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APPENDIX

Proof of (14): For fixed t > 0, consider partition points of interval [0, t]:

0 = s0 < s1 < · · · < sN = t, which have equal width ∆ = t
N for each subinter-

val [sj−1, sj], where N is any large positive integer. Then, from (6.8) on Page 196 in

Kalbfleisch and Prentice (2002) we have the following:

∫ t

0

f(s |Xs) ds = o(1) +
N−1∑
k=0

∆ f(sk |Xsk)

(13)
=o(1) +

N−1∑
k=0

[
P{sk ≤ T < sk + ∆ |Xsk}+ ∆ rk

]
(6.8) of K-P

========= o(1) +
N−1∑
k=0

[
P{sk ≤ T < sk + ∆ |X t}+ ∆ rk

]
= o(1) + P{0 ≤ T < t |X t}+

t

N

N−1∑
k=0

rk

= o(1) + P{0 ≤ T < t |X t}+O
(

max
k
| rk |

)
,

(47)

where rk is the remainder term from (13) at each sk. Letting N → ∞, we know that

(14) follows from (47) and the uniform convergence of (13). �

Proof of Lemma 1: For δ = 1, we know

g(t, 1 |X t) = lim
∆→0

∆−1P{t ≤ V < t+ ∆, δ = 1 |X t}

= lim
∆→0

∆−1P{t ≤ T < t+ ∆, T ≤ C |X t}.

1



Thus, the 1st equation of (16) follows from (13) and the following inequalities:

P{t ≤ T < t+ ∆, T ≤ C |X t} ≤ P{t ≤ T < t+ ∆, t ≤ C |X t}

= P{t ≤ T < t+ ∆ |X t}P{t ≤ C |X t} = P{t ≤ T < t+ ∆ |X t} F̄C(t);

P{t ≤ T < t+ ∆, T ≤ C |X t} ≥ P{t ≤ T < t+ ∆, t+ ∆ ≤ C |X t}

= P{t ≤ T < t+ ∆ |X t}P{t+ ∆ ≤ C |X t} = P{t ≤ T < t+ ∆ |X t} F̄C(t+ ∆).

For δ = 0, we know

g(t, 0 |X t) = lim
∆→0

∆−1P{t ≤ V < t+ ∆, δ = 0 |X t}

= lim
∆→0

∆−1P{t ≤ C < t+ ∆, T > C |X t}.

Thus, the 2nd equation of (16) follows from (12)-(13) and the following inequalities:

P{t ≤ C < t+ ∆, T > C |X t} ≤ P{t ≤ C < t+ ∆, T ≥ t |X t}

= P{t ≤ C < t+ ∆ |X t}P{T ≥ t |X t} = P{t ≤ C < t+ ∆} F̄ (t |X t);

P{t ≤ C < t+ ∆, T > C |X t} ≥ P{t ≤ C < t+ ∆, t+ ∆ ≤ T |X t}

= P{t ≤ C < t+ ∆ |X t}P{t+ ∆ ≤ T |X t} = P{t ≤ C < t+ ∆} F̄ (t+ ∆ |X t). �

Proof of Lemma 2: From (18), for any t ∈ [tiJi , Vi] we have for ti0 = 0:

−
∫ t

0

λ0(s) eβ0Ẑi(s) ds = −
∫ t

tiJi

λ0(s) eβ0Ẑi(s) ds−
Ji∑
j=1

∫ tij

ti, j−1

λ0(s) eβ0Ẑi(s) ds

= −
∫ t

tiJi

λ0(s) eβ0Z̃i(tiJi ) ds−
Ji∑
j=1

∫ tij

ti, j−1

λ0(s) eβ0Z̃i(ti, j−1) ds

= −eβ0Z̃i(tiJi )

∫ t

tiJi

f
0
(s)

F̄0(s)
ds−

Ji∑
j=1

eβ0Z̃i(ti, j−1)

∫ tij

ti, j−1

f
0
(s)

F̄0(s)
ds

= eβ0Z̃i(tiJi ) ln
( F̄0(t)

F̄0(tiJi)

)
+

Ji∑
j=1

eβ0Z̃i(ti, j−1) ln
( F̄0(tij)

F̄0(ti, j−1)

