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Abstract

This supplementary materials consists of three sections. In Section 1, we review the con-
ditions and Theorem 1 in the main paper. Section 2 contains a lemma, which can ease much

burden of our proof of Theorem 1, which is given in Section 3.

1 Conditions and Theorem 1

We begin by reviewing the conditions we made and Theorem 1 in the main paper.
Condition (C1) E||X]||? < 0o and A = E[r(X"B){1 — 7(X"B;)}XX"] is of full rank.

Condition (C2) (i) The parameter space ; of ¢ is independent of (y,x) and compact. (ii) The
true value ¢, of ¢ is an interior point of ;. (iii) ¢ is identifiable, i.e. E{[|f{y(1)|X,{} —
fy(1)[X, ¢"}dy} > 0 for any different elements ¢ and ¢’ in Q1. (iv) E{supecq, |log f{y(1)|X,{}} <
oo. (v) f{y(1)|X,¢} is continuous in ¢ for almost all (y,x).

Condition (C3) (i) The parameter space 2y of 1 is independent of (y,x) and compact. (ii) The
true value 7 of n is an interior point of Q. (iii) n is identifiable, i.e. E{[ |f{y(0)|X,n} —
fy(0)|X,n'}|dy} > 0 for any different elements n and ' in Q. (iv) E{sup,cq, [log f{y(0)|X,n}|} <
oo. (v) f{y(0)|X,n} is continuous in n for almost all (y, x).
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Condition (C4) (i) f{y(1)|X,¢} is twice differentiable with respect to ¢ for almost all (y,x),
and V.. f{y(1)|X, ¢} is continuous at ¢,. (ii) B = E[n(X"8){V¢log fy(D)|X, ¢31%?] is
positive definite. (iii) There exist a § > 0 and positive functions M; (x) and Ma(y, x) such that
E{M,(X)} < 00 and B{My (Y, X)} < o0, and x| [ [{£(t}x, ) + Ve (¢, €[}t < My (x)
and ||V log f(y|x, Q)|| < Ma(y,x) for all ¢ satisfying ||¢ — Coll < 6.

Condition (C5) (i) f{y(0)|X,n} is twice differentiable with respect to n for almost all (y,x), and
Vo, fy(0)|X, 0} is continuous at ng. (i) C = E[{1 -7 (X"B8) {Vylog f{y(0)|X, n}1%? is
positive definite. (iii) There exist a § > 0 and positive functions M3(x) and M4(y, x) such that
E{M;(X)} < o0 and E{My(Y, X)} < oo, and [x]| [ [t1{f(t}x,m) + [V f (¢l )|}t < Ms(x)
and ||V, log f(ylx,n)|| < My(y,x) for all n satisfying |[n — ng| < 4.

Define

lo+(B) = E[r(X7By)logm(X"B) + {1 - m(X"By)} log{l — m(X"B)}]
= E{(X'8)m(X"By) —log{1 + exp(X"B)}}. (1)
This function is well defined for any 3 under Condition (C1), because
[lo«(B)] < E{|X7B|+log{l+exp(|X"B)}} < 3E{X" SB[} < 3E(IXIDIIBI;

and Condition (C1) implies E||X|| < oo.

Theorem 1 Assume Conditions (C1)-(C5) and that Hy : o = 71 = 6y = 01 = 0 is true. Asn
goes to infinity, \/ﬁSl(,@, ¢, ﬁ)—d> N(0,%1), where
oty ofy of3 o%
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and

o1 = Ao+ By —A[JAT'A;; - B[ C !By,
03 = A+ Bay — ALAT'Ap — B,B By,
033 = Agz+ Bz — Af3A7 A3 — B3C By,
02, = Ay + By —AA'A - BB 'Byy,

oty = 03 =As—A[J AT A,
ol3 = 03 = As1 +By —A[JAT'A;3— B[,C By,
o1, = o3 =A3—A[JAT Ay,
0'53 = 0'32,2 = A4 — A1T2A71A13,
03 = 03y =Asp+ By — ALATTA - BL,B By,
03 = of3=As— A3AT Ay,



and

Au = E[RXB) {1 - (X B)}Y(0)X],
A = E{n(XBo){1 - (X By)}Y (DX},
A = E[r(X Bo){1 - n(X B H1 — 2m(X  By) W2(0)X]
A = E{r(XBo){1 — (X By)H1 — 2n(X"By)}Y2(1)X},

