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Supplementary material

7 Appendix: proof of Theorems 4 and 5, and Proposition 1

We first prepare some lemmas.

Lemma 2 Let {N;};>0 be a counting process whose intensity is denoted by ;.
Let { X }1>0 be an RY-valued predictable process assumed to be locally bounded.
Let G C R® be a bounded open domain admitting the Sobolev embedding. Let
f:RYx G = Rf be a measurable map satisfying the following conditions.

(i) For each x € RY, f(x,-) is of class C1(Q).

(ii) sup,cq |81Yf(,7)| (i =0,1) are bounded on every bounded set of RY.
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1 /7 -
\/T/ F(Xt,7)dNy
0
where Ny = N, — f(f Asds, provided that

sup F [ sup
T>1 yeG

swp B[4 )"M] <0 (=01
YEG,t>0

for any p,q > 1 with p > 2q.

Proof Let T' > 1. Since the process sup.,¢¢ |87f(X, 7)| is locally bounded, we
have

T _ T B
9, /0 F(Xo,7)dN, = /0 0.7 (X0 )dN,  (v€Q).

Let p be any positive number with p > g. Take some integer k with 2% > p.
From Sobolev’s inequality,
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By the Burkholder-Davis-Gundy inequality, for each i = 0,1,
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Repeating this evaluation,
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Thus, from (56),
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Lemma 3 Take N, A\, X, G and f as in Lemma 2, and assume (i) and (ii)
in Lemma 2. Also assume the ergodicity of X as (23). Then

sup — 0 in L*(dP) (T — c0) (57)
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{ sup | f(Xq, ’y)|} is uni formly integrable. (58)
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In particular, (57) holds if for any p > 1,
sup E[\&’ (X, )ﬂ <oo  (i=0,1). (59)
€G>0

Proof Let M > 0, and define a bounded function fys as fas(z,7v) = (f(:c,’y) A
M)V (—M). Then

[jtelg /th, dt—/fx*y dx}
[31612 / f(Xt,7) t—f/ far(Xe,y dtH
wsup | [ faide) = [ fartoido)
v€G | JRd Rd
1 T
+E[:‘1€12 T/o fM(Xt,v)dt—/Rd fu (@, v)v(de) }

The first and second terms on the rightmost side are as small as we want by
taking sufficiently large M > 0 since
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and since (58) holds. Let § > 0 and take a finite set Gs C G such that
SUp,, ¢ Miny, ey (71 — 72| < 6. Then

fz D ey zary V@

IA

1 /7
E[sup T/ fM(Xt7'Y)dt_/ fM(xa’Y)V(dx)}
yeG 0 Rd
1 /7
< E[max 7/ fM(Xt»’Y)dt—/ fM(x,v)V(dx)]
vE€Gs 0 Rd
1 /7
+E[T/ sup |fM(Xt,’y1)fM(XM2)’df]
0 Y1,72€G
[v1—=72]<d
[ s [farln) = furo) (o)
z€ERI 71,72€G
1—72]<6
T2pe 2/ sup | far(w, 1) — far(,72) |p(dz) 0.
zERI 71,72€G

[v1—72|<d



34 Junichiro Yoshida, Nakahiro Yoshida

Thus, (57) holds.
From Sobolev’s inequality, (58) holds if (59) holds. O

Proof of Theorem 4. We define a new parameter space = = © x T by

O = [0, M) x [~Lg, M| x [0, Mo] 4 x [0, Mo~
T = [_LBvMB}aiM‘?

and also define new parameters § = (6,0) € © and 7 = (7 )peac € T by

0= (97 (ﬂi)i€A7 (Oli)z‘eA), 0= (Oék)keAc7 T = (Tk)keAc = (Bk)kzeAC-

That is, we consider a parameter transformation as (6,7) = ¢(g, «, 8), where
@ [0, My] x [0, Mq]* x [—Lg, Mg|> = = is defined as

‘p(gaaaﬂ) = (gv (672)1'6.»47 (ai)iGAv (ak)kGAcv (Bk)kG.AC)' (60)