)
.
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Thus, for Ẑi(0) = 0 and cij = eβ0Z̃i(tij) with ci0 = 1 and ci = ciJi , (19) can be written as

F̄ (t | X t
i ) = exp

{
ciJi ln

( F̄0(t)

F̄0(tiJi)

)
+

Ji∑
j=1

ci, j−1 ln
( F̄0(tij)

F̄0(ti, j−1)

)}

=
( F̄0(t)

F̄0(tiJi)

)ciJi Ji∏
j=1

( F̄0(tij)

F̄0(ti, j−1)

)ci, j−1

=
( F̄0(t)

F̄0(tiJi)

)ciJi ( F̄0(ti1)

F̄0(ti0)

)ci0
×
( F̄0(ti2)

F̄0(ti1)

)ci1
× · · · ×

( F̄0(tiJi)

F̄0(ti, Ji−1)

)ci, Ji−1

=
[
F̄0(t)

]ciJi Ji∏
j=1

[
F̄0(tij)

]ci, j−1−cij =
[
F̄0(t)

]ci Ji∏
j=1

[
F̄0(tij)

]ci, j−1−cij .

Equation (20) is obtained by f(t | X t
i ) = − d

dt

(
F̄ (t | X t

i )
)
. �

Proof of (21): From Lemma 2, we have the following:

n∏
i=1

[
f(Vi | X Vi

i )
]δi[F̄ (Vi | X Vi

i )
]1−δi

=
n∏
i=1

(
cif0

(Vi)
[
F̄0(Vi)

]ci−1
Ji∏
j=1

[
F̄0(tij)

]ci, j−1−cij
)δi([

F̄0(Vi)
]ci Ji∏

j=1

[
F̄0(tij)

]ci, j−1−cij
)1−δi

=
n∏
i=1

[
cif0

(Vi)
]δi[F̄0(Vi)

]ci−δi( Ji∏
j=1

[
F̄0(tij)

]ci, j−1−cij
)
. �

Proof of Lemma 3: Let Akij = I{Vk ≤ tij < Vk+1} with Vn+1 = ∞ and let

dij = ci, j−1 − cij with cij’s given by (23). Since for F given by (25), we have F (tij) = 0

for 0 ≤ tij < V1, then the last component of (22) can be simplified as:

n∏
i=1

Ji∏
j=1

[
F̄ (tij)

]dij =
n∏
i=1

Ji∏
j=1

n∏
k=1

[
F̄ (tij)

]Akijdij =
n∏
i=1

Ji∏
j=1

n∏
k=1

[
F̄ (Vk)

]Akijdij

=
n∏
k=1

n∏
i=1

Ji∏
j=1

[
F̄ (Vk)

]Akijdij =
n∏
k=1

[
F̄ (Vk)

]Ak =
n∏
i=1

[
F̄ (Vi)

]Ai ,
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where Ak =
∑n

i=1

∑Ji
j=1Akijdij. Then, (22) can be written as:

L(β, F ) =
n∏
i=1

[
ci dF (Vi)

]δi[F̄ (Vi)
]di−δi (48)

where for Ai =
∑n

k=1

∑Jk
j=1Aikjdkj, we have for cij’s given in (23),

di = ci + Ai = ci +
n∑
k=1

Jk∑
j=1

Aikjdkj = ciJi +
n∑
k=1

Jk∑
j=1

(ck, j−1 − ckj)I{Vi ≤ tkj < Vi+1}.

Thus, (26) follows from (25) and (48). �

Proof of Theorem 1: Let ai =
p
i
bi

with bi =
∑n+1

j=i pj , then we have bi+1 = (bi−pi),

b1 = 1, bn+1 = p
n+ 1

and (1− ai) =
bi+1

bi
. From

∏n
i=1(1− ai) = bn+1 and

n∏
i=1

adii (1−ai)n−hi =
( n∏
i=1

adii

) n∏
i=1

(bi+1

bi

)n−hi
=
( n∏
i=1

adii

)
bn−hnn+1

( n∏
i=1

bdii

)
=
( n∏
i=1

pdi
i

)
bn−hnn+1 ,

where hi = d1 + · · ·+ di, we obtain the following for (26):

