; a) + 2−1m−1
∑

{j:µj ̸=b} ψ̃1,0 (t, µj ; b)

d̃5,m = −m−1
∑

{j:µj<a} ψ1 (t, µj)−m−1
∑

{j:µj>b} ψ1 (t, µj)

.

Further, when Θ0 = (a, b), to upper bound
∣∣∣π−1

1,mφm (t,µ)− 1
∣∣∣, we have replaced each

∣∣∣d̃j,m∣∣∣ , 2 ≤ j ≤ 5

by its upper bound d̂j,m, 2 ≤ j ≤ 5 and replaced
∣∣∣π−1

1,md̃1,m − 1
∣∣∣ by its upper bound d̂0,m in the

inequality∣∣∣π−1
1,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π−1
1,md̃1,m − 1

∣∣∣+ π−1
1,m

∣∣∣d̃2,m∣∣∣+ π−1
1,m

∣∣∣d̃3,m∣∣∣+ π−1
1,m

∣∣∣d̃4,m∣∣∣+ π−1
1,m

∣∣∣d̃5,m∣∣∣ . (90)

In case Θ0 = [a, b], (89) becomes

φm (t,µ) = 1− φ1,m (t,µ)− 2−1φ1,0,m (t,µ; a)− 2−1φ1,0,m (t,µ; b)

= d̃1,m + d̃∗2,m + d̃∗3,m − d̃4,m + d̃5,m

and ∣∣∣π−1
1,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π−1
1,m

(
d̃1,m + d̃∗2,m + d̃∗3,m

)
− 1
∣∣∣+ π−1

1,m

∣∣∣d̃4,m∣∣∣+ π−1
1,m

∣∣∣d̃5,m∣∣∣ (91)

where {
d̃∗2,m = −m−1

∑
{j:µj=a} ψ1 (t, µj)− 2−1m−1

∑
{j:µj=a} ψ̃1,0 (t, µj ; a)

d̃∗3,m = −m−1
∑

{j:µj=b} ψ1 (t, µj)− 2−1m−1
∑

{j:µj=b} ψ̃1,0 (t, µj ; b)
.

However,

π−1
1,m

∣∣∣d̃1,m + d̃∗2,m + d̃∗3,m − 1
∣∣∣ ≤ d̂0,m + π−1

1,md̂2,m + π−1
1,md̂3,m.

So, the upper bound for
∣∣∣π−1

1,mφm (t,µ)− 1
∣∣∣ in (90) when Θ0 = (a, b) is also an upper bound for∣∣∣π−1

1,mφm (t,µ)− 1
∣∣∣ in (91) when Θ0 = [a, b].

Therefore, all results we have derived for the estimator φ̂m (t, z) when Θ0 = (a, b) for the construc-
tion (85) remain valid for the estimator φ̂m (t, z) when Θ0 = [a, b] for the construction (84).

F.2 The case of a one-sided null

When Θ0 = (−∞, b], we can just set{
K (t, x) = 2−1 −K1 (t, x) + 2−1K3,0 (t, x; θb)
ψ (t, θ) = 2−1 − ψ1 (t, θ) + 2−1ψ3,0 (t, θ; θb)

(92)

in comparison to the construction when Θ0 = (−∞, b) as{
K (t, x) = 2−1 −K1 (t, x)− 2−1K3,0 (t, x; θb)
ψ (t, θ) = 2−1 − ψ1 (t, θ)− 2−1ψ3,0 (t, θ; θb)

. (93)

The definitions of the estimator and its expectation for either Θ0 = (−∞, b] or Θ0 = (−∞, b) remain
identical as

φ̂m (t, z) = m−1
m∑
i=1

{1−K (t, zi)} and φm (t,µ) = m−1
m∑
i=1

{1− ψ (t, µi)} .

We will reuse the definitions of em (t), e1,m (t) and e3,0,m (t, b) introduced previously in Section F.1.
Then em (t) = e1,m (t) + 2−1e3,m,0 (t, b) when Θ0 = (−∞, b) becomes

em (t) = e1,m (t)− 2−1e3,0,m (t, b) when Θ0 = (−∞, b].

Again, to upper bound the variance of −em (t), which is also the variance of em (t), we have upper
bounded the variances of e1,m (t) and e3,0,m (t, b) individually, and then directly replaced each variance
in each summand on the right-hand side of the inequality

V [em (t)] ≤ 2V {e1,m (t)}+ 2−1V [e3,0,m (t, b)] (94)



Proportion estimation via integral equations: Gamma random variables 43

with these individual variance upper bounds. In addition, concentration of |em (t)| is derived by Cheby-
shev’s inequality based on the upper bound for the variance of em (t). However, (94) remains valid for
em (t) when Θ0 = (−∞, b]. So, the upper bound on the variance of em (t) and the concentration of
|em (t)| we have derived for the setting Θ0 = (−∞, b) remain valid for em (t) and |em (t)| for the setting
Θ0 = (−∞, b].

