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A. Linear Regression

In this section, we will explore the difference in performance between the MOSUM-
Wald and MOSUM-score methodology when applied to linear regression where we use
the usual least squares methodology that requires no numerical approximation.
To this end, we consider a time series Yi = XT

i β+εi, i = 1, . . . , n, of length n = 1000 with
exogenous regressors Xi = (1, Xi,1, Xi,2)T with Xi,1 ∼ N(1, 1) and Xi,2 ∼ N(2, 1) and
i.i.d. standard normal errors. We include three change points at 200, 500 and 800 and the
regression coefficients β1 = (1, 2, 2)T ,β2 = (1, 1, 2)T ,β3 = (2, 1, 2)T and β4 = (2, 1, 1)T .
We use the global least-squares regression estimator as inspection parameter β̂1,n for the
MOSUM-score statistic.
As discussed in Remarks 2 and 5 we can make minimal assumptions on the covariance
estimators theoretically, but the small-sample performance crucially depends on this
estimator.
As covariance estimators we use Σ̂

(j)
= v̂

(j)
n

1
n

∑n
i=1XiX

T
i with

v̂(1)
n =

1

n− 1

n∑
i=1

(Yi −XT
i β̂1,n)2, (S-global)

v̂(2)
n =

1

2G

(
k∑

i=k−G+1

(ε̂i − ε̄k−G+1,k)
2 +

k+G∑
i=k+1

(ε̂i − ε̄k+1,k+G)2

)
,

with ε̂i := Yi −XT
i β̂1,n and ε̄l,u :=

1

u− l + 1

u∑
i=l

ε̂i, (S-local)

v̂(3)
n =

1

2G

(
k∑

i=k−G+1

(Yi −XT
i β̂k−G+1,k)

2 +

k+G∑
i=k+1

(Yi −XT
i β̂k+1,k+G)2

)
.

(W-local)

We use the first two estimators with the MOSUM-score statistics while the last one is only
used with the Wald statistics where the estimators β̂t+1,t+G are already available. We
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do not use this estimator with the MOSUM-score statistic because their usage cancels
the computational advantage of the MOSUM-score statistic over the MOSUM-Wald
statistic.
The first two estimators Σ̂

(j)
, j = 1, 2, are only consistent in the no-change situation

but do not fulfill assumption 8(a) in the presence of change points. Instead of using a
threshold as in Remark 5, in this simulation study, we stick to the threshold as in (9)
for all methods.
Table 1 gives the estimated number of change points as well as the detection rates
for all three change points in the various settings. For a bandwidth of 50 the MOSUM-
Wald procedure (with W-local) outperforms the MOSUM-score procedure (with S-local),
while both procedures achieve a similar performance for bandwidth 100. The MOSUM-
score procedure with the global estimator (S-global) is clearly inferior to both competing
methods (in particular for smaller bandwidth and the second change point) emphasizing
again the importance of the choice of the covariance estimator for the small sample
performance.
In terms of computation time (for G = n2/3) the MOSUM-score clearly outperforms the
MOSUM-Wald statistics: Even with the local estimator (S-local), the MOSUM-score
statistic was roughly 22 times faster in our simulations than the MOSUM-Wald statistic
(with W-local) for a time series of length 1000 (an average (out of 100 runs) of 0.03
seconds as compared to 0.66 seconds). For a length of 8000 it was already more than
31 times faster (0.22 versus 6.91 seconds). The numbers only give a qualitative idea
as we did not optimize any of the procedures with respect to computation time but
merely used the R-function rollsum (from the R-package zoo Zeileis and Grothendieck
(2005)) to calculate the MOSUM-statistics, where the local estimators for the covariance
matrices are implemented naively with a loop and the local regression parameter for the
Wald-statistics is calculated with the lm-function.
More simulation results for the linear regression situation including the false alarm rate in
the no-change situation, the results for other bandwidths and covariance estimators and
more information on computing times can be found in Reckrühm (2019), Section 4.1.

B. Simulations for the Poisson Autoregressive Model

In this section we consider the Poisson autoregressive model with the estimation function
corresponding to the partial likelihood as in Section 2.3.3. Compared to Section A this
includes two additional difficulties: First, due to the serial dependence of the data the
true scaling of the procedures depends on the long-run covariance rather than the co-
variance matrix. This time-dependency is also the reason behind the larger bandwidths
compared to Section A. Secondly, there is no analytical solution to the estimating pro-
cedure such that numerical methods are required which as expected will greatly increase
computation time for the MOSUM-Wald procedure. We consider a time series of length
n = 1000 with three change points at times 250, 500 as well as 750 with the paramaters
θ1 = (1, 0.5)T , θ2 = (2.5, 0.5)T , θ3 = (2.5, 0.2)T as well as θ4 = (1, 0.5)T .
For the MOSUM-score statistics we use the global (partial) maximum likelihood estima-
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Estimated number q̂ Detection rate
G ≤ 1 2 3 4 ≥ 5 200 500 800

