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Proof of Theorem 1

By the scale and translation invariance properties of q̂corτ (Y,Xk), k = 1, . . . , p, we

assume without loss of generality that E(X1) = . . . = E(Xp) = 0 and var(X1) =

. . . = var(Xp) = 1. Define the infeasible maximum-type statistic by Ŝ\τ = max1≤k≤p |

q̂cor\τ (Y,Xk) |, where q̂cor\τ (Y,Xk) = {τ(1 − τ)}−1/2n−1
n∑
i=1

ψτ{Yi − Qτ (Y )}Xik, for

k = 1, . . . , p. By the definitions of q̂corτ (Y,Xk) and q̂cor\τ (Y,Xk), we can decompose

q̂corτ (Y,Xk)− q̂cor\τ (Y,Xk) as q̂corτ (Y,Xk)− q̂cor\τ (Y,Xk) =
7∑
l=1

Ikl, where

Ik1 = −{τ(1− τ)}−1/2Xkn
−1

n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}],

Ik2 = {τ(1− τ)}−1/2n−1
n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}]Xik,

Ik3 = −{τ(1− τ)}−1/2(σ̂−1k − 1)Xkn
−1

n∑
i=1

ψτ{Yi −Qτ (Y )},

Ik4 = {τ(1− τ)}−1/2(σ̂−1k − 1)n−1
n∑
i=1

ψτ{Yi −Qτ (Y )}Xik,

Ik5 = −{τ(1− τ)}−1/2(σ̂−1k − 1)Xkn
−1

n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}],

Ik6 = {τ(1− τ)}−1/2(σ̂−1k − 1)n−1
n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}]Xik,

Ik7 = −{τ(1− τ)}−1/2Xkn
−1

n∑
i=1

ψτ{Yi −Qτ (Y )}.
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By the triangle inequality, | Ŝτ − Ŝ\τ |≤
7∑
l=1

max1≤k≤p | Ikl | . In what follows, we

provide non-asymptotic bounds on max1≤k≤p | Ikl |, l = 1, . . . , 7, under two scenarios

of X: (i) X is strongly bounded; (ii) X has i.i.d. sub-Gaussian rows. Throughout the

proof, the notations C and c are generic constants, which may take different values

at each appearance.

We first deal with max1≤k≤p | Ik1 | . Recalling the definition of Ik1, we have

max
1≤k≤p

| Ik1 | = {τ(1− τ)}−1/2
∣∣∣∣∣n−1

n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}]

∣∣∣∣∣ max
1≤k≤p

| Xk |

≤ {τ(1− τ)}−1/2n−1
n∑
i=1

∣∣∣ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}
∣∣∣ max
1≤k≤p

| Xk | .

For any given ε, ε̃ > 0, it can be easily shown that

P( max
1≤k≤p

| Ik1 |≥ εε̃) ≤ P

[
n−1

n∑
i=1

∣∣∣ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}
∣∣∣ ≥ {τ(1− τ)}1/2ε

]
+P( max

1≤k≤p
| Xk |≥ ε̃).

(0.1)

When ε is sufficiently small and by Lemma 3, the first term on the right-hand

side of (0.1) is bounded by 3 exp{−2cτ(1 − τ)nε2}. By Lemma 8 of Chernozhukov

et al. (2015), it is routine to verify that E(max1≤k≤p | Xk |) . {log(p)/n}1/2 +

{E (max1≤i≤n max1≤k≤pX
2
ik)}

1/2 {log(p)/n}. Applying Lemma 5, we have for every
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t > 0 and r > 2,

P{max
1≤k≤p

| Xk |≥ 2E( max
1≤k≤p

| Xk |) + t}

. exp{−(nt)2/(3n max
1≤i≤n

max
1≤k≤p

E|Xik|2)}+ (nt)−r
n∑
i=1

E( max
1≤k≤p

|Xik|r). (0.2)

In the strongly bounded case, it is straightforward to see that E(max1≤k≤p | Xk |) .

{log(p)/n}1/2 ∨Kn{log(p)/n} and P{max1≤k≤p | Xk |≥ 2E(max1≤k≤p | Xk |) + t} .

exp(−nt2/3) + n1−rt−rKr
n. By taking t � Kn{log(p)/n}1/2, it follows from (0.2) that

P[max1≤k≤p | Xk |≤ CKn{log(p)/n} ∨ CKn{log(p)/n}1/2] = 1− O(p−c + n1−r/2), for

some positive constants C, c > 0. Let

ε̃ � Kn{log(p)/n} ∨Kn{log(p)/n}1/2,

and

ε � {log(p)/n}1/2.