Define estimators 67 and 77 taking values in © and T, respectively, by (éT, Tr) =
o(gr, ar, BT) We set p=1+|A|+a and p; = 1+2| 4], respectively. We define
Ji, Jo and J as J; = {1} U {2 + |A|,...,p1}, Jo={p1+1,..,p}and J =
J1 U Jo, respectively. Define one of the true values 8* = (5*,Q*) € RP1 x RP~P1
as

0 = (97 (Biea (aDiea) . 8" = (Orea-.
For r := p, let ap = diag(a; 7, ..., ar7) = T721," by = T and pp = L1
(k € Jo). We take ap € GL(p) as a deterministic diagonal matrix defined by

T Ge{lm))
(@r)jj =4z [
T2 (.7 € {pl + 13 ) P})
Define Ur and U by (8) and (10), respectively. Then from Example 1 of Section

2.3 in Yoshida and Yoshida (2022), Condition [A3] holds, and U = R x RMI x
RMI x [0,00)2~ Ml € RP. Define ¢; (i € J1) and dj, (k € Jp) as

ci = {Hgl{r_l} v-b d

. k= Ra-
Kal{r=1} otherwise ’

Define a random field Z as

_ 1— L
20 = Bl - ATE - 4 Y 0w~ Y dul
€T keJo
for any u = (u1,...,up) € RP, where U = (uy, ..., up,) and A ~ N, (0,I"). We
define a U-valued random variable @ by 4 = (TﬁlzT, 0), where 0 € RP~PL.

L I denotes the m-dimensional identity matrix
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Note that & becomes a unique maximizer of Z on U, and [A4] holds. Define a
random field Hr : 2 x & — RU{—o0} as

T T
’HT(Q,T):/O log)\t(zj)(G,T))dNt—/o e (6(0,7))dt,

where ¢ denotes ¢! for ¢ defined in (60). Then 6 is a maximizer of Hyp (6, 77)—
> jes §5rpj(0;) on O, where for any j € J,

kg2 (j=1) .
- . , , = € R). 61
e { kal2 otherwise P () 21 (@ ) (61)

Note that ¢; (j € J) defined in (iii) of Section 3.1 are determined as ¢; = ¢ < 1.
In the following, we show [H1]-[H5] under [P1]-[P3], and use Theorem 2.
We first show [H1]. From Taylor’s series, for any (0,7) € =,

Hr(0,7) — Hr(0%,7)

T )\t((]S(e,T)) T *
g/o log)\zdet/O {0 (6(0,7)) — A; }at

- /TWdNt_/l(l_s) g {At((b(e’T))*A?}
0 Al 0 o {sA\i(¢(6,7)) + (1—s5)A7}

T
AN ds — /O D0 (6(0,7)) — A Yt

_ /A(W»—Am /1(15) T {M(e6.7) - N
0 o 0 {sh(6(0.7) + (1—s)Ar}

2

2

2

2

'dNtdS,

where N is a martingale defined by N; = N, — fg Alds. Take an arbitrary
R > 0. The integrand of the second term in the rightmost side is evaluated as
forany (0,7) € 5,0<s<1land 0<t<T,

Pele0.0) =N {ale.m) - N Y

{she(6(0,7) + (L =)\ )" — Mg Pl
> {At(¢<i,4;>k)z— M) (0> g),

where ¢r : R* — [0,1] is a continuous function vanishing outside of [-R —
1,R + 1] and satisfying g = 1 on [—R, R]?, and Mr > 0 is a constant
depending on R. Therefore,

Hr(0,7) — Hr (0%, 7)

Ta(0(0,7) = A5 < 1 [T {A(0(0,7) = At}
< / SN - / T or(X0)dN,.
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In the following, we denote ¢(8,7) by (g, «, 5). As (27), we have

At (¢(67T)) -\ = w(ﬁ’Xt)[h(aaT)] (t =0, (977_) € 5)7

where h : RP — RP is a continuous function defined as for any (6,7) € RP,

h0,7) = <g+ > an—g" (B = B7)senr (@i —0f)ica,

kEAC
(%ﬁk)keAc) : (62)
Then
Hr — Hr(0%,7)
s \F/ Mo [0, = gy [ P e

AN, [(VTh(8,7))%*]
K (60,7) [VTh(6,7)] ~ 3 {G(0,7) +rr(6, 1)} (VTh(6,7) ™

for any ¢t > 0 and (0, 7) € =, where for any (0,7) € =,

- /3 X0
7(0,7) \F/ th
6.1 = o1 / w(s, ) or(x)v(dz),

1 (1 /T ws, X,)®2 -
rr(0,7) = MR{T/O w}\i*gﬁpR(Xt)dNt
t

1 T
b [ w0 er(xdt~ [ w0 pnatan |
0 Ra
Condition [P1] implies that for any p,q > 1 with p > 2¢ and for each n = 0, 1,

Eu@gw(ﬁ,m v

| o]