MOSUM-score with S-global covariance estimator

50 0.484 0.489 0.027 0 0 0.494 0.027 0.993
100 0.003 0.468 0.518 0.011 0 0.969 0.515 0.999

MOSUM-score with S-local covariance estimator

50 0.110 0.502 0.353 0.034 0.001 0.804 0.430 1.000
100 0 0.049 0.918 0.033 0 0.985 0.917 1.000

MOSUM-Wald with W-local covariance estimator

50 0.018 0.445 0.501 0.035 0.001 0.963 0.539 1.000
100 0 0.030 0.945 0.025 0 0.998 0.938 1.000

Table 1: Number of estimated change points and detection rate for all three change points
(i.e. percentage of simulations with a change point estimator in the interval
[kj,n − 20, kj,n + 20]) for the various scenarios in the linear regression example.

tor as inspection parameter as well as the one based on the observations between time
point 300 and 700 (compare also Remark 4). To estimate the covariance matrix we use
the following local estimator

Σ̂k,n

=
1

2G

k∑
i=k−G+1

(
H(Yi, θ̂1,n)−Hk−G+1,k

)(
H(Yi, θ̂1,n)−Hk−G+1,k

)T
+

1

2G

k+G∑
i=k+1

(
H(Yi, θ̂1,n)−Hk+1,k+G

)(
H(Yi, θ̂1,n)−Hk+1,k+G

)T
,

where H l,u denotes the sample mean of H(Yl, θ̂1,n), . . . ,H(Yu, θ̂1,n). However, this
estimator does not take the dependence into account and as such estimates the covariance
rather than the long-run covariance matrix, such that Assumption 8(a) is not fulfilled.
As before we use a threshold as in (9) despite Remark 5.
Motivated by Weiß (2010), equations (7) and (8), we use the estimator

Γ̃
−1

k,n = 1
2

(
Γ̃
−1

k−G+1,k + Γ̃
−1

k+1,k+G

)
in the MOSUM-Wald procedure, where

Γ̃
−1

l,u =
1

G

u∑
i=l

1

(Y T
i−1θ̂

ML

l,u )2

(
Yi YiYi−1

YiYi−1 YiY
2
i−1

)
.

Table 2 gives the estimated number of change points as well as the detection rates for
all three change points in the various setting. In this case, the MOSUM-Wald statistics
outperforms the score procedures in terms of detection rates for the second and third
change point but indeed the MOSUM-score with the restricted estimator (rather than
the global one) slightly outperforms the MOSUM-Wald for the first one.
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Estimated number q̂ Detection rate
G ≤ 1 2 3 4 ≥ 5 250 500 750

MOSUM-score procedure with θ̂1,1000

80 0.619 0.288 0.063 0.028 0.002 0.713 0.135 0.242
150 0.056 0.321 0.449 0.137 0.037 0.921 0.583 0.623

MOSUM-score procedure with θ̂300,700

80 0.100 0.397 0.300 0.143 0.060 0.936 0.199 0.734
150 0.018 0.162 0.596 0.194 0.030 0.919 0.724 0.742

MOSUM-Wald procedure

80 0.069 0.295 0.373 0.199 0.064 0.890 0.603 0.645
150 0.001 0.040 0.629 0.261 0.069 0.896 0.809 0.803

Table 2: Number of estimated change points and detection rate for all three change points
(i.e. percentage of simulations with a change point estimator in the interval
[kj,n − 20, kj,n + 20]) for the various scenarios in the Poisson autoregressive
example.

The MOSUM-score is computationally much cheaper and scales better with longer series.
Indeed, the median computation time (for 100 runs and G = n2/3) for the MOSUM-Wald
statistics for a length of n = 1000 (running several minutes) was more than 272 times
slower than the MOSUM-score statistic (running less than a second). For n = 8000 the
MOSUM-Wald statistics ran for more than half an hour which was more than 362 times
slower than the MOSUM-score (which ran for less than 6 seconds). In particular, the
MOSUM-Wald statistic is significantly slowed down by the need of numerical optimiza-
tion in comparison to the linear regression where no numerical methods are required.
The numbers only give a qualitative idea where a naive loop was used for the calculation
of the statistics and the global and local parameter estimators for the Poisson regression
were calculated with the R-package tscount Liboschik, Fokianos, and Fried (2017).
In conclusion, the MOSUM-score statistic can be a good way to generate change point
candidates by means of using different inspection parameters (and bandwidths) even in
combination with a sub-optimal covariance estimation procedure.
More simulation results including the false alarm rate in the no-change situation, the
results for other bandwidths and covariance estimators, results for the least-squares
estimators and more information on computing times can be found in Reckrühm (2019),
Section 4.2.
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C. Proofs of Section 2.4