Using (0.1), we can easily prove that

P[ max
1≤k≤p

| Ik1 |≤ CKn{log(p)/n}3/2 ∨ CKn{log(p)/n}] = 1−O(p−c + n1−r/2), (0.3)

for some positive constants C, c > 0. For the sub-Gaussian case, we define the function

ψβ : [0,∞)→ [0,∞) by ψβ(x) = exp(xβ)− 1 for β > 0, and for a real-valued random

variable ξ, we define

‖ξ‖ψβ
def
= inf{λ > 0 : E[ψβ(| ξ | /λ)] ≤ 1}.
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By Problem 2.2.5 and Lemma 2.2.2 in van der Vaart and Wellner (1996), it is not

difficult to verify that

E( max
1≤k≤p

|Xik|r) ≤ (Πr
l=1l)

r‖ max
1≤k≤p

Xik‖rψ1
≤ (Πr

l=1l)
r logr/2(2)‖ max

1≤k≤p
Xik‖rψ2

,

. logr/2(p),

E

(
max
1≤i≤n

max
1≤k≤p

X2
ik

)
≤ 4‖ max

1≤i≤n
max
1≤k≤p

Xik‖2ψ1
≤ 4 log(2)‖ max

1≤i≤n
max
1≤k≤p

Xik‖2ψ2

. log(pn) max
1≤i≤n

max
1≤k≤p

‖Xik‖2ψ2
. log(pn),

when X has i.i.d. sub-Gaussian rows. This, together with (0.2), entails immediately

that E(max1≤k≤p | Xk |) . {log(p)/n}1/2 ∨ log1/2(pn){log(p)/n} and P{max1≤k≤p |

Xk |≥ 2E(max1≤k≤p | Xk |) + t} . exp(−nt2/3) + n1−rt−r logr/2(p). This implies

by taking t � {log(p)/n}1/2 that P[max1≤k≤p | Xk |≤ C{log(p)/n} ∨ C log1/2(pn)

{log(p)/n}1/2] = 1−O(p−c + n1−r/2), for some positive constants C, c > 0. Let

ε̃ � {log(p)/n} ∨ log1/2(pn){log(p)/n}1/2,

and

ε � {log(p)/n}1/2.

In the sub-Gaussian case, apply (0.1) to obtain that

P[ max
1≤k≤p

| Ik1 |≤ C{log(p)/n}3/2 ∨ C log1/2(pn){log(p)/n}] = 1−O(p−c + n1−r/2),(0.4)

for some positive constants C, c > 0.
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Next we establish the bound for max1≤k≤p | Ik2 | . Note that

|
n∑
i=1

[ψτ{Yi − Q̂τ (Y )} − ψτ{Yi −Qτ (Y )}]Xik |

=|
n∑
i=1

I{Q̂τ (Y ) < Yi ≤ Qτ (Y )}Xik +
n∑
i=1

I{Qτ (Y ) < Yi ≤ Q̂τ (Y )}Xik |

for 1 ≤ k ≤ p. Then, for any given ε > 0,

P( max
1≤k≤p

| Ik2 |≥ ε)

≤ P[ max
1≤k≤p

| n−1
n∑
i=1

I{Q̂τ (Y ) < Yi ≤ Qτ (Y )}Xik |≥ {τ(1− τ)}1/2ε/2]

+P[ max
1≤k≤p

| n−1
n∑
i=1

I{Qτ (Y ) < Yi ≤ Q̂τ (Y )}Xik |≥ {τ(1− τ)}1/2ε/2]

= P[ sup
uk,k=1,...,p

| n−1
n∑
i=1

I{Q̂τ (Y ) < Yi ≤ Qτ (Y )}xT

i uk |≥ {τ(1− τ)}1/2ε/2]

+P[ sup
uk,k=1,...,p

| n−1
n∑
i=1

I{Qτ (Y ) < Yi ≤ Q̂τ (Y )}xT

i uk |≥ {τ(1− τ)}1/2ε/2],

where uk is the kth column of the p × p identity matrix. Let the function class F

be {I{Qτ (Y ) < Y ≤ Q̂τ (Y )}Xk, k = 1, . . . , p}. Clearly, F has envelope max1≤k≤p |

Xk | . Moreover, the function class is VC type in view of Lemma 2.6.18 in van der

Vaart and Wellner (1996). Due to Assumption (C4) and Serfling (1980, Theo-

rem 2.3.2), we have supuk,k=1,...,p | n−1
n∑
i=1

E[I{Qτ (Y ) < Yi ≤ Q̂τ (Y )}xT
i uk] |≤

cn−1/2 supy∈[Qτ (Y )−δ0,Qτ (Y )+δ0] max
1≤k≤p

E(fY |Xk(y)|Xk|). Then, by applying Lemma 4, it

is not difficult to obtain that with probability 1− o(1),

max
1≤k≤p

| Ik2 |≤ CKn{log(p)/n}3/4 ∨ CKn{log(p)/n}, (0.5)
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in the strongly bounded case, and

max
1≤k≤p

| Ik2 |≤ C{log(p)/n}3/4 ∨ C log1/2(pn){log(p)/n}, (0.6)

in the sub-Gaussian case.