sup
ﬂe[_LBaMﬁ]avtEO

<@y s B
BE[—Lg,Mgl*,t>0

a

serry s sl < o)

j=1 Bel—Lg,Mg]2,t>0
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Here the second inequality follows from the evaluation

05w (B, )|
1 p
— ag /0 (17 (xie{sﬁi""(l—s)ﬁi }Ii)iEA , (651' Ii)ieA ’ (xkesﬁkwk>kEAc> ds
1 p
< / (i)g (1’ (xie{sﬁr‘r(l—s)ﬁi* }Ii)iGA , (eﬁi*aw)ieA 7 (xkeSﬁkxk)kE.Ac> ds
0

/[Z{1+x )eliemi} +Z{eﬂ?“}p]ds

i€ A

for any = (1, ...,za) € R* and any 8 € [—Lg, Mg|?, where Bﬁs € [-Lg, Ma)?
(j = 1,...,a) are real numbers depending on s. From (63), we can use Lemma
2, and obtain

sup |Kr(0,7)] = Op(1). (64)
(0,7)ez
o w(B, X¢)®* Xf Sl .
Slrmlarly7 sup wr(X¢)dN:| = Op(1). Since for any
L[-;,J\/[[-;]a \/7

p>1

_ P
sup E{ 3;3{w(ﬂ,Xt)®2}<pR(Xt) } < 0 (1=0,1),
BE[—Lg,Mgl*,t>0

we can use Lemma 3, and obtain

%/0 w(ﬁ,Xt)®2QDR(Xt)dt—/[Raw(ﬁm)®2<p3(x)u(dx) £,

uniformly in 3 € [~Lg, Mg|* as T" — oo. Therefore, supy ,)c= lrr(6,7)| =
op(1). Moreover, [P2] implies the non-degeneracy of G for sufficiently large
R. Thus, [H1] holds for ap = T~ =1,.

Condition [H2] also holds. Indeed, continuing to denote ¢(6, 7) by (g, o, 5),
we have

0" = {0 €6;3recT,hb,7)=0}

{06@ g+Zak_gv(ﬁl_B')leA O’ (ai_a?)ieﬂzo}’

ke Ac

where h is given by (62). Therefore, ©*N{# =0} =O*N{a, =0 (k € o)} =
{6*}. Condition (a) of [H2] obviously holds since h can be smoothly extended
on RP. Condition (b) of [H2] holds since a;; > 27ta} > 0 (i € A) if 6 is close
to 0*.
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We show [H3]. From Remark 2, we only need to show [H3]". Since £y < Kq
from [P3], for any 6 € O,

q
+ Ka Z |ove | +K3az |

9*—Zak

a
Kglg|? + Ka Z laj|? = Ky

j=1 keAc keAc €A
> Rglg™|1— kg D lkl?+ ko D |kl + ko Y [af]?
ke Ae ke Ae €A
> kglg*|" + Ka Y _ lof]?,
i€ A

where the equations hold if and only if o, = 0 (k € A°). Therefore, under
6 € ©*, the penalty term is minimized if and only if o, = 0 (k € A), that is,
if and only if 8 = 6*. Thus, [H3]’ holds.

