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1 Theoretical Robustness of MDPDEs under IIP Models

Let us consider the notation of Section 2.1 and let G(·; ti, ti−1) denote the
true distribution for the datum Yi having density g(·; ti, ti−1) for all i. We
can define the minimum DPD functional T α(G(·; t1, t0), . . . , G(·; tn, tn−1)) for
discrete data (with finite sample size n) observed from an IIP as the minimizer
of 1

n

∑n
i=1 dα(g(·; ti, ti−1), fi(·;θ, ti, ti−1)), with respect to θ ∈ Θ. Note that, as

in the definition of MDPDE, T α(G(·; t1, t0), . . . , G(·; tn, tn−1)) can equivalently
be defined as the minimizer of the simpler objective function

n∑
i=1

[∫
f1+α(y;θ, ti, ti−1)dy −

(
1 +

1

α

)∫
fα(y;θ, ti, ti−1)dG(y; ti, ti−1)

]
.

Under appropriate differentiability conditions, it leads to the estimating equa-
tion

n∑
i=1

[ ∫
f1+α(y;θ, ti, ti−1)u(y;θ, ti, ti−1)dy

−
∫
fα(y;θ, ti, ti−1)u(y;θ, ti, ti−1)g(y; ti, ti−1)dy

]
= 0.

To derive the Influence function (IF) for IIP set-up, we will follow the
approach used by Huber (1983) in the context of the influence function for the
non-IID fixed-carriers linear models. We consider the contaminated density
gi,ϵ = (1− ϵ)g(·; ti, ti−1) + ϵδri where δri is the degenerate distribution at the
the point of the contamination point ri for i = 1, 2, . . . , n. Now, since the
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setup here is similar to that one of non-homogeneous independent setup, we
set θ = T α(G(·; t1, t0), . . . , G(·; tn, tn−1)) to follow the process of Ghosh and
Basu (2013) and our required IF of the MDPDE under the present IIP set-up
come out to be

IF (r1, r2, . . . ; rn, G(·, t1, t0), . . . , G(·, tn, tn−1))

= Ψ−1
n

1

n

n∑
i=1

[
fα(ri;θ, ti, ti−1)u(ri;θ, ti, ti−1)− ζi

]
,

where ζi =
∫
f(y;θ, ti, ti−1)u(y;θ, ti, ti−1)g(y;θ, ti, ti−1)dy.

In particular, when the increment distributions come from a single incre-
ment distribution family, as per our notation in Theorem 2, This IF can simply
be expressed as

IF (r1, r2, . . . , rn;G(·, t1, t0), . . . , G(·, tn, tn−1))

=Ψ−1
n

1

n

n∑
i=1

[
f(ri;λi)

αu(ri;λi)− ζi
]
,

with ζi =
∫
f(y;λi)u(y;λi)g(y;λi)dy. In the following, we illustrate the form

and the nature of this IF for the examples of Poisson process and the drifted
Brownian motion to theoretically justify the claimed robustness of the MD-
PDEs for these set-ups.

1.1 Example 1: Poisson Process

Let us consider the Poisson process model and assume that the true distri-
butions belong the same Poisson family, i.e., g(·; ti, ti−1) is the Poisson(λi)
density. In this case, we can easily derive that u(y, λi) = ΛT

i
y−λi

λi
, and thus,

ψn = 1
n

∑n
i=1(1 + α)ΛT

i C
(2)
α (λi)Λi, and ζi =

∑∞
X=1Λ

T
i

(
e−λi λ

X
i

X!

)2
X−λi

λi
.

Hence, using our general form of influence function for IIP process, we have

IF (r1, r2, . . . , rn;G(·, t1, t0), . . . , G(·, tn, tn−1))

= Ψ−1
n

1

n

n∑
i=1

[
ΛT

i e
−αλi

λαrii

(ri!)α
ri − λi
λi

− ζi
]
.

A close form precise expression of Ψ−1
n or of ζi or of C

(2)
α (λi) is difficult to get

without imposing any further structure; we illustrate it for a specific example
below.