For bounding max1≤k≤p | Ik7 |, we apply Bernstein’s inequality (van der Vaart and

Wellner, 1996, Lemma 2.2.11) and the fact | ψτ{Yi−Qτ (Y )} |≤ 2 for i = 1, . . . , n, to

yield

P( max
1≤k≤p

| Ik7 |≥ εε̃) ≤ P

[∣∣∣∣∣n−1
n∑
i=1

ψτ{Yi −Qτ (Y )}

∣∣∣∣∣ ≥ {τ(1− τ)}1/2ε

]
+P( max

1≤k≤p
| Xk |≥ ε̃)

≤ 2 exp{−τ(1− τ)nε2/8}+ P( max
1≤k≤p

| Xk |≥ ε̃).

By using similar arguments to those in the derivation of max1≤k≤p | Ik1 |, there exist

some constants r > 2 and C, c > 0 such that

P[ max
1≤k≤p

| Ik7 |≤ CKn{log(p)/n}3/2 ∨ CKn{log(p)/n}] = 1−O(p−c + n1−r/2), (0.7)

in the strongly bounded case, and

P[ max
1≤k≤p

| Ik7 |≤ C{log(p)/n}3/2 ∨ C log1/2(pn){log(p)/n}] = 1−O(p−c + n1−r/2),(0.8)

in the sub-Gaussian case.

It remains to bound the probabilities P(max1≤k≤p | Ikl |≥ ε), l = 3, 4, 5, 6. To that

end, we need to describe the nonasymptotic bound on max
1≤k≤p

| σ̂2
k−1 | . By the triangle
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inequality, for any ˜̃ε > 0, we can obtain that

P( max
1≤k≤p

| σ̂2
k − 1 |≥ 2̃ε̃)

≤ P( max
1≤k≤p

|
n∑
i=1

X2
ik/n− 1 | + max

1≤k≤p
| Xk |2≥ 2̃ε̃)

≤ P( max
1≤k≤p

|
n∑
i=1

X2
ik/n− 1 |≥ ˜̃ε) + P( max

1≤k≤p
| Xk |2≥ ˜̃ε). (0.9)

Invoking Lemma 5, we have for every t > 0 and r > 2,

P{max
1≤k≤p

|
n∑
i=1

X2
ik/n− 1 |≥ 2E( max

1≤k≤p
|

n∑
i=1

X2
ik/n− 1 |) + t}

. exp{−(nt)2/(3n max
1≤k≤p

E|X1k|4)}+ (nt)−r
n∑
i=1

E( max
1≤k≤p

|X2
ik|r). (0.10)

Obviously, max
1≤k≤p

E(X4
1k) . max

1≤k≤p
E(X2

1kK
2
n) = K2

n and n−1
n∑
i=1

E( max
1≤k≤p

|X2
ik|r) . K2r

n

in the strongly bounded case. When X has i.i.d. sub-Gaussian rows, it is routine to

verify that max
1≤k≤p

E|X1k|4 . 1, E( max
1≤k≤p

|Xik|2r) . logr(p) andE (max1≤i≤n max1≤k≤pX
4
ik)

. log2(pn). Therefore, the right-hand side of (0.10) has the upper bound C exp{−(nt)2/

(3nK2
n)} + Cn1−rt−rK2r

n in the strongly bounded case, and C exp{−(nt)2/(3n)} +

Cn1−rt−r logr(p) in the sub-Gaussian case. Moreover, it follows from Lemma 1 in

Chernozhukov et al. (2015) that

E( max
1≤k≤p

|
n∑
i=1

X2
ik/n− 1 |)

. n−1/2 log(p)1/2{max
1≤k≤p

E(X4
1k)}1/2 + n−1 log(p){E( max

1≤i≤n
max
1≤k≤p

X4
ik)}1/2.(0.11)