Condition [H4| holds for &; 1 defined in (61) since ko >0 and ¢; = ¢ < 1
(j € J). Finally, we show [H5]. Let G = {¢, 2}, and take N as N' = Int(©) N
{(61,...,0,) € RP;0; > 271g*}. Note that N satisfies (16) and (17) and that
for any (6,7) € N x T and any t > 0,

Ae(0(8,7)) > 279" (65)

For any (0,7) e N x T,

OogHr (0", T)

X
_ T v(Xy) AN T (€™%) e ae AN /
- * * ,—Br X b * x ,—BF X} t |-
0 gD eaoye it 0 g+ D eaie it

Similarly as before, from [P1] and Lemma 2,

X ~
sup kGAC dNg

Tk,
reT’\f/ g+ZZGAaeBXl

Moreover, from the martingale central limit theorem, we obtain

Xt) < d —
dN — A,
7l et
. . ) iy _ R v(Xs) N
checking Lindeberg’s condition as for S; = S¢(T) := 7F fo T are PN dNg
and for any a > 0,
2 _ 3
E{Z(Ast) 1{|Ast>a}} < a 1E{Z|A5t| ]
t<T t<T
T 3
< a—1E|:/ iv({t) dNt:|
o IVT A
Pk
< a_lT_ésupE[ o *t) )\:} — 0
t>0 )‘t
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as T — oo. Thus, the first half of the argument of [H5] holds. Furthermore,
for any (0,7) € ./\/ x T,

02 Hr(6,7)

_ [Tanee.n)” Y G0 ) N N
_ /0 ( AN, + /0 ) /O 92\ (6(0,7)) dt

= — Tw)\ 0* ))dt — de]\?
/0 t(¢(07,7))dt /0 )\t(qS(Q,T))z t

FONOO.D) o, [T BNGOD) e
+ e | Nt O

Similarly as before, from [P1] and (65), we can use Lemma 2, and obtain

‘ / 89/\t ) / 82>\t dN
sup t
(0.7)ENXT VT 9 T)) \F

= Op(1).
Therefore, for any (6,7) € N x T,

1, 1 Ta(e0.) 1 [T BA(6(6,7))
—ORH(0,7) = T/o W A (6(6 ,T))dt+T/O L

1 /7
Ae(@(0%,7))dt — T/o A (0, 7))dt + op(1).
From [P1] and (65), we can apply Lemma 3 to

TR RN )

— (90, 7)),

where v = (0,7) € N x T. Therefore, for any R > 0,

fnXp) = A (6(07,7))

sup a0y Hr (0, T)ar + (F(g ) g) £o.
(0,7)ENXT

lazt(6—67)|<R

Thus, the second half of the argument of [H5] holds. Then using Theorem 2,
we have ay.! (07 — %) % 4. This implies (25) and (26).

We see easily that [S] holds from Example 1. Therefore, using Theorem 3,
we have limy_,o0 Plagr =0 (k € A%)] = 1. O
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Proof of Theorem 5. From (30), we can take some large L > 0 such that the
following matrix is non-degenerate:

®2 %
‘/[0 ) {(irj)jGD} @L(x) {a : 'T]-{(x*~x>0} + 1{a*~x:0}}y(d$)7 (66)

where ¢, : R* — [0,1] is a continuous function vanishing outside of [-L —
1, L + 1]* and satisfying ¢, = 1 on [—L, L]?. Choose some constant My > 1
satisfying that

(o) (Xy) < My, (t >0,a€ [O,Ma]a). (67)

We define an estimating function @T as

ra) = or(e) + [ {ni0) - B on o0 frpadr (e o).

Note that ¥y > Wp. For each T, let ar = (¢a,r,...,0s) be an arbitrary

[0, M,]?-valued random variable that asymptotically maximizes ¥p ().
In order to show Theorem 5, it is sufficient to show that under [L1] and
[L2],

(T3 (@i — o Viea, T3 (Gnr)res) = (7_1?»0)7 (68)
Tlgn Plapr =0 (k€ X)), air#0 (ieJ)] =1 (69)

In fact, assume (68) and (69) for any asymptotic maximizer az of 7. Then
since \* =) ;.7 af* X' almost surely and therefore 1«0y = 1{xi=0 (ie)}
almost surely, we have

PUr(ar) = ¥p(ar)]

"L iay @)y
= P{/O {At(aT) - MQDL(Xt)}l{Xé—O (iejl)}dt =0
> Plagr =0 (k€ X)) —1 (T — c0) (- (69)).

Therefore, the following evaluation asymptotically holds: W (ar) < Wr(ar) =
Ur(ar) < Wp(ér). Thus, together with the inequality Yy > Yr, @T(&T) is
asymptotically equal to @T(&'T). This means that & also asymptotically max-
imizes ¥7. Then (68) and (69) holds when substituting &1 for ar. Therefore,
Theorem 5 holds.

