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APPENDIX

Proof of (14): For fixed t > 0, consider partition points of interval [0, ¢]:

for each subinter-

2~

0 =359 < s < -+ < sy = t, which have equal width A =

—~

val [s;_1, sj], where N is any large positive integer. Then, from (6.8) on Page 196 in

Kalbfleisch and Prentice (2002) we have the following:
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/0 F(s1X%)ds = o(1) + 3 A f(si] X*)

o(1) + [P{sp <T < sp+ A X%} + Ary]

N-1
Mo(l)—f— [P{Sk§T<Sk+A’Xt}+ATk} (47)

N-1
t
o(1) + P{OST <t X} + >
k=0

:0(1)—|—P{0§T<t|Xt}+O(m]?X|rk|),

where 7, is the remainder term from (13) at each s;. Letting N — oo, we know that

(14) follows from (47) and the uniform convergence of (13). O

Proof of Lemma 1: For 6 = 1, we know

g(t,uxt):gn%A*P{th@wA,5:1|Xt}
_>

=lim APt <T<t+A T<C|X'}
A—0



Thus, the 1st equation of (16) follows from (13) and the following inequalities:

PH<T<t+AT<C|X}<P{t<T<t+At<C|X"}
=P{t<T<t+A|X}P{t<C|X"}=P{t<T <t+A|X"}Fo(t);
Pt<T<t+AT<CIX}>Pt<T<t+A t+A<C|X"}

=Pt <T<t+A|XIPt+AL<C|X}=P{t<T<t+A|X"}Fs(t+A).
For 0 = 0, we know

g(t,O|Xt):£Ln APt <V <t+A5=0|X"}

=lim APt <C<t+AT>C|X'}.
A—0

Thus, the 2nd equation of (16) follows from (12)-(13) and the following inequalities:

Pt<C<t+AT>CIX'}<P{I<C<t+AT>t|X"
=Pt<C<t+A|XYIP{T>t| X'} =P{t<C<t+A}F(t|X");
Pt<C<t+AT>C|X'}>Pt<C<t+At+AL<T|X"}

=Pt <C<t+A|XYIPHt+ALST|XY'=P{t<C<t+A}Ft+A|X"). O

Proof of Lemma 2: From (18), for any t € [t;;,, V;] we have for t;o = 0:
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Thus, for Z,(O) =0and ¢; = ePZi(ti) with cio =1 and ¢; = ¢;y,, (19) can be written as
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- [F0<t)r“i ]j [Fb(tij)ri’j_l = C H C J'—l_cij.
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Equation (20) is obtained by f(¢|X}) = —%(F’(t | X1)). O
Proof of (21): From Lemma 2, we have the following:
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Proof of Lemma 3: Let Ay; = I{V, < t;j < Vip1} with V41 = oo and let
di; = ¢ j—1 — ¢ij with ¢;;’s given by (23). Since for F' given by (25), we have F(¢;;) =0

for 0 <t;; < Vi, then the last component of (22) can be simplified as:

HU[F( )]d :UUU[F(QJ)}A’WCIJ:HHU[F(V)}AMCIJ
=TT (P =TT tRoil ™ =TT [Foa™,
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where Ay = >0, Z] 1 Akijdi;. Then, (22) can be written as:

f[ e dF (V)] [F(Vi)]“ % (48)

=1

where for 4; =>7_, Ejil A;jjdy;, we have for ¢;;’s given in (23),

n Ji n Jg
di =c; + AZ =c; + Z ZAzk]dk] = CiJ; + Z Z(Ck7j_1 — Ck])f{‘/; S tk]’ < ‘/i-&-l}'
k=1 j=1 k=1 j=1
Thus, (26) follows from (25) and (48). O