By arguments similar to those for dealing with (0.10), the right-hand side of (0.11)
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has the upper bound Cn−1/2Kn log1/2(p) + Cn−1K2
n log(p) in the strongly bounded

case, and Cn−1/2 log1/2(p) + Cn−1 log(p) log(pn) in the sub-Gaussian case. Let t �

n−1/2K2
n log1/2(p) and ˜̃ε � n−1K2

n log(p) ∨ n−1/2K2
n log1/2(p) in the strongly bounded

case, and t � n−1/2 log(p) and ˜̃ε � n−1/2 log(p)∨n−1 log(p) log(pn) in the sub-Gaussian

case. Together, (0.9), (0.10) and (0.11) yield that P{max
1≤k≤p

| σ̂2
k−1 |≤ Cn−1K2

n log(p)∨

Cn−1/2K2
n log1/2(p)} = 1−O(p−c+n1−r/2), in the strongly bounded case, and P{max

1≤k≤p
|

σ̂2
k − 1 |≤ Cn−1/2 log(p) ∨ Cn−1 log(p) log(pn)} = 1 − O(p−c + n1−r/2), in the sub-

Gaussian case.

For any given ε, ε̃ > 0, it is immediate to see that

P( max
1≤k≤p

| Ik3 |≥ εε̃) ≤ P
(

max
1≤k≤p

| Ik7 |≥ ε

)
+ P( max

1≤k≤p
| σ̂−1k − 1 |≥ ε̃),

P( max
1≤k≤p

| Ik5 |≥ εε̃) ≤ P
(

max
1≤k≤p

| Ik1 |≥ ε

)
+ P( max

1≤k≤p
| σ̂−1k − 1 |≥ ε̃),

P( max
1≤k≤p

| Ik6 |≥ εε̃) ≤ P
(

max
1≤k≤p

| Ik2 |≥ ε

)
+ P( max

1≤k≤p
| σ̂−1k − 1 |≥ ε̃).

Under Assumption (C2) and combining the nonasymptotic bounds for max1≤k≤p |

Ik1 |, max1≤k≤p | Ik2 | and max1≤k≤p | Ik7 |, we have

P{max
1≤k≤p

| Ik3 |≤ Cn−5/2K3
n log5/2(p) ∨ Cn−2K3

n log2(p)

∨Cn−3/2K3
n log3/2(p)} = 1−O(p−c + n1−r/2), (0.12)

P{max
1≤k≤p

| Ik5 |≤ Cn−5/2K3
n log5/2(p) ∨ Cn−2K3

n log2(p)

∨Cn−3/2K3
n log3/2(p)} = 1−O(p−c + n1−r/2), (0.13)

P{max
1≤k≤p

| Ik6 |≤ Cn−1K3
n log3/2(p)} = 1−O(p−c + n1−r/2), (0.14)
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in the strongly bounded case, and

P{max
1≤k≤p

| Ik3 |≤ Cn−2 log5/2(p) ∨ Cn−5/2 log5/2(p) log(pn) ∨ Cn−3/2 log2(p) log1/2(pn)

∨Cn−2 log2(p) log3/2(pn)} = 1−O(p−c + n1−r/2), (0.15)

P{max
1≤k≤p

| Ik5 |≤ Cn−2 log5/2(p) ∨ Cn−5/2 log5/2(p) log(pn) ∨ Cn−3/2 log2(p) log1/2(pn)

∨Cn−2 log2(p) log3/2(pn)} = 1−O(p−c + n1−r/2), (0.16)

P{max
1≤k≤p

| Ik6 |≤ Cn−1 log3/2(p) log1/2(n) log1/2(pn)

∨Cn−3/2 log3/2(p) log1/2(n) log3/2(pn)} = 1−O(p−c + n1−r/2),(0.17)

in the sub-Gaussian case. Under Assumption (C4) and by Lemma 1, we have that

for all 1 ≤ k ≤ p,

E

[
n−1

n∑
i=1

ψτ{Yi −Qτ (Y )}Xik

]
= 0,

under the null hypothesis in (1.2). Using the fact | ψτ{Yi − Qτ (Y )} |≤ 2 for

i = 1, . . . , n, it is routine to show that P[max1≤k≤p | n−1
n∑
i=1

ψτ{Yi − Qτ (Y )}Xik |≤

CKn{log(p)/n} ∨ CKn{log(p)/n}1/2] = 1 − O(p−c + n1−r/2) in the strongly bound-

ed case, and P[max1≤k≤p | n−1
n∑
i=1

ψτ{Yi −Qτ (Y )}Xik |≤ C{log(p)/n} ∨ C log1/2(pn)

{log(p)/n}1/2] = 1 − O(p−c + n1−r/2) in the sub-Gaussian case. Consequently, it

follows from the argument similar to that used to bound max1≤k≤p | Ik6 | that

P{max
1≤k≤p

| Ik4 |≤ Cn−2K3
n log2(p) ∨ Cn−3/2K3

n log3/2(p)