Proof of Theorem 1. We first prove the assertions for the MOSUM-score statistics (` =
2): By the invariance principle in Assumption 1 (b) as well as Assumption 3 on the
bandwidth we get (with Σ = Σ1(θ̃)) that

max
G≤k≤n−G

1√
2G

∥∥∥Σ−1/2M
θ̃
(k)
∥∥∥

= max
G≤k≤n−G

1√
2G
‖W (k +G)− 2W (k) +W (k −G)‖+ oP

(
a(n/G)−1

)
= sup

r∈[G,n−G]

1√
2G
‖W (r +G)− 2W (r) +W (r −G)‖+ oP

(
a(n/G)−1

)
D
= sup

t∈[1,n/G−1]

1√
2
‖W (t+ 1)− 2W (t) +W (t− 1)‖+ oP

(
a(n/G)−1

)
,

where we used the self-similarity of the Wiener process in the last step. By an applica-
tion of Lemma 3.1 in combination with Remark 3.1 of Steinebach and Eastwood (1996)
with α = 1 and C1 = . . . = Cp = 3/2, assertion (a) for the MOSUM-score statistics
follows. The assertion for the MOSUM-Wald statistics (` = 1) follows from this and
Assumption 2. The assertions in (b) follow successively by an application of the trian-
gular inequality in combination with the consistency of the spectral matrix norm with
the Euclidean vector norm (as the corresponding induced norm). The assertions in (c)
are obtained analogously.

D. Proofs of Section 3.1

Proof of Proposition 1. First, by Theorem 1,

P

(
max

j=1,...,q+1
max

kj−1,n+G≤k≤kj,n−G
T

(1)
k,n(G) ≥ Dn(αn, G)

)
≤

q+1∑
j=1

P

(
a(n/G) max

kj−1,n+G≤k≤kj,n−G
T

(1)
k,n(G)− b(n/G) ≥ cαn

)

≤
q+1∑
j=1

(αn + o(1))→ 0,

showing (a) (i). Furthermore, because the spectral matrix norm is induced by the
Euclidean vector norm, it holds ‖Ax‖ ≤ ‖A‖‖x‖ as well as ‖x‖ ≤ ‖A−1‖‖Ax‖. Then,
by Assumption 6 (a) applied to the second term (which is dominated by the maximum
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in the assumption as can be seen by an index shift),

min
kj,n−(1−ε)G≤k≤kj,n

T
(1)
k,n(G)

≥ min
kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥Γ−1/2
k

(
θ̂k+1,k+G − θj

)∥∥∥
− max
kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥Γ−1/2
k

(
θ̂k−G+1,k − θj

)∥∥∥
≥
∥∥∥Γ1/2

(j)

∥∥∥−1
min

kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥θ̂k+1,k+G − θj
∥∥∥

−
∥∥∥Γ−1/2

(j)

∥∥∥ max
kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥θ̂k−G+1,k − θj
∥∥∥

=
∥∥∥Γ1/2

(j)

∥∥∥−1
min

kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥θ̂k+1,k+G − θj
∥∥∥+OP

(√
log(n/G)

)
.

We get by Assumption 5 and 6 (b)

P

(
min

j=1,...,q
min

kj,n−(1−ε)G≤k≤kj,n
T

(1)
k,n(G) < Dn(αn, G)

)
≤

q∑
j=1

P

(
min

kj,n−(1−ε)G≤k≤kj,n

√
G

2

∥∥∥θ̂k+1,k+G − θj
∥∥∥ < OP

(√
log(n/G)

))
→ 0.

Similar arguments deal with the minimum over kj,n < k ≤ kj,n + (1 − ε)G, such that
assertion (a)(ii) follows.
The proof of (b) follows along the same lines taking Assumption 7 into account.

Proof of Remark 2. The proof is analogous to the above proofs where we use that by
Theorem 1

max
j=1,...,q+1

max
kj−1,n+G≤k≤kj,n−G

∥∥∥T (1)
k,n(G)

∥∥∥ = OP

(√
log(n/G)

)
.

Proof of Theorem 2. The assertion follows immediately from Proposition 1 on noting
that {

max
j=1,...,q+1

max
kj−1,n+G≤k≤kj,n−G

T
(1)
k,n(G) < Dn(αn, G)

}
∩
{

min
kj,n−(1−ε)G≤k≤kj,n+(1−ε)G

T
(1)
k,n(G) ≥ Dn(αn, G)

}
⊂
{
q̂(1)
n = q

}
∩
{

max
1≤j≤q

∣∣∣k̂(1)
j,n − kj,n

∣∣∣ < G

}
.
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E. Proofs of Section 3.2

Proof of Lemma 1. We will show by contradiction that EH(X(j)
1 , θ̃0,1) 6= EH(X(j+1)

1 , θ̃0,1)
holds for at least one j ∈ {1, . . . , q}. Assume that all these expectations are equal, then
by definition of θ̃0,1 we get for all j = 1, . . . , q + 1

0 =

q+1∑
l=1

(λl − λl−1)EH(X(l)
1 , θ̃0,1) = EH(X(j)

1 , θ̃0,1),

which by the identifiability of θj implies θj = θ̃0,1, for all j = 1, . . . , q+ 1, contradicting
the assumption. If there are only two possible regimes, then clearly if one change is
detectable all of them are.