L(β,p) =
n∏
i=1

[
ci pi

]δi(bi+1

)di−δi =
n∏
i=1

[
ci pi

]δi(bi − pi)di−δi
=

n∏
i=1

cδii p
di
i

(1− ai
ai

)di−δi
=
( n∏
i=1

cδii a
di
i (1− ai)hn−hi

) n∏
i=1

(1− ai
ai

)di−δi

=
n∏
i=1

(
ci ai

)δi(1− ai)ei−δi ≡ L1(a; β)

(49)

where ei = di + · · · + dn. For fixed β satisfying (AS1), from the 1st and 2nd partial

derivatives of logL1(a; β) with respect to ai’s, we know that the solution of equations

∂ logL1

∂ai
= 0, 1 ≤ i ≤ n, is given by âi = δi

ei
, i = 1, · · · , n, which maximizes L1(a; β) with

all 0 ≤ âi ≤ 1. Thus, (27) follows from the fact that the d.f. F corresponding to âi’s is

given by
¯̂
Fn(t; β) =

∏
Vi≤t(1− âi). �
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Proof of (28) and (30)-(31): Notice that we obtain (28) by plugging âi’s into

(49). From notations c′i = dci
dβ and e′i = dei

dβ , we have
c′i
ci

= Z̃i(tiJi) and we obtain equation

(30) from the following:

Ψn(β) = n−1 d
dβ

(
log `(β)

)
= n−1 d

dβ

( n∑
i=1

[
δi(ln ci − ln ei) + (ei − δi)

(
ln(ei − δi)− ln ei

)])
= n−1

n∑
i=1

[
δi

(c′i
ci
− e′i
ei

)
+ e′i log

(
1− δi

ei

)
+ (ei − δi)

(
e′i

ei−δi −
e′i
ei

)]
= n−1

n∑
i=1

[
δiZ̃i(tiJi) + e′i log

(
1− δi

ei

)]
=

n∑
i=1

δi

(
Z̃i(tiJi) + e′i log

(
1− 1

ei

))
.

Using Taylor’s expansion log(1− x) ≈ −x, term log
(
1− 1

ei

)
in (30) is approximated by

− 1
ei

, which gives (31). �

Proof of Lemma 4 (a): Using the notations of Akij’s and dij’s in the proof of

Lemma 3, we have the following for ei in (27) based on di’s given in (26):

ei =
n∑
q=i

dq =
n∑
q=i

(
cqJq +

n∑
k=1

Jk∑
j=1

dkjI{Vq ≤ tkj < Vq+1}
)

=
n∑
k=i

ckJk +
n∑
q=1

n∑
k=1

Jk∑
j=1

dkjAqkjI{q ≥ i}

=
n∑
k=i

ckJk +
n∑
k=1

Jk∑
j=1

n∑
q=1

dkjAqkjI{q ≥ i}

=
n∑
k=i

ckJk +
n∑
k=1

Jk∑
j=1

n∑
q=i

dkjI{Vq ≤ tkj < Vq+1}

=
n∑
k=i

ckJk +
n∑
k=1

Jk∑
j=1

dkjI{Vi ≤ tkj}.

Notice that from data (11) and assumption (24), we know that for each k < i, we always

have tkj ≤ Vk < Vi for any j = 1, · · · , Jk. Thus, we can simplify and express above
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equation as below:

ei =
n∑
k=i

(
ckJk +

Jk∑
j=1

dkjI{Vi ≤ tkj}
)

=
n∑
k=i

Bik, (50)

where Bik = ckJk +
∑Jk

j=1 dkjI{Vi ≤ tkj}. Obviously, if Eik = ∅, we have Bik = ckJk . If

Eik 6= ∅, for Jik given in the statement of Lemma 4 we have

Bik = ckJk +

Jk∑
j=Jik+1

dkj = ckJk +

Jk∑
j=Jik+1

(
ck, j−1 − ckj

)
= ckJik

which gives

Bik
(23)
=eβZ̃k(tkJk )I{Eik = ∅}+ eβZ̃k(tkJik )I{Eik 6= ∅}. � (51)

Proof of Lemma 4 (b): For e′′i =
de′i
dβ , we obtain derivative of ψn(β) in (31):

ψ′n(β) = n−1

n∑
i=1

δi

((e′i)
2 − ei e′′i
e2
i

)
. (52)

Let Cik = Z̃k(tkJk)I{Eik = ∅}+ Z̃k(tkJik)I{Eik 6= ∅}, then from (50)-(51) we have

e′i =
n∑
k=i

CikBik and e′′i =
n∑
k=i

C2
ikBik.