In consistent with our previous illustrations, e.g., as in Section 4.1, let us
consider the Poisson process with the intensity function λ(t) = θ

2
√
t
and a time
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stamp vector as t = (0, 1, 2, 3, . . . , 50). Here θ is an uni-dimensional parameter
and λi = θ(

√
ti −

√
ti−1). Thus, we have

ψn =
1

n

n∑
i=1

(1 + α)C(2)
α (λi)(

√
ti −

√
ti−1)

2, where

C(2)
α (λi) =

∑
k∈N

e−λi(1+α)λ
k(1+α)
i (k − λi)

2

(k!)1+αλ2i
.

Using these simplified formulas, we can then numerically compute the IF for
different α, which are plotted in Figure 1.1 over the contamination points
r1 = r2 = · = rn. It can be seen that, in terms of the IF analysis, the effect of
contamination is linearly increasing at α = 0, i.e., for the MLE; this unbounded
nature of the IF theoretically proves the non-robust nature of the MLE. But, as
α increases towards 1, the robustness of our proposed MDPDEs is more visible
via their bounded IFs. The absolute value of the IF dips down significantly as
we increase contamination point for high values of α. Further, the maximum
of these absolute IF values decreases as α increases indicating, theoretically,
the increasing robustness of the corresponding MDPDEs, in consistent with
our earlier empirical illustrations.

Fig. 1.1 Influence Function plot for Poisson Process for θ = 9

1.2 Example 2: Drifted Brownian Motion

Let us now also derive the IF for the drifted Brownian motion assuming that
the true distributions are coming from the same normal family, i.e., g(·; ti, ti−1)
is an univariate Normal(µi, σi) density. We have already derived the form of
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Ψn(t) in Corollary 3 with the notation µi = µ(ti) − µ(ti−1) and σi = σ(ti −

ti−1). Following calculations in 2.4, we also have u(y,λi) = Λ
T
i

(
y−µi

σ2
i
,− 1

σi
+

(y−µi)
2

σ3
i

)
, and ζi = ΛT

i
(2π)−

1
2√

2σ2
i

×
(
0,− 1

2

)
. Hence, we have the required IF as

given by

IF (r1, r2, . . . , rn, G(·, t1, t0), . . . , G(·, tn, tn−1))

= Ψ−1
n

1

n

n∑
i=1

ΛT
i

(
1

(2π)α/2σα
i

e−
α(ri − µi)

2

2σ2
i

[ y−µi

σ2
i

− 1
σi

+ (y−µi)
2

σ3
i

]
− (2π)−

1
2

√
2σ2

i

[
0
− 1

2

])
.

To get a better visualization of the above IF, let us consider the an ex-
ample with a specific mean and sigma function as given by µ(t; θ) = θ

√
t

and σ(θ) = 3 (constant), along with the where time stamp vector being
t = (0, 1, 2, 3, . . . , 50). Note that, clearly θ is again an uni-dimensional pa-
rameter and λi = (µi, σi)

T = (θ(
√
ti −

√
ti−1), 3)

T . Thus, we get

Ψn(t) =
1

n

n∑
i=1

(2π)−
α
2

n(1 + α)1/2σ2+α
i

(
√
ti −

√
ti−1)

2.

We again numerically compute the IF of this particular example of drifted
Brownian motion, using the simplified formulas, at various contamination
points r1 = · · · = rn, which is presented in Figure 1.2 for different values
of α. The nature of these IFs are again the same as in the case of Poisson
process example — the unbounded IF of the MLE (at α = 0) theoretically

Fig. 1.2 Influence Function plot for Drifted Brownian Motion for θ = 5
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justify its non-robust nature and the bounded redescending nature of the IFs
of the MDPDEs with α > 0 further justify the claimed increasing robustness
of the proposed MDPDEs with increasing α. These are again in line with our
empirical findings from the simulation study illustrating the concurrence of
the numerical and theoretical results derived in the paper.

2 Proofs of theorems and corollaries

2.1 Proof of Theorem 2

We will need the following lemma to prove the theorem.

Lemma 1 Suppose that A and B are two non-negative random variables such
that A ≤ B a.e.. Then, for any N > 0, we have

AI(A > N) ≤ BI(B > N) a.e..

