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S1 Discussion of point process scenarios

This section extends the discussion at the end of Section 2.
In the main manuscript we focus on the setting where a spatial point process Φ on

some domain X ⊂ Rd is observed at fixed points in time. For example, the case study
(Section 5) considers daily observations of locations of earthquakes in Italy. However,
forecasting for point processes appears in a variety of other situations, and the use of
strictly consistent scoring functions adapts readily. To clarify this idea, we distinguish
three different point process scenarios. Although motivated by commonly encountered
applications, there might be settings where the distinction is artificial.

Scenario A (purely spatial) In this scenario, the process is defined on either a single
spatial domain (Scenario A1), or several non-overlapping subdomains (Scenario
A2). Examples include points fixated by observers of images (Barthelmé et al.,
2013) and locations of trees in a forest (Stoyan and Penttinen, 2000). Stationarity
is a common simplifying assumption in this context.

Scenario B (purely temporal) In this scenario, there is no spatial component and the
process concerns points in time only. Examples are arrival times of e-mails (Fox
et al., 2016) and times of infection with a disease (Schoenberg et al., 2019). In this
special setting the directional character of time allows for a distinct interpretation
and treatment.

Scenario C (spatio-temporal) In addition to the spatial component, processes in this
scenario possess a temporal component, which could be discrete (Scenario C1) or
continuous (Scenario C2). Examples include locations and times of crimes in a
city (Mohler et al., 2011) and earthquakes observed over time in a specific region
(Ogata, 1998; Zhuang et al., 2002). The main manuscript focuses on Scenario C1.

In order to compare forecasts in each of these scenarios, we can in principle proceed
as in Sections 4 and 5: Choose a strictly consistent scoring function S for a statistical
property of point processes, e.g. the intensity, and find the mean score difference

1

n

n∑
i=1

(S(ri, φi)− S(r∗i , φi))

for forecast reports ri and r
∗
i and associated observed point patterns φi, where the index

i = 1, . . . , n represents repeated observations. Then negative values support forecast
r, while positive values support r∗. The mean score difference is an estimator of the
expected score difference E (S(r,Φ)− S(r∗,Φ)), and implementation details vary across
scenarios, also impacting the assessment of the uncertainty inherent in the estimate,
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which is of particular importance when tests for superior predictive performance are
sought. To illustrate the key ideas we distinguish whether the point process has a
continuous or discrete time component.

Discrete time Assume that the point process is sampled at fixed points in time, i.e.
it can be modelled by a sequence (Φt)t∈N adapted to a filtration (Ht)t∈N. This setting
includes the special case of i.i.d. realizations and relates to Scenario C1 as well as variants
of Scenario A with repeated observations. Given two forecast sequences (Rt)t∈N and
(R∗

t )t∈N the score differences (S(Rt,Φt) − S(R∗
t ,Φt))t∈N form a sequence of real-valued

random variables, thus the common Diebold–Mariano (DM) tests (Diebold and Mariano,
1995) are directly applicable. We briefly discuss the more general forecast comparison
framework of Nolde and Ziegel (2017) in our setting. Let S be strictly consistent for a
point process statistic Γ : P → A and assume that forecasts in terms of Γ applied to the
conditional distribution Φt | Ht−1 are given. These forecasts can be regarded as random
sequences R = (Rt)t∈N and R∗ = (R∗

t )t∈N such that Rt and R∗
t are Ht−1-measurable.

Their forecast performance can be compared via the mean score difference

∆n(R,R
∗) :=

1

n

n∑
t=1

S(Rt,Φt)−
1

n

n∑
t=1

S(R∗
t ,Φt) =

1

n

n∑
t=1

(S(Rt,Φt)− S(R∗
t ,Φt)) , (1)

which is an estimator for the difference in expected scores. Based on the law of large
numbers and the strict consistency of S, a positive value supports the hypothesis that
R∗ is superior to R, while a negative value supports the opposite hypothesis. A fur-
ther step is to test whether ∆n(R,R

∗) is significantly different from zero. In the simple
situation of an i.i.d. sequence (Φt)t∈N, the forecast sequences reduce to r, r∗ ∈ A, i.e.
they are constant in time. We can then test for significant differences in expected scores
based on the asymptotic normality of the well-known t-statistic tn :=

√
n∆n(r, r

∗)/
√
σ̂2
n,

where σ̂2
n estimates the variance of S(r,Φ)−S(r∗,Φ). For dependent time series (Φt)t∈N,

(Rt)t∈N, and (R∗
t )t∈N we refer to Nolde and Ziegel (2017), where tests for equal fore-

cast performance rely on suitable asymptotic results developed in Giacomini and White
(2006).

Continuous time If we consider point processes in Scenario C2 or Scenario B, then
temporal dependence between the points of Φ becomes an essential feature of the process
and can also be object of the forecast. For instance, the statistic Γ might consist of
temporal features of the point process. Also, dependencies need to be accounted for
in estimation and testing, as they affect asymptotic distributions. To illustrate this,
assume for simplicity that Φ is a purely temporal process observed over a time period
[0, T ] with 0 < t1 < · · · < tk < T denoting the corresponding arrival times. Moreover,
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let Ri and R
∗
i be reports issued at time ti−1 based on the previous arrivals t1, . . . , ti−1.

