# Supplementary material for "Score test for unconfoundedness under a logistic treatment assignment model"

Hairu Wang $^1,$  Yukun Liu $^{*2}$  and Haiying Zhou $^3$ 

<sup>1</sup> School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
<sup>2</sup> KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China
<sup>3</sup>Research Center for Applied Mathematics and Interdisciplinary Sciences, Beijing Normal University, Zhuhai 519087, China

#### Abstract

This supplementary materials consists of three sections. In Section 1, we review the conditions and Theorem 1 in the main paper. Section 2 contains a lemma, which can ease much burden of our proof of Theorem 1, which is given in Section 3.

### 1 Conditions and Theorem 1

We begin by reviewing the conditions we made and Theorem 1 in the main paper.

Condition (C1)  $\mathbb{E}||\mathbf{X}||^2 < \infty$  and  $\mathbf{A} = \mathbb{E}[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\mathbf{X}\mathbf{X}^{\top}]$  is of full rank.

- Condition (C2) (i) The parameter space  $\Omega_1$  of  $\zeta$  is independent of  $(y, \mathbf{x})$  and compact. (ii) The true value  $\zeta_0$  of  $\zeta$  is an interior point of  $\Omega_1$ . (iii)  $\zeta$  is identifiable, i.e.  $\mathbb{E}\{\int |f\{y(1)|\mathbf{X}, \zeta\}\} f\{y(1)|\mathbf{X}, \zeta'\}|dy\} > 0$  for any different elements  $\zeta$  and  $\zeta'$  in  $\Omega_1$ . (iv)  $\mathbb{E}\{\sup_{\zeta \in \Omega_1} |\log f\{y(1)|\mathbf{X}, \zeta\}\} > \infty$ . (v)  $f\{y(1)|\mathbf{X}, \zeta\}$  is continuous in  $\zeta$  for almost all  $(y, \mathbf{x})$ .
- Condition (C3) (i) The parameter space  $\Omega_2$  of  $\boldsymbol{\eta}$  is independent of  $(y, \mathbf{x})$  and compact. (ii) The true value  $\boldsymbol{\eta}_0$  of  $\boldsymbol{\eta}$  is an interior point of  $\Omega_2$ . (iii)  $\boldsymbol{\eta}$  is identifiable, i.e.  $\mathbb{E}\{\int |f\{y(0)|\mathbf{X},\boldsymbol{\eta}\} f\{y(0)|\mathbf{X},\boldsymbol{\eta}'\}|dy\} > 0$  for any different elements  $\boldsymbol{\eta}$  and  $\boldsymbol{\eta}'$  in  $\Omega_2$ . (iv)  $\mathbb{E}\{\sup_{\boldsymbol{\eta}\in\Omega_2}|\log f\{y(0)|\mathbf{X},\boldsymbol{\eta}\}|\} < \infty$ . (v)  $f\{y(0)|\mathbf{X},\boldsymbol{\eta}\}$  is continuous in  $\boldsymbol{\eta}$  for almost all  $(y,\mathbf{x})$ .

<sup>\*</sup>Corresponding author: ykliu@sfs.ecnu.edu.cn

- Condition (C4) (i)  $f\{y(1)|\mathbf{X}, \boldsymbol{\zeta}\}$  is twice differentiable with respect to  $\boldsymbol{\zeta}$  for almost all  $(y, \mathbf{x})$ , and  $\nabla_{\boldsymbol{\zeta}\boldsymbol{\zeta}^{\top}} f\{y(1)|\mathbf{X}, \boldsymbol{\zeta}\}$  is continuous at  $\boldsymbol{\zeta}_0$ . (ii)  $\mathbf{B} = \mathbb{E}[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\{\nabla_{\boldsymbol{\zeta}}\log f\{y(1)|\mathbf{X}, \boldsymbol{\zeta}\}\}^{\otimes 2}]$  is positive definite. (iii) There exist a  $\delta > 0$  and positive functions  $M_1(\mathbf{x})$  and  $M_2(y, \mathbf{x})$  such that  $\mathbb{E}\{M_1(\mathbf{X})\} < \infty$  and  $\mathbb{E}\{M_2(Y, \mathbf{X})\} < \infty$ , and  $\|\mathbf{x}\| \int |t| \{f(t|\mathbf{x}, \boldsymbol{\zeta}) + \|\nabla_{\boldsymbol{\zeta}} f(t|\mathbf{x}, \boldsymbol{\zeta})\| \} dt \leq M_1(\mathbf{x})$  and  $\|\nabla_{\boldsymbol{\zeta}\boldsymbol{\zeta}^{\top}}\log f(y|\mathbf{x}, \boldsymbol{\zeta})\| \leq M_2(y, \mathbf{x})$  for all  $\boldsymbol{\zeta}$  satisfying  $\|\boldsymbol{\zeta} \boldsymbol{\zeta}_0\| \leq \delta$ .
- Condition (C5) (i)  $f\{y(0)|\mathbf{X}, \boldsymbol{\eta}\}$  is twice differentiable with respect to  $\boldsymbol{\eta}$  for almost all  $(y, \mathbf{x})$ , and  $\nabla_{\boldsymbol{\eta}\boldsymbol{\eta}^{\top}} f\{y(0)|\mathbf{X}, \boldsymbol{\eta}\}$  is continuous at  $\boldsymbol{\eta}_0$ . (ii)  $\mathbf{C} = \mathbb{E}[\{1 \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\{\nabla_{\boldsymbol{\eta}} \log f\{y(0)|\mathbf{X}, \boldsymbol{\eta}\}\}^{\otimes 2}]$  is positive definite. (iii) There exist a  $\delta > 0$  and positive functions  $M_3(\mathbf{x})$  and  $M_4(y, \mathbf{x})$  such that  $\mathbb{E}\{M_3(\mathbf{X})\} < \infty$  and  $\mathbb{E}\{M_4(Y, \mathbf{X})\} < \infty$ , and  $\|\mathbf{x}\| \int |t| \{f(t|\mathbf{x}, \boldsymbol{\eta}) + \|\nabla_{\boldsymbol{\eta}} f(t|\mathbf{x}, \boldsymbol{\eta})\| \} dt \leq M_3(\mathbf{x})$  and  $\|\nabla_{\boldsymbol{\eta}\boldsymbol{\eta}^{\top}} \log f(y|\mathbf{x}, \boldsymbol{\eta})\| \leq M_4(y, \mathbf{x})$  for all  $\boldsymbol{\eta}$  satisfying  $\|\boldsymbol{\eta} \boldsymbol{\eta}_0\| \leq \delta$ .