In the following, we show (68) and (69) under [L1] and [L2]. Define two
parameter spaces © and T by © = [0, M,]* and T = {1}, respectively, and we
consider new parameters § € © and 7 € T by 0 = a and 7 = 1, respectively.
Define estimators 7 and 7 taking values in @ and T, respectively, as Op =
ar, 7r = 1. In the following, we omit 7. Define 8* € © as 0* = o**. We take p
and p; as p = a and p; = | 1], respectively. For notational simplicity, assume
that 71 = {1,...,p1} and Jop = {p1 + 1, ..., p}. Define ar = diag(as 7, ..., ar 1)
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as ap = T~ =1,. (r is already defined as r = |D| in Section 5.) Let bp := T
and p = 7 > 1 (k € Jy), and take ar € GL(p) as a deterministic diagonal
matrix defined by

oy T (€T ={1,.p}\ D)
(or)si = {T‘QZ (j € Jo) : (70)

Define Ur and U by (8) and (10), respectively. Then from Example 1 of Section
2.3 in Yoshida and Yoshida (2022), Condition [A3] holds, and U = {u =

(ut,...,up) € RPyup >0 (k € Jp)}. Define ¢; € R (i € J1) and di, € R (k € Jp)
as ¢; = Kil{p=1) and dy = Ky, respectively. Define a random field Z as

Z(u) = Al(ui)ieq] — %7[((% Jiea) ) —a Y el T = > dilug?,

€1 keJo
for any u = (u1, ..., up) € RP. We define a U-valued random variable @ given by

U = (T”ZT, O). Note that with probability 1, 4 becomes a unique maximizer
of Z on U, and [A4] holds. Define a random field Hp : 2 x © — RU{—o0} as

Hr(a) :/0 log)\t(a)dNt—/O Ae(@)dt

+/OT {)\t(a) {21(\42}2 (Xt)}l{/\?_o}dt.

Then the estimation function @T can be expressed as

Vp(e) = Hy(a) — T3 ZH] = Hr(a Zﬁj p;(ey) (e € 9),

where for any j € J = 1 UJ = {1,...,p},
& = wT5, pila) = 2! (z€R). (71)

Note that ¢; (j € J) defined in (iii) of Section 3.1 are determined as ¢; = ¢ < 1.
From Theorem 2, if [H1]-[H5] hold for W7 under [L1] and [L2], then
ap'(@r — o**) 4 q, i.e., (68) holds. Therefore, in the following, we show
[H1]-[H5] under [L1] and [L2].
We first show [H1]. We have fOT log A\ (a)dNy = fo log At(@)1{xr>0ydN; al-
most surely since fOT 1{ar=0ydN; = 0 with probability one. Then from Taylor’s
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series,

Hr(a) — Hr(a™)
:/OTlog)\t(a)l{,\po}dNt—/OT)\t(a)dt-i-/OT {At(a) {ASJ(WZ}Q L t)}

T

T
l{Az«Zo}dt—/ log)\:l{)\:>0}dNt+/ )\:dt
0 0

T Mla) ’ '
= log N 1{A*>O}dNt {/\t(a) — A e sopdt
Rt SDL (Xe)Lxs—oydt
2M {A\;=0}
2

_ M ) ' —s R LI Ohts .
_/o Y; L >0pdNe — /0 (1-3) {s)\t(a)+(1—s))\;k}21{At>o}

T T Mo 2
’dNtdS — / {At(Oé) — )\2‘}1{)\:>0}dt — / %@L(Xt)l{)\;:()}dt
0 L
T Y AF 1 T A (Oé) — A 2
:/ Ml{k*>0}dNt /(1*5) b 3 7 L{ar>0}
0 Af 0 {shi(@) + (1= s)A;}

{Ae(a)}?
.dNtdS—/O QML (Xt)l{)\;*:()}dt,

where N is a martingale defined by N, = N, — fot Alds. The integrand of the
second term in the rightmost side is evaluated as for any o € ©, 0 < s < 1
and 0 <t <T,

(M) =27} Pl -y

Ap>0p = eL(Xe)1 ;>0 - (67)).
{shi(a) + (1= s)r )} Lo M2 s ( )
Therefore, noting that M? > M|, we have
Hr(a) — Hr(a)