This yields a realized score difference

∆T (R,R
∗) =

n(T )∑
i=1

(S(Ri, ti)− S(R∗
i , ti)) , (2)

where n(T ) := Φ((0, T ]) is the random number of points in [0, T ]. In contrast to (1) we
do not consider averages since n(T ) is a random variable depending on Φ and dividing
by it will interfere with the consistency of S. The score difference ∆T (R,R

∗) is a
sum of a random number of random variables, usually called a random sum. This
perspective connects the estimation of score differences to the theory of total claim
amount in insurance, see e.g. Mikosch (2009) and Embrechts et al. (1997).

Asymptotic results for the score difference (2) for T → ∞ are desirable to assess how
uncertainty affects forecast evaluation and transfer the DM test to the continuous time
setting. One possible approach to this problem relies on limit theorems for randomly in-
dexed processes due to Anscombe (1952), in particular random central limit theorems: If
the number of points n(T ) satisfies a weak law of large numbers, then under Anscombe’s
condition, we only need to ensure that the sequence (S(Ri, ti)− S(R∗

i , ti))i∈N satisfies a
central limit theorem in order to obtain asymptotic normality for (2). Such results are
available for strong mixing (Lee, 1997), ψ-weakly dependent (Hwang and Shin, 2012),
andm-dependent (Shang, 2012) sequences. Working these into tests for superior forecast
performance for (spatio-)temporal point processes is an avenue for future work.

S2 Further scoring functions for point processes

The technical context of this section is the same as in Section 3.

S2.1 Simple examples

The subsequent examples are applications of the transformation principle (Proposi-
tion 1).

Example S1 (void probability). For any fixed set B ∈ B(X ) the functional Γ defined
via Γ(P ) = P ({φ | φ ∩ B = ∅}) is elicitable. This follows from Proposition 1 with
T (F ) = EFY and g(φ) = 1(φ(B) = 0). Strictly consistent scoring functions for Γ are
of the Bregman form (2), see also Example 1.
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Example S2 (point process integrals). Fix measurable functions fi : X → R, i =
1, . . . ,m for m ∈ N. Define g : M0 → Rm via

g(φ) =

(∫
X
f1 dφ, . . . ,

∫
X
fm dφ

)⊤

=

(∑
xi∈φ

f1(xi), . . . ,
∑
xi∈φ

fm(xi)

)⊤

,

set g(P) := {P ◦ g−1 | P ∈ P} and let T = idg(P). Then the finite-dimensional
distribution functional Γf1,...,fm(P ) = T (P ◦ g−1) is an elicitable property of the point
process Φ. Consistent scoring functions for Γ are obtained by applying consistent scoring
functions for distributions (Gneiting and Raftery, 2007) to the m-variate distribution
P ◦ g−1, see also Heinrich-Mertsching et al. (2021).

S2.2 Distribution and density

This material extends Section 3.2.

General result for the full distribution The law PΦ of a finite point process on X
can be equivalently represented by two sequences (pk)k∈N0 and (Πk)k∈N. Each pk specifies
the probability of finding k points in a realization. The Πk are symmetric probability
measures on X k which describe the distribution of any ordering of points, given k points
are realized, see Daley and Vere-Jones (2003, Chapter 5.3) for details.

To state the next result, we introduce the notion of symmetric scoring functions,
where S : A × Rn → R is called symmetric if S(a, y1, . . . , yn) = S(a, yπ(1), . . . , yπ(n)) for
all a ∈ A, y ∈ Rn and permutations π. Symmetry ensures that the scoring functions in
the subsequent proposition are independent of the enumeration of the realization of Φ.

Proposition S1. Let P be a class of distributions of finite point processes, with Q ∈ P
decomposed into (ΠQ

k )k∈N and (pQk )k∈N0. Set Fk := {ΠQ
k | Q ∈ P} and let Sk : Fk×X k →

R be a symmetric consistent scoring function for idFk
for all k ∈ N. Let S0 be a consistent

scoring function for distributions on N0. Then the function S : P ×M0 → R defined via

S(((ΠQ
k )k∈N, (p

Q
k )k∈N0), {y1, . . . , yn}) = Sn(Π

Q
n , y1, . . . , yn) + S0((p

Q
k )k∈N0 , n)

for n ∈ N and S(((ΠQ
k )k∈N, (p

Q
k )k∈N0), ∅) := S0((p

Q
k )k∈N0 , 0) is a consistent scoring func-

tion for the distribution of the point process Φ. It is strictly consistent if S0 and (Sk)k∈N
are strictly consistent.

