SUPPLEMENT: Simulation Results and Proofs
This supplement accompanies the main document,

“Selection-Bias-Adjusted Inference for the Bivariate Normal Distribution under

Soft-Threshold Sampling”

Joseph B. Lang

Dept of Statistics and Actuarial Science, Univ. of Iowa, Jan. 22, 2025

In this supplement, Section 1 reports simulation results and Section 2 gives proofs of the main

document’s Results 1-10.

1.  SIMULATION RESULTS: FIGURES 2-9 AND TABLE S.1

To assess the reasonableness of the estimation and prediction approaches of this paper, we carried
out a small-scale simulation based on the course score data in Table 1 of the main document.
Specifically, we assume that N students initially enroll and the data (z;,z,,x5,t) are realizations
of (X;, Xy, X4, T), which has /I D components each with the same multivariate Normal distribution.
The observed data (z[s], zs[s],z3[s]) are determined by s, a realization of S, where (S = s) =
(T[s] > 6o, T[s°] < 0p). In the simulation, we varied values such as N, 7, p12, and v, and set other
parameters to values similar to those in the last three rows of Table 1; for example, we set 1 = 75,
po =71, 01 =9, and o9 = 11.

The first simulation uses N = 520,7 = 0.8,p = 0.6, v» = 0.8, and z; = 46. The results
are displayed in Figure 1 of the main paper. The next Figures 2-9, below, graphically display
simulation results for a variety of other settings. See the description of Figure 1 in the main paper

for interpretations of these graphs. Finally, the simulation results are displayed in tabular form in

Table S.1, and summarized.
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Figure 9. Simulation Results (N = 5000, 7 = 0.8, p12 = 0.6,% = 0.9, 21 = 46, ng;m, = 1000).
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Table S.1 below summarizes the results corresponding to Figures 1-9. This table shows that
the bias and variability of the adjusted estimators, as measured by the root mean squared error
(RMSE(adj)) shrinks as the sample size N increases. This finding corroborates the consistency
results for the adjusted estimators in the paper. The table (see last column) also shows that the
nominal 95% bootstrap confidence intervals cover approximately 95% of the time, as expected
by the results in the paper. Of course, as expected, Table S.1 also shows how poorly the unad-
justed estimators can perform in terms of RMSE and confidence interval coverage. Note that the
RMSE(unadj) and coverage CVG(unadj) values for the ¢ estimator are not included because that
parameter does not arise in the unadjusted model.

Table S.1. Monte Carlo Simulation Results.
Estimator Statistics (nsim = 1000)

Estimand N =« pi2 ¥ RMSE(unadj) CVG(unadj) RMSE(adj) CVG(adj)

P12 100 0.5 0.6 0.9 0.205 0.662 0.137 0.935
100 0.8 0.6 0.8 0.125 0.790 0.088 0.930

520 0.5 0.6 0.8 0.170 0.056 0.061 0.932

520 0.8 —0.25 0.5 0.094 0.538 0.053 0.940

520 0.8 0.6 0.5 0.065 0.631 0.043 0.958

520 0.8 0.6 0.8 0.099 0.227 0.039 0.944

1000 0.5 0.6 0.8 0.167 0.004 0.045 0.924

5000 0.5 0.6 0.9 0.163 0.000 0.019 0.941

5000 0.8 0.6 0.9 0.107 0.000 0.012 0.945

Ban 100 0.5 0.6 0.9 0.215 0.916 0.203 0.936
100 0.8 0.6 0.8 0.140 0.919 0.136 0.924

520 0.5 0.6 0.8 0.122 0.792 0.089 0.940

520 0.8 —-0.25 0.5 0.091 0.707 0.065 0.949

520 0.8 0.6 0.5 0.061 0.909 0.058 0.931

520 0.8 0.6 0.8 0.072 0.873 0.058 0.948

1000 0.5 0.6 0.8 0.109 0.636 0.065 0.936

5000 0.5 0.6 09 0.092 0.092 0.027 0.948

5000 0.8 0.6 0.9 0.056 0.200 0.019 0.951

P 100 0.5 0.6 0.9 0.240 0.974
100 0.8 0.6 0.8 0.236 0.976

520 0.5 0.6 0.8 0.118 0.910

520 0.8 —-0.25 0.5 0.119 0.921

520 0.8 0.6 0.5 0.192 0.977

520 0.8 0.6 0.8 0.113 0.941

1000 0.5 0.6 0.8 0.075 0.928

5000 0.5 0.6 09 0.032 0.947

5000 0.8 0.6 09 0.029 0.929
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2. PROOFS OF RESULTS 1-10

