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1 Formulae from the main paper

The following formulae appear in the main paper and are referenced in the proofs below:
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2 Data Augmented RMCP Density

Lemma 1 (Data Augmented RMCP Density) Assume that the mizture components of the RMCP are
given by (2), and the driving density w(0|€) is of the form (3), with A\ ~ Gamma(ay,by), p ~ Dirichlet(d),
and the component parameters 6, follow the prior w(0;|v;, a;) of equation (4). Then, the distribution of the
data augmented RMCP is given by
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where dyg = > dj, CL; = aj + Zej, I/; =v; + Zziju(si), j=12...m, and & = (ax,bxr,d,a,V1.m),
= i=1
a=(a1,...,am).

Proof. We require calculation of I, I and I3;, for all j = 1,2,...m. Using the Gamma(ay, by) prior
for m(A|ax, by), it is straightforward to show that (5) is given by
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Now let dy = ) d;, and use the Dirichlet prior
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since Z Zej = Z Z zi; = n, and the integral above is that of a Dirichlet(dy + ze1, - . ., dm + Zem) density.
J=1 i=1j=1



Finally, we consider (7) with f;(s;|6;) and 7(8;|n;) given by (2) and (4), respectively. We have
I;; = [exp {%TV]‘ —a;b(8;) + K(aj"/j)}

I] exp {ziju (si)T 0; —2;;b(0;) — zl-jA(si)} de;
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J eXP{ (VJ + f: ziju (Sz)) — (@) + 2ej) b(ej)} a8,

O;

so that we recognize a member of the exponential family priors (4), with parameters a}

7= a5+ Zej and

vi=v;+ Z ziju (s;) . As a result, we have
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and since the integral above is one, we have
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Now putting together (13), (14) and (15), we have the result. m

3 Exact RMCP Density

Lemma 2 (Exact RMCP Deunsity) Consider the setup of the previous lemma. The density of the RMCP
is given by

Prelonrle) = con{-Eam} & . & ﬁlf(dj+i1(kz‘=j)> (16)
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where ¢ is given by (17) in the proof below.

Proof. First we collect all quantities in equation (12) that do not involve the auxiliary variables z.,,
i.e., let
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Therefore, we can rewrite (12) as

e (@21 ]€) = ¢ ﬁle + zaj) exp { K (af,5)},
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and we are interested in the marginal density
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where -
1(z1,...,2,) = HlF(dj + zej) exp {—K (a;f,l/;f)} .
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sl(ji) =1(k; =j),j=1,2,...,m, so that all the elements of M, are described by the vectors e1,€2,...,&p.
Consequently, we have
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and using this n times we can write the density of the RMCP as
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and we have the result. m
4 Generating functional of the driving density

Theorem 3 (Generating functional of the driving density) Forthe RMCP of equation (10) with driv-
ing density w(0|€), we have that the Laplace functional is given by

m
Loy (f) = [exp {A 2 PiFo, } (6/€)dd, (18)
(C] Jj=
where 8 = (A, p,01.,) € ©, and Eg, = E¥i (f(X)), where X ~ f;(s), j =1,2,...m
Proof. Using (10) in (11) (and the Riemann versions of the integrals) we have
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e R2 i=1
where the inner integral is written as
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and letting
Eo; = E (f(X)) = 7{2f(8)fj(8|0j)ds7

where X ~ f;(s), we have the result. m



5 RMCP functionals

Theorem 4 (RMCP functionals) For the RMCP with driving density w(0|€), we have that

Lne(f) = [exp {—A 3 9Bl (1~ e—“s))} m(8]¢)de. (19)
Gne(9) = | eXp{ -\ z piE" (1= g(s ))} m(01¢)do (20)

and
oo (K) = [ exp {—A 2 pP(X € K|X~ fj)} m(01€)do, (21)

where f is a non-negative B(R?)-measurable function, g is a B(R?)-measurable function with 0 < g(s) < 1,
Vs € R%, and K a compact subset of R?2.