Proof. The result follows by decomposing the expectation EPS(Q,Φ) into expectations
on the sets {Φ = n} for n ∈ N and using the (strict) consistency of Sn on each set.
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Hyvärinen score Assume that a point process model admits explicit expressions
for the Janossy densities (jk)k∈N0 (see Section 3.2), however, only up to an unknown
normalizing constant. In this situation, 0-homogeneous consistent scoring functions for
densities can be of use, as they allow for the consistent evaluation of an unnormalized
density. The most relevant example is the Hyvärinen score defined via

HyvS(f, y) := ∆ log f(y) +
1

2
∥∇ log f(y)∥2,

where ∇ denotes the gradient, ∆ is the Laplace operator, and f is a twice differentiable
density on Rd. To ensure strict consistency on a class of probability densities L its
members have to be positive almost everywhere and for all f, g ∈ L it must hold that
∇ log(f(y))g(y) → 0 as ∥y∥ → ∞, see Hyvärinen (2005), Parry et al. (2012), and Ehm
and Gneiting (2012) for details.

Similar to the logarithmic score, we can transfer the Hyvärinen score to the point
process setting. To do this we assume that for all Q ∈ P and k ∈ N, jQk is defined
on (Rd)k and satisfies the aforementioned regularity conditions. Then the function S :
P ×M0 → R defined via

S((jQk )k∈N0 , {y1, . . . , yn}) = HyvS(jQn , y1, . . . , yn) (3)

for n ∈ N and S((jQk )k∈N0 , ∅) := 0 is a consistent scoring function for the distribution of
the point process Φ. Observe that we cannot achieve strict consistency for S, since the
probability of |Φ| = n is proportional to jn and thus not accessible to the Hyvärinen
score.

Example S3 (Gibbs point process). Stemming from theoretical physics, Gibbs processes
are a popular tool to model particle interactions. They are defined via their Janossy
densities

jn(y1, . . . , yn) = C(θ) exp (−θU(y1, . . . , yn)) ,

where U represents point interactions, θ is a parameter often referred to as temperature,
and C is the partition function, which ensures that the collection (jk)k∈N0 is properly
normalized, see e.g. Daley and Vere-Jones (2003, Chapter 5.3) and Chiu et al. (2013,
Chapter 5.5). It is in general difficult to find closed form expressions for C, or even
to approximate it, hence the Hyvärinen score might seem attractive to evaluate models
based on (jk)k∈N0 . Plugging jn into (3) gives

S((jk)k∈N0 , {y1, . . . , yn}) = θ

(
−∆U(y1, . . . , yn) +

θ

2
∥∇U(y1, . . . , yn)∥2

)
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for n ∈ N, where the derivatives are computed with respect to the coordinates of the
vector (y1, . . . , yn) ∈ (Rd)n. The simplest choice for interactions is to restrict U to first-
and second-order terms

U(y1, . . . , yn) :=
n∑

i=1

l(yi) +
n∑

i,j=1

ψ
(
∥yi − yj∥2

)
for l : Rd → R and ψ : [0,∞) → [0,∞) with ψ(0) = 0, see e.g. Daley and Vere-Jones
(2003, Chapter 5.3). To apply the Hyvärinen score in this setting, l and ψ have to satisfy
regularity conditions detailed above and in Hyvärinen (2005), and in particular admit
second order derivatives almost everywhere. The soft-core models for ψ introduced
in Ogata and Tanemura (1984) satisfy this condition, while their hard-core model for
ψ is not even continuous. An additional technical issue is that Ogata and Tanemura
(1984) consider point processes on a finite domain X and use a constant l. To make
the Hyvärinen score applicable in this setting a possible solution is to approximate their
models via twice differentiable densities on (Rd)n.

S2.3 Moment measures

Moment measures can be interpreted as the point process analogue to the moments of a
univariate random variable. Strictly consistent scoring functions for these measures can
be constructed in the same way as for the intensity, see Proposition 3.4.

For n ∈ N, let Mn
f = Mf(X n) be the set of finite Borel measures on X n. For

positive measurable functions f : X n → (0,∞) the n-th moment measure µ(n) and the
n-th factorial moment measure α(n) are defined via the relations

E

( ∑
x1,...,xn∈Φ

f(x1, . . . , xn)

)
=

∫
Xn

f(x1, . . . , xn) dµ
(n)(x1, . . . , xn),

and

E

( ∑̸=

x1,...,xn∈Φ

f(x1, . . . , xn)

)
=

∫
Xn

f(x1, . . . , xn) dα
(n)(x1, . . . , xn),

respectively, see e.g. Chiu et al. (2013) and Daley and Vere-Jones (2003). Here Σ ̸=

denotes summation over all n-tuples that contain distinct points of Φ. Using the notion
of factorial product defined via

m[n] :=

{
m(m− 1)(m− 2) · · · (m− n+ 1) , m ≥ n
0 , m < n
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for m,n ∈ N we obtain the concise representations µ(n)(Bn) = EΦ(B)n and α(n)(Bn) =
EΦ(B)[n] for Borel sets B ∈ B(X ), see e.g. Daley and Vere-Jones (2003, Chapter 5).

Proposition S2. Set Fn := {P ∗ | P ∈ Mn
f }, let S : Fn × X n → R be a consistent

scoring function for idFn and b : [0,∞)× [0,∞) → R a Bregman function.