Proof Suppose ω ∈ {A > N}. Since, A ≤ B we also have ω ∈ {B > N}.
Hence, {A > N} ⊆ {B > N}. Also, since A is non-negative random variable,
we have AI(A > N) ≤ AI(B > N) a.e.. Now, again using A ≤ B a.e., we will
have AI(A > N) ≤ BI(B > N) a.e.. Hence, proved.

Proof of the theorem:
Remember, we are working under the setup that the increment distributions
come from a single family of distribution. Also, we have assumed that the true
distributions belong to the model family. It is easy to observe that 11 imply
1-3. Thus, as per Theorem 1, it is enough to show that 11-13 implies 6 and 7.

First Condition of 6: Now, first recall that

∇jVi(X;θ, t) =(1 + α)

(
∂λi

∂θj

)T [
Cα(λi)− fα(X,λi)uλ(X,λi)

]
=(1 + α)

k∑
m=1

(
∂λi

∂θj

)
m

[
(Cα(λi))m − fα(X,λi)(uλ(X,λi))m

]
.

Thus, we have following inequalities

|∇jVi(X;θ, t)|

≤(1 + α)

k∑
m=1

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣[∣∣∣∣(Cα(λi))m

∣∣∣∣+ fα(X,λi)

∣∣∣∣(uλ(X,λi))m

∣∣∣∣]

≤(1 + α)
k∑

m=1

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣[∣∣∣∣(Cα(λi))m

∣∣∣∣+Mα

∣∣∣∣(uλ(X,λi))m

∣∣∣∣] [using 11]

≤(1 + α) sup
i≥1

sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣
(

k∑
m=1

[
|(Cα(λi))m|

]
+ kMα∥uλ(X,λi)∥∞

)
.
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Now, observe that, by 11 we have, for all m ≤ k, |(Cα(λi))m| a continu-
ous function of λi ∈ Λ. Also, Λ being a compact space we have |(Cα(λi))m|
bounded for all m. Hence, there exists a B > 0 such that

k∑
m=1

|(Cα(λi))m| ≤ B.

Thus, we have

|∇jVi(X;θ, t)| ≤ (1 + α) sup
i≥1

sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣ [B + kMα∥uλ(X,λi)∥∞] .

Further, note the following implication

(1 + α) sup
i≥1

sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣ [B + kMα∥uλ(X,λi)∥∞] > N.

=⇒ ∥uλ(X,λi)∥∞ >
N

kMα(1 + α) supi≥1 supm≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣ −
B

kMα
:= N0.

Now, since by 12, the terms in denominator of N0 are finite, we have

N → ∞ =⇒ N0 → ∞

Then, using Lemma 1, we get

1

n

n∑
i=1

Eλi

[
|∇jVi(X;θ, t)|I(|∇jVi(X;θ, t)| > N)

]

≤ 1

n

n∑
i=1

Eλi

[
(1 + α) sup

i≥1
sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣ [B + kMα∥uλ(X,λi)∥∞]

I

(
(1 + α) sup

i≥1
sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣ [B + kMα∥uλ(X,λi)∥∞] > N

)]
=(1 + α) sup

i≥1
sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣B
(
1

n

n∑
i=1

Pλi(∥uλ(X,λi)∥∞ > N0)

)

+(1 + α) sup
i≥1

sup
m≤k

∣∣∣∣ (∂λi

∂θj

)
m

∣∣∣∣kMα×(
1

n

n∑
i=1

Eλi
(∥uλ(X,λi)∥∞I(∥uλ(X,λi)∥∞ > N0))

)
.

Now, finally by Assumptions 12-13 we can see that first condition of 6 holds
true.

Second condition of 6: It will follow in the same way as the first condition
did, and thus, skipped here for brevity.
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Assumption 7: To begin with, we will state two elementary results on norms
we are gonna use. Firstly, for any given matrix M and vector x, we have

∥Mx∥ ≤ ∥M∥∥x∥, (1)

which directly follows from the definition. Our second result is as follows. For
any two given vectors a, b ∈ Rp,we have

∥a− b∥2 ≤ 2(∥|a|∥2 + ∥|b|∥2). (2)

where |a| ∈ Rp is defined as |a|i = |ai| for i ≤ p. This second result (2) can be
proved easily as follows:

∥a− b∥2 =

p∑
i=1

(ai − bi)
2 ≤

p∑
i=1

2(|ai|2 + |bi|2) = 2(∥|a|∥2 + ∥|b|∥2).