Ay = E [ Q(XTﬁo){l - W(XTBO)}Y%O)} )
Ay = E{m(X7Bp){1 - W(XTﬂo)}2Y2(1)}

Az = E [ (XTBH{1 = (X" Bo) H1 — 27(X" By)} Y4(0)] )
Agy = E{m(XTBo){1 — 7(XBo) {1 - 2n(X By Y (1)},
A;1 = E [ (XTBo{1 — (X" Bo) H1 - QW(XTBO)}YS(O)] )
Az = E{m(XTBo){1 — 7(XBo) {1 - 27(XBp)}Y (1)},

Ay = E[r(X"Bo){l—n(X"By)}Y(0)Y(1)],

A3 = E[r(X"B) {1l — (X By) H1 — 27(X"By)}Y (0)Y*(1)]
Ay = E[r(XTBp) {1 — (X B) H1 —27(X"By)}Y*(0)Y (1)]
A5 = E[n(XB) {1 — m(X Bo) H1 — 27(X " Bo) Y (0)Y*(1)]
By = E 7T(XTﬁo){l—7T(>Uﬁ())}/yVnJ"'{y\X,77o}dy],

Bz, = E -W(XTﬂo){l —W(XTBO)}/Z/VCJ({Z/DQ Co}dy] ;

Bia = B |x(X7Bo)(1 - n(X By H1 25X B0)} [ 120n X, o).

o

-
I
&=

A(OXTB) (1~ 7(X )1 - 20X By)} [ #*VerfolX Co}dy] ,
By = E[r(X o)1 — n(X"8,)IE2(Y(0)|X, o)),
By = E[{m(X78y) {1 — n(X"Bo)EX(Y (1)|X, o),
By = E[r(X Aol — n(X7By) {1 — 2n(X" Bo) PEEY2(0)|X, m, ),
Bo = E[{n(X780)}2{1 - n(X Bo)H1 — 20(X7Bo) PEH{Y2(1)] X, &},
[
[

3

Bsi = E[r(XTB8){1 - (X B0)}*{1 - 2m(X"B) }E{Y (0)|X, m}E{Y*(0)|X, Co}l],
Bs = E[{m(X"Bo)}*{1 - m(X7Bo) H1 — 2m(X" Bo) YE{Y (1)|X, Co}E{Y*(1)|X, Co}.

2 A lemma

The following lemma eases much of the burden in our proof of Theorem 1.



Lemma 1 Assume Conditions (C1)-(C5) and that Hy : yo = y1 = 0p = 01 = 0 is true. Asn goes
to infinity,

V(B —By) = AWV {w; — w(x! By)kxi + 0p(1), (2)
=1

Vi€ —¢o) = B V2N wiVelog f{yi(1)xi, Co} + 0p(1), (3)
=1

V(i —mg) = CnV2Y (1 - wi)Vylog f{yi(0)xi, 1m0} + 0p(1), (4)
=1

and
V(B = Bo) ", (€= Co) T, (71 = 1m0) T} =5 N(0, diag(A71, BT, C7Y),
where the matrices A, B and C are defined in Conditions (C1), (C6) and (C7).

Proof By definition, ,@ = argmaxg %50(5), E = arg max¢ %51(07 and 1) = arg maxy, %52(77),
where £o(8) = Y7 wilog 7(x] ) + (1 —w;) log{1—m(x} B)}], £1(C) = X7 {wi log f{y(1)}xi, C}}
and £5(n) = Y1 {(1 — w;) log f{y:(0) xs, m}}. Because w(x] B), f{y:(1)[xi,C} and f{yi(0)xi, m}
are differentiable with respect to the underlying parameters, equivalently the estimators 3, ¢ and