Define

$$\ell_{0*}(\boldsymbol{\beta}) = \mathbb{E}[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\log\pi(\mathbf{X}^{\top}\boldsymbol{\beta}) + \{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\log\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}]$$
$$= \mathbb{E}\{(\mathbf{X}^{\top}\boldsymbol{\beta})\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0) - \log\{1 + \exp(\mathbf{X}^{\top}\boldsymbol{\beta})\}\}. \tag{1}$$

This function is well defined for any  $\beta$  under Condition (C1), because

$$|\ell_{0*}(\boldsymbol{\beta})| \leq \mathbb{E}\{|\mathbf{X}^{\top}\boldsymbol{\beta}| + \log\{1 + \exp(|X^{\top}\boldsymbol{\beta}|)\}\} \leq 3\mathbb{E}\{|\mathbf{X}^{\top}\boldsymbol{\beta}|\} \leq 3\mathbb{E}(\|\mathbf{X}\|)\|\boldsymbol{\beta}\|,$$

and Condition (C1) implies  $\mathbb{E}\|\mathbf{X}\| < \infty$ .

**Theorem 1** Assume Conditions (C1)-(C5) and that  $H_0: \gamma_0 = \gamma_1 = \theta_0 = \theta_1 = 0$  is true. As n goes to infinity,  $\sqrt{n}S_1(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\zeta}}, \widehat{\boldsymbol{\eta}}) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \Sigma_1)$ , where

$$\Sigma_1 = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \sigma_{13}^2 & \sigma_{14}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \sigma_{23}^2 & \sigma_{24}^2 \\ \sigma_{31}^2 & \sigma_{32}^2 & \sigma_{33}^2 & \sigma_{34}^2 \\ \sigma_{41}^2 & \sigma_{42}^2 & \sigma_{43}^2 & \sigma_{44}^2 \end{pmatrix},$$

and

$$\begin{split} &\sigma_{11}^2 &= A_{21} + B_{21} - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{11} - \mathbf{B}_{11}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{11}, \\ &\sigma_{22}^2 &= A_{22} + B_{22} - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{12} - \mathbf{B}_{12}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{12}, \\ &\sigma_{33}^2 &= A_{23} + B_{23} - \mathbf{A}_{13}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13} - \mathbf{B}_{13}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{13}, \\ &\sigma_{44}^2 &= A_{24} + B_{24} - \mathbf{A}_{14}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14} - \mathbf{B}_{14}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{14}, \\ &\sigma_{12}^2 &= \sigma_{21}^2 = A_2 - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{12}, \\ &\sigma_{13}^2 &= \sigma_{31}^2 = A_{31} + \mathbf{B}_{31} - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13} - \mathbf{B}_{11}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{13}, \\ &\sigma_{14}^2 &= \sigma_{41}^2 = A_3 - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14}, \\ &\sigma_{23}^2 &= \sigma_{32}^2 = A_4 - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13}, \\ &\sigma_{24}^2 &= \sigma_{42}^2 = A_{32} + \mathbf{B}_{32} - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14} - \mathbf{B}_{12}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{14}, \\ &\sigma_{34}^2 &= \sigma_{43}^2 = A_5 - \mathbf{A}_{13}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14}, \end{split}$$