From Cauchy-Schwarz inequality, we know

(
e′i
)2

=
( n∑
k=i

CikBik

)2

=
( n∑
k=i

√
Bik

(
Cik
√
Bik

))2

≤
( n∑
k=i

Bik

)( n∑
k=i

C2
ikBik

)
= ei e

′′
i

which implies ψ′n(β) ≤ 0 in (52). �
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Data-Based Choice of M : In our simulation studies, we only consider the cases

with all nonnegative Z̃i(tij)’s, thus from the proof of Lemma 4 we know that e′i ≥ 0 and

E ′i ≥ 0 always. Applying Taylor’s expansion to (30) and (37), we have the following:

{ Ψn(β) = ψn(β)− n−1

n∑
i=1

δi e
′
i

2(1− ξi)2 e2
i

ΨM,n(β) = ψn(β)− n−1

n∑
i=1

δiE
′
i

2(1− ζi)2E2
i

where ξi is between 0 and 1
ei

, and ζi is between 0 and 1
Ei

, which implies

Ψn(β) < ψn(β) and ΨM,n(β) < ψn(β), for ∀ β. (53)

For fixed β, we differentiate ΨM,n(β) with respective to M :

∂ΨM,n(β)

∂M
= n−1

n∑
i=1

δiE
′
i

(
log
(
1− 1

Ei

)
+

1
Ei

1− 1
Ei

)
≡ n−1

n∑
i=1

δi g
( 1
Ei

)
> 0

where g(x) = log(1− x) + x
1−x , 0 < x < 1 satisfies

g′(x) =
−1

1− x
+

1

(1− x)2
=

x

(1− x)2
> 0 ⇒ g(x) > g(0) = 0.

Thus, we know that for any fixed β, ΨM,n(β) is increasing in M .

Based on above facts, we have the following steps for data-based choice of M , which

starts after finding β̃n from equation ψn(β) = 0.

Steps to Choose M :

Step 1. Compute e1, · · · , en at β = (β̃n − ρ), then order them into e(1) ≤ e(2) ≤ · · · ≤ e(n).

If e(1) ≥ 1, no need to choose M and go to Step 2; if e(1) < 1, go to Step 3.
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Step 2. Search β̂n from equation Ψn(β) = 0: increase ρ > 0 until Ψn(β̃n − ρ) > 0, then

search β̂n in interval (β̃n − ρ, β̃n), because (53) implies Ψn(β̃n) < ψn(β̃n) = 0.

Step 3. Find e∗ = min1≤i≤n{e(i) | e(i) ≥ 10−7} and compute M0 = − log e∗, then search β̂n

from equation ΨM0, n(β) = 0: increase ρ > 0 until ΨM0, n(β̃n − ρ) > 0, then search

β̂n in interval (β̃n − ρ, β̃n), because (53) implies ΨM0, n(β̃n) < ψn(β̃n) = 0.

Step 4. If encounter some Ei ≤ 1 in Step 3, let ΨM0, n(β̂0
n) = 0 by dropping at most two

terms involving Ei ≤ 1. Then, use M = M0 + γ to search β̂n from equation

ΨM,n(β) = 0 in interval (β̃0
n, β̃n), where γ > 0 and ρ > 0 need to be appropriately

chosen based on important facts aforementioned regarding ΨM,n(β) = 0.