Now let us discuss φm (t,µ), which is equivalent to φm (t,θ) due to the mapping µ = µ (θ) =
σ (1− θ)−1 for θ < 1. When Θ0 = (−∞, b), we have

φm (t,µ) = 2−1 + φ1,m (t,µ) + 2−1φ1,0,m (t,µ; b) = d̄1,m + d̄2,m + d̄3,m + d̄4,m,

where 
d̄1,m = m−1

∑
{i:µi>b}

(
2−1 + ψ1 (t, µi)

)
d̄2,m = m−1

∑
{i:µi=b}

(
2−1 + ψ1 (t, µi) + 2−1ψ̃1,0 (t, µi; b)

)
d̄3,m = m−1

∑
{i:µi<b}

(
2−1 + ψ1 (t, µi)

)
d̄4,m = 2−1m−1

∑
{i:µi ̸=b} ψ̃1,0 (t, µi; b)

and specifically d̄2,m = m−1
∑

{i:µi=b} 1. Further, whenΘ0 = (−∞, b), to upper bound
∣∣∣π−1

1,mφm (t,µ)− 1
∣∣∣,

we have replaced each
∣∣d̄j,m∣∣ , 3 ≤ j ≤ 4 by its upper bound and replaced

∣∣∣π−1
1,m

(
d̄1,m + d̄2,m

)
− 1
∣∣∣ by

its upper bound in the inequality∣∣∣π−1
1,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π−1
1,m

(
d̄1,m + d̄2,m

)
− 1
∣∣∣+ π−1

1,m

∣∣d̄3,m∣∣+ π−1
1,m

∣∣d̄4,m∣∣ ,
where

π−1
1,m

(
d̄1,m + d̄2,m

)
− 1 = π−1

1,mm
−1
∑

{i:µi>b}

(
ψ1 (t, µi)− 2−1

)
. (95)

Specifically, the upper bound on
∣∣∣π−1

1,m

(
d̄1,m + d̄2,m

)
− 1
∣∣∣ is directly based on the inequality∣∣ψ1 (t, µi)− 2−1

∣∣ ≤ 2 (tũm)−1 for µi > b,

where ũm = min{j:µj ̸=b} |µj − b|.
In contrast, when Θ0 = (−∞, b], we have

φm (t,µ) = 2−1 + φ1,m (t,µ)− 2−1φ1,0,m (t,µ; b) = d̄1,m + d̄∗2,m + d̄3,m − d̄4,m,

and ∣∣∣π−1
1,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π−1
1,md̄1,m − 1

∣∣∣+ π−1
1,m

∣∣d̄3,m∣∣+ π−1
1,m

∣∣d̄4,m∣∣ ,
where

d̄∗2,m = m−1
∑

{i:µi=b}

(
2−1 + ψ1 (t, µi)− 2−1ψ̃1,0 (t, µi; b)

)
= 0.

However, again

π−1
1,md̄1,m − 1 = π−1

1,mm
−1
∑

{i:µi>b}

(
ψ1 (t, µi)− 2−1

)
,

whose right-hand side is identical for that of (95). Therefore, the upper bound we have derived for∣∣∣π−1
1,mφm (t,µ)− 1

∣∣∣ when Θ0 = (−∞, b) is also an upper bound for
∣∣∣π−1

1,mφm (t,µ)− 1
∣∣∣ when Θ0 =

(−∞, b].
Therefore, results we have derived for the estimator φ̂m (t, z) when Θ0 = (−∞, b) for the construc-

tion (93) remain valid for the estimator φ̂m (t, z) when Θ0 = (−∞, b] for the construction (92).

F.3 The case of the extensions

When Θ0 = [a, b], we can just set{
K (t, x) = K1 (t, x) + 2−1 {ϕ (a)K3,0 (t, x; a) + ϕ (b)K3,0 (t, x; b)}
ψ (t, µ) = ψ1 (t, µ) + 2−1 {ϕ (a)ψ3,0 (t, µ; a) + ϕ (b)ψ3,0 (t, µ; b)}

(96)

in comparison to the construction for Θ0 = (a, b) as{
K (t, x) = K1 (t, x)− 2−1 {ϕ (a)K3,0 (t, x; a) + ϕ (b)K3,0 (t, x; b)}
ψ (t, µ) = ψ1 (t, µ)− 2−1 {ϕ (a)ψ3,0 (t, µ; a) + ϕ (b)ψ3,0 (t, µ; b)}

. (97)

Again the definitions of the estimator and its expectation for either Θ0 = (a, b) or Θ0 = [a, b] remain
identical as

