Penalized estimation for non-identifiable models

Junichiro Yoshida · Nakahiro Yoshida

Graduate School of Mathematical Sciences, University of Tokyo: 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

Supplementary material

7 Appendix: proof of Theorems 4 and 5, and Proposition 1

We first prepare some lemmas.

Lemma 2 Let $\{N_t\}_{t\geq 0}$ be a counting process whose intensity is denoted by λ_t . Let $\{X_t\}_{t\geq 0}$ be an \mathbb{R}^d -valued predictable process assumed to be locally bounded. Let $G \subset \mathbb{R}^g$ be a bounded open domain admitting the Sobolev embedding. Let $f: \mathbb{R}^d \times G \to \mathbb{R}^f$ be a measurable map satisfying the following conditions.

- (i) For each $x \in \mathbb{R}^d$, $f(x, \cdot)$ is of class $C^1(G)$.
- (ii) $\sup_{\gamma \in G} \left| \partial_{\gamma}^{i} f(\cdot, \gamma) \right|$ (i = 0,1) are bounded on every bounded set of \mathbb{R}^{d} . Then for any $p \geq 1$,

$$\sup_{T>1} E\bigg[\sup_{\gamma \in G} \bigg| \frac{1}{\sqrt{T}} \int_0^T f(X_t,\gamma) d\tilde{N}_t \bigg|^p \bigg] < \infty,$$

where $\tilde{N}_t = N_t - \int_0^t \lambda_s ds$, provided that

$$\sup_{\gamma \in G, t > 0} E\left[\left| \partial_{\gamma}^{i} f(X_{t}, \gamma) \right|^{p} \lambda_{t}^{q} \right] < \infty \qquad (i = 0, 1)$$

for any $p, q \ge 1$ with $p \ge 2q$.

Proof Let T > 1. Since the process $\sup_{\gamma \in G} |\partial_{\gamma} f(X, \gamma)|$ is locally bounded, we have

$$\partial_{\gamma} \int_{0}^{T} f(X_{t}, \gamma) d\tilde{N}_{t} = \int_{0}^{T} \partial_{\gamma} f(X_{t}, \gamma) d\tilde{N}_{t} \qquad (\gamma \in G).$$

Let p be any positive number with p > g. Take some integer k with $2^k \ge p$. From Sobolev's inequality.

$$E\left[\sup_{\gamma \in G} \left| \frac{1}{\sqrt{T}} \int_{0}^{T} f(X_{t}, \gamma) d\tilde{N}_{t} \right|^{p} \right] \leq E\left[\sup_{\gamma \in G} \left| \frac{1}{\sqrt{T}} \int_{0}^{T} f(X_{t}, \gamma) d\tilde{N}_{t} \right|^{2^{k}} \right]$$

$$\lesssim E\left[\int_{G} \sum_{i=0,1} \left| \frac{1}{\sqrt{T}} \int_{0}^{T} \partial_{\gamma}^{i} f(X_{t}, \gamma) d\tilde{N}_{t} \right|^{2^{k}} d\gamma \right]$$

$$\lesssim \sup_{\gamma \in G, i=0,1} E\left[\left| \frac{1}{\sqrt{T}} \int_{0}^{T} \partial_{\gamma}^{i} f(X_{t}, \gamma) d\tilde{N}_{t} \right|^{2^{k}} \right]. \tag{56}$$

By the Burkholder-Davis-Gundy inequality, for each i = 0, 1,

$$E\left[\left|\frac{1}{\sqrt{T}}\int_{0}^{T}\partial_{\gamma}^{i}f(X_{t},\gamma)d\tilde{N}_{t}\right|^{2^{k}}\right]$$

$$\lesssim E\left[\left|\frac{1}{T}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2}dN_{t}\right|^{2^{k-1}}\right]$$

$$\lesssim E\left[\left|\frac{1}{T}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2}\lambda_{t}dt\right|^{2^{k-1}}\right] + E\left[\left|\frac{1}{T}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2}d\tilde{N}_{t}\right|^{2^{k-1}}\right]$$

$$\leq \sup_{t\geq0} E\left[\left|\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2}\lambda_{t}\right|^{2^{k-1}}\right] + E\left[\left|\frac{1}{\sqrt{T}}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2}d\tilde{N}_{t}\right|^{2^{k-1}}\right].$$

Repeating this evaluation,

$$E\left[\left|\frac{1}{\sqrt{T}}\int_{0}^{T}\partial_{\gamma}^{i}f(X_{t},\gamma)d\tilde{N}_{t}\right|^{2^{k}}\right]$$

$$\lesssim \sum_{j=1}^{k-1}\sup_{t\geq0}E\left[\left|\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2^{j}}\lambda_{t}\right|^{2^{k-j}}\right]+E\left[\left|\frac{1}{\sqrt{T}}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2^{k-1}}d\tilde{N}_{t}\right|^{2}\right]$$

$$\lesssim \sum_{j=1}^{k-1}\sup_{t\geq0}E\left[\left|\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2^{j}}\lambda_{t}\right|^{2^{k-j}}\right]+E\left[\frac{1}{T}\int_{0}^{T}\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2^{k}}\lambda_{t}dt\right]$$

$$\leq \sum_{j=1}^{k}\sup_{t\geq0}E\left[\left|\left|\partial_{\gamma}^{i}f(X_{t},\gamma)\right|^{2^{j}}\lambda_{t}\right|^{2^{k-j}}\right].$$

Thus, from (56),

$$\sup_{T>1} E\left[\sup_{\gamma \in G} \left| \frac{1}{\sqrt{T}} \int_{0}^{T} f(X_{t}, \gamma) d\tilde{N}_{t} \right|^{p} \right]$$

$$\lesssim \sup_{\gamma \in G, i=0, 1} \sum_{j=1}^{k} \sup_{t \geq 0} E\left[\left| \left| \partial_{\gamma}^{i} f(X_{t}, \gamma) \right|^{2^{j}} \lambda_{t} \right|^{2^{k-j}} \right] < \infty.$$

Lemma 3 Take N, λ , X, G and f as in Lemma 2, and assume (i) and (ii) in Lemma 2. Also assume the ergodicity of X as (23). Then

$$\sup_{\gamma \in G} \left| \frac{1}{T} \int_0^T f(X_t, \gamma) dt - \int_{\mathbb{R}^d} f(x, \gamma) \nu(dx) \right| \to 0 \quad in \ L^1(dP) \quad (T \to \infty) \quad (57)$$

provided that

$$\left\{ \sup_{\gamma \in G} |f(X_t, \gamma)| \right\}_{t \ge 0} \text{ is uniformly integrable.}$$
 (58)

In particular, (57) holds if for any $p \ge 1$,

$$\sup_{\gamma \in G, t \ge 0} E \left[\left| \partial_{\gamma}^{i} f(X_{t}, \gamma) \right|^{p} \right] < \infty \qquad (i = 0, 1).$$
 (59)

Proof Let M > 0, and define a bounded function f_M as $f_M(x, \gamma) = (f(x, \gamma) \land M) \lor (-M)$. Then

$$E\left[\sup_{\gamma \in G} \left| \frac{1}{T} \int_{0}^{T} f(X_{t}, \gamma) dt - \int_{\mathbb{R}^{d}} f(x, \gamma) \nu(dx) \right| \right]$$

$$\leq E\left[\sup_{\gamma \in G} \left| \frac{1}{T} \int_{0}^{T} f(X_{t}, \gamma) dt - \frac{1}{T} \int_{0}^{T} f_{M}(X_{t}, \gamma) dt \right| \right]$$

$$+ \sup_{\gamma \in G} \left| \int_{\mathbb{R}^{d}} f(x, \gamma) \nu(dx) - \int_{\mathbb{R}^{d}} f_{M}(x, \gamma) \nu(dx) \right|$$

$$+ E\left[\sup_{\gamma \in G} \left| \frac{1}{T} \int_{0}^{T} f_{M}(X_{t}, \gamma) dt - \int_{\mathbb{R}^{d}} f_{M}(x, \gamma) \nu(dx) \right| \right].$$

The first and second terms on the rightmost side are as small as we want by taking sufficiently large M > 0 since

$$\sup_{\gamma \in G} \left| \int_{\mathbb{R}^{d}} f(x,\gamma) 1_{\left\{ |f(x,\gamma)| \geq M \right\}} \nu(dx) \right| \\
\leq \int_{\mathbb{R}^{d}} \sup_{\gamma \in G} \left| f(x,\gamma) \right| 1_{\left\{ \sup_{\gamma \in G} |f(x,\gamma)| \geq M \right\}} \nu(dx) \\
= \lim_{L \to \infty} \lim_{T \to \infty} E \left[\frac{1}{T} \int_{0}^{T} L \wedge \sup_{\gamma \in G} \left| f(X_{t},\gamma) \right| 1_{\left\{ \sup_{\gamma \in G} |f(X_{t},\gamma)| \geq M \right\}} dt \right] \\
\leq \sup_{t \geq 0} E \left[\sup_{\gamma \in G} \left| f(X_{t},\gamma) \right| 1_{\left\{ \sup_{\gamma \in G} |f(X_{t},\gamma)| \geq M \right\}} \right],$$

and since (58) holds. Let $\delta > 0$ and take a finite set $G_{\delta} \subset G$ such that $\sup_{\gamma_1 \in G} \min_{\gamma_2 \in G_{\delta}} |\gamma_1 - \gamma_2| < \delta$. Then

$$E\left[\sup_{\gamma \in G} \left| \frac{1}{T} \int_{0}^{T} f_{M}(X_{t}, \gamma) dt - \int_{\mathbb{R}^{d}} f_{M}(x, \gamma) \nu(dx) \right| \right]$$

$$\leq E\left[\max_{\gamma \in G_{\delta}} \left| \frac{1}{T} \int_{0}^{T} f_{M}(X_{t}, \gamma) dt - \int_{\mathbb{R}^{d}} f_{M}(x, \gamma) \nu(dx) \right| \right]$$

$$+ E\left[\frac{1}{T} \int_{0}^{T} \sup_{\substack{\gamma_{1}, \gamma_{2} \in G \\ |\gamma_{1} - \gamma_{2}| < \delta}} \left| f_{M}(X_{t}, \gamma_{1}) - f_{M}(X_{t}, \gamma_{2}) \right| dt \right]$$

$$+ \int_{x \in \mathbb{R}^{d}} \sup_{\substack{\gamma_{1}, \gamma_{2} \in G \\ |\gamma_{1} - \gamma_{2}| < \delta}} \left| f_{M}(x, \gamma_{1}) - f_{M}(x, \gamma_{2}) \right| \nu(dx)$$

$$\xrightarrow{T \to \infty} 2 \int_{x \in \mathbb{R}^{d}} \sup_{\substack{\gamma_{1}, \gamma_{2} \in G \\ |\gamma_{1} - \gamma_{2}| < \delta}} \left| f_{M}(x, \gamma_{1}) - f_{M}(x, \gamma_{2}) \right| \nu(dx) \xrightarrow{\delta \to 0} 0.$$

Thus, (57) holds.