∨Cn−1K3
n log(p)} = 1−O(p−c + n1−r/2), (0.18)
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in the strongly bounded case, and

P{max
1≤k≤p

| Ik4 |≤ Cn−3/2 log2(p) ∨ Cn−2 log2(p) log(pn) ∨ Cn−1 log3/2(p) log1/2(pn)

∨Cn−3/2 log3/2(p) log3/2(pn)} = 1−O(p−c + n1−r/2), (0.19)

in the sub-Gaussian case. Combining (0.3), (0.5), (0.7), (0.12), (0.13), (0.14) and

(0.18), we obtain that with probability 1 − o(1), | Ŝτ − Ŝ\τ |. n−3/4K3
n log3/4(p) in

the strongly bounded case. Combining (0.4), (0.6), (0.8), (0.15), (0.16), (0.17) and

(0.19), we obtain that with probability 1− o(1), | Ŝτ − Ŝ\τ |. n−2 log2(p) log3/2(pn) in

the sub-Gaussian case. As a result, there exist ζ1, ζ2 > 0 such that

P

(∣∣∣∣∣n1/2Ŝτ − max
1≤k≤p

| {τ(1− τ)}−1/2n−1/2
n∑
i=1

ψτ{Yi −Qτ (Y )}Xik |

∣∣∣∣∣ ≥ ζ1

)
< ζ2,

(0.20)

where ζ1 � n−1/4K3
n log3/4(p) in the strongly bounded case, and ζ1 � n−3/2 log2(p) log3/2(pn)

in the sub-Gaussian case and ζ2 = o(1).

Let

Zik = {τ(1− τ)}−1/2ψτ{Yi −Qτ (Y )}Xik,

for i = 1, . . . , n and k = 1, . . . , p. When X is strongly bounded, we take Bn =

2{τ(1− τ)}−1/2Kn. It is trivial that n−1
n∑
i=1

E(| Zik |2+l) ≤ n−1
n∑
i=1

E(| Xik |2)Bl
n = Bl

n

for all k = 1, . . . , p and l = 1, 2, and E{(max1≤k≤p | Zik | /Bn)q} ≤ E{(max1≤k≤p |

Xik | /Kn)q} ≤ 2 for all i = 1, . . . , n and q ≥ 3. An application of Chernozhukov et al.

(2017, Proposition 2.1) under these conditions leads to supt∈R | P( max
1≤k≤p

n1/2 Zk ≤
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t) − P( max
1≤k≤p

n1/2 Gk ≤ t) |. {n−1K2
n log7(pn)}1/6, where Zk = n−1

n∑
i=1

Zik and Gk =

n−1
n∑
i=1

Gik with {gi = (Gi1, . . . , Gip)}ni=1 being a sequence of independent centred

Gaussian random vectors such that each gi has the same covariance matrix as zi =

(Zi1, . . . , Zip)
T. Consequently,

sup
t∈R+

| P( max
1≤k≤p

|
√
n Zk |≤ t)− P( max

1≤k≤p
|
√
n Gk |≤ t) |

≤ sup
t∈R+

| P( max
1≤k≤p

n1/2 Zk ≤ t)− P( max
1≤k≤p

n1/2 Gk ≤ t) |

+ sup
t∈R+

| P( max
1≤k≤p

n1/2 Zk ≤ −t)− P( max
1≤k≤p

n1/2 Gk ≤ −t) |

≤ 2 sup
t∈R
| P( max

1≤k≤p
n1/2 Zk ≤ t)− P( max

1≤k≤p
n1/2 Gk ≤ t) |. {n−1K2

n log7(pn)}1/6.

(0.21)

Let c̃τ,α = inf{t ∈ R+ : P( max
1≤j≤p

|n1/2Gj| ≤ t) ≥ 1 − α} and note cτ,α = inf{t ∈ R+ :

P(n1/2Ŝτ ≤ t | Yi,xi, i = 1, . . . , n) ≥ 1−α}. Using the similar arguments in the proof

of Lemma 3.2 in Chernozhukov et al. (2013) we have that for every v > 0,

P(∆ > v) ≥ P{cτ,α ≥ c̃τ,α+π(v)} ∨ P{c̃τ,α ≥ cτ,α+π(v)}, (0.22)

where π(v) � v1/3{1 ∨ log(p/v)}2/3 and

∆ = max
1≤k,l≤p

∣∣∣∣∣n−1
n∑
i=1

{ZikZil − E(ZikZil)}

∣∣∣∣∣ .
By the triangle inequality,

∣∣∣P(ΨŜτ ,α
= 1
)
− α

∣∣∣ ≤ ∣∣∣P(n1/2Ŝτ > cτ,α

)
− P

(
|
√
n Zk |> cτ,α

)∣∣∣
+
∣∣P (| √n Zk |> cτ,α

)
− α

∣∣ .
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Apply the inequality | I(a < c)− I(b < c) |≤ I(| b− c |<| a− b |) to show that

