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1 Proofs

Theorem 1

The number of true discoveries m1 is an unknown integer between 0 and m. Fix a candidate
value m̃1 ∈ {0, . . . ,m}, as well as the probability Pm̃1 under the corresponding model. From
Eq. (2), the value γm̃1 is such that

Pm̃1(m̃1 ≥ Rγm̃1)≥ 1−α.

Then consider the minimum γ∗ of these values, as defined in Eq. (3). For any m̃1, we have that
Rγ∗ ≤ Rγm̃1 , and so

Pm̃1(m̃1 ≥ Rγ
∗)≥ Pm̃1(m̃1 ≥ Rγm̃1)≥ 1−α.

This holds in particular for the true value m1, so that

Pm1(m1 ≥ Rγ
∗)≥ 1−α.

Finally, recall that m1 can take only integer values. Hence

m1 ≥ Rγ
∗ ⇐⇒ m1 ∈ {⌈Rγ

∗⌉, . . . ,m} ⇐⇒ m1 ≥ ⌈Rγ
∗⌉

and so
Pm1(m1 ≥ ⌈Rγ

∗⌉) = Pm1(m1 ≥ Rγ
∗)≥ 1−α.

Therefore m̂1 = ⌈rγ∗⌉ is a lower (1−α)-confidence bound for m1.
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Theorem 2

From Eq. (2)
γm̃1 = max{γ ∈ [0,1] : Pm̃1(Rγ ≤ m̃1)≥ 1−α} .

Recall that R is a discrete variable taking values in {0, . . . ,m}, so it is sufficient to study its
CDF in these values. First, suppose that m̃1 = 0. In this case,

P0(Rγ ≤ 0) = P0(Rγ = 0) =

{
1 if γ = 0
P0(R = 0) if γ ∈ (0,1].

Hence it is sufficient to look for the maximum in {0,1}:

γ0 = max{γ ∈ {0,1} : P0 (Rγ = 0)≥ 1−α}=

{
1 if P0(R = 0)≥ 1−α

0 otherwise.

Then consider any other value m̃1 ∈ {1, . . . ,m}. Notice that for γ = m̃1/m we obtain

Pm̃1(Rγ ≤ m̃1) = Pm̃1(R ≤ m) = 1 ≥ 1−α,

and so γm̃1 ≥ m̃1/m > 0. Then we can re-write

γm̃1 = max
{

γ ∈
[

m̃1

m
,1
]

: Pm̃1

(
R ≤ m̃1

γ

)
≥ 1−α

}
= max

{
γ ∈

{
m̃1

m
,

m̃1

m−1
, . . . ,

m̃1

m̃1

}
: Pm̃1

(
R ≤ m̃1

γ

)
≥ 1−α

}
= max

{
γ =

m̃1

ℓ
, ℓ ∈ {m̃1, . . . ,m−1,m} : Pm̃1(R ≤ ℓ)≥ 1−α

}
=

m̃1

ℓm̃1

where
ℓm̃1 = min{ℓ ∈ {m̃1, . . . ,m−1,m} : Pm̃1(R ≤ ℓ)≥ 1−α} .

From this, it follow that
γm̃1 = m̃1/ℓm̃1 .

Proposition 1

Denote by S = |R∩M1| the random variable corresponding to the number of true discoveries
in the rejection set R, and by V = R−S the random variable corresponding to the number of
false discoveries. We use that R =V +S, then by the law of total probability

Pm̃1(R = ℓ) =
ℓ

∑
j=0

Pm̃1(V = j,S = ℓ− j)

=
ℓ

∑
j=0

(
m− m̃1

j

)(
m̃1

ℓ− j

)
t j
ℓ (F(tℓ))ℓ− j

·ΨUni[0,1],F
m−m̃1− j,m̃1−ℓ+ j(1− tm, . . . ,1− tℓ+1),
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The last equality is due to Roquain & Villers (2011), Section 5.3. The expression for Pm̃1(R ≤
ℓ) given in the proposition follows.