7j satisfy
ﬁ;{wi —m(x{ B)}x; =0, (5)
Zn;wivc log f{yi(1)|x:, ¢} =0, (6)
Zn:(l — w;) Vi log f{yi(0)|xs; n} = 0. (7)

i=1

Both ¢y(3) and £y.(3) are concave functions, and (1/n)¢y(3) converges to £y.(3) almost surely
for each fixed 8. By the convexity lemma of 7, supg |(1/1)lo(8) — £o«(B)| = 0p(1). Condition (C1)
implies that £o«(3) is strictly concave at By. This, together with Vglo.(8)|g=g, = 0, implies that
Bo is the unique maximizer of ¢p.(3). Then by Theorem 5.7 of ?, = Bo = op(1). The linear
approximation (2) follows by first-order Taylor expansion of the left-hand side of (5) at 3, and by
Condition (C1).

Next, we derive a linear approximation of ¢ and . Let £1.(¢) = E[r(X " 8,) log f{Y (1)|X, ¢o}]
and l2.(n) = E[{1—-7(XT3q)}log f{Y(0)|X,ny}]. The identifiability in Condition (C4) guarantees
that ¢ is the unique maximizer of ¢1,(¢). Under Condition (C4), f{y(1)|x,¢} is continuous in ¢
for almost all (y,x). By Lemma 3.10 of ?, the class {log f{y(1)|x,{} : ¢ € 1} satisfies the uniform



law of large numbers, in other words, sup¢cq, [€1(€)/n — £1(¢)| = 0,(1). Therefore, the conditions
of Theorem 5.7 of 7 are met, and ¢ — {, = 0,(1). The linear approximation (3) can be derived
using similar techniques to those deriving the approximation (2). The linear approximation of 1
can be derived using similar processes to those deriving the approximation of (A' .

The asymptotic result follows immediately from the linear approximations in (2), (3) and (4)
by the central limit theorem. Condition (C6) and (C7) guarantees that the remainder terms in
the linear approximations are negligible and that their asymptotic variances are well defined. This

completes the proof of Lemma, 1.

3 Proof of Theorem 1

We have shown that (B\v E ,7M) is y/n consistent with (3, {y,My)- By first-order Taylor expansion of
S1(B8,¢,m) at (Bo, o, Mo), we have

\/ﬁsl(lé\7 Eﬂ ﬁ) = \/651(18074707770) + {VﬁSl(B, 57 ,,:i)}T : \/E(B\_ ﬁO)
HVnS1(B,¢, M} - vVn(fi — ny), (8)
where (5, E, n) lies between (B, ¢y, ny) and (,é\, 6, n).

To proceed, we first need to derive the leading terms of V[;Sl(,é, ¢, 1), vcsl(é, ¢.7) and
VnSi (8,¢,7). Tt follows from

wi{l —m(x{ B)YE{Y (0)[x:,n} — (1 — w;)m(x] B)yi(0)

S1(8.¢.1) 1 Z": wif{l = m(x; B)}yi(1) — (1 — wi)m(x B)E{Y (1)[xi, ¢}
7 n | will = w(x] B)HL - 27 (x] B)YE{Y?(0)[xi, m} — (1 — wi)m(x{ B){1 — 2m(x] B)}y7 (0)
wi{l = w(x] BYH1 - 2m(x B)}2(1) — (1 — wi)(x] B){1 — 2m(x] B)ELY (1) }xi, C}
that
—wim(x] BH{1 — m(x{ B) }E{Y (0) i, m}x;
Crsioen - L3 —wir(x] B){1 - 7 B} (1),

= | w81 — m(x] B)H3B — Am(x] B)YE{Y2(0)xi, mpx]
—wim(x{ B){1 — m(x] B)H3 — dn(x] B) }yi (1)x]
(1 —wi)m(x/ B){1 — m(x; B)}i(0)x;
1$ (1 —wi)m(x] B){1 — m(x] B)}E{Y (1)[xi, C}x
nia (1 —wi)m(x{ B){1 — m(x] B)H1 — dm(x] B)}y7 (0)x]
(1 —wi)m(x]B){1 — m(x]B)H1 — dm(x] B)YE{Y (1) i, ¢}



o’
1 —(1—- wi)T['(X;rﬂ)VCTE{Y(l)‘Xi, C}

o7
—(1—wi)m(x] B){1 - 2m(x] B)}V E{Y*(1)|x;, ¢}

wi{l —m(x/ B)}V,TE{Y (0)|x;,n}
1 & 0"
| wi{l =7 B)H1 - 2n(x] B)}V, E{Y?(0)xi, n}
OT