From Sobolev's inequality, (58) holds if (59) holds.

Proof of Theorem 4. We define a new parameter space $\Xi = \Theta \times \mathcal{T}$ by

$$\Theta = [0, M_g] \times [-L_{\beta}, M_{\beta}]^{|\mathcal{A}|} \times [0, M_{\alpha}]^{|\mathcal{A}|} \times [0, M_{\alpha}]^{\mathsf{a} - |\mathcal{A}|}$$

$$\mathcal{T} = [-L_{\beta}, M_{\beta}]^{\mathsf{a} - |\mathcal{A}|},$$

and also define new parameters $\theta = (\overline{\theta}, \underline{\theta}) \in \Theta$ and $\tau = (\tau_k)_{k \in \mathcal{A}^c} \in \mathcal{T}$ by

$$\overline{\theta} = (g, (\beta_i)_{i \in \mathcal{A}}, (\alpha_i)_{i \in \mathcal{A}}), \quad \underline{\theta} = (\alpha_k)_{k \in \mathcal{A}^c}, \quad \tau = (\tau_k)_{k \in \mathcal{A}^c} = (\beta_k)_{k \in \mathcal{A}^c}.$$

That is, we consider a parameter transformation as $(\theta, \tau) = \varphi(g, \alpha, \beta)$, where $\varphi : [0, M_g] \times [0, M_{\alpha}]^{a} \times [-L_{\beta}, M_{\beta}]^{a} \to \Xi$ is defined as

$$\varphi(g,\alpha,\beta) = (g,(\beta_i)_{i\in\mathcal{A}},(\alpha_i)_{i\in\mathcal{A}},(\alpha_k)_{k\in\mathcal{A}^c},(\beta_k)_{k\in\mathcal{A}^c}). \tag{60}$$

Define estimators $\hat{\theta}_T$ and $\hat{\tau}_T$ taking values in Θ and \mathcal{T} , respectively, by $(\hat{\theta}_T, \hat{\tau}_T) = \varphi(\hat{g}_T, \hat{\alpha}_T, \hat{\beta}_T)$. We set $p = 1 + |\mathcal{A}| + a$ and $p_1 = 1 + 2|\mathcal{A}|$, respectively. We define \mathcal{J}_1 , \mathcal{J}_0 and \mathcal{J} as $\mathcal{J}_1 = \{1\} \cup \{2 + |\mathcal{A}|, ..., p_1\}$, $\mathcal{J}_0 = \{p_1 + 1, ..., p\}$ and $\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_0$, respectively. Define one of the true values $\theta^* = (\overline{\theta}^*, \underline{\theta}^*) \in \mathbb{R}^{p_1} \times \mathbb{R}^{p-p_1}$ as

$$\overline{\theta}^* = (g^*, (\beta_i^*)_{i \in \mathcal{A}}, (\alpha_i^*)_{i \in \mathcal{A}}), \qquad \underline{\theta}^* = (0)_{k \in \mathcal{A}^c}.$$

For r := p, let $\mathfrak{a}_T = \operatorname{diag}(\mathfrak{a}_{1,T},...,\mathfrak{a}_{r,T}) = T^{-\frac{1}{2}}I_r,^1 \mathfrak{b}_T = T$ and $\rho_k = \frac{r}{q} > 1$ $(k \in \mathcal{J}_0)$. We take $a_T \in GL(p)$ as a deterministic diagonal matrix defined by

$$(a_T)_{jj} = \begin{cases} T^{-\frac{1}{2}} & (j \in \{1, ..., p_1\}) \\ T^{-\frac{r}{2q}} & (j \in \{p_1 + 1, ..., p\}) \end{cases}.$$

Define U_T and U by (8) and (10), respectively. Then from Example 1 of Section 2.3 in Yoshida and Yoshida (2022), Condition [A3] holds, and $U = \mathbb{R} \times \mathbb{R}^{|\mathcal{A}|} \times \mathbb{R}^{|\mathcal{A}|} \times [0, \infty)^{a-|\mathcal{A}|} \subset \mathbb{R}^p$. Define c_i $(i \in \mathcal{J}_1)$ and d_k $(k \in \mathcal{J}_0)$ as

$$c_i = \begin{cases} \kappa_g 1_{\{r=1\}} & (i=1) \\ \kappa_\alpha 1_{\{r=1\}} & otherwise \end{cases}, \qquad d_k = \kappa_\alpha.$$

Define a random field $\mathbb Z$ as

$$\mathbb{Z}(u) = \overline{\Delta}[\overline{u}] - \frac{1}{2}\overline{\Gamma}[\overline{u}^{\otimes 2}] - q \sum_{i \in \mathcal{J}_1} c_i(\theta_i^*)^{q-1} u_i - \sum_{k \in \mathcal{J}_0} d_k |u_k|^q,$$

for any $u = (u_1, ..., u_p) \in \mathbb{R}^p$, where $\overline{u} = (u_1, ..., u_{p_1})$ and $\overline{\Delta} \sim N_{p_1}(0, \overline{\Gamma})$. We define a U-valued random variable \hat{u} by $\hat{u} = (\overline{\Gamma}^{-1} \overline{\Delta}^{\dagger}, 0)$, where $0 \in \mathbb{R}^{p-p_1}$.

 $^{^{1}}$ I_{m} denotes the m-dimensional identity matrix

Note that \hat{u} becomes a unique maximizer of \mathbb{Z} on U, and $[\mathbf{A4}]$ holds. Define a random field $\mathcal{H}_T: \Omega \times \Xi \to \mathbb{R} \cup \{-\infty\}$ as

$$\mathcal{H}_T(\theta, \tau) = \int_0^T \log \lambda_t (\phi(\theta, \tau)) dN_t - \int_0^T \lambda_t (\phi(\theta, \tau)) dt,$$

where ϕ denotes φ^{-1} for φ defined in (60). Then $\hat{\theta}_T$ is a maximizer of $\mathcal{H}_T(\theta, \hat{\tau}_T) - \sum_{j \in \mathcal{J}} \xi_{j,T} p_j(\theta_j)$ on Θ , where for any $j \in \mathcal{J}$,

$$\xi_{j,T} = \begin{cases} \kappa_g T^{\frac{r}{2}} & (j=1) \\ \kappa_\alpha T^{\frac{r}{2}} & otherwise \end{cases}, \qquad p_j(x) = |x|^q \qquad (x \in \mathbb{R}). \tag{61}$$

Note that q_j ($j \in \mathcal{J}$) defined in (iii) of Section 3.1 are determined as $q_j = q < 1$. In the following, we show [H1]-[H5] under [P1]-[P3], and use Theorem 2.

We first show [H1]. From Taylor's series, for any $(\theta, \tau) \in \Xi$,

$$\mathcal{H}_{T}(\theta,\tau) - \mathcal{H}_{T}(\theta^{*},\tau)$$

$$\leq \int_{0}^{T} \log \frac{\lambda_{t}(\phi(\theta,\tau))}{\lambda_{t}^{*}} dN_{t} - \int_{0}^{T} \left\{ \lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*} \right\} dt$$

$$= \int_{0}^{T} \frac{\lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*}}{\lambda_{t}^{*}} dN_{t} - \int_{0}^{1} (1-s) \int_{0}^{T} \frac{\left\{ \lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*} \right\}^{2}}{\left\{ s\lambda_{t}(\phi(\theta,\tau)) + (1-s)\lambda_{t}^{*} \right\}^{2}}$$

$$\cdot dN_{t} ds - \int_{0}^{T} \left\{ \lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*} \right\} dt$$

$$= \int_{0}^{T} \frac{\lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*}}{\lambda_{t}^{*}} d\tilde{N}_{t} - \int_{0}^{1} (1-s) \int_{0}^{T} \frac{\left\{ \lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*} \right\}^{2}}{\left\{ s\lambda_{t}(\phi(\theta,\tau)) + (1-s)\lambda_{t}^{*} \right\}^{2}}$$

$$\cdot dN_{t} ds,$$

where \tilde{N} is a martingale defined by $\tilde{N}_t = N_t - \int_0^t \lambda_s^* ds$. Take an arbitrary R > 0. The integrand of the second term in the rightmost side is evaluated as for any $(\theta, \tau) \in \Xi$, $0 \le s \le 1$ and $0 \le t \le T$,

$$\frac{\left\{\lambda_{t}\left(\phi(\theta,\tau)\right)-\lambda_{t}^{*}\right\}^{2}}{\left\{s\lambda_{t}\left(\phi(\theta,\tau)\right)+(1-s)\lambda_{t}^{*}\right\}^{2}} \geq \frac{\left\{\lambda_{t}\left(\phi(\theta,\tau)\right)-\lambda_{t}^{*}\right\}^{2}}{M_{R}g^{*}}\varphi_{R}(X_{t})$$

$$\geq \frac{\left\{\lambda_{t}\left(\phi(\theta,\tau)\right)-\lambda_{t}^{*}\right\}^{2}}{M_{R}\lambda_{t}^{*}}\varphi_{R}(X_{t}) \qquad (\because \lambda_{t}^{*} \geq g^{*}),$$

where $\varphi_R : \mathbb{R}^{\mathsf{a}} \to [0,1]$ is a continuous function vanishing outside of $[-R-1,R+1]^{\mathsf{a}}$ and satisfying $\varphi_R \equiv 1$ on $[-R,R]^{\mathsf{a}}$, and $M_R > 0$ is a constant depending on R. Therefore,

$$\mathcal{H}_{T}(\theta,\tau) - \mathcal{H}_{T}(\theta^{*},\tau)$$

$$\leq \int_{0}^{T} \frac{\lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*}}{\lambda_{t}^{*}} d\tilde{N}_{t} - \frac{1}{2} \int_{0}^{T} \frac{\left\{\lambda_{t}(\phi(\theta,\tau)) - \lambda_{t}^{*}\right\}^{2}}{M_{R}\lambda_{t}^{*}} \varphi_{R}(X_{t}) dN_{t}.$$