Proof. A straightforward application of (18) gives the desired expressions. m

6 RMCP moment measures

Theorem 5 (RMCP moment measures) The first and second order moment measures of the driving
measure M of the RMCP with driving density 7(0|€) are given by

m
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and

Zl p;jPo,(Bz2)
]:

2 (By x By) = [ A2 [i": p;Pa,(By) (01¢)do

) j=1

where B, By, Ba € B(R?).
Proof. For the proposed RMCP we have
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provided that we can pass the derivative and the limit under the integral sign. Moreover, under the proposed

RMCP we have

W2 (B x B) = lim Gne (1 — arlp, — aslp,),
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provided that we can pass the partial derivatives and the limits under the integral sign, and therefore
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Note that the operations of passing the limits and derivatives under the integral signs are feasible since
w(0)€) is well behaved (i.e., all integrals and their derivatives exist since the integrands are continuous and

bounded with respect to @, and m(6|£) is a proper density). m

7 MLEs for the General RMCP
(1) (K)

Theorem 6 (MLEs for the general RMCP) Assume that pn,, ..., on. , are point patterns from a RMCP,

where ga( ) = {sgk) sgi)}, k=1,2,....K, and let p = {nglll), ..,gan)} n = (ny,...,ng), denote all

the numbers of events, and z = {zﬁ“,..., 1nK} the corresponding auxiliary variables, where z§ ,)Lk =
{ng)7 ... ,zg?} and zgk) = (zi(f), cey Z(m)> The MLEs of € = (ax,bx,d,a,V1.,), a= (a1,...,an), based on
the data augmented RMCP of equation (12) are given by the solutions to the following equations
—~ Ne
by = — 22
K
S W(ay + nk) — K¥(ay) = Klog < + 1) (23)
k=1 Ka ay
NS gd (k)
(o) = 30 W(do + i) = K0 () - zww+zx (24)
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and

(26)

n K —~ moo
for 3 =1,2,...m, where u;k) =3 zl(l-c)u (sgk)>, Ne = >, Nk, do = . d;, and ¥(z) = %log (T'(x)), the
‘ k=1 j=1

digamma function.

Proof. Using (12) we can write the log-likelihood as
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where dy = ) dj;, and we require maximization of the latter with respect to & = (ax,bx,d,a,v1.p), @ =

j=1
(@1, ).

In order to maximize I(&€|p, n,z) with respect to ay and by, we need to work with the equation
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Let ny = 3 ny, and recall that the digamma function is defined by ¥(z) = - log (I'(z)).
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derivatives with respect to ay and by above yields
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Now these equations are zero when evaluated at the MLEs @y, and BA, so that (28) yields
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with the latter equation easily solved using numerical methods.
In order to maximize (€|, n,z) with respect to d, we need to work with the equation

l(dn,z) = Klog(I'(dy)) — 210g< <do+nk>>+kz 21og< (dj + 2050))

—K ) log(I'(d;)) + constant.
j=1

Now taking partial derivatives with respect to d;, j = 1,2,...m, yields

o K K
g (A 21n) = K¥(do) = 32 W(do ) + 32 9(d; +2.7) = K¥(d),
and therefore, at the MLEs 8, we need to solve the equations

W) - S Wl m) = K0 (D) - & 0+ ),

~

dj > 0,
~ m ~
for j =1,2,...m, where dy = ) d;. Once again, we have m equations with m unknowns that can be easily

j=1
solved numerically. In particular, let f(d) = [f1(d), ..., fm(d)]T, where

() = (o) = W () + ¢ 3 [l + o)) = Wido 4 )],

and note that
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od,

1 K
= Wi(do) = W1 (dj) drj + 5= 22 [‘I’l(dj + ZEI;))(ST'J' = Wy(do + nk)] :
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where ¥y (z) = %\Il(sc), the trigamma function, and 6, Kronecker’s delta, with §,; =1, j = r, and 0, for
j#r j,r=1,2,...m. Then, the MLE of d is given by the recursive formula

dn+1 - dn - Jil(dn)f(dn)a

n=0,1,..., where J(d) = [(%‘gd)ﬂ and J~! is assumed to exist, for some starting value dg. Alternatively,

the MLE of d is obtained using an optimization method such as gradient descent. In particular, for some
starting value dg, we have
dn+1 = dn - Cnf(dn)a

where -
C _ [dn - dnfl] [f(dn) - f(dnfl)}
n - 5 .
Finally, we turn to the maximization of I(&|p, n,z) with respect to a = (a1, ..., ay) and v1.,, based
on the log-likelihood
- o (k) )
l(a,vimle,nz) =K Y K(aj,v;)— Y > K (aj + 245 Vi + U ) + constant, (29)
j=1 k=1j=1