Now, by observation (1) and Assumption 12, there exists B > 0 such that

∥Ω−1/2
n ∇Vi(Y ;θ, t)∥ ≤ ∥Ω−1/2

n ∥∥∇Vi(Y ;θ, t)∥ ≤ B∥∇Vi(Y ;θ, t)∥.

Recall, we have for single family of increment distributions and hence

∇jVi(X;θ, t) = (1 + α)

(
∂λi

∂θj

)T

[Cα(λi)− fα(X,λi)uλ(X,λi)].

In a more compact matrix notations, we can write

∇Vi(X;θ, t) = (1 + α)ΛT
i [Cα(λi)− fα(X,λi)uλ(X,λi)].

Now, note that

∥∇Vi(X;θ, t)∥ ≤ (1 + α)∥ΛT
i ∥ × ∥Cα(λi)− fα(X,λi)uλ(X,λi)∥.

Then, by 12, one can show that there exists K satisfying ∥ΛT
i ∥ ≤ K for all i.

Further, using 11 again along with Result (2), we get

∥Cα(λi)− fα(X,λi)uλ(X,λi)∥2 ≤ 2∥Cα(λi)∥2 + 2M2α∥uλ(X,λi)∥2.

Next, using 11 again, ∥Cα(λi)∥2 is a continuous function of λi, and hence, is
bounded by some L > 0. Thus, using Lemma 1, we get

n∑
i=1

Eλi [∥Ωn(t)
−1/2∇Vi(Y ;θ, t)∥2I(∥Ωn(t)

−1/2∇Vi(Y ;θ, t)∥ > ϵ
√
n)]

≤
n∑

i=1

2(B(1 + α)K)2Eλi

[ (
L+M2α∥uλ(X,λi)∥2

)
I

(
L+M2α∥uλ(X,λi)∥2 >

ϵ2n

2(B(1 + α)K)2

)]
.

Finally, proceeding like what we showed above for assumption 6, similar results
for 7 will follow too. □



8 Hore & Ghosh

2.2 Proof of Corollary 1

First observe that, here ℓ = 1. Also, just by elementary calculus one can verify
for f(X,λi) = e−λiλXi /X! that

uλ(X,λi) =
X − λi
λi

, ∇λuλ(X,λi) = −X

λ2i
and

uλ(X,λi)uλ(X,λi)
T =

(X − λi)
2

λ2i
.

Thus, following our notation from Section 3.2, we have

Cα(λi) =
∑
k∈N

e−λi(1+α)λ
k(1+α)
i (k − λi)

(k!)1+αλi
,

C(1)
α (λi) =

∑
k∈N

−e
−λi(1+α)λ

k(1+α)
i k

(k!)1+αλ2i
and,

C(2)
α (λi) =

∑
k∈N

e−λi(1+α)λ
k(1+α)
i (k − λi)

2

(k!)1+αλ2i
.

Accordingly, we get

Ψn(t) =

n∑
i=1

(1 + α)

n
ΛT

i C
(2)
α,iΛi, andΩn(t) =

1

n

n∑
i=1

(1+α)2ΛT
i

[
C

(2)
2α,i − C2

α,i

]
Λi.

Further, in terms of notation of 13 from the main paper, with our defined
notations, we also have

W2i =
|X − λi|

λi
+

|X|
λ2i

+
(X − λi)

2

λ2i
,

and additionally define W1i =W3i = |X − λi|/λi. To study the tail bounds of
these quantities, let us note the following lemma on Poisson Distribution; its
proof is given in section 3.4

Lemma 2 Suppose X ∼ Poi(λ). Then following holds for large enough k ∈ N

Pλ(|X| > k) = O

(
1√
k

)
, Eλ(|X|I(|X| > k) = O

(
λ√
k

)
and

Eλ(X
2I(|X| > k) = O

(
λ2√
k

)
.