(i) The function S1 : Mn
f ×M0 → R defined via

S1(µ, {y1, . . . , ym}) =
∑

x1,...,xn∈{y1,...,ym}

S(µ∗, x1, . . . , xn) + cb(µ(X n),mn)

for m ∈ N, and S1(µ, ∅) = cb(µ(X n), 0) for c > 0, is a consistent scoring function
for the n-th moment measure.

(ii) The function S2 : Mn
f ×M0 → R defined via

S2(α, {y1, . . . , ym}) =
∑ ̸=

x1,...,xn∈{y1,...,ym}

S(α∗, x1, . . . , xn) + cb(α(X n),m[n])

for m ≥ n and S2(α, {y1, . . . , ym}) = cb(α(X n), 0) for m < n and with c > 0 is a
consistent scoring function for the n-th factorial moment measure.

Both S1 and S2 are strictly consistent if S is strictly consistent and b is strict.

In many cases of interest α(n) is absolutely continuous with respect to Lebesgue
measure on X n and its density ϱ(n) is called product density, see e.g. Chiu et al. (2013).
A (strictly) consistent scoring function for ϱ(n) can be obtained from Proposition S2 (ii)
by choosing S to be a (strictly) consistent scoring function for densities.

Example S4. Let n = 2 and for simplicity consider the product density ϱ(2) of a
stationary and isotropic point process. In this situation, ϱ(2) depends on the point
distances only, i.e. it can be represented via ϱ(2)(x1, x2) = ϱ

(2)
0 (∥x1 − x2∥) for some

ϱ
(2)
0 : [0,∞) → [0,∞). Analogous to Example 4, we can use the quadratic score for b

and the logarithmic score for S in Proposition S2 (ii). This gives the strictly consistent
scoring function

S(ϱ(2), {y1, . . . , ym}) = −
∑̸=

x1,x2∈{y1,...,ym}

log(ϱ
(2)
0 (∥x1 − x2∥))

+m[2] log |ϱ(2)|+ c (|ϱ(2)| −m[2])2,

where c > 0 is some scaling constant. Simulation experiments in Section S3.2 show how
S compares different product density forecasts.
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S2.4 Summary statistics

Summary statistics of point processes are central tools to quantify point interactions
such as clustering or inhibition. This subsection constructs strictly consistent scoring
functions for the frequently used K-function. Throughout we assume that Φ is a sta-
tionary point process on Rd, i.e. any translation of the process by x ∈ Rd, which we
denote via Φx, has the same distribution as Φ. This implies that the intensity measure
of Φ is a multiple of Lebesgue measure and can be represented via some λ > 0, see e.g.
Chiu et al. (2013, Chapter 4.1).

A common way to describe a stationary point process is to consider its properties
in the neighbourhood of x ∈ Rd, given that x is a point in Φ. Due to stationarity, the
location of x is irrelevant and thus it is usually referred to as the “typical point” of Φ.
The technical tool to describe the behaviour around this point is the Palm distribution
of Φ, denoted via P0 for probabilities and E0 for expectations. It satisfies the defining
identity

λ |W |E0f(Φ) = E

( ∑
x∈Φ∩W

f(Φ−x)

)

for all measurable functions f : M0 → R such that the expectations are finite, and it
is independent of the observation window W ∈ B(Rd) (Illian et al., 2008, Chapter 4).
When we need to highlight the distribution of the point process, we write EP,0 for the
Palm expectation given Φ has distribution P ∈ P .

Denote the d-dimensional ball of radius r > 0 around zero via Br = B(0, r). The
K-function of Φ is defined via

K : (0,∞) → [0,∞), r 7→ E0Φ (Br\{0})
λ

,

and it quantifies the mean number of points in a ball around the “typical point” of Φ,
see e.g. Chiu et al. (2013) and Illian et al. (2008) for details. Deriving strictly consistent
scoring functions for the K-function appears challenging since it combines the Palm
distribution and the intensity. However, in many situations both of these quantities
are of interest. We thus derive a result which defines scoring functions for joint reports
of the K-function and the intensity. Our point process property of interest is thus
Γ(P ) := (λP , KP ), where the subscript denotes the dependence of the quantities on the
distribution P ∈ P of the process Φ. Since observation windows are always finite, we
fix some r∗ > 0 and let KP be the restriction of the K-function to the interval (0, r∗).

To derive consistent scoring functions let us fix some r ∈ (0, r∗) and assume for now
that λP is known and that instead of data we directly observe the Palm distribution
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of Φ. In this simplified situation, KP (r) is just an expectation with respect to P0, hence
“consistent scoring functions” for it are of the Bregman form

S(x, φ) = −f(λPx)− f ′(λPx)
(
φ(Br\{0})− λPx

)
, (4)

for a convex function f : (0,∞) → R, see Theorem 1 and Example 1. This is because
EP,0b(x,Φ) ≥ EP,0b(KP (r),Φ) holds for all x ≥ 0 and P ∈ P . To arrive at a strictly
consistent scoring function for the functional Γ three steps remain: Firstly, we have
to include a consistent scoring function for the first component of Γ, i.e. the intensity.
Moreover, we need to integrate (4) with respect to r in order to evaluate the K-function
on the entire interval (0, r∗). Finally, we have to account for the fact that we can
not observe P0, but only points of Φ on some closed and bounded observation window
W ⊂ Rd. Hence, we need to compute the expected score E0S(x,Φ) via an expectation
of Φ on W . Such problems lead to edge corrections, i.e. additional terms to account for
the fact that (unobserved) points outside of W affect the estimation near the boundary
of W , see e.g. Chiu et al. (2013, Chapter 4.7) for details. Since (4) is linear in φ, edge
corrections for the expected score are equivalent to edge corrections for the expectation
E0Φ(Br\{0}), which are well-known in the context of K-function estimation. Before we
formalize these three steps in a proposition, we state a result needed for the proof, see
Gneiting (2011, Theorem 4).