where u Z z(k) ( )> . From (4), since

m(0;|v;,a;) = exp {HJ-TVJ‘ —a;b(0;) + K (ay, Vj)} :



is a density, we have
exp (<K (aj, )} = [ exp {67, ~ a0, } db.
0;
or

K(aj,vj) = —log /exp {OJTVJ- — ajb(Oj)} dé;
e

J
First we note that
J 0(8;) exp {67 v; — a;b(0;) } a6,

0 o,

J exp{07v; - a;(8;)} a6,
@.

J b( exp{@ v;— -b(0j)+K(aj,uj)}d0j
9]

f exp{@ vi—a;b(8; )—i—K(aJ,V])}dB]-
0 0],
and

J 8;exp {67 v; — a;b(8;)} a6,
—K(aj,v;) = 9
] Vi) =
J exp {07 v; — a;0(8;)} db;
0;

f 0, exp {o;rl/j — ajb(Bj) + K(aj,l/j)} dé;

f exp {9 vj— ‘b(aj)—&-K(aj,uj)}de
;1 e, (6]

Now take partial derivatives of (29) with respect to a; to obtain

0 13} K 0 k k
%l(a7vl:nz‘¢7n7z):K%K(a’jﬂjj) 2:: (97 (aj+Z£j)7Vj+u§ ))a

so that the MLE of a; is the solution to the equation

EO1P 4w @420 [(0,)]

M=
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Similarly, the partial derivative (gradient) of (29) with respect to v; yields
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and therefore, the MLE of v; is given by the solution to the equations
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8 RMCP Model with Normal Components

Lemma 7 (Conjugate Prior of p and X~1) The conjugate prior for the mizture component parameters
K; and Ej_l (in non-canonical form), corresponding to the mizture component distribution of equation (1)
is the product of a bivariate Normal and a Wishart distribution, i.e.,

1 1
-1
;|25 aj,v51 ~ No (ajyjl’ ajzj> )

and
1 -1
E;l‘aj,ljjl,l/jg ~ WQ (aj + 4, (ng + ij1V?1> ) .
J

Proof. Without loss of generality and for better exposition, we drop the mixture component index. The
mixture component density in canonical form is given by

1 1
©(s|0) = exp{@Tu; (s) + 62 uy (s) — §NT2—1N —In(27) — 3 In (|2},

so that . .
HO) = 1 (3] + SuTS
ol 12
where g = (g, pp)", B! = { o2l 522 } , vee(Z7HT = (011,021,612, 0%2)T | so that
1 T
0 = (01,02,05,04,0505)" = (uTzl, 2vec(21)T>

1 1 1 1
_ (/hffu+M2021aﬂ1012+ﬂ20227*5011a*§021,*§012a*5022)T-

Based on the form of b(8), the prior density under conjugacy (4) reduces to

m(O|lv,a) = exp {OTV - %ln(|2|) - %MTEA/L + K(a,u)}

a

2

1
exp {/J,Tﬁlul - ivec(Zfl)Tvec(uQ) - gln(|2|) TR Y T K(a,u)} ,

where v = (v vec(vqy)T)T

consider the transformation

, with v a 2 x 1 real vector and vy is a symmetric, 2 X 2 real matrix. Now

_ T
6 — (" vec(=") = (g, g, 0t 07012, 0%%)T

= (U1,U2,U37U4,U5,U6>T = uTa
with Jacobian

0.11 0.21 iy Lo 0 0
12 22 O 0 iy Lo
J - @ _ a0, . 0 0 —% 0 0 0
= Jou|l |\ow; )| || O 0 0 -3 0 0
o 0 0 o0 -1 o0
0 0 0 0 —%

4
(-3) 1=l =51

10



since X is symmetric. As a result, the distribution of u is given by

1 _ 1
7w, X" v, a) = T 1= exp{pTE vy — 5’066(271)7“”060(1/2)

a a _
~Sm (IS - ST+ Ko w))

o (22) e () (o)

f%tr(zflw) + K(a,v)}
(i) () (i)}
ooy () (32) " (3)] - 3w+ e}

m(w, T a,v) = 7(p|E, a,v)7(B 7 a, v1,v9),

1 1_a 1
_76|E‘ ! 26XP{—§

and therefore

is a joint distribution where clearly we have
1 1
M|ECLI/1NN2( Vi, — 2)7
a
while the distribution of £~! (up to a constant) can be written as