Proposition 2

Because R is discrete, the expected value of R can be computed as

Em̃1 [R] =
m

∑
ℓ=0

ℓ ·Pm̃1(R = ℓ) =
m

∑
ℓ=0

l · (Pm̃1(R ≤ ℓ)−Pm̃1(R ≤ ℓ−1)),

where Pm̃1(R ≤ ℓ) is given in Proposition 1. The expression of Em̃1 [Rγ∗] follows.
Similarly, the variance is computed as

Varm̃1 [R] = Em̃1 [R
2]−Em̃1 [R]

2

=
m

∑
ℓ=0

ℓ2 ·Pm̃1(R = ℓ)−

(
m

∑
ℓ=0

ℓ ·Pm̃1(R = ℓ)

)2

=
m

∑
ℓ=0

ℓ2 · (Pm̃1(R ≤ ℓ)−Pm̃1(R ≤ ℓ−1))−

(
m

∑
ℓ=0

ℓ · (Pm̃1(R ≤ ℓ)−Pm̃1(R ≤ ℓ−1))

)2

.

Family of critical vectors de�ned by Eq. 8

Let t(λ ,β ) = (t1(λ ,β ), . . . , tm(λ ,β ))⊤ be a vector belonging to the family of vectors defined
by Eq. (8). In the following we notationally omit dependency on λ and β to improve read-
ability. According to Definition 1, t is a critical vector of a step up procedure when it is
non-decreasing and takes values between 0 and 1.

Since i ∈ {1, . . . ,m}, i/m is non-decreasing in i. Therefore, ti = λ (i/m)β is non-decreasing
in i if λ ≥ 0 and β ≥ 0. When the first requirement is met, it is enough to show that t0 ≥ 0
and tm ≤ 1 to fulfill the second requirement. Note that t0 = λ (0/m)β = 0 for β ̸= 0. For
β = 0, t0 = λ ≥ 0. The last inequality is due to the restrictions on λ introduced by the first
requirement. Furthermore, tm = λ for any choice of β . Therefore, for 0 ≤ λ ≤ 1, t satisfies
the second requirement.

Consequently, for 0 ≤ λ ≤ 1 and β ≥ 0, any vector defined by Eq (8) is a critical vector for
a step-up procedure.

2 Algorithms

In this section, we give algorithms for the proposed methodology.
Algorithm 1 computes a lower (1−α)-confidence bound m̂1 for the number of true dis-

coveries as in Eq. (4), using results from Theorems 1 and 2 and Proposition 1. Note that
observations in form of r are only used in the last step of the algorithm.

Algorithm 2 implements the methods based on thresholds for the p-values to compute an
estimate θ̂ of the effect size, as described in Section 5.5 in the main article. The algorithm uses
t-values q = (q1, . . . ,qm)

⊤ and p-values p = (p1, . . . , pm)
⊤. It selects the t-values for which
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Algorithm 1: Algorithm to compute m̂1 such that Pm1(m1 ≥ m̂1)≥ 1−α as in Eq. (4).

for m̃1 = 0, . . . ,m do
ℓ=−1 ;
Pr = 0 ;
while Pr < 1−α & ℓ < m do

ℓ= ℓ+1 ;
Pr = Pr+P(R = ℓ) ;

end
if ℓ < m̃1 then

ℓm̃1 = m̃1;
else

ℓm̃1 = r
end
if ℓm̃1 = 0 then

γm̃1 = 1;
else

γm̃1 =
m̃1
ℓm̃1

end
end
γ∗ = minm̃1∈[m](γm̃1);
return ⌈r · γ∗⌉;
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the corresponding p-values do not exceed a given threshold h, and uses those to determine
θ̂ . The threshold h may be either a fixed value or the threshold based on of a single-step
test controlling the FWER at level a, such as the Bonferroni and Šidák corrections. For the
Bonferroni correction,

h =
a
m
,

while for the Šidák correction,
h = 1− (1−a)

1
m .

