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The supplementary material contains proof of Lemma 1, Theorem 1, Theorem 2 and
Corollary 1, regularity conditions of Corollary 2 and derivation details of equation (55) and

(56) for Simulation Study Two.

S1 Proof of Lemma 1

We now introduce information projection (I-projection) to derive density ration estimation.
Let II be a non-empty closed, convex set of distributions. The I-projection of Q onto II is

P* € II such that
D(P* || Q) = min D(E | Q).
ell
One important family of distributions is a linear family:
L= {IP’ : JBi(a:)dIP(w) =qi=1,--- ,k:} c 11,

where B;(-)’s are Lebesgue integrable functions. Note that the linear family is orthogonal

to B;(:) —ay fori = 1,--- , k. Since the function D(P || Q) is continuous and strictly convex
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in P, so that P* satisfying
D(F* || Q) = min D(B || Q)
el
exists and is unique. Moreover, P*, the I-projection of Q onto L is of the form
o {2, 2]
Bo e {ZX, 5B@)}

P*(z) = Q(x) : (S.1)

where (;’s are constants in R. The solution P*(x) in (S.1) is an exponential tilting of the
density Q(x) with the moment restrictions on B;(x), i =1,--- , k.

To derive valid DRE, we leverage the I-projection theory with Q = P; and P = P,
whose densities are fi(x) and fo(x), respectively. The linear space that we are projecting
on is

p [ babfi@)d + (1~ ) [ baife)dn = EBOOL (5.2)
By (S.1), the I-projection solution is

exp{A;b(x)}
E; [exp{A{b(z)}]’

fo(®) = fi(e) x

where A; is chosen to satisfy (S.2).

S2 Proof of Theorem 1

The detailed proof for Theorem 1 is presented as follows.

Proof. By Assumption 1~ 3 and Corollary I1.2 of 7, we have

Do — Ap = 0,(1).



Then, by mean value theorem, we have

0

Usn(Xe) — Usn(Xp) = F5N

Us.n(Xo) (3\0 — AB) ; (S.3)

where 5\9 is a point between Ay and 3\9. Apparently, 0Ug y/0X and E[0Ug n/0A] are
continuous within the set G;. Therefore, using the similar technique as above, we can

arrive at

U 00) = E{ S0s(33) | + 0,00 (5.4

Combine (S.3), (S.4) and the fact that ﬁz(i) = 0, we have

VNUgn(N) = \FE{ UBN(A*)}(XFA;)MP(\/NHX@A;

> . (S.5)

< E{aUBN(AG)}_l fE{ UBN(AG)}(Xe—AB)

Then, by Cauchy-Schwarz inequality, we have

\/NHXO Y

oA

_ E{ d UBN(A,,)}_1 VNUs (N + 0, (\/NHXG—A;

oA

which implies the root-n convergence of 3\9. Therefore, (S.5) can be written as

)

0,(1) + o, <\/NH3\9 Y

-1
N 0
S0 — X — - [E{ aAUBNu*)}] Ui v(X5) + 0 (V).

where

Upn(O.X) 1o, . (VST
Y _N;&{w (30, X9) — 1}2;(0)2; (0).



By Taylor expansion and similar technique we used above, and by mean value theorem,

there exists Ag between Ay and :\9, we have

USIPW N

m’w 0 Ae U(07 Z;, yz)

ZIH

mza 0 AO U(07 Z;, yz)

- 2
- 2

ZIH

N

3 _ ~
+ N Z 6U (0, i, y;) {a(_)\W*(wi; 0, Ae)} <)\9 - )\3>

N
- %Z ﬁ zi(0) + d;w*(x;; 0, 2p){U (0; x;, y;) — ﬁ*zi(g)}] + Op(N—l/Q)’

which completes the proof of Theorem 1.

O
S2.1 Verification of 3
It can be verified that
Ug N (0, X N,
%") 9 Za{w (;;0,Xg) — 1}2:(0)2](0), (S.6)
Us (6,0 Z{(sw (z:0,\) — 1}2,(8), (S.7)
0 N,
a3 (10, 20) = N? w* (50, Ng) — 1}12:(6). (S.8)



Combine (S.6), (S.7) and (S.8), we have

X Z{l — oW (x50, N)}2:(0).

)

Note that the first part serves as the estimate of 3*.

S3 Proof of Theorem 2

As Ug v = 0, we have

N (o T/ gy OA 102i(0) wr 0z;(0)
:NZ&“ [{w (mi,a,A)—l}zi(e){zi (0)=5 + X' —5 }—Fw(:ci,@,)\) 0 ]




Combine (S.9) and (S.10), it yields that

Z_z = {%Zéi{w*(azi; 0, — 1}Zi(9)z£r(0)}

1 ol . 822‘ 0 1 N . Té’zi 0
x [N;{l — Siw* (i 0,\)} aé ) _ NZ@{M (€;;0,A) — 1}z;(0)A aé )] .

i=1

(S.11)

By Taylor expansion and mean value theorem, there exists 6 between 6* and BASIPW,

such that

1Y 0 -
Osipw — 0" = — NZ_O i wz,e >\ )U(G;wiayi>
{ ZéiW*(wi;e*aX@*)U<9*7wiayi)}
1

-1 N
@ * oy K * 1 C0* \* -1/2
_—E[%&u (X; 0%, A)U(G,X,Y)] ><{N;d(wi,yi,éi,e,)\)}—irop(]\f ),
where the equality (i) is by Theorem 1. Furthermore, note that
W' (X560, AU (0% X,Y)}

9_0{5

—5—{w X;0",X)}U((6";X,Y) + 0w (X; 0" x)(ﬁ

5 {U6"X,Y)},

and

C (X0 A)}z{w*(X;O,)\)—l}{ZT( 022 | A17Z(0) >},

00 00 00

together with (S.11) leads to the form of 7 in Theorem 2, which complete the proof.