In the following, we denote $\phi(\theta,\tau)$ by (g,α,β) . As (27), we have

$$\lambda_t(\phi(\theta,\tau)) - \lambda_t^* = w(\beta, X_t)[h(\theta,\tau)] \qquad (t \ge 0, (\theta,\tau) \in \Xi).$$

where $h: \mathbb{R}^p \to \mathbb{R}^p$ is a continuous function defined as for any $(\theta, \tau) \in \mathbb{R}^p$,

$$h(\theta, \tau) = \left(g + \sum_{k \in \mathcal{A}^c} \alpha_k - g^*, \left(\alpha_i (\beta_i - \beta_i^*) \right)_{i \in \mathcal{A}}, \left(\alpha_i - \alpha_i^* \right)_{i \in \mathcal{A}}, \right.$$

$$\left. (\alpha_k \beta_k)_{k \in \mathcal{A}^c} \right). \tag{62}$$

Then

$$\mathcal{H}_{T}(\theta,\tau) - \mathcal{H}_{T}(\theta^{*},\tau)$$

$$\leq \frac{1}{\sqrt{T}} \int_{0}^{T} \frac{w(\beta,X_{t})}{\lambda_{t}^{*}} d\tilde{N}_{t} \left[\sqrt{T}h(\theta,\tau) \right] - \frac{1}{2M_{R}T} \int_{0}^{T} \frac{w(\beta,X_{t})^{\otimes 2}}{\lambda_{t}^{*}} \varphi_{R}(X_{t})$$

$$\cdot dN_{t} \left[\left(\sqrt{T}h(\theta,\tau) \right)^{\otimes 2} \right]$$

$$= K_{T}(\theta,\tau) \left[\sqrt{T}h(\theta,\tau) \right] - \frac{1}{2} \left\{ G(\theta,\tau) + r_{T}(\theta,\tau) \right\} \left[\left(\sqrt{T}h(\theta,\tau) \right)^{\otimes 2} \right]$$

for any $t \geq 0$ and $(\theta, \tau) \in \Xi$, where for any $(\theta, \tau) \in \Xi$,

$$\begin{split} K_T(\theta,\tau) &= \frac{1}{\sqrt{T}} \int_0^T \frac{w(\beta,X_t)}{\lambda_t^*} d\tilde{N}_t, \\ G(\theta,\tau) &= \frac{1}{M_R} \int_{\mathbb{R}^3} w(\beta,x)^{\otimes 2} \varphi_R(x) \nu(dx), \\ r_T(\theta,\tau) &= \frac{1}{M_R} \bigg\{ \frac{1}{T} \int_0^T \frac{w(\beta,X_t)^{\otimes 2}}{\lambda_t^*} \varphi_R(X_t) d\tilde{N}_t \\ &\quad + \frac{1}{T} \int_0^T w(\beta,X_t)^{\otimes 2} \varphi_R(X_t) dt - \int_{\mathbb{R}^3} w(\beta,x)^{\otimes 2} \varphi_R(x) \nu(dx) \bigg\}. \end{split}$$

Condition [P1] implies that for any $p, q \ge 1$ with $p \ge 2q$ and for each n = 0, 1,

$$\sup_{\beta \in [-L_{\beta}, M_{\beta}]^{\mathfrak{d}}, t \geq 0} E\left[\left|\frac{\partial_{\beta}^{n} w(\beta, X_{t})}{\lambda_{t}^{*}}\right|^{p} (\lambda_{t}^{*})^{q}\right]$$

$$\leq (g^{*})^{q-p} \sup_{\beta \in [-L_{\beta}, M_{\beta}]^{\mathfrak{d}}, t \geq 0} E\left[\left|\partial_{\beta}^{n} w(\beta, X_{t})\right|^{p}\right] \qquad (\because \lambda_{t}^{*} \geq g^{*})$$

$$\lesssim (g^{*})^{q-p} \sum_{j=1}^{\mathfrak{d}} \sup_{\beta \in [-L_{\beta}, M_{\beta}]^{\mathfrak{d}}, t \geq 0} E\left[\left\{(1 + (X_{t}^{j})^{2})e^{\beta_{j}X_{t}^{j}}\right\}^{p}\right] < \infty. \tag{63}$$

Here the second inequality follows from the evaluation

$$\begin{aligned} &\left|\partial_{\beta}^{n}w(\beta,x)\right|^{p} \\ &= \left|\partial_{\beta}^{n}\int_{0}^{1}\left(1,\;\left(x_{i}e^{\{s\beta_{i}+(1-s)\beta_{i}^{*}\}x_{i}}\right)_{i\in\mathcal{A}},\;\left(e^{\beta_{i}^{*}x_{i}}\right)_{i\in\mathcal{A}},\;\left(x_{k}e^{s\beta_{k}x_{k}}\right)_{k\in\mathcal{A}^{c}}\right)ds\right|^{p} \\ &\leq \int_{0}^{1}\left|\partial_{\beta}^{n}\left(1,\;\left(x_{i}e^{\{s\beta_{i}+(1-s)\beta_{i}^{*}\}x_{i}}\right)_{i\in\mathcal{A}},\;\left(e^{\beta_{i}^{*}x_{i}}\right)_{i\in\mathcal{A}},\;\left(x_{k}e^{s\beta_{k}x_{k}}\right)_{k\in\mathcal{A}^{c}}\right)\right|^{p}ds \\ &\lesssim \int_{0}^{1}\left[\sum_{j=1}^{a}\left\{\left(1+x_{j}^{2}\right)e^{\tilde{\beta}_{j,s}x_{j}}\right\}^{p}+\sum_{i\in\mathcal{A}}\left\{e^{\beta_{i}^{*}x_{i}}\right\}^{p}\right]ds \end{aligned}$$

for any $x = (x_1, ..., x_a) \in \mathbb{R}^a$ and any $\beta \in [-L_\beta, M_\beta]^a$, where $\tilde{\beta}_{j,s} \in [-L_\beta, M_\beta]^a$ (j = 1, ..., a) are real numbers depending on s. From (63), we can use Lemma 2, and obtain

$$\sup_{(\theta,\tau)\in\Xi} |K_T(\theta,\tau)| = O_P(1). \tag{64}$$

Similarly, $\sup_{\beta \in [-L_\beta, M_\beta]^{\mathfrak{d}}} \left| \frac{1}{\sqrt{T}} \int_0^T \frac{w(\beta, X_t)^{\otimes 2}}{\lambda_t^*} \varphi_R(X_t) d\tilde{N}_t \right| = O_P(1). \text{ Since for any } p > 1,$

$$\sup_{\beta \in [-L_{\beta}, M_{\beta}]^{\mathfrak{d}}, t \geq 0} E\left[\left|\partial_{\beta}^{i} \left\{w(\beta, X_{t})^{\otimes 2}\right\} \varphi_{R}(X_{t})\right|^{p}\right] < \infty \qquad (i = 0, 1),$$

we can use Lemma 3, and obtain

$$\frac{1}{T} \int_0^T w(\beta, X_t)^{\otimes 2} \varphi_R(X_t) dt - \int_{\mathbb{R}^a} w(\beta, x)^{\otimes 2} \varphi_R(x) \nu(dx) \stackrel{P}{\to} 0,$$

uniformly in $\beta \in [-L_{\beta}, M_{\beta}]^{\mathsf{a}}$ as $T \to \infty$. Therefore, $\sup_{(\theta, \tau) \in \Xi} |r_T(\theta, \tau)| = o_P(1)$. Moreover, [**P2**] implies the non-degeneracy of G for sufficiently large R. Thus, [**H1**] holds for $\mathfrak{a}_T = T^{-\frac{1}{2}}I_r$.

Condition [**H2**] also holds. Indeed, continuing to denote $\phi(\theta, \tau)$ by (g, α, β) , we have

$$\Theta^* = \{\theta \in \Theta; \exists \tau \in \mathcal{T}, h(\theta, \tau) = 0\}$$

$$= \left\{\theta \in \Theta; g + \sum_{k \in A^c} \alpha_k = g^*, (\beta_i - \beta_i^*)_{i \in \mathcal{A}} = 0, (\alpha_i - \alpha_i^*)_{i \in \mathcal{A}} = 0\right\},$$

where h is given by (62). Therefore, $\Theta^* \cap \{\underline{\theta} = 0\} = \Theta^* \cap \{\alpha_k = 0 \ (k \in \mathcal{J}_0)\} = \{\theta^*\}$. Condition (a) of [**H2**] obviously holds since h can be smoothly extended on \mathbb{R}^p . Condition (b) of [**H2**] holds since $\alpha_i > 2^{-1}\alpha_i^* > 0 \ (i \in \mathcal{A})$ if θ is close to θ^* .

We show [H3]. From Remark 2, we only need to show [H3]'. Since $\kappa_g < \kappa_\alpha$ from [P3], for any $\theta \in \Theta^*$,

$$\kappa_{g}|g|^{q} + \kappa_{\alpha} \sum_{j=1}^{\mathsf{a}} |\alpha_{j}|^{q} = \kappa_{g} \left| g^{*} - \sum_{k \in \mathcal{A}^{c}} \alpha_{k} \right|^{q} + \kappa_{\alpha} \sum_{k \in \mathcal{A}^{c}} |\alpha_{k}|^{q} + \kappa_{\alpha} \sum_{i \in \mathcal{A}} |\alpha_{i}^{*}|^{q}$$

$$\geq \kappa_{g}|g^{*}|^{q} - \kappa_{g} \sum_{k \in \mathcal{A}^{c}} |\alpha_{k}|^{q} + \kappa_{\alpha} \sum_{k \in \mathcal{A}^{c}} |\alpha_{k}|^{q} + \kappa_{\alpha} \sum_{i \in \mathcal{A}} |\alpha_{i}^{*}|^{q}$$

$$\geq \kappa_{g}|g^{*}|^{q} + \kappa_{\alpha} \sum_{i \in \mathcal{A}} |\alpha_{i}^{*}|^{q},$$

where the equations hold if and only if $\alpha_k = 0$ $(k \in \mathcal{A}^c)$. Therefore, under $\theta \in \Theta^*$, the penalty term is minimized if and only if $\alpha_k = 0$ $(k \in \mathcal{A}^c)$, that is, if and only if $\theta = \theta^*$. Thus, [**H3**]' holds.