and

$$\begin{array}{lll} \mathbf{A}_{11} &=& \mathbb{E}[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y(0)\mathbf{X}], \\ \mathbf{A}_{12} &=& \mathbb{E}\{\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y(1)\mathbf{X}\}, \\ \mathbf{A}_{13} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)\mathbf{X}\right], \\ \mathbf{A}_{14} &=& \mathbb{E}\{\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)], \\ \mathbf{A}_{21} &=& \mathbb{E}\left[\pi^{2}(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)\right], \\ \mathbf{A}_{22} &=& \mathbb{E}\{\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(1)\}, \\ \mathbf{A}_{23} &=& \mathbb{E}\left[\pi^{2}(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(1)\}, \\ \mathbf{A}_{24} &=& \mathbb{E}\{\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(1)\}, \\ \mathbf{A}_{31} &=& \mathbb{E}\left[\pi^{2}(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(1)\}, \\ \mathbf{A}_{32} &=& \mathbb{E}\{\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{3}(1)\}, \\ \mathbf{A}_{2} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}Y(0)Y(1)], \\ \mathbf{A}_{3} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)Y^{2}(1)], \\ \mathbf{A}_{4} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)Y^{2}(1)], \\ \mathbf{A}_{5} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)Y^{2}(1)], \\ \mathbf{B}_{11} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)Y^{2}(1)], \\ \mathbf{B}_{12} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}Y^{2}(0)Y^{2}(1)], \\ \mathbf{B}_{14} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}\int y^{2}\nabla_{\eta}f\{y|\mathbf{X},\eta_{0}\}dy\right], \\ \mathbf{B}_{21} &=& \mathbb{E}[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}^{2}(Y(0)|X,\eta_{0})], \\ \mathbf{B}_{22} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}^{2}(Y(1)|X,\zeta_{0})], \\ \mathbf{B}_{23} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}^{2}(Y(1)|X,\zeta_{0})\}, \\ \mathbf{B}_{24} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}^{2}(Y(1)|X,\zeta_{0})\}, \\ \mathbf{B}_{24} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}\left\{Y(1)|X,\zeta_{0}\}\right\}, \\ \mathbf{B}_{24} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}\left\{Y(1)|X,\zeta_{0}\}\right\}, \\ \mathbf{B}_{31} &=& \mathbb{E}\left[\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-\pi(\mathbf{X}^{\top}\beta_{0})\}\{1-2\pi(\mathbf{X}^{\top}\beta_{0})\}\mathbb{E}\left\{Y(1$$

# 2 A lemma

The following lemma eases much of the burden in our proof of Theorem 1.

**Lemma 1** Assume Conditions (C1)-(C5) and that  $H_0: \gamma_0 = \gamma_1 = \theta_0 = \theta_1 = 0$  is true. As n goes to infinity,

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = \mathbf{A}^{-1} n^{-1/2} \sum_{i=1}^n \{ w_i - \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta}_0) \} \mathbf{x}_i + o_p(1),$$
(2)

$$\sqrt{n}(\widehat{\zeta} - \zeta_0) = \mathbf{B}^{-1} n^{-1/2} \sum_{i=1}^n w_i \nabla_{\zeta} \log f\{y_i(1) | \mathbf{x}_i, \zeta_0\} + o_p(1),$$
(3)

$$\sqrt{n}(\widehat{\boldsymbol{\eta}} - \boldsymbol{\eta}_0) = \mathbf{C}^{-1} n^{-1/2} \sum_{i=1}^n (1 - w_i) \nabla_{\boldsymbol{\eta}} \log f\{y_i(0) | \mathbf{x}_i, \boldsymbol{\eta}_0\} + o_p(1), \tag{4}$$

and

$$\sqrt{n}\{(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0)^{\top},(\widehat{\boldsymbol{\zeta}}-\boldsymbol{\zeta}_0)^{\top},(\widehat{\boldsymbol{\eta}}-\boldsymbol{\eta}_0)^{\top}\}^{\top} \stackrel{d}{\longrightarrow} \mathcal{N}(\mathbf{0}, \operatorname{diag}(\mathbf{A}^{-1}, \mathbf{B}^{-1}, \mathbf{C}^{-1})),$$

where the matrices A, B and C are defined in Conditions (C1), (C6) and (C7).

**Proof** By definition,  $\widehat{\boldsymbol{\beta}} = \arg\max_{\boldsymbol{\beta}} \frac{1}{n} \ell_0(\boldsymbol{\beta})$ ,  $\widehat{\boldsymbol{\zeta}} = \arg\max_{\boldsymbol{\zeta}} \frac{1}{n} \ell_1(\boldsymbol{\zeta})$ , and  $\widehat{\boldsymbol{\eta}} = \arg\max_{\boldsymbol{\eta}} \frac{1}{n} \ell_2(\boldsymbol{\eta})$ , where  $\ell_0(\boldsymbol{\beta}) = \sum_{i=1}^n [w_i \log \pi(\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}) + (1 - w_i) \log\{1 - \pi(\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})\}]$ ,  $\ell_1(\boldsymbol{\zeta}) = \sum_{i=1}^n \{w_i \log f\{y_i(1) | \mathbf{x}_i, \boldsymbol{\zeta}\}\}$  and  $\ell_2(\boldsymbol{\eta}) = \sum_{i=1}^n \{(1 - w_i) \log f\{y_i(0) | \mathbf{x}_i, \boldsymbol{\eta}\}\}$ . Because  $\pi(\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta})$ ,  $f\{y_i(1) | \mathbf{x}_i, \boldsymbol{\zeta}\}$  and  $f\{y_i(0) | \mathbf{x}_i, \boldsymbol{\eta}\}$  are differentiable with respect to the underlying parameters, equivalently the estimators  $\widehat{\boldsymbol{\beta}}$ ,  $\widehat{\boldsymbol{\zeta}}$  and  $\widehat{\boldsymbol{\eta}}$  satisfy

$$\sum_{i=1}^{n} \{ w_i - \pi(\mathbf{x}_i^{\mathsf{T}} \widehat{\boldsymbol{\beta}}) \} \mathbf{x}_i = 0,$$
 (5)

$$\sum_{i=1}^{n} w_i \nabla_{\zeta} \log f\{y_i(1) | \mathbf{x}_i, \zeta\} = 0, \tag{6}$$

$$\sum_{i=1}^{n} (1 - w_i) \nabla_{\boldsymbol{\eta}} \log f\{y_i(0) | \mathbf{x}_i, \boldsymbol{\eta}\} = 0.$$
 (7)