In these proofs, it is assumed that the model of equation (2) in the paper holds. For this model, X; =
pi+o;Z;,j=1,2,3and T = vy +1X3+E = pr +orZy, where pur = vyo +v1143, o717 = 7%033 +02,
and (Z1,Z2,Z3,Z7) is a four-variate Normal with standard Normal marginals. It is also assumed
that the Normally distributed E is independent of the X variables and has mean 0 and variance o2.
Let p;j = corr(X;,X;) = corr(Zi, Z;) for i,j € {1,2,3} and let p3r = corr(X3,T) = corr(Zs, Zr).
Finally, as in the paper, let o;; = O'j2-.
The proofs of Results 1-10 will make use of the following lemma.

Lemma. For this model, (i) psr = v103/0or and (ii) pir = pispsr, for i = 1,2.

Proof of (i). Note that cov(X3, T) = cov(X3, 11X+ E) = 1033, var(Xs) = o33 and var (11 X3+ F) =
var(T) = y3033 + 0% = opy. Hence, p3r = y1033/(0307) = Y103/07. QED().

Proof of (ii). Note that pir = corr(X;,T) = corr(X;,11X3 + E) = yicov(X;,X3)/(oi07) =

Tpisoios/(cior) = pis(n103/0T) = pispsr- QED(ii).

In what follows, let 6 = (6y — ur)/or, A = ¢(0)/@(—0), § = A(A — 6), and Y = p2.

Proof of Result 1. Note that T = pr + opZyp, where Zp ~ Z = N(0,1). It follows that
7= P(T > 0r)=P(Zr > (0p — ur)/or) = P(Z > 0) = &(—0). QED(1).
Proof of Result 2. For convenience, let p = pgp. Write skewsy) = N um/Den. The numerator
of the skew parameter is Num = E[(X3 — E(X3|T > 69))3|T > 6p]. Here, E(X3|T > 6) =
E(ps + 03Z3|Zr > 0) = ps + o3Ap, by identity (6) in the paper. Thus, Num = o3[E(Y — \p)?],
where Y ~ Zs|(Zp > 0). Expanding and using identities (6), (8), and (14) in the paper, a little

algebra shows that Num = a3\p3(8% — 1 — 3\ + 2)2) or because p® = sgn(p)h>/2, we have
Num = oasgn(p)Mp¥2(60% — 1 — 370 + 2)2).

The denominator of the skew satisfies Den?? = var(Xs|T > 0y) = oszvar(Zs|Zy > 0) =

033(1 — §p?), by identity (8) in the paper. Again, noting that 1) = p? and p = par, it follows that

3/2
skews(py = Num/Den = sgn(psr)A (62 — 1 — 30 + 2\2) <1 i (w) |

as was to be shown. Finally, the paper argues that all the multiplicative contributions in skews)

are positive except for sgn(psr). It follows that sgn(skews)) = sgn(psr). QED(2).
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p12 — Op1TP2T

Proof of Result 3. piyy) = corr(Xy, Xo|T > 0y) = corr(Z1, Za|Zr > 0) =

NCEEE NG

by identity (12) in the paper. Now for i = 1,2, the lemma above states that p;r = pispsr and

because ¢ = pgT, we have pi?T = p%w It follows that

p12 — 0P p13p23
V(1= 69p3s)\/ (1= 6p33)

as was to be shown. We also have for i = 1,2, p;3(;) = corr(X, X3|T > 0) = corr(Z;, Zs|Zr > 0) =
pi3 — OpiTp3T

V(1= 80200/ (1 = 3p3)

as always ¢ = P:23T- After a little algebra we arrive at

[ 11— 6
i = Xi, X3|T > 6p) = pisg | ——> =12
pia(e) = corr(Xy, Xs|T > bo) = pisy | T— ot