Proof of Proposition 2. Analogously to the proof of Proposition 1 (a) (i) we get

P

(
max

j=1,...,q+1
max

kj−1,n+G≤k≤kj,n−G
T

(2)
k,n(G, θ̃) ≥ Dn(αn, G)

)
→ 0.

The statement remains true when a sequence of inspection parameters θ̃n is used because
by Assumption 4 (i) it holds for any j = 1, . . . , q that

a(n/G) max
kj−1,n+G≤k≤kj,n−G

T
(2)
k,n(G, θ̃n)

= a(n/G) max
kj−1,n+G≤k≤kj,n−G

T
(2)
k,n(G, θ̃) + oP (1).

Additionally, we need the statement for environments of non-detectable change points
kj,n with j 6∈ Q̃. Indeed, it holds for |k − kj,n| ≤ G with j 6∈ Q̃ that EM

θ̃
(k) = 0 by

definition of Q̃ as in (10). Consequently, by Assumptions 1 and 3 it holds for j 6∈ Q̃

max
kj,n≤k<kj,n+G

T
(2)
k,n(G, θ̃)

= oP (1) +OP

(
max

kj,n≤k<kj,n+G

1√
G
‖W (k +G)− 2W (k) +W (kj,n)‖

)
+OP

(
max

kj,n≤k<kj,n+G

1√
G

∥∥∥Σ−1/2
(j+1)Σ

1/2
(j) (W (kj,n)−W (k −G)))

∥∥∥)
= OP (1) = oP (Dn(αn, G)), (1)

where the last line follows by the self-similarity of Wiener processes, the stationarity
of its increments and the continuous sample paths. An analogous assertion holds for
kj,n −G ≤ k < kj,n showing that

P

(
max
j 6∈Q̃

max
|k−kj,n|<G

T
(2)
k,n(G, θ̃) ≥ Dn(αn, G)

)
→ 0,
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completing the proof of (a) (i) for a fixed inspection parameter θ̃. Here, the statement
remains true for a sequence of inspection parameters, because by Assumption 4 (ii) it
holds for j 6∈ Q̃

max
|k−kj,n|<G

T
(2)
k,n(G, θ̃n) = max

|k−kj,n|<G
T

(2)
k,n(G, θ̃) + oP (

√
log(n/G)) (2)

= oP (Dn(αn, G)).

The assertion with estimated long-run covariances as in (b) can be obtained along the
same lines by using the consistency of the spectral matrix norm with the Euclidean
vector norm and Assumptions 8 (b).
Concerning (ii) first observe that for k̃j,n < k ≤ k̃j,n + (1− ε)G, j = 1, . . . , q̃(θ̃) it holds

EM
θ̃
(k)

=
k+G∑
i=k+1

EH(X(j+1)
i , θ̃)−

k̃j,n∑
i=k−G+1

EH(X(j)
i , θ̃)−

k∑
i=k̃j,n+1

EH(X(j+1)
i , θ̃)

=
(
G− |k − k̃j,n|

)
dj ,

where we denote the signal by

dj = EH(X(j+1)
1 , θ̃)− EH(X(j)

1 , θ̃), j = 1, . . . q̃(θ̃). (3)

For k̃j,n − (1− ε)G ≤ k ≤ k̃j,n we arrive at the same conclusion. Consequently, it holds
for all j ∈ Q̃ and |k − k̃j,n| ≤ (1 − ε)G by the consistency of the spectral matrix with
the Euclidean vector norm∥∥∥Σ−1/2

k EM
θ̃
(k)
∥∥∥ ≥ ∥∥∥Σ1/2

k

∥∥∥−1 (
G− |k − k̃j,n|

)
‖dj‖ ≥ cG,

for some c > 0 (depending on ε, the difference in expectation and the long-run covari-
ances, noting that Σk is constant on each segment).
By analogous arguments as in (1) (but involving the necessary centering due to Q̃) and
(2) it holds

min
|k−k̃j,n|≤(1−ε)G

T
(2)
k,n(G, θ̃n)

= min
|k−k̃j,n|≤(1−ε)G

1√
2G

∥∥∥Σ−1/2
k EM

θ̃
(k)
∥∥∥+ oP (

√
log(n/G))

≥ c
√
G

2
+ oP

(√
log(n/G)

)
.

The proof can now be concluded as in the proof of Proposition 1 (a) and (b) (ii).

Proof of Theorem 3 and Remark 5. The proofs are completely analogous to the proofs
of Theorem 2 respectively Remark 2 and therefore omitted.
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The following lemma helps simplify several arguments.