Note: Above choice of M0 is to achieve Ei ≥ 1 in order to avoid computing floating

errors, which is difficult to control in intensive Monte Carlo simulation studies. But such

choice of M0 is conservative and can still have occasional Ei ≤ 1, thus adjustment to use

M = M0 + γ is for the purpose of not too big M which can eliminate cases Ei ≤ 1. �

Proof of (44)-(46): For δ̃k and c̃k given in (45), we have

N∏
k=1

∏
Vi=Uk

[
ci dF (Vi)

]δi[F̄ (Vi)
]ci−δi

=
N∏
k=1

( ∏
Vi=Uk

eβZ̃i(tiJi )δi
)[
dF (Vk)

]δ̃k[F̄ (Vk)
]∑n

i=1 ciI{Vi=Uk}−δ̃k

=
N∏
k=1

(
eβ

∑n
i=1 Z̃i(tiJi )δiI{Vi=Uk}

)[
dF (Vk)

]δ̃k[F̄ (Vk)
]∑n

i=1 ciI{Vi=Uk}−δ̃k

=
N∏
k=1

[
c̃k dF (Vk)

]δ̃k[F̄ (Vk)
]∑n

i=1 ciI{Vi=Uk}−δ̃k .

(54)

Using the notations of Akij’s and dij’s in the proof of Lemma 3, for F given by

F (t) =
∑N

k=1 pkI{Uk ≤ t}, we have the following for the last component in the 1st
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equation of (44):

N∏
k=1

∏
Vi=Uk

Ji∏
j=1

[
F̄ (tij)

]dij =
N∏
k=1

n∏
i=1

Ji∏
j=1

[
F̄ (tij)

]dijI{Vi=Uk}

=
N∏
k=1

n∏
i=1

Ji∏
j=1

N∏
q=1

[
F̄ (tij)

]AqijdijI{Vi=Uk} =
N∏
k=1

n∏
i=1

Ji∏
j=1

N∏
q=1

[
F̄ (Uq)

]AqijdijI{Vi=Uk}

=
N∏
q=1

N∏
k=1

n∏
i=1

Ji∏
j=1

[
F̄ (Uq)

]AqijdijI{Vi=Uk}

=
N∏
q=1

[
F̄ (Uq)

]∑N
k=1

∑n
i=1

∑Ji
j=1 AqijdijI{Vi=Uk} =

N∏
k=1

[
F̄ (Uk)

]Ãk

(55)

where

Ãk =
N∑
q=1

n∑
i=1

Ji∑
j=1

AkijdijI{Vi = Uq} =
n∑
i=1

Ji∑
j=1

( N∑
q=1

I{Vi = Uq}
)
Akijdij

=
n∑
i=1

Ji∑
j=1

Akijdij =
n∑
i=1

Ji∑
j=1

(ci, j−1 − cij)I{Uk ≤ tij < Uk+1}.

Thus, from (54) and for d̃k given in (45) we have

n∑
i=1

ciI{Vi = Uk}+Ãk =
n∑
i=1

(
ciJiI{Vi = Uk}+

Ji∑
j=1

(ci, j−1−cij)I{Uk ≤ tij < Uk+1}
)

= d̃k,

which gives (44)-(45) by putting (54) and (55) together.

From the derivation of (49) in the proof of Theorem 1, we know that for any fixed β

satisfying d̃k ≥ δ̃k, k = 1, · · · , N , likelihood function in (44) is maximized by:

1− F̂n(t; β) =
∏
Uk≤t

(
1− δ̃k

ẽk

)
, (56)

where ẽk = d̃k + · · · + d̃N , k = 1, · · · , N ; in turn, by similar derivation to that of (28)
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the profile likelihood function for β0 is given by:

`(β) = L
(
β, F̂n(· ; β)

)
=

N∏
k=1

(
c̃k δ̃k
ẽk

)δ̃k(
1− δ̃k

ẽk

)ẽk−δ̃k
.

From differentiation, we obtain the profile estimating function: Ψn(β) = n−1 d
dβ

(
log `(β)

)
,

which, after computation and algebraic simplification, is given by the 1st equation in (46)

with the given Z̃k.

From Taylor’s expansion, we use linear approximation log(1 − x) ≈ −x on term

log
(
1 − δ̃k

ẽk

)
in Ψn(β) given by the 1st equation in (46), then we obtain approximated

profile estimating function ψn(β), which is given by the 2nd equation in (46).

Finally, using the “shifting” method on the likelihood function given in (44) which is

described in Section 3.2, we follow the derivation of equation (37) step by step, then with

some algebraic work, we obtain generalized profile estimating function ΨM,n(β), which is

given by the 3rd equation in (46). �
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