
SUPPLEMENT: Simulation Results and Proofs

This supplement accompanies the main document,

“Selection-Bias-Adjusted Inference for the Bivariate Normal Distribution under

Soft-Threshold Sampling”

Joseph B. Lang

Dept of Statistics and Actuarial Science, Univ. of Iowa, Jan. 22, 2025

In this supplement, Section 1 reports simulation results and Section 2 gives proofs of the main

document’s Results 1-10.

1. SIMULATION RESULTS: FIGURES 2-9 AND TABLE S.1

To assess the reasonableness of the estimation and prediction approaches of this paper, we carried

out a small-scale simulation based on the course score data in Table 1 of the main document.

Specifically, we assume that N students initially enroll and the data px1, x2, x3, tq are realizations

of pX1,X2,X3,Tq, which has IID components each with the same multivariate Normal distribution.

The observed data px1rss, x2rss, x3rssq are determined by s, a realization of S, where pS “ sq “

pTrss ą θ0, Trscs ď θ0q. In the simulation, we varied values such as N , π, ρ12, and ψ, and set other

parameters to values similar to those in the last three rows of Table 1; for example, we set µ1 “ 75,

µ2 “ 71, σ1 “ 9, and σ2 “ 11.

The first simulation uses N “ 520, π “ 0.8, ρ “ 0.6, ψ “ 0.8, and x1 “ 46. The results

are displayed in Figure 1 of the main paper. The next Figures 2-9, below, graphically display

simulation results for a variety of other settings. See the description of Figure 1 in the main paper

for interpretations of these graphs. Finally, the simulation results are displayed in tabular form in

Table S.1, and summarized.
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Figure 2. Simulation Results (N “ 520, π “ 0.5, ρ12 “ 0.6, ψ “ 0.8, x1 “ 46, nsim “ 1000).
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Figure 3. Simulation Results (N “ 520, π “ 0.8, ρ12 “ ´0.25, ψ “ 0.8, x1 “ 46, nsim “ 1000).

2 Supplement, J.B. Lang



0.
4

0.
5

0.
6

0.
7

ρ̂12
ρ̂12(unadj)

CVG= 0.958
CVG= 0.631

RMSE= 0.043

RMSE= 0.065

0.
5

0.
6

0.
7

0.
8

0.
9

β̂2.1 β̂2.1(unadj)

CVG= 0.931 CVG= 0.909

RMSE= 0.058
RMSE= 0.061

45
50

55

µ̂2.1(x1) µ̂2.1(unadj)(x1)

CVG= 0.93
CVG= 0.885

RMSE= 1.855
RMSE= 2.05

70
72

74
76

µ̂2 µ̂2(unadj)

CVG= 0.937

CVG= 0.063

RMSE= 1.088

RMSE= 1.874

−
40

−
20

0
20

x2(new) − x̂2(new)

CVG= 0.945

RMSE= 9.052

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ψ̂

CVG= 0.977

RMSE= 0.192

Figure 4. Simulation Results (N “ 520, π “ 0.8, ρ12 “ 0.6, ψ “ 0.5, x1 “ 46, nsim “ 1000).
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Figure 5. Simulation Results (N “ 100, π “ 0.8, ρ12 “ 0.6, ψ “ 0.8, x1 “ 46, nsim “ 1000).
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Figure 6. Simulation Results (N “ 100, π “ 0.5, ρ12 “ 0.6, ψ “ 0.9, x1 “ 46, nsim “ 1000).
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Figure 7. Simulation Results (N “ 1000, π “ 0.5, ρ12 “ 0.6, ψ “ 0.8, x1 “ 46, nsim “ 1000).
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Figure 8. Simulation Results (N “ 5000, π “ 0.5, ρ12 “ 0.6, ψ “ 0.9, x1 “ 46, nsim “ 1000).
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Figure 9. Simulation Results (N “ 5000, π “ 0.8, ρ12 “ 0.6, ψ “ 0.9, x1 “ 46, nsim “ 1000).
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Table S.1 below summarizes the results corresponding to Figures 1-9. This table shows that

the bias and variability of the adjusted estimators, as measured by the root mean squared error

(RMSE(adj)) shrinks as the sample size N increases. This finding corroborates the consistency

results for the adjusted estimators in the paper. The table (see last column) also shows that the

nominal 95% bootstrap confidence intervals cover approximately 95% of the time, as expected

by the results in the paper. Of course, as expected, Table S.1 also shows how poorly the unad-

justed estimators can perform in terms of RMSE and confidence interval coverage. Note that the

RMSE(unadj) and coverage CVG(unadj) values for the ψ estimator are not included because that

parameter does not arise in the unadjusted model.