Algorithm 2: Algorithm to compute θ̂ based on Eq. (12), using a threshold h for the
p-values.

ν = N −1;
qsel = q[p ≤ h];

µ̂ = mean(qsel) ·
√

2
ν

Γ(ν/2)
Γ((ν−1)/2) ;

return µ̂ ·
√

2
N

3 Additional simulation results

In this section, further details about the simulations of Section 5 in the main article are given.
We claim that, for any family of critical vectors indexed by a parameter λ (and eventually
other parameters), optimal power is achieved when selecting the largest λ for which γ∗ = 1
in Eq. (3), as mentioned in Section 4 in the main article. Subsequently, we present additional
plots that support the claims on results made in Section 5 in the main article. Tables and
plots are shown only for some choices of the parameters, but other values lead to the same
conclusions.

First, consider the setting under Assumption 1, where p-values are independent and the
CDF F is correctly specified. Table 1 displays the sum of the expected values given in Eq. (9),
obtained using different critical vectors and for varying effect sizes θ . Eq. (9) is maximized
when λ is chosen as the largest value for which γ∗ = 1. Furthermore, Table 2 displays the
average confidence bounds of the proposed procedure with different critical vectors for a fixed
θ = 0.8 and varying values of m1. In most cases, the largest confidence bound is obtained
for critical vectors with γ∗ = 1, with the only exception of settings with very sparse signal
(m1 ≤ 10). This justifies the choice of maximizing Eq. (9) to select the critical vector, as in
most cases the same critical vector leads to the largest confidence bound.

Figures 1-9 display, for different simulation scenarios, the proportion of iterations for which
the lower confidence bound is larger than the true number of discoveries (m1 < m̂1), as well as
the average lower confidence bound m̂1. In all cases, m̂1 is obtained from GS, MR, GL and the
proposed method with different families of critical vectors. All results presented are based on
N[b] = 50. If the proportion of iterations with m̂1 > m1 is at most α , the bounds are considered
valid. Critical vectors of each family have been chosen using the largest γ∗ ∈ {0.8,0.9,0.95,1}
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such that the proposed method determines valid confidence bounds. Results are shown for
smaller effect sizes (θ ≤ 1.2) and N[e] ∈{0,50}. Since the validity and power of the confidence
bounds obtained from any procedure depend on the denseness of the signal, we show results
for the extreme values of the denseness of the signal (m1 ∈ {10,90}).

In particular, Figure 1-5 display results under dependency of the p-values and correct spe-
cification of F . The proportions of iterations with m̂1 > m1 are displayed in Figures 1 and
2 for ρ = 0.3 and Figure 3 for ρ = 0.9. For low positive dependency (ρ = 0.3) and sparse
signal, the proposed procedure with γ∗ = 1 returns valid confidence bounds, as illustrated in
Figure 1, upper right panel. In this setting, confidence bounds obtained from MR are invalid
for all considered effect sizes, while GL returns valid bounds for low effect sizes. As in the
independent setting, the effect size θ for which GL returns invalid bounds decreases as N[e]