Lemma 1. For a sequence of real random variables {Xn} it holds for n→∞

Xn = OP (1) ⇐⇒ P (|Xn| > ξn)→ 0 for any ξn →∞.

Proof. The proof of the only-if-part is straightforward. We prove the if-part by contra-
diction. If Xn is not stochastically bounded, then there exists η > 0 such that for any
bound C > 0 and any n0 ≥ 0, there exists n1(n0, C) > n0 such that P (|Xn1 | > C) > η.
Setting N0 = 0 and recursively Nl = n1(Nl−1, l) as well as ξNl−1+1 = . . . = ξNl

= l, we
get Nn →∞, ξn →∞ as well as by construction

P (|XNl
| > ξNl

) > η,

which is a contradiction.
The proof technique of the below proof is well known in change point analysis, for
example it has been used in the context of MOSUM statistics for the mean change
problem by Eichinger and Kirch (2018) (Proof of Theorem 3.2).

Proof of Theorem 4. By finiteness of q and Lemma 1 it is sufficient to prove that for any
sequence ξn →∞ (arbitrarily slow) it holds

P
(
k̂

(2)
j,n(θ̃n; Ψ̂j,n) < k̃j,n(θ̃)− ξn

)
→ 0,

P
(
k̂

(2)
j,n(θ̃n; Ψ̂j,n) > k̃j,n(θ̃) + ξn

)
→ 0.

We will prove the first assertion in detail, the second one follows analogously. For
simplicity of notation denote k̃j,n = k̃j,n(θ̃) throughout this proof.
On the asymptotic 1-set of Theorem 3 and where minj=1,...,q+1 |kj,n−kj−1,n| > 2G (which

holds for n large enough by Assumption 3 (b)), it holds for any j = 1, . . . , q̃(θ̃) with dj
as in (3)

k̂
(2)
j,n(θ̃n; Ψ̂j,n) = arg max

vj,n≤k≤wj,n

V
(j)
k,n (G, θ̃n), where

V
(j)
k,n (G, θ̃n) =

∥∥∥Ψ̂−1/2

j,n M
θ̃n

(k)
∥∥∥2

−
∥∥∥Ψ̂−1/2

j,n M
θ̃n

(kj,n)
∥∥∥2

= −
(
M

θ̃n
(k̃j,n)−M

θ̃n
(k)
)

Ψ̂
−1

j,n

(
M

θ̃n
(k̃j,n) +M

θ̃n
(k)
)

=: −
(
E1(k,G, θ̃n) + dj(k̃j,n − k)

)
Ψ̂
−1

j,n

(
E2(k,G, θ̃n) + dj(2G+ k − k̃j,n)

)
.

Denote ∆H(X(j)
i , θ̃n) = H(X(j)

i , θ̃n) − H(X(j)
i , θ̃) and H0(X(j)

i , θ̃) = H(X(j)
i , θ̃) −

EH(X(j)
i , θ̃).
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Then, it holds for k < k̃j,n

E1(k,G, θ̃n) = M
θ̃n

(k̃j,n)−M
θ̃n

(k)− dj(k̃j,n − k)

=

k̃j,n+G∑
i=k+G+1

∆H(X(j+1)
i , θ̃n) +

k̃j,n−G∑
i=k−G+1

∆H(X(j)
i , θ̃n)− 2

k̃j,n∑
i=k+1

∆H(X(j)
i , θ̃n)

+

k̃j,n+G∑
i=k+G+1

H0(X(j+1)
i , θ̃) +

k̃j,n−G∑
i=k−G+1

H0(X(j)
i , θ̃)− 2

k̃j,n∑
i=k+1

H0(X(j)
i , θ̃),

where by Assumption 10 (see also Remark 7 for the situation when k > k̃j,n) and
stationarity of the segments it follows

sup
ξn<k̃j,n−k≤G

‖E1(k,G, θ̃n)‖
k̃j,n − k

= oP (1). (4)

Furthermore,

E2(k,G, θ̃n)

= −E1(k,G, θ̃n)

+ 2

k̃j,n+G∑
i=k̃j,n+1

∆H(X(j+1)
i , θ̃n)− 2

k̃j,n∑
i=k̃j,n−G+1

∆H(X(j)
i , θ̃n)

+ 2

k̃j,n+G∑
i=k̃j,n+1

H0(X(j+1)
i , θ̃)− 2

k̃j,n∑
i=k̃j,n−G+1

H0(X(j)
i , θ̃),

such that by (4), Assumption 10 (a) and stationarity of the segments in combination
with the law of large number (that follows from Assumption 1, see also Remark 7) it
holds

sup
ξn<k̃j,n−k≤G

‖E2(k,G, θ̃n)‖
G

= oP (1).