Condition [**H4**] holds for $\xi_{j,T}$ defined in (61) since $\kappa_{\alpha} > 0$ and $q_j = q < 1$ $(j \in \mathcal{J})$. Finally, we show [**H5**]. Let $\mathcal{G} = \{\phi, \Omega\}$, and take \mathcal{N} as $\mathcal{N} = \text{Int}(\Theta) \cap \{(\theta_1, ..., \theta_p) \in \mathbb{R}^p; \theta_1 > 2^{-1}g^*\}$. Note that \mathcal{N} satisfies (16) and (17) and that for any $(\theta, \tau) \in \overline{\mathcal{N}} \times \mathcal{T}$ and any $t \geq 0$,

$$\lambda_t(\phi(\theta,\tau)) \ge 2^{-1}g^*. \tag{65}$$

For any $(\theta, \tau) \in \overline{\mathcal{N}} \times \mathcal{T}$,

$$\begin{split} & \partial_{\theta}\mathcal{H}_{T}(\theta^{*},\tau) \\ & = \left(\int_{0}^{T} \frac{v(X_{t})}{g^{*} + \sum_{i \in \mathcal{A}} \alpha_{i}^{*} e^{-\beta_{i}^{*} X_{t}^{i}}} d\tilde{N}_{t}, \int_{0}^{T} \frac{\left(e^{\tau_{k} X_{t}^{k}}\right)_{k \in \mathcal{A}^{c}}}{g^{*} + \sum_{i \in \mathcal{A}} \alpha_{i}^{*} e^{-\beta_{i}^{*} X_{t}^{i}}} d\tilde{N}_{t}, \right)'. \end{split}$$

Similarly as before, from [P1] and Lemma 2,

$$\sup_{\tau \in \mathcal{T}} \left| \frac{1}{\sqrt{T}} \int_0^T \frac{\left(e^{\tau_k X_t^k} \right)_{k \in \mathcal{A}^c}}{g^* + \sum_{i \in \mathcal{A}} \alpha_i^* e^{-\beta_i^* X_t^i}} d\tilde{N}_t \right| = O_P(1).$$

Moreover, from the martingale central limit theorem, we obtain

$$\frac{1}{\sqrt{T}} \int_0^T \frac{v(X_t)}{g^* + \sum_{i \in A} \alpha_i^* e^{-\beta_i^* X_t^i}} d\tilde{N}_t \stackrel{d}{\to} \overline{\Delta},$$

checking Lindeberg's condition as for $S_t = S_t(T) := \frac{1}{\sqrt{T}} \int_0^t \frac{v(X_s)}{g^* + \sum_{i \in \mathcal{A}} \alpha_i^* e^{-\beta_i^* X_s^i}} d\tilde{N}_s$ and for any a > 0,

$$E\left[\sum_{t \leq T} (\Delta S_t)^2 \mathbf{1}_{\{|\Delta S_t| > a\}}\right] \leq a^{-1} E\left[\sum_{t \leq T} |\Delta S_t|^3\right]$$

$$\leq a^{-1} E\left[\int_0^T \left|\frac{1}{\sqrt{T}} \frac{v(X_t)}{\lambda_t^*}\right|^3 dN_t\right]$$

$$\leq a^{-1} T^{-\frac{1}{2}} \sup_{t \geq 0} E\left[\left|\frac{v(X_t)}{\lambda_t^*}\right|^3 \lambda_t^*\right] \to 0$$

as $T \to \infty$. Thus, the first half of the argument of [H5] holds. Furthermore, for any $(\theta, \tau) \in \overline{\mathcal{N}} \times \mathcal{T}$,

$$\begin{split} &\partial_{\theta}^{2}\mathcal{H}_{T}(\theta,\tau) \\ &= -\int_{0}^{T} \frac{\partial_{\theta}\lambda_{t} \left(\phi(\theta,\tau)\right)^{\otimes 2}}{\lambda_{t} \left(\phi(\theta,\tau)\right)^{2}} dN_{t} + \int_{0}^{T} \frac{\partial_{\theta}^{2}\lambda_{t} \left(\phi(\theta,\tau)\right)}{\lambda_{t} \left(\phi(\theta,\tau)\right)} dN_{t} - \int_{0}^{T} \partial_{\theta}^{2}\lambda_{t} \left(\phi(\theta,\tau)\right) dt \\ &= -\int_{0}^{T} \frac{\partial_{\theta}\lambda_{t} \left(\phi(\theta,\tau)\right)^{\otimes 2}}{\lambda_{t} \left(\phi(\theta,\tau)\right)^{2}} \lambda_{t} \left(\phi(\theta^{*},\tau)\right) dt - \int_{0}^{T} \frac{\partial_{\theta}\lambda_{t} \left(\phi(\theta,\tau)\right)^{\otimes 2}}{\lambda_{t} \left(\phi(\theta,\tau)\right)^{2}} d\tilde{N}_{t} \\ &+ \int_{0}^{T} \frac{\partial_{\theta}^{2}\lambda_{t} \left(\phi(\theta,\tau)\right)}{\lambda_{t} \left(\phi(\theta,\tau)\right)} d\tilde{N}_{t} + \int_{0}^{T} \frac{\partial_{\theta}^{2}\lambda_{t} \left(\phi(\theta,\tau)\right)}{\lambda_{t} \left(\phi(\theta,\tau)\right)} \lambda_{t} \left(\phi(\theta^{*},\tau)\right) dt \\ &- \int_{0}^{T} \partial_{\theta}^{2}\lambda_{t} \left(\phi(\theta,\tau)\right) dt. \end{split}$$

Similarly as before, from [P1] and (65), we can use Lemma 2, and obtain

$$\sup_{(\theta,\tau)\in\overline{\mathcal{N}}\times\mathcal{T}} \left| -\frac{1}{\sqrt{T}} \int_0^T \frac{\partial_\theta \lambda_t (\phi(\theta,\tau))^{\otimes 2}}{\lambda_t (\phi(\theta,\tau))^2} d\tilde{N}_t + \frac{1}{\sqrt{T}} \int_0^T \frac{\partial_\theta^2 \lambda_t (\phi(\theta,\tau))}{\lambda_t (\phi(\theta,\tau))} d\tilde{N}_t \right|$$

$$= O_P(1).$$

Therefore, for any $(\theta, \tau) \in \overline{\mathcal{N}} \times \mathcal{T}$,

$$\frac{1}{T}\partial_{\theta}^{2}\mathcal{H}_{T}(\theta,\tau) = -\frac{1}{T}\int_{0}^{T}\frac{\partial_{\theta}\lambda_{t}\left(\phi(\theta,\tau)\right)^{\otimes 2}}{\lambda_{t}\left(\phi(\theta,\tau)\right)^{2}}\lambda_{t}\left(\phi(\theta^{*},\tau)\right)dt + \frac{1}{T}\int_{0}^{T}\frac{\partial_{\theta}^{2}\lambda_{t}\left(\phi(\theta,\tau)\right)}{\lambda_{t}\left(\phi(\theta,\tau)\right)}\cdot\lambda_{t}\left(\phi(\theta^{*},\tau)\right)dt - \frac{1}{T}\int_{0}^{T}\partial_{\theta}^{2}\lambda_{t}\left(\phi(\theta,\tau)\right)dt + o_{P}(1).$$

From [P1] and (65), we can apply Lemma 3 to

$$f(\gamma, X_t) = \frac{\partial_{\theta} \lambda_t (\phi(\theta, \tau))^{\otimes 2}}{\lambda_t (\phi(\theta, \tau))^2} \lambda_t (\phi(\theta^*, \tau)) + \frac{\partial_{\theta}^2 \lambda_t (\phi(\theta, \tau))}{\lambda_t (\phi(\theta, \tau))} \lambda_t (\phi(\theta^*, \tau))$$
$$-\partial_{\theta}^2 \lambda_t (\phi(\theta, \tau)),$$

where $\gamma = (\theta, \tau) \in \overline{\mathcal{N}} \times \mathcal{T}$. Therefore, for any R > 0,

$$\sup_{\substack{(\theta,\tau)\in\overline{\mathcal{N}}\times\mathcal{T}\\|a_T^{-1}(\theta-\theta^*)|\leq R}}\left|a_T'\partial_\theta^2\mathcal{H}_T(\theta,\tau)a_T + \left(\overline{\Gamma}(\theta^*) \underset{O}{O}\right)\right| \stackrel{P}{\to} 0.$$

Thus, the second half of the argument of [H5] holds. Then using Theorem 2, we have $a_T^{-1}(\hat{\theta}_T - \theta^*) \stackrel{d}{\to} \hat{u}$. This implies (25) and (26).

We see easily that [S] holds from Example 1. Therefore, using Theorem 3, we have $\lim_{T\to\infty} P\left[\hat{\alpha}_{k,T}=0\ (k\in\mathcal{A}^c)\right]=1$.

Proof of Theorem 5. From (30), we can take some large L > 0 such that the following matrix is non-degenerate:

$$\int_{[0,\infty)^{a}} \left\{ (x_{j})_{j \in D} \right\}^{\otimes 2} \varphi_{L}(x) \left\{ \alpha^{*} \cdot x \mathbb{1}_{\{\alpha^{*} \cdot x > 0\}} + \mathbb{1}_{\{\alpha^{*} \cdot x = 0\}} \right\} \nu(dx), \tag{66}$$

where $\varphi_L: \mathbb{R}^{\mathsf{a}} \to [0,1]$ is a continuous function vanishing outside of $[-L-1,L+1]^{\mathsf{a}}$ and satisfying $\varphi_L \equiv 1$ on $[-L,L]^{\mathsf{a}}$. Choose some constant $M_L > 1$ satisfying that

$$\lambda_t(\alpha)\varphi_L(X_t) \le M_L \qquad (t \ge 0, \, \alpha \in [0, M_\alpha]^a).$$
 (67)

We define an estimating function $\widetilde{\Psi}_T$ as

$$\widetilde{\Psi}_T(\alpha) \ = \ \Psi_T(\alpha) + \int_0^T \bigg\{ \lambda_t(\alpha) - \frac{\{\lambda_t(\alpha)\}^2}{2M_L} \varphi_L(X_t) \bigg\} \mathbf{1}_{\{\lambda_t^* = 0\}} dt \quad \big(\alpha \in [0, M_\alpha]^{\mathtt{a}}\big).$$

Note that $\widetilde{\Psi}_T \geq \Psi_T$. For each T, let $\widetilde{\alpha}_T = (\widetilde{\alpha}_{1,T}, ..., \widetilde{\alpha}_{\mathsf{a},T})$ be an arbitrary $[0, M_{\alpha}]^{\mathsf{a}}$ -valued random variable that asymptotically maximizes $\widetilde{\Psi}_T(\alpha)$.