Under Conditions (C1), (C6) and (C7), by the weak law of large numbers, they converge in prob-
ability respectively to

—m (X" Bo)m(XTB){1 — m(XTB)JE{Y (0)[X, n}XT
—m(X7Bo)m(XTB){1 — n(XTB)}Y (1)XT
—m(XTBo)m(XTB{1 — m(XTB)H{3 — (X7 B) }E{Y*(0)|X, n}XT
—m(XTBo)m(XTB){1 — (X7 B)H{3 — 4n(XTB8)}Y2(1)XT

{1 = 7(X7Bo)}n(XTB){1 — n(XTB)}Y (0)XT
{1 = 7(X7Bo)}m(XTB{1 — m(XTB)JELY (1)[XT, ¢}XT
{1 - 7(XTB)}r(XTB){1 — m(XTB)H1 — 4n(XTB)}Y*(0) X"
{1 - 7m(XTB)}r(XTB){1 - m(XTB)H1 — 4n(XTB)}E{Y*(1)|X, ¢}XT

E[vﬁTSI(IB7Can)] = E

OT
—{1 = 7(XTBp) }r(XTB)V rE{Y (1) X, (}
OT
—{1 = (X7 B)}m(XTB){1 — 20(XTB)}V rE{Y2(1)|X, ¢}

E[VCT‘S’l(B)Cvn)] = E

(X Bo){1 — 7(X78)}V, rE{Y (0)| X, n}
OT
m(XTB){1 = m(XTB)H1 — 27 (X7 B)}V,, T E{Y?(0)|X, n}
OT

E[vnTsl(ﬁa ¢, 77)] = E

Conditions (C1), (C6) and (C7) also imply that the above convergences hold uniformly in (3, ¢, n),

and therefore the two limit functions are continuous functions of (3, {,n). This, together with the



consistency of (,@, Z, 7n), leads to

ngsl(Ei 5777) = - +0p(1)7

VCTSI(B7 E?ﬁ) = - +Op(]-)7

VUTSI(By ¢ = + 0p(1),

where

A = E[r(X"Bo){1 —m(X"8y)}Y(0)X],

A = B{r(X8,){1 - 7(X By)}Y ()X},

Ay = E[x(X"Bo){1 - 7(X"Bo)}1 - 2n(X B }Y2(0)X]
Au = E(r(XBo) {1 7(X By)}{1 - 2n(X By) I ALK},
Bu = E|n(X'By){1- (X8} [4¥af{ulX, no}dy]

B = E[x(X g1 -8} yvgf{mx,co}dy},

Biy = E [x(X'By){1 - n(X By)H{1-20(X B} [ yzvnf{yIX,no}dy],

By = E -W(XTﬁo){l —m(XTBo) {1 - QW(XTﬁo)}/Zfch{yIX Co}dy} :

Consequently, the equality (8) reduces to

Al 0"
~ ~ AT ~ B —~
VISLB.C.M) = Vsi(BoComo) = | [VR(B=Bo) = | V(€= ¢o)

13
Al B,

B,

OT

o | V@ =mng) +0p(1)

B13

OT



Putting the linear approximations of 3, ¢ and 7 from (2), (3) and (4) into (9), we have