_atl 1
(2 a,vq,v0) o |Z| ;exp{—2 [uipE*luﬂ— trE 1/2)}
a

e 1 —1
loq ‘E ‘ exp —§t7“ 3 Vo + 1/11/1
o ‘2—1‘4‘7“*4%2—1 exp{_;tr{<lj2+ (11,’/11/,{> (2 )}}7

which is clearly the density of a Wishart distribution, i.e.,
1 -1
2_1‘a,l/1,1/2 ~ W2 <a+4, (VQ—FVll/,{) ) .
a

Theorem 8 For the RMCP model with normal components and under the assumption of conjugacy for the
driving density, the means required in equations (25) and (26) of Theorem 6, are given by

T
—-1 -\ T
Ny a; +4 1 a; +4 1
EYilvi-a; 0,]= | -+— VJT1 <I/j2 + 1/;11/31) — vec ((VJQ + VJ1VJ1> ) ,
aj aj

aj 2

and

E%175:05 b)) = ~log(2) — ¥ (aj;3> v <aj , 4>

2
1 2\ 7! 1 aj+4 1 2\
—0.5log Vs + —Viv; —&-2— 2+ vi (Ve + —vvg vi |,
aj aj aj aj

forj=1,2,...m, where ¥(z) = % log (T'(z)), the digamma function.
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Proof. Since 6; = (;J,JTEJ»_l, —%vec(Ej_l)T)T, we have

1 T
(u;‘rEjl, —Qvec(Ejl)T) ]

T
- 1
EHilE; Laj.vi (H?Ejl, _vec(zjl)T) ]

E9ilvi.a; [9].] — EHHE FHvsag

— R vivge
2

T
— <1U‘?1E2jl|a-7’u-7l’uj2 (2‘—1) ,—%Uec(Ez;l‘ajﬂjjhu'ﬂ (2—1))T>

, J
a;

-1 -1
a; +4 1 a; +4 1
= J : y].Tl (uﬂ + Vﬂl/;fl) ,— ] _ “pec (Vﬂ + 1/]11/%)
a; a; 2 a;

owing to the fact that

™ T

—1
P _ 1
Ezj |a]1V_717V]2 (2] 1) = (a] +4) (V]2 —+ V]1Vf1> .
a;

Similarly,
E%ilviai [p(9,)] = E“wzfl”i’aﬂ[ In (|%;]) + ujz N;}
_ E2f1|aj,u,>1,uj2 Euj|2.71,aj,uj1 11 2—1 1 Tz—l
= i 1Y 7 —5 I (1Z57) + 5m =5 wy
= pE v |l st 4 Lpes=ite e by
_ ; —5 I (|57) + S B (]2 )|
and since
B 1 1
uil =7 a5 ~ N (?ih,zj) =
a; a;
_1 \/Qj _1
X = s B a5 ~ N <aj j 2”1‘1’12) =
J
T 1
X X = a‘]”] E IJ’] ~ X2 ]12 VJI ’
aj
we have
2t a, v, — 1
so that
E9ilvisa; _ =5 a0 0 1 -1 1
9 [b(8;)] = E¥i lwrivs —iln(\Ej |)+T 2+ ]12 Vi1
R _ 1 vt _
_ _gEzj e vinvs (In (12571)) + 2a; (2+ a =Rl [yl 1”]‘10 '

Noting that if A ~ W,, (n,X) then ¥ gz ~ x2, where y denotes any random vector independent of A (see

Muirhead, 1982, Theorem 3.2.8), we have

—1
Efl\a Wi,V T s —1 _ T 1 T
B LRttt [ylej l/jl] —(aj+4)1/j1 V_72+ —Vj iV V1.
J

12



m
Moreover, if A ~ W,, (n,%), n > m, then |[A|/ || has the same distribution as [] x_,,, where x2_,_;
i=1
denote independent x? random variable (see Muirhead, 1982, Theorem 3.2.15), and we can write

Ellog|A]] = E [1og (é; z)} —F [1og ('é‘]'ﬂ +1log (|=))
(i)