Both  $\ell_0(\beta)$  and  $\ell_{0*}(\beta)$  are concave functions, and  $(1/n)\ell_0(\beta)$  converges to  $\ell_{0*}(\beta)$  almost surely for each fixed  $\beta$ . By the convexity lemma of ?,  $\sup_{\beta} |(1/n)\ell_0(\beta) - \ell_{0*}(\beta)| = o_p(1)$ . Condition (C1) implies that  $\ell_{0*}(\beta)$  is strictly concave at  $\beta_0$ . This, together with  $\nabla_{\beta}\ell_{0*}(\beta)|_{\beta=\beta_0}=0$ , implies that  $\beta_0$  is the unique maximizer of  $\ell_{0*}(\beta)$ . Then by Theorem 5.7 of ?,  $\hat{\beta} - \beta_0 = o_p(1)$ . The linear approximation (2) follows by first-order Taylor expansion of the left-hand side of (5) at  $\beta_0$  and by Condition (C1).

Next, we derive a linear approximation of  $\hat{\boldsymbol{\zeta}}$  and  $\hat{\boldsymbol{\eta}}$ . Let  $\ell_{1*}(\boldsymbol{\zeta}) = \mathbb{E}[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\log f\{Y(1)|\mathbf{X},\boldsymbol{\zeta}_0\}]$  and  $\ell_{2*}(\boldsymbol{\eta}) = \mathbb{E}[\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\log f\{Y(0)|\mathbf{X},\boldsymbol{\eta}_0\}]$ . The identifiability in Condition (C4) guarantees that  $\boldsymbol{\zeta}_0$  is the unique maximizer of  $\ell_{1*}(\boldsymbol{\zeta})$ . Under Condition (C4),  $f\{y(1)|\mathbf{x},\boldsymbol{\zeta}\}$  is continuous in  $\boldsymbol{\zeta}$  for almost all  $(y,\mathbf{x})$ . By Lemma 3.10 of ?, the class  $\{\log f\{y(1)|\mathbf{x},\boldsymbol{\zeta}\}: \boldsymbol{\zeta} \in \Omega_1\}$  satisfies the uniform

law of large numbers, in other words,  $\sup_{\zeta \in \Omega_1} |\ell_1(\zeta)/n - \ell_{1*}(\zeta)| = o_p(1)$ . Therefore, the conditions of Theorem 5.7 of ? are met, and  $\hat{\zeta} - \zeta_0 = o_p(1)$ . The linear approximation (3) can be derived using similar techniques to those deriving the approximation (2). The linear approximation of  $\hat{\eta}$  can be derived using similar processes to those deriving the approximation of  $\hat{\zeta}$ .

The asymptotic result follows immediately from the linear approximations in (2), (3) and (4) by the central limit theorem. Condition (C6) and (C7) guarantees that the remainder terms in the linear approximations are negligible and that their asymptotic variances are well defined. This completes the proof of Lemma 1.

# 3 Proof of Theorem 1

We have shown that  $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\zeta}}, \widehat{\boldsymbol{\eta}})$  is  $\sqrt{n}$  consistent with  $(\boldsymbol{\beta}_0, \boldsymbol{\zeta}_0, \boldsymbol{\eta}_0)$ . By first-order Taylor expansion of  $S_1(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\zeta}}, \widehat{\boldsymbol{\eta}})$  at  $(\boldsymbol{\beta}_0, \boldsymbol{\zeta}_0, \boldsymbol{\eta}_0)$ , we have

$$\sqrt{n}S_{1}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\zeta}},\widehat{\boldsymbol{\eta}}) = \sqrt{n}S_{1}(\boldsymbol{\beta}_{0},\boldsymbol{\zeta}_{0},\boldsymbol{\eta}_{0}) + \{\nabla_{\boldsymbol{\beta}}S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}})\}^{\top} \cdot \sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}) 
+ \{\nabla_{\boldsymbol{\zeta}}S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}})\}^{\top} \cdot \sqrt{n}(\widehat{\boldsymbol{\zeta}} - \boldsymbol{\zeta}_{0}) 
+ \{\nabla_{\boldsymbol{\eta}}S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}})\}^{\top} \cdot \sqrt{n}(\widehat{\boldsymbol{\eta}} - \boldsymbol{\eta}_{0}),$$
(8)

where  $(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\zeta}}, \widetilde{\boldsymbol{\eta}})$  lies between  $(\boldsymbol{\beta}_0, \boldsymbol{\zeta}_0, \boldsymbol{\eta}_0)$  and  $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\zeta}}, \widehat{\boldsymbol{\eta}})$ .