φ̂m (t, z) = m−1
m∑
i=1

K (t, zi) and φm (t,µ) = m−1
m∑
i=1

ψ (t, µi) ,
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and we will reuse the definitions of em (t), e1,m (t) and e3,0,m (t, b) introduced previously in Section F.1.
For Θ0 = (a, b) we have

em (t) = φ̂m (t, z)− φm (t,µ) = e1,m (t)− 2−1ϕ (a) e3,0,m (t, a)− 2−1ϕ (a) e3,0,m (t, b) ,

whereas for Θ0 = [a, b] we have

em (t) = φ̂m (t, z)− φm (t,µ) = e1,m (t) + 2−1ϕ (a) e3,0,m (t, a) + 2−1ϕ (a) e3,0,m (t, b) .

Since we have employed the inequality

V [em (t)] ≤ 2V {e1,m (t)}+ ∥ω∥2∞ V [e1,0,m (t, a)] + ∥ω∥2∞ V [e1,0,m (t, b)] (98)

and then directly replaced each variance in each summand on the right-hand side of (98) by their
individual upper bounds, the upper bound we have obtained on for the variance of em (t) when Θ0 =
(a, b) is also an upper bound for the variance of em (t) when Θ0 = [a, b]. Further, since concentration
inequalities for em (t) when Θ0 = (a, b) have been derived by Chebyshev’s inequality based on the upper
bound for the variance of em (t) when Θ0 = (a, b), these concentration inequalities are also valid for
em (t) when Θ0 = [a, b].

Now let us discuss φm (t,µ), which is equivalent to φm (t,θ) due to the mapping µ = µ (θ) =
σ (1− θ)−1 for θ < 1. When Θ0 = (a, b), we have

φm (t,µ) = m−1
m∑
i=1

[
ψ1 (t, µi)− 2−1

{
ϕ (a)ψ1,0 (t, µ; a) + ϕ (b) ψ̃1,0 (t, µ; b)

}]
,

φm (t,µ) =
∑5

j=1 dϕ,j (t,µ) and

∣∣∣π̌−1
0,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π̌−1
0,mdϕ,1 (t,µ)− 1

∣∣∣+ 5∑
j=2

π̌−1
0,m

∣∣dϕ,j (t,µ)
∣∣ , (99)

where

dϕ,1 (t,µ) = m−1
∑

{i:µi∈(a,b)} ψ1 (t, µi)

dϕ,2 (t,µ) = m−1
∑

{i:µi=a}

(
ψ1 (t, µi)− 2−1ϕ (a) ψ̃1,0 (t, µi; a)

)
dϕ,3 (t,µ) = m−1

∑
{i:µi=b}

(
ψ1 (t, µi)− 2−1ϕ (b) ψ̃1,0 (t, µi; b)

)
dϕ,4 (t,µ) = −m−1

(∑
{i:µi ̸=a} +

∑
{i:µi ̸=b}

){
2−1

[
ϕ (a) ψ̃1,0 (t, µi; a) + ϕ (b) ψ̃1,0 (t, µi; b)

]}
dϕ,5 (t,µ) = m−1

∑
{i:µi<b} ψ1 (t, µi) +m−1

∑
{i:µi>b} ψ1 (t, µi)

.

Further, when Θ0 = (a, b), to upper bound
∣∣∣π̌−1

0,mφm (t,µ)− 1
∣∣∣, we have replaced each

∣∣dϕ,j (t,µ)
∣∣ , 2 ≤

j ≤ 5 by its upper bound d̂ϕ,j (t,µ) , 2 ≤ j ≤ 5 and replaced
∣∣∣π̌−1

0,mdϕ,1 (t,µ)− 1
∣∣∣ by its upper bound

d̂ϕ,0 (t,µ) directly in (99).
When Θ0 = [a, b], we have

φm (t,µ) = m−1
m∑
i=1

[
ψ1 (t, µi) + 2−1

{
ϕ (a)ψ1,0 (t, µ; a) + ϕ (b) ψ̃1,0 (t, µ; b)

}]
and

φm (t,µ) = dϕ,1 (t,µ) + d∗ϕ,2 (t,µ) + d∗ϕ,3 (t,µ)− dϕ,4 (t,µ) + dϕ,5 (t,µ)

where  d∗ϕ,2 (t,µ) = m−1
∑

{i:µi=a}

(
ψ1 (t, µi) + 2−1ϕ (a) ψ̃1,0 (t, µi; a)

)
d∗ϕ,3 (t,µ) = m−1

∑
{i:µi=b}

(
ψ1 (t, µi) + 2−1ϕ (b) ψ̃1,0 (t, µi; b)

) .