Now, in order to show that 13 follows directly from 11-13 under the Poisson
process model, we observe that, for large N and any i, using above Lemma 2
we have

Pλi
(W1i > N) = Pλi

(X − λi > Nλi) =O

(
1

(
√
(N + 1)λi

)

=O

(
1√
Nλi

)
= O

(
1√
N

)
,
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where the last step follows using 11. Thus, one can note that, for all n,

1

n

n∑
i=1

Pλi
(W1i > N) = O

(
1√
N

)
.

Now, similarly observe that

Eλi
[W1iI(W1i > N)] = Eλi

[XI(X > (N + 1)λi)]− λiPλi
(X > (N + 1)λi)

≤ Eλi
[XI(X > (N + 1)λi)]

= O

(
λi√

(N + 1)λi

)

= O

(√
λi
N

)
= O

(
1√
N

)
(Using 11).

Hence, the third condition of 13 follows directly for Poisson Process if 11 holds.
Also, the second condition of 13 will follow similarly as above.

Lastly, observe the following set inequality:

{W2i > N} ⊆
{
|X − λi|

λi
> N/3

}
∪
{
|X|
λ2i

> N/3

}
∪
{
(X − λi)

2

λ2i
> N/3

}
⊆{X > (N/3 + 1)λi} ∪

{
X > Nλ2i /3

}
∪
{
X > (

√
N/3 + 1)λi

}
.

Thus, we have

P (V2i > N) ≤ P (X > (N/3 + 1)λi) + P (X > Nλ2i /3) + P (X > (
√
N/3 + 1)λi)

= O

(
1√
N

)
+O

(
1√
N

)
+O

(
1

N1/4

)
(Proceeding as before)

= O

(
1√
N

)
.

Hence, first condition of 13 can be proved following a similar path. □

2.3 Proof of Corollary 2

Suppose that µi is the i-th location parameter and σi is the i-th scale param-
eter and the corresponding location-scale family is

f(X;µi, σi) =
1

σi
f

(
X − µi

σi

)
.

Thus, one can check that

uλ(X,λi) =

− 1

σi

f ′
(

X−µi

σi

)
f
(

X−µi

σi

) ∇λµi,−
1

σi

1 +
f ′
(

X−µi

σi

)T (
X−µi

σi

)
f
(

X−µi

σi

)
∇λσi


=:

1

σi
G

(
X − µi

σi

)
,
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for some suitable function G, where f ′(·) is the derivative of f(·). Similarly,
one can find suitable functions G(1) and G(2) such that

∇λuλ(X,λi) =:
1

σ2
i

G(1)

(
X − µi

σi

)
, and

uλ(Y,λi)uλ(Y,λi)
T =:

1

σ2
i

G(2)

(
X − µi

σi

)
.

Hence, we can do the following simplifications

Cα(λi) =Eµi,σi

(
1

σ1+α
i

fα
(
X − µi

σi

)
G

(
X − µi

σi

))
=

1

σ1+α
i

E0,1 (f
α(X)G(X)) ,

C(1)
α (λi) =Eµi,σi

(
1

σ2+α
i

fα
(
X − µi

σi

)
G(1)

(
X − µi

σi

))
=

1

σ2+α
i

E0,1

(
fα(X)G(1)(X)

)
,

C(2)
α (λi) =Eµi,σi

(
1

σ2+α
i

fα
(
X − µi

σi

)
G(2)

(
X − µi

σi

))
=

1

σ2+α
i

E0,1

(
fα(X)G(2)(X)

)
.

Using these simplified results, one can easily observe that

Ψn(t) =

n∑
i=1

(1 + α)

nσ2+α
i

ΛT
i C

(2)
α (0, 1)Λi, and

Ωn(t) =
1

n

n∑
i=1

(1 + α)2

σ2+2α
i

ΛT
i

[
C

(2)
2α (0, 1)−Cα(0, 1)Cα(0, 1)

T
]
Λi.

But, in terms of the notation from 13, we have

W2i(Y ) = ∥uλ(Y,λi)∥∞ + ∥∇λuλ(Y,λi)∥∞,+∥uλ(Y,λi)uλ(Y,λi)
T ∥∞.