increases. This is illustrated in the upper left and right panel, which show results for N[e] = 0
and N[e] = 50, respectively. When the signal is dense, the established procedures return valid
confidence bounds for all considered effect sizes and N[e] ∈ {0,50}. The proposed procedure
with critical vectors Expopt and AORCopt return invalid confidence bounds for θ ≤ 0.6. This
is displayed in the lower half of Figure 1 for N[e] = 0 (left-hand side) and N[e] = 50 (right-hand
side). The number of iterations with m̂1 > m1 decreases as γ∗ decreases. This is illustrated in
Figure 2 for γ∗ ∈ {0.9,0.95} and ρ = 0.3. Note that only results for θ ≥ 0.6 are displayed, as
it was not possible to find critical vectors such that 0 < γ∗ < 1 for θ = 0.4. For ρ = 0.9, the
number of settings for which confidence bounds are invalid increases for sparse signals. That
is, MR and GL return invalid confidence bounds for all considered effect sizes. Confidence
bounds obtained from the proposed procedure with critical vectors AORCopt are invalid for
small effect sizes (θ ≤ 0.4). This is displayed in the upper half of Figure 3. For dense signal
(lower half of Figure 3), the established procedures return valid confidence bounds for all con-
sidered effect sizes, while the proposed procedure with critical vectors Expopt and AORCopt
return invalid confidence bounds for θ ≤ 0.4. For both sparse and dense signal, the size of
N[e] has almost no influence on the number of iterations with m̂1 > m1 for ρ = 0.9. This is
illustrated on the left-hand side (N[e] = 0) and right-hand side (N[e] = 50) of Figure 3.

The average m̂1 for ρ = 0.3 is illustrated in Figure 4 for N[e] = 0 and Figure 5 for N[e] = 50.
In both figures, the proposed procedure with γ∗ = 0.9 (left-hand side), γ∗ = 0.95 (middle) and
γ∗ = 1 (right-hand side) are displayed. While γ∗ = 0.9 corresponds to valid confidence bounds
for very small effect sizes (θ ≥ 0.6), γ∗ = 0.95 and γ∗ = 1 correspond to valid confidence
bounds for slightly larger effect sizes (θ ≥ 0.8). As before, for γ∗ < 1, only effect sizes
θ ≥ 0.6 are displayed. When valid, increasing γ∗ leads to an increase in the power of the
proposed procedure. For sparse signal and N[e] = 0 the proposed procedure is more powerful
than the GS procedure for low effect sizes (θ ≤ 0.8). When GL returns valid bounds, it is
generally more powerful than the proposed procedure. This is illustrated in the upper half
of Figure 4. When the signal is dense, the established procedures are more powerful than
the proposed procedure. The established procedures are more powerful than the proposed
procedure for both sparse and dense signal for N[e] = 50. The exception is sparse signal and
very low effect size, where AORCopt is the most powerful procedure, as displayed in Figure 5,
upper right panel.

Results under misspecification of F (θ̂ = θ + 0.1) and independence of the p-values are
illustrated in Figure 6-7. Note that the performance of the established procedure is identical
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to the case of correct specification of F . Figure 6 displays the proportion of iterations with
m̂1 > m1 for both N[e] = 0 (left-hand side) and N[e] = 50 (right-hand side). The proposed
procedure with any family of critical vectors and γ∗ = 1 returns valid confidence bounds for
both sparse signal, displayed in the upper half of Figure 6, and dense signal, displayed in
the lower half. Figure 7 illustrates the average m̂1 for N[e] = 0 (left-hand side) and N[e] = 50
(right-hand side). For sparse signal, the established procedures are more powerful than the
proposed procedure, for both N[e] = 0 and N[e] = 50. This is illustrated in the upper half of
Figure 7. For dense signal, the proposed procedure with any family of critical vector is more
powerful than the established procedures for low effect sizes (θ ≤ 0.8) and N[e] = 0. This is
not the case for N[e] = 50. These results are displayed in the lower half of Figure 7.