Table S.1. Monte Carlo Simulation Results.
Estimator Statistics (nsim “ 1000)

Estimand N π ρ12 ψ RMSE(unadj) CVG(unadj) RMSE(adj) CVG(adj)

ρ12 100 0.5 0.6 0.9 0.205 0.662 0.137 0.935

100 0.8 0.6 0.8 0.125 0.790 0.088 0.930

520 0.5 0.6 0.8 0.170 0.056 0.061 0.932

520 0.8 ´0.25 0.5 0.094 0.538 0.053 0.940

520 0.8 0.6 0.5 0.065 0.631 0.043 0.958

520 0.8 0.6 0.8 0.099 0.227 0.039 0.944

1000 0.5 0.6 0.8 0.167 0.004 0.045 0.924

5000 0.5 0.6 0.9 0.163 0.000 0.019 0.941

5000 0.8 0.6 0.9 0.107 0.000 0.012 0.945

β2|1 100 0.5 0.6 0.9 0.215 0.916 0.203 0.936

100 0.8 0.6 0.8 0.140 0.919 0.136 0.924

520 0.5 0.6 0.8 0.122 0.792 0.089 0.940

520 0.8 ´0.25 0.5 0.091 0.707 0.065 0.949

520 0.8 0.6 0.5 0.061 0.909 0.058 0.931

520 0.8 0.6 0.8 0.072 0.873 0.058 0.948

1000 0.5 0.6 0.8 0.109 0.636 0.065 0.936

5000 0.5 0.6 0.9 0.092 0.092 0.027 0.948

5000 0.8 0.6 0.9 0.056 0.200 0.019 0.951

ψ 100 0.5 0.6 0.9 0.240 0.974

100 0.8 0.6 0.8 0.236 0.976

520 0.5 0.6 0.8 0.118 0.910

520 0.8 ´0.25 0.5 0.119 0.921

520 0.8 0.6 0.5 0.192 0.977

520 0.8 0.6 0.8 0.113 0.941

1000 0.5 0.6 0.8 0.075 0.928

5000 0.5 0.6 0.9 0.032 0.947

5000 0.8 0.6 0.9 0.029 0.929
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2. PROOFS OF RESULTS 1-10

In these proofs, it is assumed that the model of equation (2) in the paper holds. For this model, Xj “

µj`σjZj , j “ 1, 2, 3 and T “ γ0`γ1X3`E ” µT `σTZT , where µT “ γ0`γ1µ3, σTT “ γ21σ33`σ
2,

and pZ1,Z2,Z3,ZT q is a four-variate Normal with standard Normal marginals. It is also assumed

that the Normally distributed E is independent of the X variables and has mean 0 and variance σ2.

Let ρij ” corrpXi,Xjq “ corrpZi,Zjq for i, j P t1, 2, 3u and let ρ3T ” corrpX3,Tq “ corrpZ3,ZT q.

Finally, as in the paper, let σjj ” σ2j .

The proofs of Results 1-10 will make use of the following lemma.

Lemma. For this model, (i) ρ3T “ γ1σ3{σT and (ii) ρiT “ ρi3ρ3T , for i “ 1, 2.

Proof of (i). Note that covpX3,Tq “ covpX3, γ1X3`Eq “ γ1σ33, varpX3q “ σ33 and varpγ1X3`Eq “

varpTq “ γ21σ33 ` σ
2 “ σTT . Hence, ρ3T “ γ1σ33{pσ3σT q “ γ1σ3{σT . QED(i).

Proof of (ii). Note that ρiT ” corrpXi,Tq “ corrpXi, γ1X3 ` Eq “ γ1covpXi,X3q{pσiσT q “

γ1ρi3σiσ3{pσiσT q “ ρi3pγ1σ3{σT q “ ρi3ρ3T . QED(ii).