Lemma S1 (revelation principle). Let A,A′ be some sets and g : A → A′ a bijection
with inverse g−1. Let T : F → A and Tg : F → A′ defined via Tg(F ) := g(T (F )) be
functionals. Then T is elicitable if and only if Tg is elicitable. A function S : A×O → R
is a (strictly) consistent scoring function for T if and only if Sg : A

′ ×O → R, (x, y) 7→
Sg(x, y) := S(g−1(x), y) is a (strictly) consistent scoring function for Tg.

Proposition S3. Let b1, b2 : [0,∞)×[0,∞) → R be Bregman functions and w : (0,∞) →
[0,∞) a weight function. Define C := {KP | P ∈ P}, a set of possible K-functions, and
let κ satisfy EPκ(Br,Φ ∩W ) = λPEP,0Φ(Br\{0}) for all P ∈ P and r ∈ (0, r∗). Then
the function S : ((0,∞)× C)×M0 → R defined via

S((λ,K), φ) = b1(λ, φ(W )|W |−1) +

∫ r∗

0

b2(λ
2K(r), κ(Br, φ))w(r) dr

is consistent for the point process property Γ(P ) := (λP , KP ), where the second compo-
nent is restricted to (0, r∗). It is strictly consistent if b1 and b2 are strict and w is strictly
positive.

Proof. Using Theorem 1, the Fubini-Tonelli theorem, and

EPκ(Br,Φ) = λPEP,0Φ(Br\{0}) = λ2PKP (r)
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for r ∈ (0, r∗), standard arguments show that the scoring function

S ′((λ, h), φ) := b1(λ, φ(W )|W |−1) +

∫ r∗

0

b2(h(r), κ(Br, φ))w(r) dr,

where h : (0,∞) → (0,∞) is an increasing function, is consistent for the property
Γ′(P ) := (λP , λ

2
PKP (r)). An application of the revelation principle (Lemma S1) gives

(strict) consistency for Γ.

Similar to Proposition 2, this result blends two scoring components, namely the
expected number of points and their distances. Hence, choosing suitable Bregman func-
tions b1 and b2 in applications, again leads to issues of balancing the magnitudes of
different scoring components. A similarly intricate question is the choice of κ. Relevant
choices result from the construction of estimators for the K-function, which are often
based on dividing κ by an estimator for λ2. A common choice is

κst(Br, φ) :=
∑̸=

x1,x2∈φ∩W

1Br(x2 − x1)

|Wx1 ∩Wx2|
,

where Wz := {x + z | x ∈ W} is the shifted observation window and r is such that
|W ∩Wz| is positive for all z ∈ Br, see e.g. Illian et al. (2008, Chapter 4.3) and Chiu
et al. (2013, Chapter 4.7). An alternative arises via minus-sampling, i.e. by reducing the
observation window W in order to reduce edge effects. This yields

κminus(Br, φ) :=
1

|W |
∑ ̸=

x1,x2∈φ∩W,x2∈W⊖r

1Br(x2 − x1),

where W ⊖ r := {x | B(x, r) ⊂ W} is the reduced observation window and r <
diam(W )/2. For other choices of κ, most notably for isotropic point processes, see
Chiu et al. (2013, Chapter 4.7).

Practitioners usually rely on the L-function, a modification of the K-function, which
is defined via L(r) = d

√
K(r)/βd for r ≥ 0, where βd := |B1|. It satisfies L(r) = r for the

Poisson point process, and thus normalizes the K-function such that it is independent
of the dimension d for a Poisson point process (Chiu et al., 2013). A (strictly) consistent
scoring function for the L-function follows immediately from Proposition S3 and another
application of the revelation principle. The explicit formula follows by replacing the first
component of b2 by λ2L(r)dβd in Proposition S3. The idea underlying the construction
of scoring functions for the K- and L-function presented here can be transferred to other
summary statistics for stationary point processes.
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S3 Extended simulation study

S3.1 Intensity

This subsection extends Section 4. We give more details on the used point processes
and provide a closer analysis of the simulation experiments in the main paper. We
then perform additional simulations with a different scoring function and study the
approximation derived in Proposition 4.