Lastly, Figure 8-9 illustrate the results under dependency of the p-values and misspecifica-
tion of F for ρ = 0.9 and θ̂ = θ + 0.1. The confidence bounds are invalid for some m1 and
ρ ≥ 0.6; we choose to show results for ρ = 0.9 to make comparison with the setting of correct
specification of F possible. Again, the results for the established procedures are identical to
the results under correct specification of F . The proposed procedure with any family of crit-
ical vector and γ∗ = 1 returns valid confidence bounds for sparse signal, as illustrated in the
upper half of Figure 8. For dense signal, the proposed procedure with critical vectors Expopt
and AORCopt return invalid confidence bounds for θ ≤ 0.4. This is displayed in the lower half
of Figure 8. Figure 9 displays the average m̂1 for θ̂ = θ + 0.1 and ρ = 0.9. The proposed
procedure with any family of critical vector is more powerful than the established procedures
for θ = 0.4 and sparse signal, for both N[e] = 0 and N[e] = 50. This is illustrated in the upper
half of Figure 9. For dense signal, the proposed procedure with any family of critical vectors
is less powerful than the established procedures, as displayed in the lower half of Figure 9.
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Figure 1: Dependency setting: p-values have correlation ρ = 0.3 and effect size θ is known.
Proportion of iterations with m̂1 > m1, where m̂1 is the lower confidence bound for
the number of true discoveries m1 = {10,90} obtained from the proposed procedure
with different critical vectors (BHopt , Expopt , AORCopt ) and the method of Goeman
& Solari (2011) (GS) Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL)
with N[e] = 0 (left) and N[e] = 50 (right). The total number of iterations is B =
10,000. The black solid line corresponds to the significance level α = 0.2.

Figure 2: Dependency setting: p-values have correlation ρ = 0.3 and effect size θ is known.
Proportion of iterations with m̂1 > m1, where m̂1 is the lower confidence bound for
the number of true discoveries m1 = {10,90} obtained from the proposed procedure
with different critical vectors (BHγ∗ ,Expγ∗ , AORCγ∗ ). The total number of iterations
is B = 10,000. The black solid line corresponds to the significance level α = 0.2.
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Figure 3: Dependency setting: p-values have correlation ρ = 0.9 and effect size θ is known.
Proportion of iterations with m̂1 > m1, where m̂1 is the lower confidence bound for
the number of true discoveries m1 = {10,90} obtained from the proposed procedure
with different critical vectors (BHopt , Expopt , AORCopt ) and the method of Goeman
& Solari (2011) (GS) Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL)
with N[e] = 0 (left) and N[e] = 50 (right). The total number of iterations is B =
10,000. The black solid line corresponds to the significance level α = 0.2.

Figure 4: Dependency setting: p-values have correlation ρ = 0.3 and effect size θ is known.
Average lower confidence bound m̂1 obtained from the proposed procedure with
different critical vectors (BHγ∗ ,Expγ∗ , AORCγ∗ ) and the method of Goeman & Solari
(2011) (GS) Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL) with N[e] =
0. The black solid line corresponds to m1. Only confidence bounds valid for m1 are
shown.
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Figure 5: Dependency setting: p-values have correlation ρ = 0.3 and effect size θ is known.
Average lower confidence bound m̂1 obtained from the proposed procedure with
different critical vectors (BHγ∗ ,Expγ∗ , AORCγ∗ ) and the method of Goeman & Solari
(2011) (GS) Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL) with N[e] =
50. The black solid line corresponds to m1. Only confidence bounds valid for m1 are
shown.

Figure 6: Misspecification of F : p-values have correlation ρ = 0 and the true effect size is
overestimated (θ̂ = θ + 0.1). Proportion of iterations with m̂1 > m1, where m̂1 is
the lower confidence bound for the number of true discoveries m1 obtained from the
proposed procedure with different critical vectors (BHopt , Expopt , AORCopt ) and the
method of Goeman & Solari (2011) (GS) Meinshausen & Rice (2006) (MR) and Ge
& Li (2012) (GL) with N[e] = 0. The total number of iterations is B = 10,000. The
black solid line corresponds to the significance level α = 0.2.

10



Figure 7: Misspecification of F : p-values have correlation ρ = 0 and the true effect size is
overestimated (θ̂ = θ + 0.1). Average lower confidence bound m̂1 for the number
of true discoveries m1 obtained from the proposed procedure with different critical
vectors (BHopt , Expopt , AORCopt ) and the method of Goeman & Solari (2011) (GS)
Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL) with N[e] = 0. The
black solid line corresponds to m1. Only confidence bounds valid for m1 are shown.