For simplicity of notation, we further define

W1i(Y ) := ∥uλ(Y,λi)∥∞, W3i(Y ) := ∥uλ(Y,λi)∥2.

Then, following the discussion above, we can observe that there exists a suit-
able non-negative functions G1 and G3 independent of i such that

W1i(Y ) =
1

σi
G1

(
Y − µi

σi

)
and W3i(Y ) =

1

σi
G3

(
Y − µi

σi

)
.

and further we can find some non-negative functions G21 and G22 independent
of i, such that

W2i =
1

σi
G21

(
X − µi

σi

)
+

1

σ2
i

G22

(
X − µi

σi

)
.



MDPDE for stochastic processes 11

Now, using 11 we also have 1
σi

bounded for all i. Then we have, for some
B > 0,

W1i ≤ BG1

(
X − µi

σi

)
and W2i ≤BG21

(
X − µi

σi

)
+B2G22

(
X − µi

σi

)
=⇒ W2i ≤G2

(
X − µi

σi

)
for some function G2 .

Thus, we have the following for all i:

Pλi [W1i > N ] ≤Pµi,σi

(
BG1

(
X − µi

σi

)
> N

)
=P0,1(BG1(X) > N).

Hence, we have

lim
N→∞

sup
n>1

1

n

n∑
i=1

Pλi [W1i > N ] ≤ lim
N→∞

P0,1(G1(X) > N/B) = 0.

Hence, the first part of the third condition of 13 holds directly for location
scale family. The second condition also follows directly, if we first observe

lim
N→∞

sup
n>1

1

n

n∑
i=1

Eλi
[W1iI(W1i > N)]

≤ lim
N→∞

E0,1[BG1(X)I(BG1(X) > N)] = 0.

In the above, the first inequality follows from Lemma 1 and the second equal-
ity follows by an application of the dominated convergence theorem (DCT),
assuming that uλ(X,λi) is integrable. Hence, the third condition of 13 follows.

Similarly we can also show similar tail behavior forW2i andW3i as required
in the first and second conditions of 13. □

2.4 Proof of Corollary 3

Recall that the drifted Brownian motion falls into category of location-scale
family of increment distribution, and thus, the result follows for this IIP readily
from Theorem 2. So, we only need to simplify the expressions for Ψn and Ωn

as follows.

Here, as per the notation for the location scale family of increment distri-
butions, we have f(·) to be the standard normal density, i.e.,

f(x) =
1√
2π
e−x2/2.
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Hence, with the notation from the proof of Theorem 2, one can check that

G(x) =
(
x, x2 − 1

)
, G(1)(x) =

[
−1 −2x
−2x 1− 3x2

]
and

G(2)(x) =

[
x2 x3 − x

x3 − x (x2 − 1)2

]
.

Note, in this case, f1+α(x) = (2π)−
α
2

1√
1+α

times the pdf of Normal distribu-

tion with mean 0 variance 1
1+α . Thus, one can compute that

Cα(λi) =
(2π)−

α
2

√
1 + ασ1+α

i

×
(
0,

1

1 + α
− 1

)
,

C(1)
α (λi) =

(2π)−
α
2

√
1 + ασ2+α

i

×
[
−1 0
0 1− 3

1+α

]
,

and

C(2)
α (λi) =

(2π)−
α
2

√
1 + ασ2+α

i

×
[ 1
1+α 0

0 3
(1+α)2 − 2

1+α + 1

]
,

and thus, it is easy to verify that

Ψn(t) =

n∑
i=1

(2π)−
α
2 (1 + α)1/2

nσ2+α
i

ΛT
i

[ 1
1+α 0

0 3
(1+α)2 − 2

1+α + 1

]
Λi,

and Ωn(t) can be equivalently expressed as

1

n

n∑
i=1

(1 + α)2(2π)−α

σ2+2α
i

√
1 + 2α

ΛT
i

[ 1
1+2α 0

0 3
(1+2α)2 − 2

1+2α + 1−
√
1+2α
1+α

(
1

1+α − 1
)2]Λi.