T X)) = N 2
< Tl{x S0y dN; — 2M2 {/\t =N en(Xo)lprs0pdN
0

/0 {A;](V[g} or(Xe) 1=y dt

T () = A I 2
= 71{)\*>0}dNt rYVel {)\t(Oé) — )\t} SOL(Xt){l{)\Z‘>O}dNt
0 >\t 2J\4L 0
—|—1{)\::0}dt}.
From (33), we have

M) = A7 = (X])jeplh(@)]  (t20,a €0, M]),



Penalized estimation for non-identifiable models 43

where h = (hy,...,hy) : © = R is a continuous function defined by
h(a) = (o — a*)A = (a — a™)A (o € 10, M, ]%). (72)
Then

Hr HT( )

1
jeD
Sf/ ] 1{)\*>0}dNt[V Th(a)] — W

: / {<X£’>jeD}®2¢L<Xt>{1w>0}dzvt Lpneoydt} [(VTR() 2]

:KT[\/7h ]——{G—H“T}[(\Fh ) ] (t>0,a €0),
where
Kt \/»/ JeD 1{)\*>0}dNt>
G = M {(gg] ]eD} or(z ){a* 'xl{a*.z>0}+1{o¢*~x:0}}y(d$)7
[0,00)2

. 22 .
T = m/ {(XD)jen} "eL(Xe)lpas 0y dNy

MgT/ {( X7 jED} oL (Xe) { M >0y + Lias—oy fdt —

Since from [L2],

1 (T(XD)en ..,
sup E[|K7[?] = supE[/ M )‘tl{)\f>0}dt:|
T>0 >0 LT AL
< supEH():eD )\fl{,\*>0}dt}
£>0 A ¢

|(wj)jeD|2
= / T 1aras0y¥(dr) < 00,
[0,00)°

a*-x
we obtain Kp = Op(1). Similarly,
1 T j ®X2 o
T {(XD)jen} "eL(X)lpass0ydNy = op(1).
it Jo

From the ergodicity, we have

M2T/ {X] jED} or(Xt) {)\ Lixesoy + 1= 0}} a5

Therefore, rr = op(1). Moreover, (66) implies the non-degeneracy of G. Thus,
[H1] holds.
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Second, we show [H2]. From Lemma 5 described below, KerAN{{e, } e ) =
{0}. Therefore, for any o € © with ax =0 (k € Jo),

|mw|=<a—wwm=ﬂ(§j%q—a“)ﬂzeu%»gr4@ﬂﬁaL

JEITL

where € is some positive constant. Therefore, (a) and (b) of [H2] hold, and
O*N{l =0} ={a€O;h(ae) =0} N{ar =0 (k€ Jo)} = {0*}. Thus, [H2]
holds.

From [L1], Condition [H3]" holds for ©* = {« € O;h(a) = 0} = {a* +
Ker(A)} N [0, M4]?, which implies [H3]. Condition [H4] obviously holds for
&1 defined in (71) since k; >0 and ¢; =¢ <1 (j=1,...,a).

Finally, we show [H5]. Take G = {¢, 2}, and take N as

N = Int(@) N{a € R |a; — )| <27 (i€ )}

Note that N satisfies (16) and (17) and that for any o € N, \j > 0 implies
(@) > 0 since A\i(a) > 271\, We have

X
/\*

T
X
/ N 1{/\*>0}dNt
0

Similarly as before, from | L2]

f’/ Jejol{k* 0y dN;

Moreover, from [L2] and the martlngale central limit theorem, we have

agHT(O[**) 1{)\ >0}dNt / Xtdt+/ th{A* O}dt

= Op(1).