To proceed, we first need to derive the leading terms of  $\nabla_{\boldsymbol{\beta}} S_1(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\zeta}}, \widetilde{\boldsymbol{\eta}}), \ \nabla_{\boldsymbol{\zeta}} S_1(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\zeta}}, \widetilde{\boldsymbol{\eta}})$  and  $\nabla_{\boldsymbol{\eta}} S_1(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\zeta}}, \widetilde{\boldsymbol{\eta}})$ . It follows from

$$S_1(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta}) = \frac{1}{n} \sum_{i=1}^n \left( \begin{array}{c} w_i \{1 - \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y(0) | \mathbf{x}_i, \boldsymbol{\eta}\} - (1 - w_i) \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta}) y_i(0) \\ w_i \{1 - \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} y_i(1) - (1 - w_i) \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta}) \mathbb{E}\{Y(1) | \mathbf{x}_i, \boldsymbol{\zeta}\} \\ w_i \{1 - \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} \{1 - 2\pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y^2(0) | \mathbf{x}_i, \boldsymbol{\eta}\} - (1 - w_i) \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta}) \{1 - 2\pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} y_i^2(0) \\ w_i \{1 - \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} \{1 - 2\pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} y_i^2(1) - (1 - w_i) \pi(\mathbf{x}_i^{\top} \boldsymbol{\beta}) \{1 - 2\pi(\mathbf{x}_i^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y^2(1) | \mathbf{x}_i, \boldsymbol{\zeta}\} \end{array} \right),$$

that

$$\nabla_{\boldsymbol{\beta}^{\top}} S_{1}(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} -w_{i} \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y(0) | \mathbf{x}_{i}, \boldsymbol{\eta}\} \mathbf{x}_{i}^{\top} \\ -w_{i} \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} y_{i}(1) \mathbf{x}_{i}^{\top} \\ -w_{i} \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \{3 - 4\pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y^{2}(0) | \mathbf{x}_{i}, \boldsymbol{\eta}\} \mathbf{x}_{i}^{\top} \\ -w_{i} \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \{3 - 4\pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} y_{i}^{2}(1) \mathbf{x}_{i}^{\top} \end{pmatrix}$$

$$-\frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} (1 - w_{i}) \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} y_{i}(0) \mathbf{x}_{i}^{\top} \\ (1 - w_{i}) \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y(1) | \mathbf{x}_{i}, \boldsymbol{\zeta}\} \mathbf{x}_{i}^{\top} \\ (1 - w_{i}) \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta}) \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \{1 - 4\pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \mathbb{E}\{Y^{2}(1) | \mathbf{x}_{i}, \boldsymbol{\zeta}\} \mathbf{x}_{i}^{\top} \end{pmatrix},$$

$$\nabla_{\boldsymbol{\zeta}^{\top}} S_{1}(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} \mathbf{0}^{\top} \\ -(1-w_{i})\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta})\nabla_{\boldsymbol{\zeta}^{\top}}\mathbb{E}\{Y(1)|\mathbf{x}_{i}, \boldsymbol{\zeta}\} \\ \mathbf{0}^{\top} \\ -(1-w_{i})\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta})\{1-2\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta})\}\nabla_{\boldsymbol{\zeta}^{\top}}\mathbb{E}\{Y^{2}(1)|\mathbf{x}_{i}, \boldsymbol{\zeta}\} \end{pmatrix},$$

$$\nabla_{\boldsymbol{\eta}^{\top}} S_{1}(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \begin{pmatrix} w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \nabla_{\boldsymbol{\eta}^{\top}} \mathbb{E}\{Y(0) | \mathbf{x}_{i}, \boldsymbol{\eta}\} \\ \mathbf{0}^{\top} \\ w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \{1 - 2\pi(\mathbf{x}_{i}^{\top} \boldsymbol{\beta})\} \nabla_{\boldsymbol{\eta}^{\top}} \mathbb{E}\{Y^{2}(0) | \mathbf{x}_{i}, \boldsymbol{\eta}\} \\ \mathbf{0}^{\top} \end{pmatrix}.$$

Under Conditions (C1), (C6) and (C7), by the weak law of large numbers, they converge in probability respectively to

$$\mathbb{E}[\nabla_{\boldsymbol{\beta}^{\top}}S_{1}(\boldsymbol{\beta},\boldsymbol{\zeta},\boldsymbol{\eta})] = \mathbb{E}\begin{pmatrix} -\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\mathbb{E}\{Y(0)|\mathbf{X},\boldsymbol{\eta}\}\mathbf{X}^{\top} \\ -\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}Y(1)\mathbf{X}^{\top} \\ -\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\{3-4\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\mathbb{E}\{Y^{2}(0)|\mathbf{X},\boldsymbol{\eta}\}\mathbf{X}^{\top} \\ -\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\{3-4\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}Y^{2}(1)\mathbf{X}^{\top} \end{pmatrix} \\ -\mathbb{E}\begin{pmatrix} \{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}Y(0)\mathbf{X}^{\top} \\ \{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\mathbb{E}\{Y(1)|\mathbf{X}^{\top},\boldsymbol{\zeta}\}\mathbf{X}^{\top} \\ \{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\{1-4\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}Y^{2}(0)\mathbf{X}^{\top} \\ \{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\{1-4\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\mathbb{E}\{Y^{2}(1)|\mathbf{X},\boldsymbol{\zeta}\}\mathbf{X}^{\top} \end{pmatrix},$$