All experiments rely on the six intensities defined in Section 4, see Figure S1 for an
illustration. We consider two strictly consistent scoring functions for the intensity. The
first choice is used in Section 4 and given by

S1(Λ, {y1, . . . , yn}) = −
n∑

i=1

log(λ(yi)) + n log |Λ|+ c (|Λ| − n)2, (5)

see also Example 3.5. Our second choice is

S2(Λ, {y1, . . . , yn}) = −
n∑

i=1

log λ(yi) +

∫
X
λ(y) dy, (6)

which is defined in Proposition 5.1 and appears as the limit scoring function in earth-
quake likelihood model testing, see Section 5.3. The scaling factor c > 0 in (5) is set to
c = 1/10. We draw N = 100 i.i.d. samples and repeat M = 500 times.

Details on the point process models We consider four different data-generating
processes for Φ on [0, 1]2, all of which have (approximate) intensity f0(x, y) = 6

√
x2 + y2.

The models are specified as follows:

1. An inhomogeneous Poisson point process with intensity f0.

2. A thinned Gaussian determinantal point process (DPP), see e.g. Hough et al.
(2006) and Lavancier et al. (2015). In general, a DPP is a locally finite point
process with product densities (see Section S2.3) given by

ϱ(n)(x1, . . . , xn) = det (C(xi, xj))i,j=1,...,n

for n ∈ N, where C : Rd×Rd → R is a covariance. As a result, the DPP’s intensity
function is x 7→ C(x, x) and it is stationary and isotropic whenever its covariance
is. We choose C(x1, x2) = C0(∥x1 − x2∥), where C0 : [0,∞) → R is the Gaussian
covariance function

C0(r) = σ2 exp

{
−
(r
s

)2}
, (7)

12



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Forecast f5

Figure S1: Heat maps of the intensity forecasts f0, . . . , f5, see Section 4.
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with variance σ2 = maxx,y∈[0,1] f0(x, y) and scale s = 6/100. We then apply inde-
pendent thinning to the homogeneous Gaussian DPP in order to obtain the final
point process with intensity function f0.

3. An inhomogeneous log-Gaussian Cox process (LGCP), see e.g. Illian et al. (2008,
Chapter 6). A LGCP is a Poisson point process conditional on a random intensity
function arising from a log-Gaussian random field. If µ : Rd → R is the mean
and C : Rd × Rd → R is the covariance of the random field, then the LGCP has
intensity function

x 7→ exp

(
µ(x) +

1

2
C(x, x)

)
.

We choose C(x1, x2) = C0(∥x1 − x2∥), where C0 : [0,∞) → R is the exponential
covariance function

C0(r) = σ2 exp
(
−r
s

)
, (8)

with variance σ2 = 1/4 and scale s = 1/5. The mean is set to µ(x) = log(f0(x))−
1/8 such that the intensity equals f0.

4. An inhomogeneous Thomas cluster process, see e.g. Illian et al. (2008, Chapter 6).
This is a cluster process which arises from an inhomogeneous Poisson point process
as parent and a random number of cluster points which are drawn from a normal
distribution centred at its parent point. As intensity of the parent process we
choose 2f0/3 and the number of points per cluster follows a Poisson distribution
with parameter 3/2. The location of each cluster point is determined by a normal
distribution which is centred at the parent point and where the components are
uncorrelated and have standard deviation 0.05. As a result of the clustering, the
intensity of the Thomas process is only approximately equal to f0.

Further details for the experiments of Section 4 Section 4 presents four sim-
ulation experiments based on the scoring function S1. Table S1 shows the results of
DM tests (see Diebold and Mariano (1995) and Section S1) for these experiments. For
each of theM = 500 realizations we test whether forecast fi (row) achieves the same ex-
pected score as forecast fj (column). The rejection frequencies in favour of f0 against fj,
j = 1, . . . , 5 (first row of each table) are generally in line with the mean score differences
in Figure 1. Moreover, the results of the DM tests are similar for all four simulation
experiments. In the third and fourth experiment (lower part of Table S1) the frequencies
of rejection in favour of the optimal forecast f0 (first row of each table) decrease slightly

14



Table S1: Fraction of replicates where the “row forecast” was preferred over the “column
forecast” by a standard DM test with level α = 0.05 based on the scoring function S1 (5)
and M = 500 replicates

Poisson
f0 f1 f2 f3 f4 f5

f0 0.45 0.81 0.96 0.99 1.00
f1 0.00 0.40 0.88 0.82 0.99
f2 0.00 0.00 0.28 0.69 0.98
f3 0.00 0.00 0.01 0.24 0.91
f4 0.00 0.00 0.00 0.01 0.97
f5 0.00 0.00 0.00 0.00 0.00

DPP
f0 f1 f2 f3 f4 f5

f0 0.52 0.83 0.97 0.99 1.00
f1 0.00 0.39 0.91 0.80 1.00
f2 0.00 0.00 0.27 0.67 0.97
f3 0.00 0.00 0.01 0.22 0.93
f4 0.00 0.00 0.00 0.01 0.98
f5 0.00 0.00 0.00 0.00 0.00

LGCP
f0 f1 f2 f3 f4 f5

f0 0.48 0.80 0.93 0.99 1.00
f1 0.00 0.39 0.85 0.81 1.00
f2 0.00 0.00 0.27 0.66 0.97
f3 0.00 0.00 0.01 0.19 0.92
f4 0.00 0.00 0.00 0.01 0.97
f5 0.00 0.00 0.00 0.00 0.00

Thomas
f0 f1 f2 f3 f4 f5

f0 0.24 0.52 0.76 0.89 1.00
f1 0.00 0.26 0.60 0.56 0.91
f2 0.00 0.00 0.18 0.44 0.81
f3 0.00 0.00 0.01 0.14 0.68
f4 0.00 0.00 0.00 0.01 0.78
f5 0.00 0.00 0.00 0.00 0.00

for the LGCP and substantially for the Thomas process. An intuitive reason for this is
that clustering, which is a feature of both processes, complicates the distinction between
different intensity forecasts.