Vi1 + Vig + Vi3 + Ui

20 1 < V5 + Vig + Vi7 + Uig
Vs = % ; vi9 + V10 + vi11 + Vit o),
Vi13 + Vi14 + Vi15 + Vil6
where
v = wi{l — m(x; Bo) FE{Y (0)|xs, 1m0}, vig = —(1 —wi)w(x{ By)yi(0),
viz = —A[ A" w; — 7(x] By) }xi, vig = BI,C7H(1 — w;) Vi log f{yi(0)xi,m0},
vis = wi{l — 7(x; By) byi(1), vig = — (1 — wi)m(x{ Bo)E{Y (1)[x:, o}
vir = —AL A Hw; — m(x] By) }xi, vig = —B,B tw; Ve log f(yi(1)]x4, o),
vig = wi{l — 7(x{ Bo) H1 — 2m(x] Bo) YE{Y*(0)[xi, Mo}, vito = —(1 — wi)7(x] Bo){1 — 2m(x] Boy) }y7 (0),
vl = —AJ3 A" Hw; — 7(x] Bg) }xi, vtz = Bi3CH(1 — w;) Vi log f{i(0)|xi,m0},
vty = wi{l — 7(x{ Bo) H1 — 2m(x] By) }v7 (1), vitg = —(1 — wi)m(x] Bo){1 — 27 (x] Bo) JE{Y*(1)[x:, (o },
vits = —A AT H{w; —7(x] By) }xi, vig = —B,B w; Ve log f(yi(1)]xi, &)

By the central limit theorem, as n — 0o, /nS; (,/8\, E, ﬁ)—d> N(0,%), with

Vi1 + Vig + V43 + Vi

V5 + Vig + UiT + Vi8
¥1 = Var
Vi9 + V310 + Vi11 + Vit2

V13 + Vi14 + V15 + Vit6

Because ]E(’Uil + Uig) = E(’Uig) + ’U@'G) = E(Uig + Uilo) = E(’U@'l?, + %'14) = E(’Uig) = E(UM) = E(Uﬁ) =
E(vis) = E(vi11) = E(vii2) = E(vi15) = E(viie) = 0, we have

o1y = E(vi1 + vig + viz + via)?, 03y = E(vis + vis + vir + vig)?,
033 = E(vig + vito + vir1 + vi2)?, 03y = E(vis + vita + vits + vite)?,
o1y = 031 = E{(vi1 + vi2 + viz + via) (vi5 + vie + vi7 + vig) },
oty = 03 = E{(vi1 + vi2 + vig + vig) (vig + viro + vit1 + vit2) }
oty = 07 = E{(vi1 + via + viz + via) (Vi3 + Vit + vits + vite) },
035 = 03y = E{(vi5 + vi6 + vir + vig) (Vg + vir0 + vit1 + vi12) },
034 = 03y = E{(vi5 + vie + vi7 + vig) (Vi3 + vi1a + vi1s + vite) },

09%4 = 033 = E{(vig + vi10 + vit1 + vi12)(vi13 + vita + vi1s + vite) }-



With tedious algebra, it can be found that

2
E@A) = E|n(X"Bo){1 - (X" o)) { [t no>dy} By,
E(Uz‘22) = E [WQ(XTIBO){l - W(XTﬁo)}YQ(O)] = Aay,

E(vi) = AL AT'Ay, E(vy)=B{,C 'By

and that E(vivi2) = E(vi1via) = E(vigvia) = 0,

E(viiviz) = —A{ATE[R(XBo){1 - n(X'By)}* XY (0)],
E(vigviz) = —A{AT'E [{m(X"Bg)}*{1 — m(X"8,)}XY(0)]
E(Uigvm) = —BLC_IBH.

Note that E(v;1v;3) + E(vigvis) = —A];A~1A4;. In summary, we have
0% = A+ Bo —A[JAT'A;; - B{,C'By;.
With the same tedious algebra process as 0%, we have

03y = Ao+ By — AL,AT A, — BB "By,
033 = Asg+ Bz — AJ;A7'A 13— B[;C !By,
0-24 = A+ Bay — A1T4A_1A14 — BI4B_1B14,

0ty = 03 =Ay—A[JAT Ay,
ol3 = 03 = As1 +Bs — A[JA 7 A3 - B[,C By,
oty = o3 =As—A[JATTAy,
033 = 03y =As— A[LAT Ay,
03y = 03y = Az +Bsg— ALAT'Ay; — B,B !By,
03 = oj3=As— AZATTA .
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