In order to show Theorem 5, it is sufficient to show that under [L1] and [L2],

$$\left(T^{\frac{1}{2}}(\widetilde{\alpha}_{i,T} - \alpha_i^{**})_{i \in \mathcal{J}_1}, T^{\frac{r}{2q}}(\widetilde{\alpha}_{k,T})_{k \in \mathcal{J}_0}\right) \stackrel{d}{\to} \left(\overline{\Gamma}^{-1} \overline{\Delta}^{\dagger}, 0\right), \tag{68}$$

$$\lim_{T \to \infty} P[\widetilde{\alpha}_{k,T} = 0 \ (k \in \mathcal{J}_0), \ \widetilde{\alpha}_{i,T} \neq 0 \ (i \in \mathcal{J}_1)] = 1.$$
 (69)

In fact, assume (68) and (69) for any asymptotic maximizer $\widetilde{\alpha}_T$ of $\widetilde{\Psi}_T$. Then since $\lambda^* = \sum_{i \in \mathcal{J}_1} \alpha_i^{**} X^i$ almost surely and therefore $1_{\{\lambda^*_i = 0\}} = 1_{\{X^i_i = 0 \ (i \in \mathcal{J}_1)\}}$ almost surely, we have

$$\begin{split} &P\big[\widetilde{\Psi}_T(\widetilde{\alpha}_T) = \Psi_T(\widetilde{\alpha}_T)\big] \\ &= P\bigg[\int_0^T \bigg\{\lambda_t(\widetilde{\alpha}_T) - \frac{\{\lambda_t(\widetilde{\alpha}_T)\}^2}{2M_L} \varphi_L(X_t)\bigg\} \mathbf{1}_{\big\{X_t^i = 0 \ (i \in \mathcal{J}_1)\big\}} dt \ = 0\bigg] \\ &\geq P\big[\widetilde{\alpha}_{k,T} = 0 \ (k \in \mathcal{J}_0)\big] \to 1 \qquad (T \to \infty) \qquad \big(\because (69)\big). \end{split}$$

Therefore, the following evaluation asymptotically holds: $\widetilde{\Psi}_T(\hat{\alpha}_T) \leq \widetilde{\Psi}_T(\widetilde{\alpha}_T) = \Psi_T(\widetilde{\alpha}_T) \leq \Psi_T(\hat{\alpha}_T)$. Thus, together with the inequality $\widetilde{\Psi}_T \geq \Psi_T$, $\widetilde{\Psi}_T(\hat{\alpha}_T)$ is asymptotically equal to $\widetilde{\Psi}_T(\widetilde{\alpha}_T)$. This means that $\hat{\alpha}_T$ also asymptotically maximizes $\widetilde{\Psi}_T$. Then (68) and (69) holds when substituting $\hat{\alpha}_T$ for $\widetilde{\alpha}_T$. Therefore, Theorem 5 holds.

In the following, we show (68) and (69) under [**L1**] and [**L2**]. Define two parameter spaces Θ and \mathcal{T} by $\Theta = [0, M_{\alpha}]^{\mathsf{a}}$ and $\mathcal{T} = \{1\}$, respectively, and we consider new parameters $\theta \in \Theta$ and $\tau \in \mathcal{T}$ by $\theta = \alpha$ and $\tau = 1$, respectively. Define estimators $\hat{\theta}_T$ and $\hat{\tau}_T$ taking values in Θ and \mathcal{T} , respectively, as $\hat{\theta}_T = \widetilde{\alpha}_T$, $\hat{\tau}_T = 1$. In the following, we omit τ . Define $\theta^* \in \Theta$ as $\theta^* = \alpha^{**}$. We take p and p_1 as $\mathsf{p} = \mathsf{a}$ and $\mathsf{p}_1 = |\mathcal{J}_1|$, respectively. For notational simplicity, assume that $\mathcal{J}_1 = \{1, ..., \mathsf{p}_1\}$ and $\mathcal{J}_0 = \{\mathsf{p}_1 + 1, ..., \mathsf{p}\}$. Define $\mathfrak{a}_T = \mathrm{diag}(\mathfrak{a}_{1,T}, ..., \mathfrak{a}_{\mathsf{r},T})$

as $\mathfrak{a}_T = T^{-\frac{1}{2}}I_r$. (r is already defined as r = |D| in Section 5.) Let $\mathfrak{b}_T := T$ and $\rho_k := \frac{r}{q} > 1$ $(k \in \mathcal{J}_0)$, and take $a_T \in GL(\mathfrak{p})$ as a deterministic diagonal matrix defined by

$$(a_T)_{jj} = \begin{cases} T^{-\frac{1}{2}} & (j \in \mathcal{J}_1 = \{1, ..., p\} \setminus \mathcal{J}_0) \\ T^{-\frac{r}{2q}} & (j \in \mathcal{J}_0) \end{cases}$$
 (70)

Define U_T and U by (8) and (10), respectively. Then from Example 1 of Section 2.3 in Yoshida and Yoshida (2022), Condition [A3] holds, and $U = \{u = (u_1, ..., u_p) \in \mathbb{R}^p; u_k \geq 0 \ (k \in \mathcal{J}_0)\}$. Define $c_i \in \mathbb{R}$ $(i \in \mathcal{J}_1)$ and $d_k \in \mathbb{R}$ $(k \in \mathcal{J}_0)$ as $c_i = \kappa_i 1_{\{r=1\}}$ and $d_k = \kappa_k$, respectively. Define a random field \mathbb{Z} as

$$\mathbb{Z}(u) = \overline{\Delta}[(u_i)_{i \in \mathcal{J}_1}] - \frac{1}{2}\overline{\Gamma}\left[\left((u_i)_{i \in \mathcal{J}_1}\right)^{\otimes 2}\right] - q\sum_{i \in \mathcal{J}_1} c_i(\alpha_i^{**})^{q-1}u_i - \sum_{k \in \mathcal{J}_0} d_k |u_k|^q,$$

for any $u = (u_1, ..., u_p) \in \mathbb{R}^p$. We define a U-valued random variable \hat{u} given by $\hat{u} = (\overline{\varGamma}^{-1} \overline{\varDelta}^{\dagger}, 0)$. Note that with probability $1, \hat{u}$ becomes a unique maximizer of \mathbb{Z} on U, and $[\mathbf{A4}]$ holds. Define a random field $\mathcal{H}_T : \Omega \times \Theta \to \mathbb{R} \cup \{-\infty\}$ as

$$\mathcal{H}_{T}(\alpha) = \int_{0}^{T} \log \lambda_{t}(\alpha) dN_{t} - \int_{0}^{T} \lambda_{t}(\alpha) dt + \int_{0}^{T} \left\{ \lambda_{t}(\alpha) - \frac{\{\lambda_{t}(\alpha)\}^{2}}{2M_{L}} \varphi_{L}(X_{t}) \right\} 1_{\{\lambda_{t}^{*}=0\}} dt.$$

Then the estimation function $\widetilde{\Psi}_T$ can be expressed as

$$\widetilde{\Psi}_T(\alpha) = \mathcal{H}_T(\alpha) - T^{\frac{r}{2}} \sum_{j=1}^{\mathsf{a}} \kappa_j \alpha_j^q = \mathcal{H}_T(\alpha) - \sum_{j=1}^{\mathsf{p}} \xi_{j,T} p_j(\alpha_j) \qquad (\alpha \in \Theta),$$

where for any $j \in \mathcal{J} := \mathcal{J}_1 \cup \mathcal{J}_0 = \{1, ..., p\},\$

$$\xi_{i,T} = \kappa_i T^{\frac{r}{2}}, \qquad p_i(x) = |x|^q \qquad (x \in \mathbb{R}).$$
 (71)

Note that q_j $(j \in \mathcal{J})$ defined in (iii) of Section 3.1 are determined as $q_j = q < 1$. From Theorem 2, if $[\mathbf{H1}]$ - $[\mathbf{H5}]$ hold for $\widetilde{\Psi}_T$ under $[\mathbf{L1}]$ and $[\mathbf{L2}]$, then $a_T^{-1}(\widetilde{\alpha}_T - \alpha^{**}) \stackrel{d}{\to} \hat{u}$, i.e., (68) holds. Therefore, in the following, we show $[\mathbf{H1}]$ - $[\mathbf{H5}]$ under $[\mathbf{L1}]$ and $[\mathbf{L2}]$.