And this proves Result 3. QED(3)

prag) = corr(Xy, Xa|T > 6p) =

by identity (12) in the paper. Again use pir = pispsr, por = pi, where

Proof of Result 4. 0,1y = var(Xy|T > 0y) = o11var(Z1|Zr > 0) = 011(1 — dp1r) by identity (8)

in the paper. By the lemma above, p%T = p%3p§T = p%3¢ and we can re-express this variance as
o11(t) = UQT(X1|T > 90) = 0’11(1 — 51/Jp%3),

as was to be shown. The same argument leads to the analogous expression for gy (). QED(4).

Proof of Result 5. py) = E(Xq|T > 0p) = 1 + 01E(Z1|Zr > 0) = p1 + o1 Ap1r, by identity (6)

in the paper. Now using pir = p13psr we arrive at

piy = BT > 0) = p1 + o1Ap13psrs

as was to be shown. The same argument leads to the analogous expression for gy ;). QED(5).

In the proofs of Results 6-10 below, we continue to use the notation 6 = (0 — ur)/or, A =

$(6)/B(—0), 6 = A(A — 0), and 9 = p2,.

Proof of Result 6. By Result 1, 7 = P(T > 6p) = ®(—0). It follows that § = —®~ (7). QED(6).
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Proof of Result 7. Again, define p = psr, so ¥» = p>. We have from Result 2 that skews () =
2 3/2
sgn(p)AD <1 p5 2) , where D = 62 — 1 — 3X0 + 2X%. Now let R = |skews(|/(AD). It follows
—dp

that R%/3 = p?/(1 — §p?) and hence p? = R%?/(1 4+ §R*?). Thus, p = sgn(p)4/ %. Noting that

p = p3r and sgn(psr) = sgn(skews()) gives the desired result,

R2/3
pP3T = Sgn(ske'ZU3(t)> W

JI= 00
V1= 6¢pty

QED(7).

Proof of Result 8. By Result 3, we have pi3) = pi3 For simplicity, write this

1—9¢ 1-6
as A =B vizow and solve for B. Use the fact that A2 = 32(7%. Algebra leads to
1— 6yB? (1—46yB?)
B? A and because sgn(A) = sgn(B), we arrive at B A That
= —————  an u n = sgn(B), we arriv = .
1— o9l — A2) & 8 V1 0u(l - A%)

is, we have
P13(¢)

I ey

as was to be shown. The same argument leads to the analogous expression for pas.

We are left to find the expression for p12. By Result 3, we have po¢) = (p12 — 09p13p23)/D, where

D= \/(1 — 6¢p%3)\/(1 — 09p3;). Now using the expressions for p13 and po3 just derived, we have

that
P13(t) P23(t)

P13P23 = .
\/1 —ay(1 plS(t) \/1 (1 ,023 ))

-0y
1 - 5¢( 13(t))

. With these identities, we arrive at

After a little algebra, we also have that (1 —dyp%) = for i = 1,2, so that D can
1—0vy
\/1—5¢ p13 \/1_5¢ p23 ))
1 = proeD - Sprapas = Pr2et) — 0V (P1a(r) — P13(t)P23(t))
= P12(t = )
v \/1_51/}(1_/)%3(,5))\/ 5¢( p23 ))

as was to be shown. This proves Result 8. QED(8).

be expressed as D =
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Proof of Result 9. By Result 4, we have o) = o11(1 — 51p33). In the proof of Result 8, we
1— v
1—09p(1— p%g(t))

also argued that (1 —dvpi,) = . By these two identities, we can solve for 17 and

arrive at
(1 —oyp(1 — P%g(t))
011 = 011(t) 1— o4 )
as was to be shown. The same argument leads to the analogous expression for oas. QED(9).

Proof of Result 10. By Result 5, we have Py = p1 + o1 p13psr- By Results 8 and 9, we have

o
that o1p13 = m It follows that
p3T
H1 = [1(¢) — O1API3P3T = P1(t) — T1() AP13(t) s+
1— 09
as was to be shown. The same argument leads to the analogous expression for us. QED(10).
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