Experiments with a different scoring function We now investigate how the fore-
cast comparison changes when using the scoring function S2 instead of the scoring func-
tion S1 from Section 4. Boxplots of mean score differences are given in Figure S2 and
they are generally similar to the ones presented in Figure 1.

The same conclusion holds for the results of DM tests given in Table S2 resemble
those in Table S1. This suggests that in our experiments the choice of c = 1/10 for S1

leads to a similar balance of shape and total mass of the intensity as with S2. However, in
other forecast settings, or with a different choice of c, the two scoring functions may lead
to differing conclusions. As in the previous experiments, the clustering of the LGCP and
the Thomas process leads to less conclusive decisions between the forecasts. In contrast,
the inhibition of the Gaussian DPP seems to facilitate the comparison between the
forecasts.

A further sequence of experiments considers the speed of convergence in Proposi-
tion 4, i.e. how well score differences based on STn

cell, as defined in (14), approximate
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Figure S2: Boxplot of difference in mean scores s̄j − s̄0 for j = 1, . . . , 5 and scoring
function S2 (6). From left to right, Φ is a Poisson point process, a Gaussian determinantal
point process, a log-Gaussian Cox process, or an inhomogeneous Thomas process. Means
are based on N = 100 realizations, boxplots on M = 500 replicates.

score differences based on S2 (6). We select a family of partitions (Tn)n∈N of [0, 1]2

which arises from dyadic partitions of both axes. Specifically, each grid cell B
(n)
ij ∈ Tn

is given by [(i − 1)/2n, i/2n] × [(j − 1)/2n, j/2n] for i, j ∈ {1, . . . , 2n}. The number of
cells is thus kn = 22n and we choose n ∈ {1, . . . , 6} for the simulations. As forecasts
we rely on the intensity functions f0, . . . , f5 introduced in Section 4 which we transform
into grid-based reports f

(n)
l,ij by integrating fl over the grid cell B

(n)
ij . These reports are

then compared to the number of points per cells via STn
cell. We study the convergence

of the rejection probabilities of DM tests based on STn
cell for N = 100 i.i.d. samples of

Φ and increasing n. The corresponding fractions converge to the values in Table S2,
as illustrated in Figure S3 for the comparisons of f0 to f1, . . . , f5. These simulations
suggest that for forecasts which are far from the underlying truth n = 2, i.e. 16 grid
cells, is already enough to obtain DM results based on STn

cell which are in good agreement
with the results based on S2 (Table S2). For intensity functions closer to the truth, such
as f1, n = 3, i.e. 64 grid cells, seems necessary to obtain a good approximation.

S3.2 Product density

This subsection presents simulation experiments for the product density (Section S2.3).
We simulate stationary and isotropic point processes with three different second order
structures corresponding to inhibition, clustering, and no interaction. We draw N = 30
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Figure S3: Fraction of replicates where f0 was preferred over f1, . . . , f5 by a standard
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Table S2: Fraction of replicates where the “row forecast” was preferred over the “column
forecast” by a standard DM test with level α = 0.05 based on the scoring function S2 (6)
and M = 500 replicates

Poisson
f0 f1 f2 f3 f4 f5

f0 0.46 0.84 0.95 0.99 1.00
f1 0.00 0.48 0.87 0.84 1.00
f2 0.00 0.00 0.24 0.70 0.98
f3 0.00 0.00 0.01 0.29 0.94
f4 0.00 0.00 0.00 0.00 0.96
f5 0.00 0.00 0.00 0.00 0.00

DPP
f0 f1 f2 f3 f4 f5

f0 0.47 0.84 0.96 0.99 1.00
f1 0.00 0.43 0.93 0.86 1.00
f2 0.00 0.00 0.22 0.69 0.98
f3 0.00 0.00 0.01 0.28 0.93
f4 0.00 0.00 0.00 0.01 0.97
f5 0.00 0.00 0.00 0.00 0.00

LGCP
f0 f1 f2 f3 f4 f5

f0 0.44 0.79 0.93 0.98 1.00
f1 0.00 0.39 0.84 0.83 0.99
f2 0.00 0.00 0.27 0.68 0.96
f3 0.00 0.00 0.00 0.23 0.92
f4 0.00 0.00 0.00 0.01 0.97
f5 0.00 0.00 0.00 0.00 0.00

Thomas
f0 f1 f2 f3 f4 f5

f0 0.24 0.53 0.73 0.86 0.99
f1 0.00 0.26 0.58 0.53 0.92
f2 0.00 0.01 0.16 0.42 0.80
f3 0.00 0.00 0.01 0.15 0.69
f4 0.00 0.00 0.00 0.01 0.79
f5 0.00 0.00 0.00 0.00 0.00

i.i.d. samples φi from Φ and compare the mean scores for different forecasts, in the same
way as in Section 4. The scoring function S is defined in Example S4 and the scaling
factor c = 10−5 is chosen such that the log and squared terms are of the same order of
magnitude. We repeat the simulations M = 500 times to assess the variation in mean
scores.