Then ∣∣∣π̌−1
0,mφm (t,µ)− 1

∣∣∣ ≤ ∣∣∣π̌−1
0,m

[
dϕ,1 (t,µ) + d∗ϕ,2 (t,µ) + d∗ϕ,3 (t,µ)

]
− 1
∣∣∣

+ π̌−1
0,m

∣∣dϕ,4 (t,µ)
∣∣+ π̌−1

0,m

∣∣dϕ,5 (t,µ)
∣∣ .

However,∣∣∣π̌−1
0,m

[
dϕ,1 (t,µ) + d∗ϕ,2 (t,µ) + d∗ϕ,3 (t,µ)

]
− 1
∣∣∣ ≤ d̂ϕ,0 (t,µ) + π̌−1

0,md̂ϕ,2 (t,µ) + π̌−1
0,md̂ϕ,3 (t,µ) .

Therefore, the upper bound we have derived for
∣∣∣π̌−1

0,mφm (t,µ)− 1
∣∣∣ when Θ0 = (a, b) is also an upper

bound for
∣∣∣π̌−1

0,mφm (t,µ)− 1
∣∣∣ when Θ0 = [a, b].

In summary, results we have derived for the estimator φ̂m (t, z) when Θ0 = (a, b) for the construction
(97) remain valid for the estimator φ̂m (t, z) when Θ0 = [a, b] for the construction (96).
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m Method Sparsity Null Type Ê(δ̃m) σ̂(δ̃m)

1000 MR π1,m = 0.2 One-sided null -0.9954 0.0061
1000 New π1,m = 0.2 One-sided null 1.2245 0.0161
5000 MR π1,m = 0.2 One-sided null -0.9973 0.0024
5000 New π1,m = 0.2 One-sided null 1.1659 0.0090
10000 MR π1,m = 0.2 One-sided null -0.9969 0.0022
10000 New π1,m = 0.2 One-sided null 1.1397 0.0067
50000 MR π1,m = 0.2 One-sided null -0.9964 0.0012
50000 New π1,m = 0.2 One-sided null 1.0782 0.0042

1000 MR π1,m = 1/ ln (lnm) One-sided null -0.9558 0.0139
1000 New π1,m = 1/ ln (lnm) One-sided null -0.0399 0.0077
5000 MR π1,m = 1/ ln (lnm) One-sided null -0.9638 0.0063
5000 New π1,m = 1/ ln (lnm) One-sided null 0.0393 0.0046
10000 MR π1,m = 1/ ln (lnm) One-sided null -0.9666 0.0050
10000 New π1,m = 1/ ln (lnm) One-sided null 0.0669 0.0036
50000 MR π1,m = 1/ ln (lnm) One-sided null -0.9721 0.0021
50000 New π1,m = 1/ ln (lnm) One-sided null 0.1163 0.0023

1000 New π1,m = 0.2 Bounded null 3.0421 0.0045
5000 New π1,m = 0.2 Bounded null 2.8260 0.0034
10000 New π1,m = 0.2 Bounded null 2.7343 0.0028
50000 New π1,m = 0.2 Bounded null 2.5244 0.0018

1000 New π1,m = 1/ ln (lnm) Bounded null 0.5625 0.0019
5000 New π1,m = 1/ ln (lnm) Bounded null 0.6416 0.0016
10000 New π1,m = 1/ ln (lnm) Bounded null 0.6620 0.0014
50000 New π1,m = 1/ ln (lnm) Bounded null 0.6842 0.0010

Table 1 In the table, δ̃m = π̂1,m/π1,m − 1 (where π̂1,m is an estimate of π1,m), Ê(δ̃m) is the sample

mean of δ̃m, and σ̂(δ̃m) the sample standard deviation of δ̃m. When π1,m = 0.2, our proposed estimators

“New” show a clear trend of convergence to 0 as m increases. For π1,m = 1/ ln (lnm) though, δ̃m for our
“New” estimators does not show a clear trend of convergence to 0 as m increases. However, this is an
artifact of the numerical error when implementing our “New” estimators, as explained in Section E.1.
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Fig. F.1 Boxplot of the excess δ̃m (on the vertical axis) of an estimator π̂1,m of π1,m as δ̃m =

π̂1,mπ
−1
1,m − 1. The thick horizontal line and the diamond in each boxplot are respectively the mean

and standard deviation of δ̃m, and the dotted horizontal line is the reference for δ̃m = 0. An estimator
with a narrower boxplot that is closer to the dotted horizontal line is better. All estimators have been
applied to Gamma family. For the case of a one-side null, the right one for each pair of boxplots for
each m is for the proposed estimator “New” and the left one is for the “MR” estimator. No simulation
was done for the “MR” estimator for a bounded null. Note that the “Method” legend for boxplots is
basically invisible in the subplots since each boxplot contains observations that vary so little and are
hence very narrow vertically.