Figure 8: Dependency and misspecification of F : p-values have correlation ρ = 0.9 and the
true effect size is overestimated (θ̂ = θ + 0.1). Proportion of iterations with m̂1 >
m1, where m̂1 is the lower confidence bound for the number of true discoveries m1
obtained from the proposed procedure with different critical vectors (BHopt , Expopt ,
AORCopt ) and the method of Goeman & Solari (2011) (GS) Meinshausen & Rice
(2006) (MR) and Ge & Li (2012) (GL) with N[e] = 0. The total number of iterations
is B = 10,000. The black solid line corresponds to the significance level α = 0.2.
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Table 1: Independence setting: p-values have correlation ρ = 0 and the effect size θ is
known. Sum of the expected values Em̃1 [Rγ∗] over all possible candidate values
m̃1 ∈ {0, . . . ,m}, as given in Eq. (9). Results are obtained from the proposed pro-
cedure with different families of critical vectors (BHγ∗ , Expγ∗ , AORCγ∗ ). Bold values
correspond to the highest value of the sum for each θ .

θ

Critical vector 0.6 0.8 1 1.2 2
BHopt 4720.33 4910.98 5011.96 5058.00 5065.01
BH0.95 4535.58 4702.08 4786.21 4817.20 4820.65
BH0.9 4372.23 4504.50 4569.98 4582.53 4584.15
BH0.8 3928.18 4079.47 4113.83 4110.73 4106.56
BYopt 4720.44 4911.31 5011.99 5057.98 5065.04
BY0.95 4540.14 4700.22 4786.94 4817.05 4820.16
BY0.9 4365.37 4505.53 4567.08 4583.50 4583.98
BY0.8 3921.54 4065.40 4111.10 4106.36 4111.25
Expopt 4703.07 4909.88 5012.18 5057.61 5057.37
Exp0.95 4548.57 4686.55 4783.07 4818.85 4878.56
Exp0.9 4384.82 4481.32 4556.33 4589.78 4724.74
Exp0.8 3939.10 4030.66 4084.48 4119.19 4349.03
AORCopt 4740.10 4915.25 5012.17 5058.00 5065.06
AORC0.95 4604.67 4718.93 4786.76 4815.32 4820.62
AORC0.9 4455.21 4531.71 4388.23 4584.36 4586.82
AORC0.8 4011.63 4080.76 4101.44 4105.72 4106.77
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Table 2: Independence setting: p-values have correlation ρ = 0 and the effect size θ = 0.8
is known. Average lower confidence bound m̂1 for the number of true discoveries
m1 obtained from the proposed procedure with different families of critical vectors
(BHγ∗ , Expγ∗ , AORCγ∗ ) and the methods of Goeman & Solari (2011) (GS) Mein-
shausen & Rice (2006) (MR) and Ge & Li (2012) (GS) with N[e] = 0 and N[e] = 50.
Bold values correspond to the highest value of m̂1 for each m1 for N[e] = 0. Only
valid confidence bounds are displayed.