T
T. f/ jE 11{)\*>0}dNt —) A
checking Lindeberg’s condition as for any a > 0,

By (AS) 1gas e < a”'EY_ |AS,[

t<T t<T

T
e [ | s,
o INT XN x>0}

= —1T—2EH(Xj)iejl

IN

as T — oco. Thus, the first half of the argument of [H5] holds.
Let us show the second half of the argument of [H5]. That is, take any
R > 0 and we show

sup
aeN

laz! (a—a™")|<R

rtraar+ (5 0)| 5 0 (73)
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for 93Hr () that satisfies the following equation:
gHr(a)

T X®2
:7/0 IWEIE 5 Liar>0ydNe — / M @L(Xt)l{,\*_o}dt

XEQQ TX®2
- / St o0V = [ Fe (0L

®2
_ ’ X®2 1 0pdNg — {X Ljeqn})i=1... ’P}
o Ar(a)z % My,

er(Xe)

' {X;‘:O (iEJl)} (@ € N).

Since ar is defined as (70) and 7 > 1, we have

a0 Hr(o)ar

T ®2
X
=a-| — —— 1~ dN)
T( o At() {x;>0} t

: ©2
{ (X{1gjeqo))i=t,p )
My,

pr(Xi)l {x;= 0(16\71)}dt

1 T X®2
= (\/TCLT),< — ? ; )\t( ) ]_{)\ >0}dNt) (\/T(ZT) + 0(1)
Thus, for (73), it suffices to show
1 T X®2
su - = ——— 11 dNy + F‘ — 0, 74
ae% ’ T 0 At( ) {x\;>0} t ( )
laz* (@—a™*)|<R
where I" is a a X a matrix defined as I' = f[(),oo)a %ha*www(dz). Take

any € > 0. Then there exists some Ty = Ty(R, €) such that for any T' > Ty and
any a € N with |ap' (o — a**)| < R,

(1—eA < A(a) <A +ed X/
j€D

almost surely. Therefore, for any T > Ty and any a € N with |a;' (a—a**)| <
R,
Aru®?] < l/ oy dNi ] < Brlu® (we R Ju| < 1)

T = T 0 )\t(a)2 {At >0} t = ) = )

where

5 Liar>0yd N,

vt
)\*—i—eZ

X2?
1-— —1 dN;
BT T( 6) /0 ()\*) {A\;>0} ty

Jj€ED )
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for any T'> 1, any u € R?* with |u| < 1 and any « € N. Since from [L2],

]

®2

'f/ (N +eXjep X))

_1 /T |Xt|4
E|l= TN sy dt
LT Jo ()\*+6276DXJ) A0

X 4

le4
,00)? (X

Lnes0pdNV;

A

IN

and since

/ [27] a -zl v(dz)
P} : {a*-2>0}
[0,00)2 (a* -x+€ E jerj)

222
< 0 1{a*-z>0} V(dl‘) < 00,

ooy T

we have

1 (7 X2
Ar = */ : 5100y dN
TJo (x +€Xien Xﬂ)

e X2
+*/ i — At Liarsopdt
TJo (N +eX,ep X)) '

P z®?
= / 5 Q" -2 10y v(do) =1 Ale).
0,00 (o -z + € jep ;)

Similarly,

1 [T Xxg?
1{)\ S0y dN; + T/o )\t%kl{xpo}dt}

x®2
(1—¢) /[ : 1{0 a>0y v(dx) =: B(e).
0,00)2

BT— 176 2{ X®2
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Then for any T > Ty,

sup sup
aeN u€R?,|ul|<1
laz!(a—a™)|<R

1T X2 2 2
- ?/0 Wl{,\po}dNt[U@ ]+ I'u®?]

1 T Xt®2 ) ) +
< m (o [ st oo+ i)
aeN uweR?, |u[<
laz! (a—a™)|<R
1T xR 2 2\
+ su% [Rsu‘plq ( — T/o WI{,\;>0}dNt[u® |+ I[u® ])
Q€ ueR?,|u|<

laz'(a—a**)|<R

< sw (—AT[u®2]+F[U®2])++ swp (= Bl 4 1)

ueR?,|u|<1 ueR?, |u|<1
S|=Ar+I|+|=Br+T| 5 | —A(e)+ I'|+| - Ble) + I

as T — oo, where f* := fVv0and f~ := f A0 for any R-valued function f.
Since lim 4 A(€) = lim., 1o B(e) = I', we have

e Xém 2 21| B
sup [Rsulp|<1 7/ Wl{kbf)}dNt[u@ |+ Iu®?)| = 0.
aeN u€ER?, Ju[<

laz! (a—a™*)|<R

Therefore, (74) holds. Thus, the second half of the argument of [H5] holds.
Then using Theorem 2, we obtain (68).