□

3 Proofs of the Lemmas

3.1 Proof of Lemma 3

Fix ϵ > 0 and n ∈ N. Using Chebychev’s Inequality, we have

P

[∣∣∣∣Sn− E(Sn)

n

∣∣∣∣ > ϵ

]
≤ V ar(Sn/n)

ϵ2
.

Now, first observe that, for all i, j, by Cauchy-Schwartz inequality, we get

|Cov(Xi, Xj)| ≤
√
V ar(Xi)V ar(Xj) = σ2.
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Therefore,

V ar

(
Sn

n

)
=
V ar(Sn)

n2
≤
∑n

i

∑n
j |Cov(Xi, Xj)|

n2

≤
∑n

i

∑min(n,i+m)
j=max(i−m,0) |Cov(Xi, Xj)|

n2

≤
∑n

i=1 2mσ
2

n2
≤ nmσ2

n2
→ 0,

and the result follows. □

3.2 Proof of Lemma 4

To show the result, let us first observe that

V ar(Sn)

n
=
V ar(Sn)

n
≤
∑n

i

∑n
j |Cov(Xi, Xj)|

n

=

∑n
i

∑min(n,i+m)
j=max(i−m,0) |Cov(Xi, Xj)|

n

≤
By stationarity

∑n
i=1

∑i+m
j=i−m |Cov(X1, Xj)|

n

=

∑n
i=1A

n
= A.

Similarly, also observe that

V ar(Sn)

n
≥
∑n−m

i=m+1

∑n
j |Cov(Xi, Xj)|
n

≥
By stationarity

∑n−m
i=m+1A

n
≥ (n− 2m)A

n
.

Hence, by Sandwich theorem, we have V ar(Sn)
n → A. □

3.3 Proof of Lemma 1

Fix ϵ > 0 and n ∈ N. Then, using Chebychev’s Inequality, we have

P

[∣∣∣∣Sn− E(Sn)

n

∣∣∣∣ > ϵ

]
≤ V ar(Sn/n)

ϵ2
.

Now, first observe that

V ar

(
Sn

n

)
=
V ar(Sn)

n2
≤ σ2

∑n
i

∑n
j |Cov(Xi, Xj)|

n2
≤ σ2

∑n
i

∑n
j c

|i−j|

n2
.
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But, we can do the following calculations:

n∑
i=1

n∑
j=1

c|i−j| =

n∑
i=1

1 + 2

n∑
i=1

i−1∑
j=1

c|i−j| =n+ 2

n∑
i=1

i−1∑
j=1

ci−j

=n+ 2c

n∑
i=1

1− ci−1

1− c

≤n+
2c

1− c

n∑
i=1

1 = n
1 + c

1− c
.

Thus, finally we have

V ar(Sn/n)

ϵ2
≤
n
(

1+c
1−c

)
n2ϵ2

→ 0 as n→ ∞.

Since ϵ is arbitrary, we can conclude that

Sn − E(Sn)

n

P→ 0.

□

3.4 Proof of Lemma 2

Observe firstly that, for k ∈ N, we have

Pλ(X = k) = e−λλ
k

k!
.

Thus, we can see that

Pλ(|X| > k) =

∞∑
i=k+1

e−λλ
i

i!

≈
∞∑

i=k+1

e−λ λiei

(
√
2πi)ii

(
Stirling Approximation i! ≈

√
2πi(i/e)i

)
=

∞∑
i=k+1

e−λ

(
λe

i

)i
1√
2πi

≤
∞∑

i=k+1

e−λ

(
λe

k

)i
1√
2πk

(i > k)

=e−λ 1√
2πk

1

1− λe
k

(
λe

k

)k (
k is big,

(
λe

k

)
< 1

)
≤1× 1√

k
× k

k − λe
× 1

=O

(
1√
k

) (
k

k − λe
≈ 1

)
.
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Next, similarly we can observe that

Eλ(|X|I(|X| > k)) =

∞∑
i=k+1

ie−λλ
i

i!
=

∞∑
i=k

λe−λλ
i

i!
=λPλ(X > k − 1)

=O

(
λ√
k

)
.

Similarly, we also can show

Eλ(X
2I(|X| > k)) = O

(
λ2√
k

)
.

□
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