$$\mathbb{E}[\nabla_{\boldsymbol{\zeta}^{\top}} S_1(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta})] = \mathbb{E} \begin{pmatrix} \mathbf{0}^{\top} \\ -\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\nabla_{\boldsymbol{\zeta}^{\top}}\mathbb{E}\{Y(1)|\mathbf{X}, \boldsymbol{\zeta}\} \\ \mathbf{0}^{\top} \\ -\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\}\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\{1 - 2\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\nabla_{\boldsymbol{\zeta}^{\top}}\mathbb{E}\{Y^2(1)|\mathbf{X}, \boldsymbol{\zeta}\} \end{pmatrix},$$

$$\mathbb{E}[\nabla_{\boldsymbol{\eta}^{\top}} S_1(\boldsymbol{\beta}, \boldsymbol{\zeta}, \boldsymbol{\eta})] = \mathbb{E}\left(\begin{array}{c} \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\nabla_{\boldsymbol{\eta}^{\top}}\mathbb{E}\{Y(0)|\mathbf{X}, \boldsymbol{\eta}\} \\ \mathbf{0}^{\top} \\ \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_0)\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\{1 - 2\pi(\mathbf{X}^{\top}\boldsymbol{\beta})\}\nabla_{\boldsymbol{\eta}^{\top}}\mathbb{E}\{Y^2(0)|\mathbf{X}, \boldsymbol{\eta}\} \\ \mathbf{0}^{\top} \end{array}\right).$$

Conditions (C1), (C6) and (C7) also imply that the above convergences hold uniformly in  $(\beta, \zeta, \eta)$ , and therefore the two limit functions are continuous functions of  $(\beta, \zeta, \eta)$ . This, together with the

consistency of  $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\zeta}}, \widehat{\boldsymbol{\eta}})$ , leads to

$$\begin{array}{lll} \nabla_{\boldsymbol{\beta}^{\top}} S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}}) & = & -\begin{pmatrix} \mathbf{A}_{11}^{\top} \\ \mathbf{A}_{12}^{\top} \\ \mathbf{A}_{13}^{\top} \\ \mathbf{A}_{14}^{\top} \end{pmatrix} + o_{p}(1), \\ \nabla_{\boldsymbol{\zeta}^{\top}} S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}}) & = & -\begin{pmatrix} \mathbf{0}^{\top} \\ \mathbf{B}_{12}^{\top} \\ \mathbf{0}^{\top} \\ \mathbf{B}_{14}^{\top} \end{pmatrix} + o_{p}(1), \\ \nabla_{\boldsymbol{\eta}^{\top}} S_{1}(\widetilde{\boldsymbol{\beta}},\widetilde{\boldsymbol{\zeta}},\widetilde{\boldsymbol{\eta}}) & = & \begin{pmatrix} \mathbf{B}_{11}^{\top} \\ \mathbf{0}^{\top} \\ \mathbf{B}_{13}^{\top} \\ \mathbf{0}^{\top} \end{pmatrix} + o_{p}(1), \end{array}$$

where

$$\begin{split} \mathbf{A}_{11} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}Y(0)\mathbf{X}\right], \\ \mathbf{A}_{12} &= & \mathbb{E}\left\{\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}Y(1)\mathbf{X}\}, \\ \mathbf{A}_{13} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\{1-2\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}Y^{2}(0)\mathbf{X}\right], \\ \mathbf{A}_{14} &= & \mathbb{E}\left\{\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\{1-2\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}Y^{2}(1)\mathbf{X}\}, \\ \mathbf{B}_{11} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\int y\nabla_{\boldsymbol{\eta}}f\{y|\mathbf{X},\boldsymbol{\eta}_{0}\}dy\right], \\ \mathbf{B}_{12} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\int y\nabla_{\boldsymbol{\zeta}}f\{y|\mathbf{X},\boldsymbol{\zeta}_{0}\}dy\right], \\ \mathbf{B}_{13} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\{1-2\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\int y^{2}\nabla_{\boldsymbol{\eta}}f\{y|\mathbf{X},\boldsymbol{\eta}_{0}\}dy\right], \\ \mathbf{B}_{14} &= & \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1-\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\{1-2\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\int y^{2}\nabla_{\boldsymbol{\zeta}}f\{y|\mathbf{X},\boldsymbol{\zeta}_{0}\}dy\right]. \end{split}$$

Consequently, the equality (8) reduces to

$$\sqrt{n}S_{1}(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\zeta}},\widehat{\boldsymbol{\eta}}) = \sqrt{n}S_{1}(\boldsymbol{\beta}_{0},\boldsymbol{\zeta}_{0},\boldsymbol{\eta}_{0}) - \begin{pmatrix} \mathbf{A}_{11}^{\top} \\ \mathbf{A}_{12}^{\top} \\ \mathbf{A}_{13}^{\top} \\ \mathbf{A}_{14}^{\top} \end{pmatrix} \sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0}) - \begin{pmatrix} \mathbf{0}^{\top} \\ \mathbf{B}_{12}^{\top} \\ \mathbf{0}^{\top} \\ \mathbf{B}_{14}^{\top} \end{pmatrix} \sqrt{n}(\widehat{\boldsymbol{\zeta}} - \boldsymbol{\zeta}_{0}) + \begin{pmatrix} \mathbf{B}_{11}^{\top} \\ \mathbf{0}^{\top} \\ \mathbf{B}_{13}^{\top} \\ \mathbf{0}^{\top} \end{pmatrix} \sqrt{n}(\widehat{\boldsymbol{\eta}} - \boldsymbol{\eta}_{0}) + o_{p}(1). \tag{9}$$