Proof of Theorem 1: Let a; = b L with b; = Z"+1p then we have b1 = (b —p,),

by=1,by1=p,,, and (1—a;) = b’b—tl From [} ,(1 — a;) = by41 and

n n

[Le0ma = (L) T (5" = (Tt (1) = (Tt

=1 =1 =1

where h; = d; + - - - + d;, we obtain the following for (26):

i=1 i=1 i=1 i
= H (c; ai)éi(l — 1)61 = Li(a; 5)
=1

where ¢; = d; + --- + d,. For fixed § satisfying (AS1), from the 1st and 2nd partial
derivatives of log L1 (a; B) with respect to a;’s, we know that the solution of equations
alg—ifl =0,1<i<n,is given by a; = g—z, i=1,--+,n, which maximizes L, (a; 8) with

all 0 < a; < 1. Thus, (27) follows from the fact that the d.f. F' corresponding to a;’s is

given by Fn(t; B) =11y« (1 — a@). O



Proof of (28) and (30)-(31): Notice that we obtain (28) by plugging a;’s into

/
(49). From notations ¢, = Z—% and e} = Z%, we have “t — Z.(t;;.) and we obtain equation

(30) from the following:

n

W, (8) = n~ 5 (log €(8) =n 45 (3 [ines — Ineg) + (e = 8) (In(es — &) — Iney)] )

=1

n

—n! 3 [5121( ;) + €; log < gz)} = Z& <Z,(twl) + € log (1 — e%))

=1 i=1

Using Taylor’s expansion log(1 — ) ~ —z, term log (1 — el) in (30) is approximated by

— 2, which gives (31). O
Proof of Lemma 4 (a): Using the notations of Ay;’s and d;;’s in the proof of

Lemma 3, we have the following for e; in (27) based on d;’s given in (26):

n Ji
_ Zd _ Z (can + 30D disT{Vy < tig < Vi)

=1 k=1 j=1

= ZCka —|—ZZde]Aqk]I{q > ’L}

q=1 k=1 j=1

= Zcm + Zzzdkﬁqkﬁ{q > i}

k=1 j=1 ¢=1

= ZCka + ZZZd@I{V <ty < Vq+1}

k=1 j=1 gq=t

Chi, + Zde][{V <t}

k=i k=1 j=1

Notice that from data (11) and assumption (24), we know that for each k < i, we always

have ty; < Vi < V; for any j = 1,---,J;. Thus, we can simplify and express above



equation as below:

n

e; = (Cka + Z koI{V < tm}) = Z Bik; (50)
k=i

k=i j=1

where B, = ¢y, + Zjil dii I{V; < tx;}. Obviously, if & = 0, we have By, = ¢y, If

Eix # 0, for Jy, given in the statement of Lemma 4 we have

k Ik
B, = Cry, + Z dkj = Crj, + Z (Ck,jfl - ij) = CkJyy,
which gives
By, (23) BZk (tka,,) I{Ek — (Z)} 4 eﬁZk tkay, I{Ek 7& (Z)} O (51)

Proof of Lemma 4 (b): For e} = Z—eﬁi, we obtain derivative of 9, () in (31):

W ( _n*125< _62 ) (52)

Let Czk = Zk(tkjk>j{glk = (Z)} + Zk(tkt]m)]{gzk 7é @}, then from (50)—(51) we have

n n
e = E CixBix and € = E C? B,
k=i k=i

From Cauchy-Schwarz inequality, we know

= <gCikBik>2 = (ki\/B_zk(C'm\/B_ug)>2 < (gBNO (gq?szk) — el

which implies ¢/, (5) < 0 in (52). O



Data-Based Choice of M : In our simulation studies, we only consider the cases
with all nonnegative Z;(t;)’s, thus from the proof of Lemma 4 we know that ¢} > 0 and
E! > 0 always. Applying Taylor’s expansion to (30) and (37), we have the following:

{%(m _ 1221—@

=1 i

: 6 E!
-1
\I]M,n(ﬂ)_ - ZQ 1_C 2E2
=1 ¢

where &; is between 0 and %, and (; is between 0 and %, which implies
Un(B) <¥n(B) and Wi n(B) < ¥n(B), for v 3. (53)

For fixed f3, we differentiate Wy, ,,(8) with respective to M:
8\I!M o B . v e .
— 125E’<10g _E) —1fL>Enlzéig(E)>0
i =1

where g(z) =log(1 — z) + ﬁ, 0 < z < 1 satisfies

g (x) = 1__135 + a _135)2 = a _:Cx>2 >0 = g(z)>g(0)=0.

Thus, we know that for any fixed 5, ¥y, (/) is increasing in M.