We first show [H1]. We have $\int_0^T \log \lambda_t(\alpha) dN_t = \int_0^T \log \lambda_t(\alpha) 1_{\{\lambda_t^*>0\}} dN_t$ almost surely since $\int_0^T 1_{\{\lambda_t^*=0\}} dN_t = 0$ with probability one. Then from Taylor's

series.

$$\begin{split} &\mathcal{H}_{T}(\alpha) - \mathcal{H}_{T}(\alpha^{**}) \\ &= \int_{0}^{T} \log \lambda_{t}(\alpha) 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{T} \lambda_{t}(\alpha) dt + \int_{0}^{T} \left\{\lambda_{t}(\alpha) - \frac{\{\lambda_{t}(\alpha)\}^{2}}{2M_{L}} \varphi_{L}(X_{t})\right\} \\ &\cdot 1_{\{\lambda_{t}^{*}=0\}} dt - \int_{0}^{T} \log \lambda_{t}^{*} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} + \int_{0}^{T} \lambda_{t}^{*} dt \\ &= \int_{0}^{T} \log \frac{\lambda_{t}(\alpha)}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{T} \left\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\right\} 1_{\{\lambda_{t}^{*}>0\}} dt \\ &- \int_{0}^{T} \frac{\{\lambda_{t}(\alpha)\}^{2}}{2M_{L}} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*}=0\}} dt \\ &= \int_{0}^{T} \frac{\lambda_{t}(\alpha) - \lambda_{t}^{*}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{1} (1 - s) \int_{0}^{T} \frac{\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\}^{2}}{\{s\lambda_{t}(\alpha) + (1 - s)\lambda_{t}^{*}\}^{2}} 1_{\{\lambda_{t}^{*}>0\}} dt \\ &= \int_{0}^{T} \frac{\lambda_{t}(\alpha) - \lambda_{t}^{*}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} d\tilde{N}_{t} - \int_{0}^{1} (1 - s) \int_{0}^{T} \frac{\{\lambda_{t}(\alpha)\}^{2}}{\{s\lambda_{t}(\alpha) + (1 - s)\lambda_{t}^{*}\}^{2}} 1_{\{\lambda_{t}^{*}>0\}} dt \\ &= \int_{0}^{T} \frac{\lambda_{t}(\alpha) - \lambda_{t}^{*}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} d\tilde{N}_{t} - \int_{0}^{1} (1 - s) \int_{0}^{T} \frac{\{\lambda_{t}(\alpha)\}^{2}}{\{s\lambda_{t}(\alpha) + (1 - s)\lambda_{t}^{*}\}^{2}} 1_{\{\lambda_{t}^{*}>0\}} dt \\ &- \int_{0}^{T} \frac{\{\lambda_{t}(\alpha)\}^{2}}{2M_{L}} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*}=0\}} dt, \end{split}$$

where \tilde{N} is a martingale defined by $\tilde{N}_t = N_t - \int_0^t \lambda_s^* ds$. The integrand of the second term in the rightmost side is evaluated as for any $\alpha \in \Theta$, $0 \le s \le 1$ and $0 \le t \le T$,

$$\frac{\left\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\right\}^{2}}{\left\{s\lambda_{t}(\alpha) + (1 - s)\lambda_{t}^{*}\right\}^{2}} 1_{\{\lambda_{t}^{*} > 0\}} \geq \frac{\left\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\right\}^{2}}{M_{L}^{2}} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*} > 0\}} \quad \big(\because (67) \big).$$

Therefore, noting that $M_L^2 > M_L$, we have

$$\mathcal{H}_{T}(\alpha) - \mathcal{H}_{T}(\alpha^{*})$$

$$\leq \int_{0}^{T} \frac{\lambda_{t}(\alpha) - \lambda_{t}^{*}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} d\tilde{N}_{t} - \frac{1}{2M_{L}^{2}} \int_{0}^{T} \left\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\right\}^{2} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*}>0\}} dN_{t}$$

$$- \int_{0}^{T} \frac{\{\lambda_{t}(\alpha)\}^{2}}{2M_{L}^{2}} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*}=0\}} dt$$

$$= \int_{0}^{T} \frac{\lambda_{t}(\alpha) - \lambda_{t}^{*}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*}>0\}} d\tilde{N}_{t} - \frac{1}{2M_{L}^{2}} \int_{0}^{T} \left\{\lambda_{t}(\alpha) - \lambda_{t}^{*}\right\}^{2} \varphi_{L}(X_{t}) \left\{1_{\{\lambda_{t}^{*}>0\}} dN_{t} + 1_{\{\lambda_{t}^{*}=0\}} dt\right\}.$$

From (33), we have

$$\lambda_t(\alpha) - \lambda_t^* = (X_t^j)_{j \in D}[h(\alpha)] \qquad (t \ge 0, \alpha \in [0, M_\alpha]^{\mathsf{a}}),$$

where $h = (h_1, ..., h_r) : \Theta \to \mathbb{R}^r$ is a continuous function defined by

$$h(\alpha) = (\alpha - \alpha^*)A = (\alpha - \alpha^{**})A \qquad (\alpha \in [0, M_{\alpha}]^{\mathsf{a}}). \tag{72}$$

Then

$$\mathcal{H}_{T}(\alpha) - \mathcal{H}_{T}(\alpha^{*}) \\
\leq \frac{1}{\sqrt{T}} \int_{0}^{T} \frac{(X_{t}^{j})_{j \in D}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*} > 0\}} d\tilde{N}_{t} \left[\sqrt{T}h(\alpha) \right] - \frac{1}{2M_{L}^{2}T} \\
\cdot \int_{0}^{T} \left\{ (X_{t}^{j})_{j \in D} \right\}^{\otimes 2} \varphi_{L}(X_{t}) \left\{ 1_{\{\lambda_{t}^{*} > 0\}} dN_{t} + 1_{\{\lambda_{t}^{*} = 0\}} dt \right\} \left[\left(\sqrt{T}h(\alpha) \right)^{\otimes 2} \right] \\
= K_{T} \left[\sqrt{T}h(\alpha) \right] - \frac{1}{2} \left\{ G + r_{T} \right\} \left[\left(\sqrt{T}h(\alpha) \right)^{\otimes 2} \right] \qquad (t \geq 0, \alpha \in \Theta),$$

where

$$K_{T} = \frac{1}{\sqrt{T}} \int_{0}^{T} \frac{(X_{t}^{j})_{j \in D}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*} > 0\}} d\tilde{N}_{t},$$

$$G = \frac{1}{M_{L}^{2}} \int_{[0,\infty)^{3}} \left\{ (x_{j})_{j \in D} \right\}^{\otimes 2} \varphi_{L}(x) \left\{ \alpha^{*} \cdot x 1_{\{\alpha^{*} \cdot x > 0\}} + 1_{\{\alpha^{*} \cdot x = 0\}} \right\} \nu(dx),$$

$$r_{T} = \frac{1}{M_{L}^{2} T} \int_{0}^{T} \left\{ (X_{t}^{j})_{j \in D} \right\}^{\otimes 2} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*} > 0\}} d\tilde{N}_{t}$$

$$+ \frac{1}{M_{L}^{2} T} \int_{0}^{T} \left\{ (X_{t}^{j})_{j \in D} \right\}^{\otimes 2} \varphi_{L}(X_{t}) \left\{ \lambda_{t}^{*} 1_{\{\lambda_{t}^{*} > 0\}} + 1_{\{\lambda_{t}^{*} = 0\}} \right\} dt - G.$$

Since from [L2],

$$\sup_{T>0} E[|K_T|^2] = \sup_{T>0} E\left[\frac{1}{T} \int_0^T \left| \frac{(X_t^j)_{j \in D}}{\lambda_t^*} \right|^2 \lambda_t^* 1_{\{\lambda_t^* > 0\}} dt \right]
\leq \sup_{t \ge 0} E\left[\left| \frac{(X_t^j)_{j \in D}}{\lambda_t^*} \right|^2 \lambda_t^* 1_{\{\lambda_t^* > 0\}} dt \right]
= \int_{[0,\infty)^3} \frac{\left| (x_j)_{j \in D} \right|^2}{\alpha^* \cdot x} 1_{\{\alpha^* \cdot x > 0\}} \nu(dx) < \infty,$$

we obtain $K_T = O_P(1)$. Similarly,

$$\frac{1}{M_L^2 T} \int_0^T \left\{ (X_t^j)_{j \in D} \right\}^{\otimes 2} \varphi_L(X_t) 1_{\{\lambda_t^* > 0\}} d\tilde{N}_t = o_P(1).$$

From the ergodicity, we have

$$\frac{1}{M_L^2 T} \int_0^T \left\{ (X_t^j)_{j \in D} \right\}^{\otimes 2} \varphi_L(X_t) \left\{ \lambda_t^* 1_{\{\lambda_t^* > 0\}} + 1_{\{\lambda_t^* = 0\}} \right\} - G \stackrel{P}{\to} 0.$$

Therefore, $r_T = o_P(1)$. Moreover, (66) implies the non-degeneracy of G. Thus, [**H1**] holds.

Second, we show [**H2**]. From Lemma 5 described below, $\operatorname{Ker} A \cap \langle \{e_j\}_{j \in \mathcal{J}_1} \rangle = \{0\}$. Therefore, for any $\alpha \in \Theta$ with $\alpha_k = 0$ $(k \in \mathcal{J}_0)$,

$$|h(\alpha)| = |(\alpha - \alpha^{**})A| = \left| \left(\sum_{j \in \mathcal{J}_1} \alpha_j e_j - \alpha^{**} \right) A \right| \ge \epsilon_0 |(\alpha_j)_{j \in \mathcal{J}_1} - (\alpha_j^{**})_{j \in \mathcal{J}_1}|,$$

where ϵ_0 is some positive constant. Therefore, (a) and (b) of [H2] hold, and $\Theta^* \cap \{\underline{\theta} = 0\} = \{\alpha \in \Theta; h(\alpha) = 0\} \cap \{\alpha_k = 0 \ (k \in \mathcal{J}_0)\} = \{\theta^*\}$. Thus, [H2] holds.

From [**L1**], Condition [**H3**]' holds for $\Theta^* = \{\alpha \in \Theta; h(\alpha) = 0\} = \{\alpha^* + \text{Ker}(A)\} \cap [0, M_{\alpha}]^{\mathtt{a}}$, which implies [**H3**]. Condition [**H4**] obviously holds for $\xi_{j,T}$ defined in (71) since $\kappa_j > 0$ and $q_j = q < 1$ $(j = 1, ..., \mathtt{a})$.