Putting the linear approximations of  $\widehat{\beta}$ ,  $\widehat{\zeta}$  and  $\widehat{\eta}$  from (2), (3) and (4) into (9), we have

$$\sqrt{n}S_1(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\zeta}},\widehat{\boldsymbol{\eta}}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \begin{pmatrix} v_{i1} + v_{i2} + v_{i3} + v_{i4} \\ v_{i5} + v_{i6} + v_{i7} + v_{i8} \\ v_{i9} + v_{i10} + v_{i11} + v_{i12} \\ v_{i13} + v_{i14} + v_{i15} + v_{i16} \end{pmatrix} + o_p(1),$$

where

$$\begin{split} v_{i1} &= w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbb{E}\{Y(0) | \mathbf{x}_{i}, \boldsymbol{\eta}_{0}\}, \\ v_{i3} &= -\mathbf{A}_{11}^{\top}\mathbf{A}^{-1} \{w_{i} - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{x}_{i}, \\ v_{i5} &= w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} y_{i}(1), \\ v_{i7} &= -\mathbf{A}_{12}^{\top}\mathbf{A}^{-1} \{w_{i} - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{x}_{i}, \\ v_{i9} &= w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \{1 - 2\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbb{E}\{Y^{2}(0) | \mathbf{x}_{i}, \boldsymbol{\eta}_{0}\}, \\ v_{i11} &= -\mathbf{A}_{13}^{\top}\mathbf{A}^{-1} \{w_{i} - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \{1 - 2\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{x}_{i}, \\ v_{i13} &= w_{i} \{1 - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \{1 - 2\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{y}_{i}^{2}(1), \\ v_{i15} &= -\mathbf{A}_{14}^{\top}\mathbf{A}^{-1} \{w_{i} - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{x}_{i}, \\ v_{i16} &= -\mathbf{B}_{14}^{\top}\mathbf{B}^{-1} w_{i} \nabla_{\boldsymbol{\zeta}} \log f(y_{i}(1) | \mathbf{x}_{i}, \boldsymbol{\zeta}_{0}), \\ v_{i14} &= -(1 - w_{i})\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0}) \{1 - 2\pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbb{E}\{Y^{2}(1) | \mathbf{x}_{i}, \boldsymbol{\zeta}_{0}\}, \\ v_{i15} &= -\mathbf{A}_{14}^{\top}\mathbf{A}^{-1} \{w_{i} - \pi(\mathbf{x}_{i}^{\top}\boldsymbol{\beta}_{0})\} \mathbf{x}_{i}, \\ v_{i16} &= -\mathbf{B}_{14}^{\top}\mathbf{B}^{-1} w_{i} \nabla_{\boldsymbol{\zeta}} \log f(y_{i}(1) | \mathbf{x}_{i}, \boldsymbol{\zeta}_{0}). \\ \end{split}$$

By the central limit theorem, as  $n \to \infty$ ,  $\sqrt{n}S_1(\widehat{\beta}, \widehat{\zeta}, \widehat{\eta}) \stackrel{d}{\longrightarrow} N(0, \Sigma_1)$ , with

$$\Sigma_{1} = \mathbb{V}\operatorname{ar} \left( \begin{array}{c} v_{i1} + v_{i2} + v_{i3} + v_{i4} \\ v_{i5} + v_{i6} + v_{i7} + v_{i8} \\ v_{i9} + v_{i10} + v_{i11} + v_{i12} \\ v_{i13} + v_{i14} + v_{i15} + v_{i16} \end{array} \right).$$

Because  $\mathbb{E}(v_{i1} + v_{i2}) = \mathbb{E}(v_{i5} + v_{i6}) = \mathbb{E}(v_{i9} + v_{i10}) = \mathbb{E}(v_{i13} + v_{i14}) = \mathbb{E}(v_{i3}) = \mathbb{E}(v_{i4}) = \mathbb{E}(v_{i7}) = \mathbb{E}(v_{i8}) = \mathbb{E}(v_{i11}) = \mathbb{E}(v_{i12}) = \mathbb{E}(v_{i15}) = \mathbb{E}(v_{i16}) = 0$ , we have

$$\sigma_{11}^{2} = \mathbb{E}(v_{i1} + v_{i2} + v_{i3} + v_{i4})^{2}, \quad \sigma_{22}^{2} = \mathbb{E}(v_{i5} + v_{i6} + v_{i7} + v_{i8})^{2},$$

$$\sigma_{33}^{2} = \mathbb{E}(v_{i9} + v_{i10} + v_{i11} + v_{i12})^{2}, \quad \sigma_{44}^{2} = \mathbb{E}(v_{i13} + v_{i14} + v_{i15} + v_{i16})^{2},$$