E [log (x—i11)] +1og (IZ]),

m

+log (|1Z]) = ZE [log (xr—i11)] +log (=)

=1

I
NE

1

-
Il

so that for E;1|aj,uj1,uj2 ~ Wy <aj + 4, (ng + a%”jl”%) ) , we have

BEi lagvinye (ln (|2j 1|)) = F [log (X3j+4—1+1)} +F [log (X3j+472+1)}

-1
1
+ log < <Vj2 + Vj1V?1> )
a;

= B [log (x2,2a) | + B [log (3,45 |

1 -1
—|—10g < <I/j2 + I/jll/]’z-;) ) .
aj

Now let Y = log(X) = X = e¥, where X ~ x2, so that

= NeY = oY
fY(y) fX(e )6 F(%)2% €
e5y—e’/2 »
- T (%) 22 y Y € )
where N
(oo}
r (g) 2% — / e3¥=e"/2g
As a result, we have
7 1
= —_ —_— gy_ey/z — . ﬁy—ey/2
Blos(0] = B0 = gygy [ vty =g [ 2 [ ay
oo e
“+oo
2 d 2 d a\ .a
— el 2y—e¥/2 _ a a a
T T (2)2%da /ez Y =T 2% da r(3)2]
2 a1 d a a\ .al
T T(2)2 {%daf (3) +F(2)2221°g(2)}
d a
= %bgf (5) + log(2),

so that

B aivinvi (1 (I=1) = ilogr (“j;3> + 21log(2)

da;

d a; +4 1 -1
ot (52) o )
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Finally, we can write

d 43 d 4
P50 [b(6,)] = —log(2) = 0.5-—logT (af; ) — 05— logT (“J + )
a;

daj 2
1 -1
—0.51og < (’/J2 + I/J1VJTI> )
a;
a; +4 1 -t

Theorem 9 For the RMCP model with normal components and under the assumption of conjugacy for

the driving density, the solutions to equations (25) and (26) of Theorem 6, yield the MLEs of v; =
(VJT:L,UGC(V]-Q)T)T and aj, are given by

which completes the proof. =

T
Nus s a;+4 1 g +4 1 -1
EYilviai (9] = ja' u;‘-rl (ij + ijfl) 7—]Tvec ((VJQ + Vﬂu]Tl) ,
J J .7

and

E%v395 [b(6)] = —log(2) — ¥ (W) - <%+4>

2
1
1
(VJ2+ Vﬂ”fl)
a;

1 a; +4 1 -
—0.51og < ) +— <2 + L Vfl (ng + V]1Vf1> uj1> ;
2a; aj aj

Proof. Without loss of generality and for better exposition, we drop the mixture component index j.

1

B0 ;)] = 1o 35 B o), (30)
k=
and
0;17;,a; 1 0;17;+u(® a;+20
A Z L (6] (31)
K =
Recall that u®®) = S zgk)u (Sgk)> , and using equation (26) we have two equations
i=1
a+4 1 -1 K a+z£k)+4 T
K vT (1/2 + VlulT) =3 — (U1 + ugk)) (32)
a a k=1 a+ ze

1 —1
<u2 + u2k) + ® (u1 + ugk)> (u1 + u(k)> ) ,
a-+ Ze

-\ T (k) 4
4 1 7 K a+z
vec | | vo + —viv] Z _
a —
(k) 1 ™
vec vy +u, + — (I/1 + u (1/1 + u1 ) =
a+ Ze

and

_Ka—|-

")
K (a+4) (V2 + il/ﬂ/{) i (a—i— Ze +4)

k=1

<V2 + ugk) + . —|—1z£k) (1/1 + ugk)) (I/1 + u(k)) )_1 ,

14




so that (32) yields

(m + uﬁ’“)) (Vl + ng))T> _

,,,1 Z (a+z, 4) <y2+ugk) +

a—|—z£k)
K a+z£)+4 g no
ZW(V1+U( )) ( (k)+a+z<k> (V1+u§k)> (VlJFuEk))) -
T
K a+ A4 +4 a+z$)+4( —i—u(k))
1 — vy
— a a+z£k)
-1
1
(V2+llék)+ ® (u1+u§k))( "‘ugk))) =0
a—+ ze
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