S4 Proof of Corollary 1

Note that B*Z(6*) = Zi:o bp(X; 6*)8;. 1f the outcome model is correctly specified, rear-

ranging the terms in the estimating equation for 3*, it turns out that

D 0w (x40, Xp) — 1}B2,(0) 2] Zé{w (z::0,0y) — 1YU(0; 4, 1:) 2} (0)

o | L0 @i 0.05) ~ D=(0)21(0) | 87 = X w0, %) ~ 1=(0)U (82000

=1

(S.12)

The equation (S.12) is the normal equation of a weighted least square estimation of 3.

Thus, as long as
E{U(0;z,Y) | z} € span{l, bi(z;0), ..., br(x; 6)}, (S.13)

by the uniqueness solution of weighted least square estimation, we know that

E{UO; X,Y)| X =x} = 32(0). It turns out that

V{d(X,Y;5;6", )}

L L
=V [ Y (X078 + 0w (X;0%, A1) L U (6% X,Y) 2 (X:0")3;
k=0 k=0

k=0

L L
=V [Ey | ) 0k(X;6%)8; + 0w (X;6", X)L U6 X,Y) Z (X:0%) gk} | X, 6

k=0

+

L L
+E | Vy Zbk(X;O*)ﬁ,:+6w*(X;0*,)\*){ U X,Y) Z (X:6%) ﬂk} | X, 6

=V{B'Z(0")} + E[0{w"(X; 0", X)P’V{U(0"; X.Y) | X}].
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By the argument before Corollary 1, we know that 8, = 8*, which completes the proof.

S5 Additional Regularity Conditions for Corollary 2

[S1] For any constant M, there exists non-singular matrix D such that

sup N2U(a) - N"2U () — N*D(a — )| = 0,(1).

|a—ap|<MN—1/2
Additionally, n"2U (cg) 5 N(0, F) for a positive definite matrix F.
[S2] The tuning parameter A in (47) satisfies

A — 0,VN\—

as n — 0.

S6 Basis Function Derivation for Simulation Study
Two

Recall that we have

Further, we have

S1(Bs2,y) = (y — o — frx)(1,2)",

So(ex, 2) = (2 — ax).



Next we calculate the quantities involved in basis function.

f 1| 2:8) fala, 2 | @)da

:J ! exp _1{(y—ﬁo—61x)2+(z—ax)2} dx

2000, 2 03 o?
_ J 1 exp | 202 + a?02)x? — 2{B1(y — Bo)o? + azad}x + (y — Po)*0? + 2%02 -
2mo00, 20302
r _ 2 212
= (8102 + aa3)a® — 2{Bi(y — fo)o? + azog)a + e
200, P 203072

{B1(y—Po)oe+azag}® {(y — 50)202 + 220(2)}

Bio2+a2o?

+ dx

22
20507

B1(y—Bo)ol +azag}?
252 1 Blzpecteril — {(y — fo)?o? + 203}

o
=\ /2m 0 X ex
\/ (B202 + a?0l)  2mog0. P

22
20307

( . ﬁl(y—ﬁo)ozwzoé)Q
d

1 B%Cfg-i-oﬂag
X —— exp < — oo .
T
{B1(y—Bo)o2+azo2}?
! - prlocrozoil — {(y — fo)2o? + 2ot}

- 2 D) exXp 53

\/271-(61 03 + CYQUO) 20005
=:7(y, 2). s



The term Tj in (S.14) motivates that

f hiy | 7:8) ol 2 | a)dz

By — Bo)o? + azoy
202 + a?o?

=T7(y,2)

Y

and

[EEETE
_ r(y, 2) {ﬁl(y — Bo)oz + azag }2 N olo?

2 .2 2 -2
6106+a0-0

As a result, we have

bi(0:y,2) = E{S1(8; X, Y | z,9)}
y— Bo— By Bi(y—Bo)o2 +azad

2 2. 2,2
Bioz+a?og
2 2 2 2
Bio2+a?o] Bio2+a?o]

and

by(a;x,2) = E{S2(; X, Z) | y, 2}

2 2 2,2 2 9 2.2
Bio? + a?of Bio? + a?of
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2 9 2 2
Bio? + oo

(y — Bo) s foloirazel g {M{Mr N

Bi(y — Bo)az + azag —a {51(9 — Bo)o? + azag }2 i

2.2
050¢ )
B2o2+a2o2

2 2
000,

2 2 22
510-e+a0-0