∣∣∣P(n1/2Ŝτ > cτ,α

)
− P

(
|
√
n Zk |> cτ,α

)∣∣∣
≤ P(| n1/2Ŝτ −

√
n Zk |>|

√
n Zk − cτ,α |)

= P(| n1/2Ŝτ −
√
n Zk |>|

√
n Zk − cτ,α |, | n1/2Ŝτ −

√
n Zk |≥ ξ1)

+P(| n1/2Ŝτ −
√
n Zk |>|

√
n Zk − cτ,α |, | n1/2Ŝτ −

√
n Zk |< ξ1)

≤ P(| n1/2Ŝτ −
√
n Zk |≥ ξ1)+ | P(ξ1 >|

√
n Zk − cτ,α |)− P(ξ1 >|

√
n Gk − cτ,α |) |

+P(ξ1 >|
√
n Gk − cτ,α |)

. ζ2 + {n−1K2
n log7(pn)}1/6 + P(ξ1 >|

√
n Gk − cτ,α |)

. ζ2 + {n−1K2
n log7(pn)}1/6 + ζ1{1 ∨ log(p/ζ1)}1/2,

where the third inequality follows from (0.20) and (0.21) and the last inequality holds

due to the anti-concentration inequality in Chernozhukov et al. (2015). Further, apply

(0.21), (0.22) and the triangle inequality to obtain

∣∣P (| √n Zk |> cτ,α
)
− α

∣∣
.
∣∣P (| √n Gk |> cτ,α

)
− {α + π(v)}

∣∣+ π(v) + {n−1K2
n log7(pn)}1/6

. P(∆ > v) + π(v) + {n−1K2
n log7(pn)}1/6.

By the maximal inequality in Lemma E.1 of Chernozhukov et al. (2017) and the

boundness of the function ψτ (·), it is routine to verify that P{∆ ≤ Cn−1K2
n log(p) ∨

Cn−1/2K2
n log1/2(p)} = 1− O(p−c + n1−r/2), for some positive constants c > 0, r > 2.

Therefore, in the strongly bounded case and choosing v � n−1K2
n log(p)∨n−1/2K2

n log1/2(p),

12



we obtain

∣∣∣P(ΨŜτ ,α
= 1
)
− α

∣∣∣ . v1/3{1 ∨ log(p/v)}2/3 + ζ2 + {n−1K2
n log7(pn)}1/6

+ζ1{1 ∨ log(p/ζ1)}1/2 + p−c + n1−r/2, (0.23)

for some constants c > 0, r > 2. Under the assumption K2
n{log(pn)}7/n . n−c1 with

some constant c1 > 0, we deduce the desired conclusion in the strongly bounded case.

On the other hand, when X has i.i.d. sub-Gaussian rows and by Lemma 2.2.2 in

van der Vaart and Wellner (1996), we have ‖Xik‖ψ1 ≤ log1/2(2) max1≤i≤n max1≤k≤p ‖Xik‖ψ2

< ∞ and E(X2+l
ik ) ≤ (Π2+l

m=1m)2+l max1≤i≤n max1≤k≤p ‖Xik‖2+lψ1
< ∞ for all i =

1, . . . , n, k = 1, . . . , p and l = 1, 2. Thus, there exists a large enough constant C > 0

such that n−1
n∑
i=1

E(| Zik |2+l) ≤ {τ(1 − τ)/2}−1−l/2n−1
n∑
i=1

E(| Xik |2+l) ≤ C l for all

k = 1, . . . , p and l = 1, 2, and E{exp(| Zik | /C)} ≤ 2{τ(1 − τ)/2}−1/2‖Xik‖ψ1/C ≤

2{τ(1 − τ)/2}−1/2 max1≤i≤n max1≤k≤p ‖Xik‖ψ1/C ≤ 2 for all i = 1, . . . , n and q ≥ 3.