m1 10 20 30 40 50 60 70 80 90
GS (N[e] = 0) 8.28 16.87 25.78 35.08 44.66 54.46 64.67 75.15 86.31
MR (N[e] = 0) - 17.80 27.07 36.50 46.00 55.56 65.24 74.94 84.66
GL (N[e] = 0) 9.68 18.96 28.34 37.78 47.42 57.16 66.89 76.74 86.72
BHopt 8.87 18.80 28.78 38.85 48.85 58.72 68.60 78.30 87.95
BYopt 8.87 18.80 28.79 38.85 48.85 58.72 68.60 78.30 87.95
Expopt 9.01 18.92 28.86 38.88 48.83 58.66 68.50 78.18 87.82
AORCopt 8.75 18.66 28.66 38.78 48.86 58.80 68.75 78.52 88.21
BH0.95 9.07 18.70 28.19 37.83 47.34 56.76 66.06 75.40 84.35
BY0.95 9.06 18.69 28.17 37.81 47.31 56.74 66.04 75.38 84.33
Exp0.95 9.13 18.69 28.10 37.70 47.12 56.55 65.78 75.16 84.07
AORC0.95 9.03 18.69 28.22 37.91 47.52 56.96 66.38 75.68 84.71
GS (N[e] = 50) 10.16 20.11 30.08 40.07 50.06 60.07 70.09 80.12 90.18
MR (N[e] = 50) - 18.30 28.00 37.72 47.70 57.57 67.84 78.18 88.76
GL (N[e] = 50) - - - - - - - - 90.15
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Figure 9: Dependency and misspecification of F : p-values have correlation ρ = 0.9 and the
true effect size is overestimated (θ̂ = θ +0.1). Average lower confidence bound m̂1
for the number of true discoveries m1 obtained from the proposed procedure with
different critical vectors (BHopt , Expopt , AORCopt ) and the method of Goeman &
Solari (2011) (GS) Meinshausen & Rice (2006) (MR) and Ge & Li (2012) (GL) with
N[e] = 0. The black solid line corresponds to m1. Only confidence bounds valid for
m1 are shown.
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4 Analysis of fMRI data

This section provides additional information on the analysis of fMRI data illustrated in Section
6 in the main article. First, we describe in greater detail the workflow of the analysis. Then
we describe how the ROIs for the considered data set have been defined.

Pipeline for the analysis

The general process of the proposed fMRI analysis is illustrated in Figure 10. The goal of the
analysis is computing a lower (1−α)-confidence bound for the proportion of active voxels
(TDP) within a pre-specified ROI. The analysis uses the measured bold time series Y i j and the
design matrix X i j for each voxel i and each subject j. The distribution F under the alternative
of the p-values obtained from the second level analysis is assumed to be known, i.e., the
parameters that characterize F are assumed to be determined prior to the analysis.

Figure 11 further illustrates the last part of the process, where the contrasts obtained from
the first level analysis are used to compute the TDP confidence bound. The N = 140 subjects
are split into two sub-groups; the first is used to estimate the effect size θ , and the second to
compute the confidence bound. If reliable prior information about the effect size are avail-
able, they can be used to compute the confidence bounds. In this case, sample splitting is
unnecessary.

De�nition of the ROI

ROIs have been defined using the clusters and peaks of activation reported by Schirmer et al.
(2012) and Binder et al. (2000), that investigated human voices vs. non-human sounds. In
Schirmer et al. (2012), we have considered only the four clusters containing at least 20 voxels
with a total of seven peaks of activation. Additionally, we considered two clusters determined
by Binder et al. (2000) with a total of eleven peaks of activation. Then we have defined the
ROIs from the selected clusters, as following.

ROIs have been defined as either spheres or cuboids. Spherical ROIs have been defined such
that they include all peaks of activation in the cluster and have a similar size in mm3 as the
clusters reported in the corresponding study. Note that only Schirmer et al. (2012) determined
the size in mm3 of the clusters. If the cluster contained more than one peak of activation, the
center of the sphere has been defined as the mean voxel coordinate; if the cluster contained
only one peak of activation the spherical ROI has been centered around it. If the spherical
cluster had a voxel size that differed too much from the one given in Schirmer et al. (2012), a
cuboid ROI has been defined, such that each peak of activation was the center of a cube and
these cubes were connected. The size of the cubes has been defined such that the resulting
size of the ROI was similar to the cluster size given in Schirmer et al. (2012). An overview
of the different clusters, including their size and location, is given in Table 3 and illustrated in
Figure 12.