In what follows, let θ ” pθ0 ´ µT q{σT , λ ” φpθq{Φp´θq, δ ” λpλ´ θq, and ψ ” ρ23T .

Proof of Result 1. Note that T “ µT ` σTZT , where ZT „ Z ” Np0, 1q. It follows that

π ” P pT ą θT q “ P pZT ą pθT ´ µT q{σT q “ P pZ ą θq “ Φp´θq. QED(1).

Proof of Result 2. For convenience, let ρ ” ρ3T . Write skew3ptq “ Num{Den. The numerator

of the skew parameter is Num ” ErpX3 ´ EpX3|T ą θ0qq
3|T ą θ0s. Here, EpX3|T ą θ0q “

Epµ3 ` σ3Z3|ZT ą θq “ µ3 ` σ3λρ, by identity (6) in the paper. Thus, Num “ σ33rEpY ´ λρq3s,

where Y „ Z3|pZT ą θq. Expanding and using identities (6), (8), and (14) in the paper, a little

algebra shows that Num “ σ33λρ
3pθ2 ´ 1´ 3λθ ` 2λ2q or because ρ3 “ sgnpρqψ3{2, we have

Num “ σ33sgnpρqλψ3{2pθ2 ´ 1´ 3λθ ` 2λ2q.

The denominator of the skew satisfies Den2{3 ” varpX3|T ą θ0q “ σ33varpZ3|ZT ą θq “

σ33p1´ δρ
2q, by identity (8) in the paper. Again, noting that ψ “ ρ2 and ρ ” ρ3T , it follows that

skew3ptq “ Num{Den “ sgnpρ3Tqλpθ
2 ´ 1´ 3λθ ` 2λ2q

ˆ

ψ

1´ δψ

˙3{2

,

as was to be shown. Finally, the paper argues that all the multiplicative contributions in skew3ptq

are positive except for sgnpρ3Tq. It follows that sgnpskew3ptqq “ sgnpρ3T q. QED(2).

7 Supplement, J.B. Lang



Proof of Result 3. ρ12ptq ” corrpX1,X2|T ą θ0q “ corrpZ1,Z2|ZT ą θq “
ρ12 ´ δρ1Tρ2T

b

p1´ δρ21T q
b

p1´ δρ22T q

by identity (12) in the paper. Now for i “ 1, 2, the lemma above states that ρiT “ ρi3ρ3T and

because ψ ” ρ23T , we have ρ2iT “ ρ2i3ψ. It follows that

ρ12ptq ” corrpX1,X2|T ą θ0q “
ρ12 ´ δψρ13ρ23

a

p1´ δψρ213q
a

p1´ δψρ223q
,

as was to be shown. We also have for i “ 1, 2, ρi3ptq ” corrpXi,X3|T ą θ0q “ corrpZi,Z3|ZT ą θq “

ρi3 ´ δρiTρ3T
b

p1´ δρ2iT q
b

p1´ δρ23T q
by identity (12) in the paper. Again use ρiT “ ρi3ρ3T , ρ2iT “ ρ2i3ψ, where

as always ψ ” ρ23T . After a little algebra we arrive at

ρi3ptq ” corrpXi,X3|T ą θ0q “ ρi3

d

1´ δψ

1´ δψρ2i3
, i “ 1, 2.

And this proves Result 3. QED(3)

Proof of Result 4. σ11ptq ” varpX1|T ą θ0q “ σ11varpZ1|ZT ą θq “ σ11p1´ δρ1T q by identity (8)

in the paper. By the lemma above, ρ21T “ ρ213ρ
2
3T ” ρ213ψ and we can re-express this variance as

σ11ptq ” varpX1|T ą θ0q “ σ11p1´ δψρ
2
13q,

as was to be shown. The same argument leads to the analogous expression for σ22ptq. QED(4).

Proof of Result 5. µ1ptq ” EpX1|T ą θ0q “ µ1 ` σ1EpZ1|ZT ą θq “ µ1 ` σ1λρ1T , by identity (6)

in the paper. Now using ρ1T “ ρ13ρ3T we arrive at

µ1ptq ” EpX1|T ą θ0q “ µ1 ` σ1λρ13ρ3T ,

as was to be shown. The same argument leads to the analogous expression for µ2ptq. QED(5).