$$\sigma_{12}^{2} = \sigma_{21}^{2} = \mathbb{E}\{(v_{i1} + v_{i2} + v_{i3} + v_{i4})(v_{i5} + v_{i6} + v_{i7} + v_{i8})\},$$

$$\sigma_{13}^{2} = \sigma_{31}^{2} = \mathbb{E}\{(v_{i1} + v_{i2} + v_{i3} + v_{i4})(v_{i9} + v_{i10} + v_{i11} + v_{i12})\},$$

$$\sigma_{14}^{2} = \sigma_{41}^{2} = \mathbb{E}\{(v_{i1} + v_{i2} + v_{i3} + v_{i4})(v_{i13} + v_{i14} + v_{i15} + v_{i16})\},$$

$$\sigma_{23}^{2} = \sigma_{32}^{2} = \mathbb{E}\{(v_{i5} + v_{i6} + v_{i7} + v_{i8})(v_{i9} + v_{i10} + v_{i11} + v_{i12})\},$$

$$\sigma_{24}^{2} = \sigma_{42}^{2} = \mathbb{E}\{(v_{i5} + v_{i6} + v_{i7} + v_{i8})(v_{i13} + v_{i14} + v_{i15} + v_{i16})\},$$

$$\sigma_{34}^{2} = \sigma_{43}^{2} = \mathbb{E}\{(v_{i9} + v_{i10} + v_{i11} + v_{i12})(v_{i13} + v_{i14} + v_{i15} + v_{i16})\}.$$

With tedious algebra, it can be found that

$$\mathbb{E}(v_{i1}^{2}) = \mathbb{E}\left[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}^{2}\left\{\int y f_{0}(y|X,\eta_{0})dy\right\}^{2}\right] = B_{21}, \\
\mathbb{E}(v_{i2}^{2}) = \mathbb{E}\left[\pi^{2}(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}Y^{2}(0)\right] = A_{21}, \\
\mathbb{E}(v_{i3}^{2}) = \mathbf{A}_{11}^{\top}\mathbf{A}^{-1}\mathbf{A}_{11}, \quad \mathbb{E}(v_{i4}^{2}) = \mathbf{B}_{11}^{\top}\mathbf{C}^{-1}\mathbf{B}_{11}$$

and that  $\mathbb{E}(v_{i1}v_{i2}) = \mathbb{E}(v_{i1}v_{i4}) = \mathbb{E}(v_{i3}v_{i4}) = 0$ ,

$$\mathbb{E}(v_{i1}v_{i3}) = -\mathbf{A}_{11}^{\top}\mathbf{A}^{-1}\mathbb{E}[\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}^{2}\mathbf{X}Y(0)], 
\mathbb{E}(v_{i2}v_{i3}) = -\mathbf{A}_{11}^{\top}\mathbf{A}^{-1}\mathbb{E}\left[\{\pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}^{2}\{1 - \pi(\mathbf{X}^{\top}\boldsymbol{\beta}_{0})\}\mathbf{X}Y(0)\right], 
\mathbb{E}(v_{i2}v_{i4}) = -\mathbf{B}_{11}^{\top}\mathbf{C}^{-1}\mathbf{B}_{11}.$$

Note that  $\mathbb{E}(v_{i1}v_{i3}) + \mathbb{E}(v_{i2}v_{i3}) = -\mathbf{A}_{11}^{\top}\mathbf{A}^{-1}\mathbf{A}_{11}$ . In summary, we have

$$\sigma_{11}^2 = A_{21} + B_{21} - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{11} - \mathbf{B}_{11}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{11}.$$

With the same tedious algebra process as  $\sigma_{11}^2$ , we have

$$\begin{split} &\sigma_{22}^2 &= A_{22} + B_{22} - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{12} - \mathbf{B}_{12}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{12}, \\ &\sigma_{33}^2 &= A_{23} + B_{23} - \mathbf{A}_{13}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13} - \mathbf{B}_{13}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{13}, \\ &\sigma_{44}^2 &= A_{24} + B_{24} - \mathbf{A}_{14}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14} - \mathbf{B}_{14}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{14}, \\ &\sigma_{12}^2 &= \sigma_{21}^2 = A_2 - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{12}, \\ &\sigma_{13}^2 &= \sigma_{31}^2 = A_{31} + \mathbf{B}_{31} - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13} - \mathbf{B}_{11}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{B}_{13}, \\ &\sigma_{14}^2 &= \sigma_{41}^2 = A_3 - \mathbf{A}_{11}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14}, \\ &\sigma_{23}^2 &= \sigma_{32}^2 = A_4 - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{13}, \\ &\sigma_{24}^2 &= \sigma_{42}^2 = A_{32} + \mathbf{B}_{32} - \mathbf{A}_{12}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14} - \mathbf{B}_{12}^{\mathsf{T}} \mathbf{B}^{-1} \mathbf{B}_{14}, \\ &\sigma_{34}^2 &= \sigma_{43}^2 = A_5 - \mathbf{A}_{13}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{A}_{14}. \end{split}$$

#### References

Pollard, D. (1990). *Empirical Processes: Theory and Applications*. Empirical Processes: Theory and Applications.

Van de Geer, S. (2000). *Empirical Processes in M-estimation*, volume 6. Cambridge university press.

Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.