Finally, we show [H5]. Take $\mathcal{G} = \{\phi, \Omega\}$, and take \mathcal{N} as

$$\mathcal{N} = \operatorname{Int}(\Theta) \cap \{ \alpha \in \mathbb{R}^{\mathsf{a}}; |\alpha_i - \alpha_i^{**}| < 2^{-1} \alpha_i^{**} \ (i \in \mathcal{J}_1) \}.$$

Note that \mathcal{N} satisfies (16) and (17) and that for any $\alpha \in \overline{\mathcal{N}}$, $\lambda_t^* > 0$ implies $\lambda_t(\alpha) > 0$ since $\lambda_t(\alpha) \ge 2^{-1}\lambda_t^*$. We have

$$\partial_{\theta} \mathcal{H}_{T}(\alpha^{**}) = \int_{0}^{T} \frac{X_{t}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*} > 0\}} dN_{t} - \int_{0}^{T} X_{t} dt + \int_{0}^{T} X_{t} 1_{\{\lambda_{t}^{*} = 0\}} dt$$
$$= \int_{0}^{T} \frac{X_{t}}{\lambda_{t}^{*}} 1_{\{\lambda_{t}^{*} > 0\}} d\tilde{N}_{t}.$$

Similarly as before, from [L2],

$$\frac{1}{\sqrt{T}} \left| \int_0^T \frac{(X_t^j)_{j \in \mathcal{J}_0}}{\lambda_t^*} 1_{\{\lambda_t^* > 0\}} d\tilde{N}_t \right| = O_P(1).$$

Moreover, from $[\mathbf{L2}]$ and the martingale central limit theorem, we have

$$S_T := \frac{1}{\sqrt{T}} \int_0^T \frac{(X_t^j)_{j \in \mathcal{J}_1}}{\lambda_t^*} 1_{\{\lambda_t^* > 0\}} d\tilde{N}_t \stackrel{d}{\to} \overline{\Delta},$$

checking Lindeberg's condition as for any a > 0,

$$E \sum_{t \leq T} (\Delta S_t)^2 1_{\{|\Delta S_t| > a\}} \leq a^{-1} E \sum_{t \leq T} |\Delta S_t|^3$$

$$\leq a^{-1} E \left[\int_0^T \left| \frac{1}{\sqrt{T}} \frac{(X_t^j)_{j \in \mathcal{I}_1}}{\lambda_t^*} 1_{\{\lambda_t^* > 0\}} \right|^3 dN_t \right]$$

$$= a^{-1} T^{-\frac{1}{2}} E \left[\left| \frac{(X_0^j)_{j \in \mathcal{I}_1}}{\lambda_0^*} \right|^3 \lambda_0^* 1_{\{\lambda_0^* > 0\}} \right] \to 0$$

as $T \to \infty$. Thus, the first half of the argument of [H5] holds.

Let us show the second half of the argument of [H5]. That is, take any R > 0 and we show

$$\sup_{\substack{\alpha \in \overline{\mathcal{N}} \\ |a_T^{-1}(\alpha - \alpha^{**})| \le R}} \left| a_T' \partial_{\theta}^2 \mathcal{H}_T(\alpha) a_T + \left(\frac{\overline{\Gamma}}{O} O \right) \right| \stackrel{P}{\to} 0, \tag{73}$$

for $\partial_{\theta}^2 \mathcal{H}_T(\alpha)$ that satisfies the following equation:

$$\begin{split} &\partial_{\theta}^{2}\mathcal{H}_{T}(\alpha) \\ &= -\int_{0}^{T} \frac{X_{t}^{\otimes 2}}{\lambda_{t}(\alpha)^{2}} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{T} \frac{X_{t}^{\otimes 2}}{M_{L}} \varphi_{L}(X_{t}) 1_{\{\lambda_{t}^{*}=0\}} dt \\ &= -\int_{0}^{T} \frac{X_{t}^{\otimes 2}}{\lambda_{t}(\alpha)^{2}} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{T} \frac{X_{t}^{\otimes 2}}{M_{L}} \varphi_{L}(X_{t}) 1_{\{X_{t}^{i}=0 \ (i \in \mathcal{I}_{1})\}} dt \\ &= -\int_{0}^{T} \frac{X_{t}^{\otimes 2}}{\lambda_{t}(\alpha)^{2}} 1_{\{\lambda_{t}^{*}>0\}} dN_{t} - \int_{0}^{T} \frac{\left\{ (X_{t}^{j} 1_{\{j \in \mathcal{I}_{0}\}})_{j=1,\dots,p} \right\}^{\otimes 2}}{M_{L}} \varphi_{L}(X_{t}) \\ & \cdot 1_{\left\{X_{t}^{i}=0 \ (i \in \mathcal{I}_{1})\right\}} dt \qquad (\alpha \in \overline{\mathcal{N}}). \end{split}$$

Since a_T is defined as (70) and $\frac{r}{a} > 1$, we have

$$\begin{split} a_T' \partial_{\theta}^2 \mathcal{H}_T(\alpha) a_T \\ &= a_T' \bigg(- \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t \bigg) a_T - \frac{1}{T^{\frac{r}{q}}} \int_0^T \frac{\left\{ (X_t^j \mathbf{1}_{\{j \in \mathcal{J}_0\}})_{j = 1, \dots, \mathsf{p}} \right\}^{\otimes 2}}{M_L} \\ & \cdot \varphi_L(X_t) \mathbf{1}_{\left\{ X_t^i = 0 \ (i \in \mathcal{J}_1) \right\}} dt \\ &= (\sqrt{T} a_T)' \bigg(- \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t \bigg) (\sqrt{T} a_T) + o(1). \end{split}$$

Thus, for (73), it suffices to show

$$\sup_{\substack{\alpha \in \overline{\mathcal{N}} \\ |a_T^{-1}(\alpha - \alpha^{**})| \le R}} \left| -\frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} 1_{\{\lambda_t^* > 0\}} dN_t + \Gamma \right| \stackrel{P}{\to} 0, \tag{74}$$

where Γ is a $\mathsf{a} \times \mathsf{a}$ matrix defined as $\Gamma = \int_{[0,\infty)^{\mathsf{a}}} \frac{x^{\otimes 2}}{\alpha^* \cdot x} 1_{\{\alpha^* \cdot x > 0\}} \nu(dx)$. Take any $\epsilon > 0$. Then there exists some $T_0 = T_0(R, \epsilon)$ such that for any $T \geq T_0$ and any $\alpha \in \overline{\mathcal{N}}$ with $|a_T^{-1}(\alpha - \alpha^{**})| \leq R$,

$$(1 - \epsilon)\lambda^* \le \lambda \cdot (\alpha) \le \lambda^* + \epsilon \sum_{j \in D} X^j$$

almost surely. Therefore, for any $T \geq T_0$ and any $\alpha \in \overline{\mathcal{N}}$ with $|a_T^{-1}(\alpha - \alpha^{**})| \leq R$,

$$A_T[u^{\otimes 2}] \, \leq \, \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t[u^{\otimes 2}] \leq B_T[u^{\otimes 2}] \qquad (u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1),$$

where

$$A_T = \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\left(\lambda_t^* + \epsilon \sum_{j \in D} X_t^j\right)^2} 1_{\{\lambda_t^* > 0\}} dN_t,$$

$$B_T = \frac{1}{T} (1 - \epsilon)^{-2} \int_0^T \frac{X_t^{\otimes 2}}{(\lambda_t^*)^2} 1_{\{\lambda_t^* > 0\}} dN_t,$$

for any T > 1, any $u \in \mathbb{R}^a$ with $|u| \leq 1$ and any $\alpha \in \overline{\mathcal{N}}$. Since from [L2],

$$\begin{split} E \bigg[\bigg| \frac{1}{\sqrt{T}} \int_0^T \frac{X_t^{\otimes 2}}{\left(\lambda_t^* + \epsilon \sum_{j \in D} X_t^j\right)^2} 1_{\{\lambda^* > 0\}} d\tilde{N}_t \bigg|^2 \bigg] \\ &\lesssim E \bigg[\frac{1}{T} \int_0^T \frac{|X_t|^4}{\left(\lambda_t^* + \epsilon \sum_{j \in D} X_t^j\right)^4} \lambda_t^* 1_{\{\lambda_t^* > 0\}} dt \bigg] \\ &\leq E \bigg[\frac{1}{T} \int_0^T \frac{|X_t|^4}{\left(\lambda_t^*\right)^4} \lambda_t^* 1_{\{\lambda_t^* > 0\}} dt \bigg] \\ &= \int_{[0,\infty)^3} \frac{|x|^4}{\left(\alpha^* \cdot x\right)^3} 1_{\{\alpha^* \cdot x > 0\}} \nu(dx) \ < \ \infty \end{split}$$

and since

$$\int_{[0,\infty)^3} \frac{|x^{\otimes 2}|}{\left(\alpha^* \cdot x + \epsilon \sum_{j \in D} x_j\right)^2} \alpha^* \cdot x \, 1_{\{\alpha^* \cdot x > 0\}} \, \nu(dx)$$

$$\leq \int_{[0,\infty)^3} \frac{|x^{\otimes 2}|}{\alpha^* \cdot x} \, 1_{\{\alpha^* \cdot x > 0\}} \, \nu(dx) < \infty,$$

we have

$$\begin{split} A_T &= \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\left(\lambda_t^* + \epsilon \sum_{j \in D} X_t^j\right)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} d\tilde{N}_t \\ &+ \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\left(\lambda_t^* + \epsilon \sum_{j \in D} X_t^j\right)^2} \lambda_t^* \mathbf{1}_{\{\lambda_t^* > 0\}} dt \\ &\stackrel{P}{\to} \int_{[0,\infty)^{\mathsf{a}}} \frac{x^{\otimes 2}}{\left(\alpha^* \cdot x + \epsilon \sum_{j \in D} x_j\right)^2} \alpha^* \cdot x \, \mathbf{1}_{\{\alpha^* \cdot x > 0\}} \; \nu(dx) \; =: \; A(\epsilon). \end{split}$$

Similarly,

$$B_T = (1 - \epsilon)^{-2} \left\{ \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{(\lambda_t^*)^2} 1_{\{\lambda_t^* > 0\}} d\tilde{N}_t + \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t^*} 1_{\{\lambda_t^* > 0\}} dt \right\}$$

$$\stackrel{P}{\to} (1 - \epsilon)^{-2} \int_{[0, \infty)^3} \frac{x^{\otimes 2}}{\alpha^* \cdot x} 1_{\{\alpha^* \cdot x > 0\}} \nu(dx) =: B(\epsilon).$$