Together with Chernozhukov et al. (2017, Proposition 2.1), this implies that supt∈R |

P( max
1≤k≤p

n1/2 Zk ≤ t)− P( max
1≤k≤p

n1/2 Gk ≤ t) |. {n−1 log7(pn)}1/6 in the sub-Gaussian

case. Taking v � n−1/2 log(p) ∨ n−1 log(p) log(pn) and employing arguments similar

to those for dealing with (0.23), we have

∣∣∣P(ΨŜτ ,α
= 1
)
− α

∣∣∣ . v1/3{1 ∨ log(p/v)}2/3 + ζ2 + {n−1 log7(pn)}1/6

+ζ1{1 ∨ log(p/ζ1)}1/2 + p−c + n1−r/2,

for some constants c > 0, r > 2. Under the assumption {log(pn)}7/n . n−c1 with

some constant c1 > 0, it is immediate to deduce the desired conclusion in the sub-

13



Gaussian case.

Proof of Theorem 2

Without loss of generality, we set σ11 = . . . = σpp = 1. Define S̃τ = max1≤k≤p |

q̂corτ (Y,Xk)− qcorτ (Y,Xk) | . Under the assumptions in Theorem 1, it is routine to

show that P
(∣∣∣∣n1/2S̃τ − max

1≤k≤p
| n−1/2

n∑
i=1

Zik |
∣∣∣∣ ≥ ζ1

)
< ζ2 for ζ1{1 ∨ log(p/ζ1)}1/2 =

o(1) and ζ2 = o(1), where Zik = {τ(1 − τ)}−1/2ψτ{Yi − Qτ (Y )}Xik for i = 1, . . . , n

and k = 1, . . . , p. In another word, the distribution of n1/2S̃τ can be approximated by

max1≤k≤p | Gk |, where (G1, . . . , Gp)
T is the centered Gaussian random vector with

mean zero and covariance matrix Θ = E[ψ2
τ{Y −Qτ (Y )}{x−E(x)}{x−E(x)}T] ∈

Rp×p. Since λmax(Θ) = supβ∈Rp β
TΘβ/‖β‖2 = supβ∈Rp E[ψ2

τ{Y − Qτ (Y )}‖βT{x −

E(x)}‖2]/‖β‖2 ≤ {τ ∨ (1 − τ)}2 supβ∈Rp E(‖βT{x − E(x)}‖2)/‖β‖2 = {τ ∨ (1 −

τ)}2λmax(Σ), we conclude that under Assumption (C5), by Lemma 6 of Cai et al.

(2014), we have for any x ∈ R and as p→∞, P[ max
1≤k≤p

| Gk | −2 log(p)+log{log(p)} ≤

x]→ F (x) = exp{−π−1/2 exp(−x/2)}. It implies that

P
[
nS̃2

τ ≤ 2 log(p)− log{log(p)}/2
]
→ 1. (0.24)

The bootstrap consistency result implies that

c2τ,α − 2 log(p) + log{log(p)} − qα = oP (1),

where qα is the 100(1-α)th quantile of F (x). Consider any k ∈ {1, . . . , p} such that

| qcovτ (Y,Xk)/σ
1/2
kk |≥ (ε0 + 21/2){τ(1− τ) log(p)/n}1/2. Using the inequality 2a1a2 ≤
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δ−1a21 + δa22 for any δ > 0, we have

qcor2τ (Y,Xk) ≤ (1 + δ−1) | q̂corτ (Y,Xk)− qcorτ (Y,Xk) |2

+(1 + δ)q̂cor2τ (Y,Xk), (0.25)

where n | q̂corτ (Y,Xk) − qcorτ (Y,Xk) |2 /{τ(1 − τ)σ̂kk} = oP{log(p)} as k is

fixed and p grows. From the proof of Theorem 1, we know the difference between

n qcor2τ (Y,Xk)/{τ(1 − τ)σ̂kk} and n qcor2τ (Y,Xk)/{τ(1 − τ)σkk} is asymptotically

negligible. Thus by (0.25) and the fact that θτ ∈ Vτ (ε0 + 21/2), we have,

max
1≤k≤p

n | q̂corτ (Y,Xk) |2 /{τ(1− τ)σ̂kk}

≥ (1 + δ)−1[(ε0 + 21/2)2 log(p)− oP{log(p)}]. (0.26)

The conclusion thus follows from (0.24), (0.25) and (0.26) provided that δ is small

enough.

Proof of Lemma 2

Recall that the random variable C is independent of (Y,x). It then follows by the law

of iterated expectations that {τ(1−τ)σ2
k}1/2cqcorτ (Y,Xk) = E[ψτ{Y −Qτ (Y )}{Xk−

E(Xk)}] and E[{δ/G(Y ∗)}{ρτ (Y ∗−α−θXk)−ρτ (Y ∗)}] = E{ρτ (Y−α−θXk)−ρτ (Y )}.

Lemma 2 then follows immediately from Lemma 1.