In the proofs of Results 6-10 below, we continue to use the notation θ ” pθ0 ´ µT q{σT , λ ”

φpθq{Φp´θq, δ ” λpλ´ θq, and ψ ” ρ23T .

Proof of Result 6. By Result 1, π ” P pT ą θ0q “ Φp´θq. It follows that θ “ ´Φ´1pπq. QED(6).

8 Supplement, J.B. Lang



Proof of Result 7. Again, define ρ ” ρ3T , so ψ “ ρ2. We have from Result 2 that skew3ptq “

sgnpρqλD

ˆ

ρ2

1´ δρ2

˙3{2

, where D “ θ2 ´ 1 ´ 3λθ ` 2λ2. Now let R ” |skew3ptq|{pλDq. It follows

that R2{3 “ ρ2{p1´ δρ2q and hence ρ2 “ R2{3{p1` δR2{3q. Thus, ρ “ sgnpρq
b

R2{3

1`δR2{3 . Noting that

ρ ” ρ3T and sgnpρ3T q “ sgnpskew3ptqq gives the desired result,

ρ3T “ sgnpskew3ptqq

d

R2{3

1` δR2{3
.

QED(7).

Proof of Result 8. By Result 3, we have ρ13ptq “ ρ13

?
1´ δψ

a

1´ δψρ213
. For simplicity, write this

as A “ B

?
1´ δψ

a

1´ δψB2
and solve for B. Use the fact that A2 “ B2 p1´ δψq

p1´ δψB2q
. Algebra leads to

B2 “
A2

1´ δψp1´A2q
, and because sgnpAq “ sgnpBq, we arrive at B “

A
a

1´ δψp1´A2q
. That

is, we have

ρ13 “
ρ13ptq

b

1´ δψp1´ ρ213ptqq
,

as was to be shown. The same argument leads to the analogous expression for ρ23.

We are left to find the expression for ρ12. By Result 3, we have ρ12ptq “ pρ12´ δψρ13ρ23q{D, where

D ”
a

p1´ δψρ213q
a

p1´ δψρ223q. Now using the expressions for ρ13 and ρ23 just derived, we have

that

ρ13ρ23 “
ρ13ptqρ23ptq

b

1´ δψp1´ ρ213ptqq
b

1´ δψp1´ ρ223ptqq
.

After a little algebra, we also have that p1´ δψρ2i3q “
1´ δψ

1´ δψp1´ ρ2i3ptqq
, for i “ 1, 2, so that D can

be expressed as D “
1´ δψ

b

1´ δψp1´ ρ213ptqq
b

1´ δψp1´ ρ223ptqq
. With these identities, we arrive at

ρ12 “ ρ12ptqD ` δψρ13ρ23 “
ρ12ptq ´ δψpρ12ptq ´ ρ13ptqρ23ptqq

b

1´ δψp1´ ρ213ptqq
b

1´ δψp1´ ρ223ptqq
,

as was to be shown. This proves Result 8. QED(8).
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Proof of Result 9. By Result 4, we have σ11ptq “ σ11p1 ´ δψρ213q. In the proof of Result 8, we

also argued that p1´ δψρ213q “
1´ δψ

1´ δψp1´ ρ213ptqq
. By these two identities, we can solve for σ11 and

arrive at

σ11 “ σ11ptq

˜

1´ δψp1´ ρ213ptqq

1´ δψ

¸

,

as was to be shown. The same argument leads to the analogous expression for σ22. QED(9).

Proof of Result 10. By Result 5, we have µ1ptq “ µ1 ` σ1λρ13ρ3T . By Results 8 and 9, we have

that σ1ρ13 “
σ1ptqρ13ptq
?

1´ δψ
. It follows that

µ1 “ µ1ptq ´ σ1λρ13ρ3T “ µ1ptq ´ σ1ptqλρ13ptq
ρ3T

?
1´ δψ

,

as was to be shown. The same argument leads to the analogous expression for µ2. QED(10).
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