By Assumptions 9 and the consistency of the spectral matrix norm with the Euclidean
vector norm we conclude

sup
ξn<k̃j,n−k≤G

V
(j)
k,n (G, θ̃n)

≤ (djΨ̂
−1

j,ndj + oP (1)) sup
ξn<k̃j,n−k≤G

[−(k̃j,n − k)(2G+ k − k̃j,n)].

Finally,

sup
ξn<k̃j,n−k≤G

[−(k̃j,n − k)(2G+ k − k̃j,n)] ≤ −ξnG < 0,

10



and

djΨ̂
−1

j,ndj = ‖Ψ̂
−1/2

j,n dj‖2 ≥ ‖Ψ̂
1/2

j,n ‖−2‖dj‖2

Consequently,

P
(
k̂

(2)
j,n(θ̃n; Ψ̂j,n) < k̃j,n − ξn

)
≤ P

(
sup

k̃j,n−G≤k<k̃j,n−ξn
V

(j)
k,n (G, θ̃n) ≥ sup

k̃j,n−ξn≤k≤k̃j,n+G

V
(j)
k,n (G, θ̃n)

)
+ o(1)

≤ P

(
sup

k̃j,n−G≤k<k̃j,n−ξn
V

(j)
k,n (G, θ̃n) ≥ 0

)
+ o(1)

≤ P

(
(djΨ̂

−1

j,ndj + oP (1)) sup
ξn<k̃j,n−k≤G

[−(k̃j,n − k)(2G+ k − k̃j,n)] ≥ 0

)
+ o(1)

≤ P
(
|oP (1)| ≥ djΨ̂

−1

j,ndj

)
+ o(1) ≤ P

(
|oP (1)| ‖Ψ̂

1/2

j,n ‖2 ≥ ‖dj‖2
)

+ o(1)

= o(1),

where the last line follows from Assumption 9, concluding the proof.

F. Proofs of Section 4

Proof of Theorem 5. The assertion in (a) follows by Theorem 4 of Kuelbs and Philipp

(1980) on noting that the mixing rate of H(X(j)
1 ,θ) is at least as good as the one of

{X(j)
1 } by definition. Because the time series in backward time is also mixing with the

same rate, Assumption 10 (b) follow from the invariance principle in backward time (see
also Remark 7).
The remaining assumptions all correspond to well known results in statistics if a global
estimator based on estimating functions is used. However, here, it is maximized over an
increasing number of windows. To this end, we require versions of uniform laws of large
numbers taking these moving windows into account as given in the following lemma.

Lemma 2. Let {Yt} be p-dimensional random vectors fulfilling Regularity Condition 1
(b) with ν̃ as below (in (a),(b),(d) and arbitrary in (c)), Θ ⊂ Rp be a compact parameter
space and F = (F1, . . . , Fp)

T : (Rp,Θ)→ Rp measurable.

(a) If 0 < E ‖F (Y1,θ)‖2+ν̃ <∞ for some ν̃ > 0 and some θ, then for the same θ

sup
0≤k≤n−G

∥∥∥∥∥
k+G∑
i=k+1

(F (Yi,θ)− E (F (Y1,θ)))

∥∥∥∥∥ = OP

(√
G log(n/G)

)
,

11



(b) If for some ν̃ > 0 it holds 0 < E ‖F (Y1,θ)‖2+ν̃ <∞ for all θ as well as
E supθ∈Θ ‖∇F (Y1,θ)‖2+ν̃ <∞, then

sup
θ∈Θ

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

(F (Yi,θ)− E (F (Y1,θ)))

∥∥∥∥∥ = oP (1).

(c) If E supθ∈Θ ‖F (Y1,θ)‖ <∞, then for any sequence G→∞ it holds

(i) sup
θ∈Θ

max
1≤k≤G

1

k

∥∥∥∥∥
G∑

i=G−k+1

F (Yi,θ)

∥∥∥∥∥ = OP (1),

sup
θ∈Θ

max
1≤k≤G

1

k

∥∥∥∥∥
k∑
i=1

F (Yi,θ)

∥∥∥∥∥ = OP (1).

(ii) sup
θ∈Θ

max
1≤k≤G

1

G

∥∥∥∥∥
k∑
i=1

(F (Yi,θ)− E (F (Y1,θ)))

∥∥∥∥∥ = oP (1),

sup
θ∈Θ

max
1≤k≤G

1

G

∥∥∥∥∥
G∑
i=k

(F (Yi,θ)− E (F (Y1,θ)))

∥∥∥∥∥ = oP (1).

(d) If E supθ∈Θ ‖F (Y1,θ)‖2+ν̃ <∞, then

sup
0≤k≤n−G

k+G∑
i=k+1

sup
θ∈Θ
‖F (Yi,θ)‖ = OP (G) .