Then for any $T \geq T_0$,

$$\begin{split} \sup_{\substack{\alpha \in \overline{\mathcal{N}} \\ |a_T^{-1}(\alpha - \alpha^{**})| \leq R}} \sup_{u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1} \bigg| - \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg| \\ \leq \sup_{\substack{\alpha \in \overline{\mathcal{N}} \\ |a_T^{-1}(\alpha - \alpha^{**})| \leq R}} \sup_{u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1} \bigg(- \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg)^+ \\ + \sup_{\substack{\alpha \in \overline{\mathcal{N}} \\ |a_T^{-1}(\alpha - \alpha^{**})| \leq R}} \sup_{u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1} \bigg(- \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} \mathbf{1}_{\{\lambda_t^* > 0\}} dN_t[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg)^- \\ \leq \sup_{\substack{u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1}} \bigg(- A_T[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg)^+ + \sup_{\substack{u \in \mathbb{R}^{\mathsf{a}}, |u| \leq 1}} \bigg(- B_T[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg)^- \\ \lesssim \bigg| - A_T + \Gamma \bigg| + \bigg| - B_T + \Gamma \bigg| \xrightarrow{P} \bigg| - A(\epsilon) + \Gamma \bigg| + \bigg| - B(\epsilon) + \Gamma \bigg| \end{split}$$

as $T \to \infty$, where $f^+ := f \vee 0$ and $f^- := f \wedge 0$ for any \mathbb{R} -valued function f. Since $\lim_{\epsilon \to +0} A(\epsilon) = \lim_{\epsilon \to +0} B(\epsilon) = \Gamma$, we have

$$\sup_{\substack{\alpha \in \overline{N} \\ |a_T^{-1}(\alpha - \alpha^{**})| \le R}} \sup_{\substack{u \in \mathbb{R}^{\mathsf{a}}, |u| \le 1}} \bigg| - \frac{1}{T} \int_0^T \frac{X_t^{\otimes 2}}{\lambda_t(\alpha)^2} 1_{\{\lambda_t^* > 0\}} dN_t[u^{\otimes 2}] + \Gamma[u^{\otimes 2}] \bigg| \overset{P}{\to} 0.$$

Therefore, (74) holds. Thus, the second half of the argument of [H5] holds. Then using Theorem 2, we obtain (68).

Furthermore, [S] holds from Example 1. Therefore, using Theorem 3, we have $\lim_{T\to\infty} P[(\widetilde{\alpha}_{k,T})_{k\in\mathcal{J}_0}=0]=1$. Since (68) holds and $\alpha_i^{**}\neq 0$ ($i\in\mathcal{J}_1$), we obtain (69).

Proof of Proposition 1. From the following Lemma 4,

$$\left\{\alpha \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0, \infty)^{\mathsf{a}}; Pe(\alpha) = \inf_{\tilde{\alpha} \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0, \infty)^{\mathsf{a}}} Pe(\tilde{\alpha})\right\}$$

$$\subset \{pr_E(\alpha^*); E \in \mathcal{E}\} \cap [0, \infty)^{\mathsf{a}}.$$

Under $[\mathbf{L}\mathbf{1}]^{\#}$, the set on the right-hand side has the unique minimizer $pr_{E_0}(\alpha^*)$ of Pe on the set itself. Therefore, $pr_{E_0}(\alpha^*)$ uniquely minimizes Pe on $\{\alpha^* + \operatorname{Ker}(A)\} \cap [0, \infty)^{\mathsf{a}}$. Since $pr_{E_0}(\alpha^*) \in [0, M_{\alpha})^{\mathsf{a}}$ under $[\mathbf{L}\mathbf{1}]^{\#}$, $pr_{E_0}(\alpha^*)$ also uniquely minimizes Pe on $\{\alpha^* + \operatorname{Ker}(A)\} \cap [0, M_{\alpha}]^{\mathsf{a}}$. Therefore, $[\mathbf{L}\mathbf{1}]$ holds and $\alpha^{**} = pr_{E_0}(\alpha^*)$.

Lemma 4 For any $M \in (0, \infty) \cup \{\infty\}$,

$$\left\{\alpha \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0, M)^{\mathsf{a}}; Pe(\alpha) = \inf_{\tilde{\alpha} \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0, M)^{\mathsf{a}}} Pe(\tilde{\alpha})\right\}$$

$$\subset \{pr_E(\alpha^*); E \in \mathcal{E}\}. \tag{75}$$

Proof Take any $\alpha \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0, M)^a$ satisfying

$$Pe(\alpha) = \inf_{\tilde{\alpha} \in \{\alpha^* + \operatorname{Ker}(A)\} \cap [0,M)^a} Pe(\tilde{\alpha}).$$

Define F as the set of all $j \in \{1, ..., a\}$ with $\alpha_j \neq 0$. We prove

$$\langle \{e_j\}_{j\in F} \rangle \cap \operatorname{Ker} A = \{0\} \tag{76}$$

by contradiction. Suppose that $\langle \{e_j\}_{j\in F}\rangle \cap \operatorname{Ker} A \neq \{0\}$. Then there exists $(c_j)_{j\in F}\in \mathbb{R}^{|F|}\setminus \{0\}^{|F|}$ such that $\sum_{j\in F}c_je_j\in \operatorname{Ker} A$. Take $\underline{\lambda}<0$ and $\overline{\lambda}>0$ such that for any $\lambda\in (\underline{\lambda},\overline{\lambda})$,

$$\alpha - \lambda \sum_{j \in F} c_j e_j \in [0, M)^{\mathsf{a}}. \tag{77}$$

Note that for any $\lambda \in (\underline{\lambda}, \overline{\lambda})$,

$$\alpha - \lambda \sum_{j \in F} c_j e_j \in \{\alpha^* + \operatorname{Ker}(A)\}. \tag{78}$$

Define two functions $f:(\underline{\lambda},\overline{\lambda})\to\mathbb{R}^a$ and $g:(\underline{\lambda},\overline{\lambda})\to\mathbb{R}$ as $f(\lambda)=\alpha-\lambda\sum_{j\in F}c_je_j$ and $g(\lambda)=Pe\big(f(\lambda)\big)$, respectively. Then g(0) cannot be the local minimum of g since $g''(\lambda)<0$ for any $\lambda\in(\underline{\lambda},\overline{\lambda})$. Therefore, there exists some $\lambda_0\in(\underline{\lambda},\overline{\lambda})$ such that

$$Pe(\alpha) = g(0) > g(\lambda_0) = Pe(f(\lambda_0)).$$

Furthermore, $f(\lambda_0) \in {\{\alpha^* + \text{Ker}(A)\}} \cap [0, M)^a$ from (77) and (78). This contradicts the minimality of α . Thus, (76) holds.

From (76), we can take some $E_1 \in \mathcal{E}$ with $E_1 \supset F$. Then $0 = (\alpha - \alpha^*)A = (\alpha - pr_{E_1}(\alpha^*))A$. Since $\alpha \in \langle \{e_j\}_{j \in F} \rangle \subset \langle \{e_j\}_{j \in E_1} \rangle$ and $\langle \{e_j\}_{j \in E_1} \rangle \cap \text{Ker}A = 0$, we have $\alpha = pr_{E_1}(\alpha^*)$, and hence $\alpha \in \{pr_E(\alpha^*); E \in \mathcal{E}\}$. Thus, (75) holds. \square

Lemma 5 Assume [L1]. Then

$$\operatorname{Ker} A \cap \langle \{e_i\}_{i \in \mathcal{I}_1} \rangle = \{0\}. \tag{79}$$

Moreover, if [L2] holds, then $\overline{\Gamma}$ is non-degenerate.

Proof From Lemma 4, under [**L1**], $\alpha^{**} \in \{pr_E(\alpha^*); E \in \mathcal{E}\}$. Therefore, there exists some $E \in \mathcal{E}$ such that $\mathcal{J}_1 \subset E$. Thus, $\operatorname{Ker} A \cap \langle \{e_j\}_{j \in \mathcal{J}_1} \rangle \subset \operatorname{Ker} A \cap \langle \{e_j\}_{j \in \mathcal{E}} \rangle = \{0\}$, and (79) holds.

We show that $\overline{\Gamma}$ is non-degenerate under [**L2**]. Assume $\overline{\Gamma}[v^{\otimes 2}] = 0$ for some $v \in \mathbb{R}^{|\mathcal{J}_1|}$. Then

$$\left| (x_i)_{i \in \mathcal{J}_1} \cdot v \right| 1_{\left\{ \sum_{j=1}^{\mathbf{a}} \alpha_j^* x_j > 0 \right\}} = 0 \quad \nu\text{-a.e. } x, \tag{80}$$

where ν -a.e. x denotes almost everywhere $x \in [0,\infty)^{\mathsf{a}}$ with respect to the measure ν . Since the probability that $\lambda_t^* = \sum_{j=1}^{\mathsf{a}} \alpha_j^* X_t^j = \sum_{j=1}^{\mathsf{a}} \alpha_j^{**} X_t^j$ $(t \ge 0)$ is equal to one, we have

$$1_{\left\{\sum_{j=1}^{\mathbf{a}}\alpha_{j}^{*}x_{j}=0\right\}} = 1_{\left\{\sum_{j=1}^{\mathbf{a}}\alpha_{j}^{**}x_{j}=0\right\}} = 1_{\left\{x_{i}=0 \ (i \in \mathcal{J}_{1})\right\}} \quad \nu\text{-}a.e. \ x.$$

Therefore, from (80), we have $(x_i)_{i \in \mathcal{J}_1} \cdot v = 0$ ν -a.e. x. Thus,

$$0 = \int_{[0,\infty)^{3}} ((x_{i})_{i \in \mathcal{J}_{1}})^{\otimes 2} \nu(dx) [v^{\otimes 2}] = \int_{[0,\infty)^{3}} \{(e_{i} \cdot x)_{i \in \mathcal{J}_{1}}\}^{\otimes 2} \nu(dx) [v^{\otimes 2}]$$

$$= \int_{[0,\infty)^{3}} \{(e_{i}A \cdot (x_{j})_{j \in D})_{i \in \mathcal{J}_{1}}\}^{\otimes 2} \nu(dx) [v^{\otimes 2}] \quad (:: (32))$$

$$= (e_{i}A)_{i \in \mathcal{J}_{1}} \int_{[0,\infty)^{3}} ((x_{j})_{j \in D})^{\otimes 2} \nu(dx) ((e_{i}A)_{i \in \mathcal{J}_{1}})' [v^{\otimes 2}].$$

Now $\{e_i A\}_{i \in \mathcal{J}_1}$ is linearly independent from (79). Therefore, from (30), we obtain v = 0, which implies the non-degeneracy of $\overline{\Gamma}$.