Furthermore, [S] holds from Example 1. Therefore, using Theorem 3, we
have limz o P[(Gk,1)keg, = 0] = 1. Since (68) holds and o}* # 0 (i € J1),
we obtain (69). O

Proof of Proposition 1. From the following Lemma 4,

{a € {a" + Ker(A)} N[0,00)%; Pe(a) = de{a*+K§rrg4)}n[0 Oo)aPe(d)}

C A{pre(a™); E € &}N[0,00)%

Under [L1]#, the set on the right-hand side has the unique minimizer prg, (a*)
of Pe on the set itself. Therefore, prg, (a*) uniquely minimizes Pe on {a* +
Ker(A)} N [0,00)%. Since prg,(a*) € [0,M,)? under [L1]#, prg,(a*) also
uniquely minimizes Pe on {a* + Ker(A)} N [0, M,]?. Therefore, [L1] holds
and o = prg, (o). O

Lemma 4 For any M € (0,00) U {o0},

€ {a* + Ker(A)} N [0, M)%; Pe(a) = inf Pe(a
{actosratynoapipde) = e Pt )

c A{pre(a*);E € &}. (75)
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Proof Take any a € {a* + Ker(A)} N[0, M)? satisfying

Pe(a) = inf Pe(a).
ae{a*+Ker(A)}N[0,M)?

Define F as the set of all j € {1,...,a} with o # 0. We prove
({ej}jer) NKerA = {0} (76)

by contradiction. Suppose that ({e;};jer) N KerA # {0}. Then there exists
(¢j)jer € RIFIN {0}F1 such that > jer ciej € KerA. Take A < 0 and A > 0
such that for any A € (A, \),

a—AY cie; €[0,M). (77)

JEF

Note that for any A € (A, A),

a—A Z cje; € {a" + Ker(A4)}. (78)
JEF

Define two functions f : (A,A) — R* and g : (\,\) — Ras f(\) = a—
A jerciej and g(A) = Pe (f(N), respectivel}: Then ¢(0) cannot be the local
minimum of g since g”(A) < 0 for any A € (A, A). Therefore, there exists some
Ao € (A, A) such that

Pe(a) = g(0) > g(ho) = Pe(f()\())>~

Furthermore, f(Ag) € {a* 4+ Ker(A4)} N[0, M)? from (77) and (78). This con-
tradicts the minimality of «. Thus, (76) holds.

From (76), we can take some E; € £ with By D F. Then 0 = (o —a*)A =
(a—pre, (@*))A. Since a € ({e;}jer) C ({e;}jem,) and ({e;}jem, )NKerA = 0,
we have a = prg, (a*), and hence a € {prg(a*); E € £}. Thus, (75) holds. O

Lemma 5 Assume [L1]. Then
KerAn ({e;}jeq) = {0}. (79)
Moreover, if [L2] holds, then T is non-degenerate.

Proof From Lemma 4, under [L1], o™ € {prg(a*); E € £}. Therefore, there
exists some E € &£ such that J; C E. Thus, KerA N ({e;}jcz) C KerAN
({e;}jer) = {0}, and (79) holds.

We show that I is non-degenerate under [L2]. Assume I'|
v € RVl Then

v®?] = 0 for some

|($i)iejl : U’ 1{ S

* .
j=1%;Tj

0} = 0 v-ae.z, (80)
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where v-a.e.x denotes almost everywhere x € [0,00)% with respect to the
measure v. Since the probability that A\f = Y75, af X} =37°_, af*X] (t > 0)
is equal to one, we have

R I B N R I

J

Therefore, from (80), we have (z;)icz, v = 0 v-a.e.z. Thus,
— ) ®21/ ) [0®2] = ;). ®2V 2 [v®2
0/[0700)3 ((@i)ieqn) " vide) 7] /[O’Oo)a{( )ic tZvld) (07
B /[ e )sen) e} vldn) 7] (e (32)
= (eiA)iejl/ ((Z‘j)jeD)®2y(dx) ((eiA)iejl)/ [v®2]_
[0,00)°

Now {e;A}icz, is linearly independent from (79). Therefore, from (30), we
obtain v = 0, which implies the non-degeneracy of I. a