Proof. Analogously to Theorem 5 {F (Yi,θ)} fulfills an invariance principle from which
assertion (a) follows by similar arguments as in the proof of Theorem 1 (see Reckrühm
(2019), Theorem E.2.12 for details).
The proof technique for (b) is well known (and we only use a basic version thereof).
Thus, we only sketch the proof. First note that by the compactness assumption on Θ
for each δ > 0 there exist M = M(δ) ≥ 1 and ξ1, . . . , ξM ∈ Θ such that for any θ ∈ Θ
there is an m = 1, . . . ,M with ‖θ − ξm‖ < δ. We get for any ξ,θ

max
0≤k≤n−G

1

G

k+G∑
i=k+1

‖F (Yi,θ)− EF (Yi,θ)− (F (Yi, ξ)− EF (Yi, ξ))‖

≤
(

2E sup
θ∈Θ
‖∇F (Yi,θ)‖+ oP (1)

)
‖θ − ξ‖ = ‖θ − ξ‖OP (1),

where the last line follows from a first order Taylor expansion in addition to a moving
law of large numbers as in (a) applied to the time series {supθ∈Θ ‖∇F (Yi,θ)‖} (see also
(d)).

12



For given η1, η2 > 0 we can now choose δ = δ(η1, η2) > 0 such that

P
(

sup
‖θ−ξ‖<δ

max
0≤k≤n−G

1

G

k+G∑
i=k+1

‖F (Yi,θ)− EF (Yi,θ)

− (F (Yi, ξ)− EF (Yi, ξ))‖ ≥ η1

)
≤ η2

for all n ≥ n0(η1, η2). For the (to δ) corresponding ξ1, . . . , ξM it holds by another
application of (a)

P

(
max

m=1,...,M
max

0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

(F (Yi, ξm)− E (F (Y1, ξm)))

∥∥∥∥∥ ≥ η1

)
≤ η2.

for all n ≥ n1(η1, η2). Combining these arguments yields (b) on noting that for any δ
and corresponding ξm, m = 1, . . . ,M , it holds

sup
θ∈Θ

max
0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

(F (Yi,θ)− E (F (Y1,θ)))

∥∥∥∥∥
≤ max

m=1,...,M
max

0≤k≤n−G

1

G

∥∥∥∥∥
k+G∑
i=k+1

(F (Yi, ξm)− E (F (Y1, ξm)))

∥∥∥∥∥
+ sup
‖θ−ξ‖<δ

max
0≤k≤n−G

1

G

k+G∑
i=k+1

‖F (Yi,θ)− EF (Yi,θ)

− (F (Yi, ξ)− EF (Yi, ξ))‖ .

By Rao (1962), Theorem 6.5, a uniform (in θ) strong law of large numbers holds for
{F (Yi,θ)} because stationarity and mixing implies ergodicity (both forward and back-
ward). By the almost sure convergence standard arguments give the assertions in (c).
The proof of (d) follows along the same lines as the proof of (a) but applied to the
function supθ∈Θ ‖F (Yi,θ)‖. The necessary centering is of the order G.

Proof of Theorem 6. For kj−1,n < k ≤ kj,n −G a Taylor expansion in θ̂k+1,k+G around

θj yields that there exists
∥∥∥ξ(j)

k,n − θj
∥∥∥ ≤ ∥∥∥θ̂k+1,k+G − θj

∥∥∥ such that

− 1√
G

k+G∑
i=k+1

H(X(j)
i ,θj)

=

(
1

G

k+G∑
i=k+1

∇H(X(j)
i , ξ

(j)
k,n)

)T √
G
(
θ̂k+1,k+G − θj

)
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=
(
oP (1) + V (j)(ξ

(j)
k,n)
)√

G
(
θ̂k+1,k+G − θj

)
uniformly in k,

where the last line follows by Regularity Conditions 2 (a) in combination with Lemma 2
(b). By Lemma 2 (a), Regularity Condition 1 and the definition of θj we get

sup
1≤k≤n−G

1√
G

∥∥∥∥∥
k+G∑
i=k+1

H(X(j)
i ,θj)

∥∥∥∥∥ = OP

(√
log(n/G)

)
.

In combination with Regularity Conditions 2(b) this yields

max
j=1,...,q+1

max
kj−1,n<k≤kj,n−G

√
G
∥∥∥θ̂k+1,k+G − θj

∥∥∥ = OP

(√
log(n/G)

)
. (5)

In particular, this shows the validity of Assumption 6 (a).
Moreover, for each l = 1, . . . , p and kj−1,n < k ≤ kj,n−G a second order Taylor expansion

yields the existence of
∥∥∥ξ(j)

l,n,k − θj
∥∥∥ ≤ ∥∥∥θ̂k+1,k+G − θj

∥∥∥ with

−
k+G∑
i=k+1

Hl(X
(j)
i ,θj)

=

(
k+G∑
i=k+1

(
∇Hl(X

(j)
i ,θj)

))T (
θ̂k+1,k+G − θj

)

+
1

2

(
θ̂k+1,k+G − θj

)T ( k+G∑
i=k+1

∇2Hl(X
(j)
i , ξ

(j)
l,n,k)