Based on above facts, we have the following steps for data-based choice of M, which

starts after finding 8, from equation Un(B) = 0.

Steps to Choose M:

Step 1. Compute e, -+ ,e, at 8 = (Bn — p), then order them into ey < epy < -+ <epy.

If e(1y > 1, no need to choose M and go to Step 2; if e;) < 1, go to Step 3.



Step 2. Search 3, from equation ¥, (3) = 0: increase p > 0 until W, (3, — p) > 0, then
search (3, in interval (3, — p, (), because (53) implies W,,(5,) < ¢n(3,) = 0.

Step 3. Find e* = mini<;<,{eq) | ew > 1077} and compute My = —loge*, then search B,
from equation Wy, »(8) = 0: increase p > 0 until ‘IJMO,n(Bn — p) > 0, then search

B, in interval (B, — p, Bn), because (53) implies Ut (Bn) < n(Bn) = 0.

Step 4. If encounter some F; < 1 in Step 3, let ¥ MO,n(BAg) = 0 by dropping at most two
terms involving E; < 1. Then, use M = My + v to search Bn from equation
U n(8) = 0 in interval (~2, Bn), where v > 0 and p > 0 need to be appropriately

chosen based on important facts aforementioned regarding Wy, ,(5) = 0.

Note: Above choice of M is to achieve F; > 1 in order to avoid computing floating
errors, which is difficult to control in intensive Monte Carlo simulation studies. But such
choice of My is conservative and can still have occasional F; < 1, thus adjustment to use

M = My + 7 is for the purpose of not too big M which can eliminate cases F; < 1. [J

Proof of (44)-(46): For 6, and &, given in (45), we have
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Using the notations of Ag;’s and d;;’s in the proof of Lemma 3, for F' given by

F(t) = Zszlka{Uk < t}, we have the following for the last component in the 1st

8



equation of (44):

N Ji N n J;
[T IT TI 1P ™ = TTTTIT [Feea) ™=
k=1 V;=Uj, j=1 k=1i=1 j=1
N n J N N n J N
STITTELIT ey < T i
k;l i]:Vl j:l qzl k=1i=1 j=1 q=1 (55)
= H H H {F(Uq)} Aqijdij I{Vi=Uy}
g=1 k=1 i=1 j=1
N N . N N
_ H [F(Uq)]z:k:l 2it1 25t Aqigdig I{Vi=Ux} _ H [F(UkﬂAk
g=1 k=1
where
5 N n Jl' n Jz‘ N
A=) Apgdi I{Vi = U = > 0> (ZI{% = Uq}>Akz'jdz‘j
¢=1 i=1 j=1 i=1 j=1  g¢=1
n Ji n Ji
= ZZAkijdij = ZZ(Ci,jfl — i) I{Ur < tij < Ups1}.
i=1 j=1 i=1 j=1
Thus, from (54) and for dj, given in (45) we have
n ~ n J; ~
ZCZI{V; = Uk}'f‘Ak = Z (Czjl_[{‘/; == Uk}+Z(Ci,j—1 _Cij)]{Uk S tij < Uk+1}> = dk,
i=1 i=1 j=1

which gives (44)-(45) by putting (54) and (55) together.

From the derivation of (49) in the proof of Theorem 1, we know that for any fixed J

satisfying dy > o, k = 1,--- , N, likelihood function in (44) is maximized by:

1B =] (1-2). (56)

Up<t

where é, = dy +---+dy, k= 1,---,N; in turn, by similar derivation to that of (28)



the profile likelihood function for f; is given by:

From differentiation, we obtain the profile estimating function: V,(5) = n*1% ( log 5(6)),
which, after computation and algebraic simplification, is given by the 1st equation in (46)
with the given Zj.

From Taylor’s expansion, we use linear approximation log(l — z) &~ —x on term
log (1 — g—’;) in U, (B3) given by the 1st equation in (46), then we obtain approzimated

profile estimating function 1, (3), which is given by the 2nd equation in (46).

Finally, using the “shifting” method on the likelihood function given in (44) which is
described in Section 3.2, we follow the derivation of equation (37) step by step, then with
some algebraic work, we obtain generalized profile estimating function Wy, ,(/3), which is

given by the 3rd equation in (46). O
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