We have used the “icbm2tal” transformation in GingerAle (Laird et al. (2010), Lancaster
et al. (2007), see also https://www.brainmap.org/icbm2tal/) to transform the Talairach
coordinates given in Schirmer et al. (2012) to MNI coordinates. We have used FSL (Jenkinson
et al., 2012) to create the masks for the ROIs.
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Preprocessing First Level Analysis Second Level Analysis Inference on TDP

Observed BOLD
Y i j

Mask defining
ROI

Parameters
of F

Within-subject analysis Between-subject analysis Confidence bounds
For each subject j,

j = 1, . . . ,N:
Ỹ i j = X i j ·β i j + εi j Di j = µi +ξi j

· Slice Time Correction
· Registration
· Motion Correction
· Brain Extraction
· Spatial Smoothing
· High-pass Filtering

·X i j ∈ RW×K

design matrix
·β i j : (βi j1, . . . ,βi jK)

⊤

·1, . . . ,K conditions

Contrast:
Di j = β̂i j1 − β̂i j2

·µi : difference in
activation between
conditions per voxel

One-sample, two-sided
t-test: H0i : µi = 0

· Define critical vector
· Compute γ∗

· Determine r

Bounds:
m̂1 = ⌈r · γ∗⌉

Output
Preprocessed BOLD
Ỹ i j for each voxel i
at time w = 1, . . .W

Output
Contrast Di j between

conditions 1 and 2

Output
p-value map

i.e., p-values per voxel
in the ROI

Output
Lower confidence
bounds of the TDP

for the ROI

Figure 10: The general steps needed to compute a lower (1−α)-confidence bound for the TDP
within a given ROI. The inputs are, for each voxel and each subject, the measured
BOLD time series Y i j and the design matrix X i j.
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Subset with N[e] = 50 subjects

Subset with N[b] = 90 subjects

two-sided
one-sample
t-test;
H0 : µi = 0

t-value map
p-value map

two-sided
one-sample
t-test;
H0 : µi = 0

p-value map

Select t-values z based
on corresponding p-values

µ̂
[e]
t as in Eq. (12);

ν [e] = N[e]−1

θ̂ = µ̂
[e]
t ·
√

2/N[e]

µ̂
[b]
t = θ̂ ·

√
N[b]/2; ν [b] = N[b]−1

Define critical vector
(t1, . . . , tm)⊤

γ∗ as in Eq. (3)

Apply
step-up test

Observed number
of rejections r

m̂1 as in Eq. (3)

Figure 11: Illustration of the work flow to compute a lower (1−α)-confidence bound for the
TDP within a given ROI. The sample is split into two sub-samples to estimate the
effect size and compute the lower confidence bounds separately. For each sub-
sample, the inputs are the contrasts Di j = µi +ξi j of each voxel i and subject j.
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Table 3: Information about the regions of interest. The clusters are named according to the area
of the brain in which the peak of activation is located, based on the Talairach Daemon
Labels in FSL (Lancaster et al., 2000). Given is the shape of the ROI, the width (for
cuboid) or radius (for spheres) of the ROIs, the number of peaks of activation and
the size of the ROI in terms of number of voxels. Furthermore, for spherical ROI the
voxel coordinates [x,y,z] of the center of each sphere are reported, for the cuboid ROI
the coordinates of the peaks of activation are reported. The coordinates are given in
the MNI152 space.

Reference ROI Shape Radius/width Size |Peaks| Coordinates
in mm x y z

Schirmer et al. (2012) L STG Cuboid 6 162 3 -38 -38 10
-44 -30 8
-50 -20 2

L AC Sphere 4 33 2 -60 -18 12
R AC Sphere 8 257 1 52 -26 18
R FG Sphere 5 81 1 39 -39 -14

Binder et al. (2000) R MTG Sphere 8 257 6 64 -4 -8
R STG Sphere 9 389 5 58 -30 2

Figure 12: Location of the ROI in the brain. The turquoise region corresponds to the ROI in
the Left STG, the green sphere corresponds to the ROI centered in the Left AC, the
yellow sphere corresponds to the ROI centered in the Right AC, the blue sphere
corresponds to the ROI centered in the Right MTG and the red sphere corresponds
to the ROI centered in the Right STG. Note that in the picture on the left the right
hemisphere of the brain is shown.
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