)(
θ̂k+1,k+G − θj

)

=

(
E
(
∇Hl(X

(j)
1 ,θj)

)
+OP

(√
log(n/G)

G

))T
G
(
θ̂k+1,k+G − θj

)
+OP (G) ‖θ̂k+1,k+G − θj‖2 uniformly in k,

where the last line follows by an application of Lemma 2 both (a) and (d). Thus, an
application of (5) yields uniformly in k

− 1√
2G

k+G∑
i=k+1

Hl(X
(j)
i ,θj)

= E
(
∇Hl(X

(j)
1 ,θj)

)T √G

2

(
θ̂k+1,k+G − θj

)
+ oP

(
(log n/G)−1/2

)
,

showing the validity of Assumption 2, concluding the proof of (a).
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By the strong law of large numbers (and similar arguments as in the proof of Lemma 2
(c)) and by definition of θj it holds

max
kj−1,n−G≤k≤kj−1,n−εG

∥∥∥∥∥ 1

G

k+G∑
i=k+1

H(Xi,θj)−
kj−1,n − k

G
EH(X(j−1)

i ,θj)

∥∥∥∥∥
= max

kj−1,n−G≤k≤kj−1,n−εG

∥∥∥∥∥∥ 1

G

kj−1,n∑
i=k+1

(
H(X(j−1)

i ,θj)− EH(X(j−1)
i ,θj)

)

+
1

G

k+G∑
i=kj−1,n+1

H(X(j)
i ,θj)

∥∥∥∥∥∥ = oP (1).

By the identifiable uniqueness of θj it holds EH(X(j−1)
i ,θj) 6= 0, such that√

G

log(n/G)
min

kj−1,n−G≤k≤kj−1,n−εG

∥∥∥∥∥ 1

G

k+G∑
i=k+1

H(Xi,θj)

∥∥∥∥∥
≥

√
G

log(n/G)

(
ε
∥∥∥EH(X(j−1)

i ,θj)
∥∥∥+ oP (1)

)
P−→∞.

By Lemma 2 (c) it holds

sup
θ∈Θ

max
kj−1,n−G≤k≤kj−1,n−εG

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇H(Xi,θ)

∥∥∥∥∥
F

= OP (1),

where ‖ · ‖F denotes the Frobenius matrix norm.
Furthermore, a Taylor expansion of θ̂k+1,k+G around θj yields for some ξk,n√

G

log(n/G)

∥∥∥∥∥ 1

G

k+G∑
i=k+1

H(Xi,θj)

∥∥∥∥∥
=

∥∥∥∥∥∥
(

1

G

k+G∑
i=k+1

∇H(Xi, ξk,n)

)T √
G

log(n/G)

(
θ̂k+1,k+G − θj

)∥∥∥∥∥∥
≤

∥∥∥∥∥ 1

G

k+G∑
i=k+1

∇H(Xi, ξk,n)

∥∥∥∥∥
F

√
G

log(n/G)
‖θ̂k+1,k+G − θj‖,

where we used the consistency of the Frobenius matrix norm with the Euclidean vector
norm in the last step. Thus, we have shown that the left hand side diverges to infinity
stochastically, while the first term on the right hand side is stochastically bounded –
both in an appropriate uniform sense. By standard arguments this shows that indeed√

G

log(n/G)
min

kj−1,n−G≤k≤kj−1,n−εG
‖θ̂k+1,k+G − θj‖

P−→∞.

The assertion for kj,n−(1−ε)G ≤ k ≤ kj,n follows analogously concluding the proof.
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Proof of Theorem 7. The proof is analogous to the proof of (5) where the sum
− 1√

n

∑b
i=aH(Xi, θ̃γa,γb) is considered instead. The better rate compared to (5) is due

to the fact that a piecewise application of the central limit theorem (which follows from
the mixing condition) to each regime yields

1√
n

∥∥∥∥∥
b∑
i=a

H(Xi, θ̃γa,γb)

∥∥∥∥∥ = OP (1) .

The convergence of 1
n

∑b
i=a∇H(Xi, ξ

(γa,γb)
n ) under these regularity conditions follows

also e.g. from a piecewise application of Lemma 2 (c)(ii) (with G replaced by n).

Proof of Theorem 8. A first order Taylor expansion yields

k+G∑
i=k+1

H(X(j)
i , θ̃n)−

k+G∑
i=k+1

H(X(j)
i , θ̃)

=

(
k+G∑
i=k+1

∇H(X(j)
i , ξ

(j)
k,n)

)T (
θ̃n − θ̃

)
= OP (G/

√
n) = oP

(√
G

log(n/G)

)
,

where the last line follows uniformly in k by Lemma 2 (b). This shows the validity
of Assumption 4 (i). The proof of (ii) and Assumption 10 (a) are analogous by using
Lemma 2(c) instead.
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