Proof of Theorem 3
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Write T̂ \τ = max1≤k≤p | ĉqcor
\
τ (Y,Xk) |, where

ĉqcor
\
τ (Y,Xk) = {τ(1− τ)}−1/2n−1

n∑
i=1

[τ − wiτ (F )I{Y ∗i ≤ Qτ (Y )}](Xik −Xk),

for k = 1, . . . , p, and

wiτ (F ) =


1 if ∆i = 1 or F (Ci) > τ ,

τ−F (Ci)
1−F (Ci)

if ∆i = 0 and F (Ci) ≤ τ .

Then we can decompose ĉqcorτ (Y,Xk)− ĉqcor
\
τ (Y,Xk) as q̂pcorτ (Y,Xk)− q̂pcor

\
τ (Y,

Xk) =
7∑
l=1

Jkl, where

Jk1 = −{τ(1− τ)}−1/2Xkn
−1

n∑
i=1

[wiτ (F )I{Y ∗i ≤ Qτ (Y )}

−wiτ (F̂ )I{Y ∗i ≤ Q̂τ (Y )}],

Jk2 = {τ(1− τ)}−1/2n−1
n∑
i=1

[wiτ (F )I{Y ∗i ≤ Qτ (Y )}

−wiτ (F̂ )I{Y ∗i ≤ Q̂τ (Y )}]Xik,

Jk3 = −{τ(1− τ)}−1/2(σ̂−1k − 1)Xkn
−1

n∑
i=1

[τ − wiτ (F )I{Y ∗i ≤ Qτ (Y )}],

Jk4 = {τ(1− τ)}−1/2(σ̂−1k − 1)n−1
n∑
i=1

[τ − wiτ (F )I{Y ∗i ≤ Qτ (Y )}]Xik,

Jk5 = −{τ(1− τ)}−1/2(σ̂−1k − 1)Xkn
−1

n∑
i=1

[wiτ (F )I{Y ∗i ≤ Qτ (Y )}
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−wiτ (F̂ )I{Y ∗i ≤ Q̂τ (Y )}],

Jk6 = {τ(1− τ)}−1/2(σ̂−1k − 1)n−1
n∑
i=1

[wiτ (F )I{Y ∗i ≤ Qτ (Y )}

−wiτ (F̂ )I{Y ∗i ≤ Q̂τ (Y )}]Xik,

Jk7 = −{τ(1− τ)}−1/2Xkn
−1

n∑
i=1

[τ − wiτ (F )I{Y ∗i ≤ Qτ (Y )}].

Using (A.2) in Wang and Wang (2009), we have

wτ (F )I{Y ∗ ≤ Qτ (Y )} = I{C > Qτ (Y ), Y ≤ Qτ (Y )}+ I{C ≤ Qτ (Y ), Y ≤ C}

+I{C ≤ Qτ (Y ), Y > C}
[
1− 1− τ

1− F (C)
I{F (C) < τ}

]
.

Consequently,

∣∣∣wiτ (F̂ )I{Y ∗i ≤ Q̂τ (Y )} − wiτ (F )I{Y ∗i ≤ Qτ (Y )}
∣∣∣ ≤ Ki1 +Ki2 +Ki3,

where

Ki1 = |I{Ci > Q̂τ (Y ), Yi ≤ Q̂τ (Y )} − I{Ci > Qτ (Y ), Yi ≤ Qτ (Y )}|,

Ki2 = |I{Ci ≤ Q̂τ (Y ), Yi ≤ Ci} − I{Ci ≤ Qτ (Y ), Yi ≤ Ci}|,

Ki3 =

∣∣∣∣∣I{Ci ≤ Qτ (Y ), Yi > Ci}
[
1− 1− τ

1− F (Ci)
I{F (Ci) < τ}

]

−I{Ci ≤ Qτ (Y ), Yi > Ci}
[
1− 1− τ

1− F (Ci)
I{F (Ci) < τ}

] ∣∣∣∣∣.
From He et al. (2013, Lemma 8.4) and the Hoeffding’s inequality, there exist ε0 > 0
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and c > 0 such that for any ε ∈ (0, ε0),

P

[
n−1

n∑
i=1

∣∣∣wiτ (F )I{Y ∗i ≤ Qτ (Y )} − wiτ (F̂ )I{Y ∗ ≤ Q̂τ (Y )}
∣∣∣ > ε

]

≤ P

(
n−1

n∑
i=1

Ki1 > ε/3

)
+ P

(
n−1

n∑
i=1

Ki2 > ε/3

)
+ P

(
n−1

n∑
i=1

Ki3 > ε/3

)
. exp(−cnε2).

The rest of the proof is analogous to the last part of Theorem 1. We omit the details

for brevity.
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