Details on the point process models We simulate three different stationary and
isotropic data-generating processes Φ on the window [0, 1]2 with intensity λ = 25. The
models are specified as follows:

1. A LGCP which is determined by a stationary and isotropic Gaussian process with
mean µ ∈ R and covariance function C0, see e.g. Illian et al. (2008). Its second

order product density ϱ(2) : Rd×Rd → R is given by ϱ(2)(x1, x2) = ϱ
(2)
0 (∥x1−x2∥),

where

ϱ
(2)
0 (r) = exp (2µ+ C0(0) + C0(r)) .

We choose C0 as the Gaussian covariance function (7) with variance σ2 = log 2
and scale s = 5/100 and set µ = log(λ)− σ2/2.
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Figure S4: Plot of the five different choices for ϱ
(2)
0 : [0,∞) → [0,∞) on which the

product density forecasts in Section S3.2 are based. The first two (f1 and f2) represent
clustering, the last two (f4 and f5) inhibition. The constant f3 implies no interaction.

2. A homogeneous Poisson point process.

3. A DPP defined via the Gaussian covariance function (7), see e.g. Hough et al.
(2006) and Lavancier et al. (2015). Its second order product density is given by

ϱ(2)(x1, x2) = ϱ
(2)
0 (∥x1 − x2∥), where

ϱ
(2)
0 (r) = C0(0)

2 − C0(r)
2,

and C0 is the Gaussian covariance (7) with variance σ2 = λ2 and scale s = 0.06.

Forecast comparison The three simulation experiments compare five different prod-
uct density forecasts, which are based on stationary and isotropic point processes, see
Example S4. Hence, the forecasts take the form ϱ(2)(x1, x2) = ϱ

(2)
0 (∥x1 − x2∥), with the

function ϱ
(2)
0 given by

f1(r) = exp
[
2µ+ σ2

{
1 + exp(−400r2)

}]
f2(r) = exp

[
2µ+ σ2 {1 + exp(−20r)}

]
f3(r) = λ2
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Figure S5: Boxplots of mean scores s̄j for different product density forecasts, where
Φ is a log-Gaussian Cox process (left), a homogeneous Poisson process (centre), or a
Gaussian determinantal point process (right). Means are based on N = 30 realizations,
boxplots on M = 500 replicates.

f4(r) = λ2 {1− exp(−2r/s)}
f5(r) = λ2

{
1− exp(−2(r/s)2)

}
,

where µ = log(λ)− σ2/2, σ2 = log(2), s = 0.06, and λ = 25. See Figure S4 for a graph-
ical comparison of the different functions. The forecasts f1 and f2 represent clustering,
since they arise as product densities of LGCPs with Gaussian or exponential covariance
function (see (7) and (8)). The constant function f3 corresponds to a homogeneous Pois-
son process. The forecasts f4 and f5 arise as product densities of DPPs with Gaussian
or exponential covariance function and thus represent inhibition. Our parameter choices
ensure that the point process models corresponding to f1, . . . , f5 all have intensity equal
to λ, so forecast misspecifications only occur in the product density.

In the first experiment the true Φ is a LGCP with a Gaussian covariance function such
that its product density corresponds to f1. In the second experiment Φ is a homogeneous
Poisson process with intensity λ, such that f3 becomes the optimal forecast in this
situation. Lastly, we let Φ be a DPP with Gaussian covariance function and parameters
such that f5 is optimal. We thus perform one experiment for each of the three phenomena
clustering, no interaction, and inhibition.

The simulated mean scores are displayed in Figure S5 for all three experiments. The
optimal forecast consistently achieves the lowest mean score. In the case of clustering
(left subfigure) the LGCP related forecasts f1 and f2 perform roughly similar, while the
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Table S3: Fraction of times the “row forecast” was preferred over the “column forecast”
by a standard DM test with level α = 0.05 in the product density experiments (Sec-
tion S3.2), based on M = 500 repetitions

LGCP
f1 f2 f3 f4 f5

f1 0.18 0.63 0.99 1.00
f2 0.00 0.57 0.99 1.00
f3 0.00 0.00 1.00 1.00
f4 0.00 0.00 0.00 1.00
f5 0.00 0.00 0.00 0.00

DPP
f1 f2 f3 f4 f5

f1 0.00 0.00 0.00 0.00
f2 0.90 0.00 0.00 0.00
f3 1.00 1.00 0.00 0.00
f4 1.00 1.00 1.00 0.00
f5 1.00 1.00 0.96 0.57

Poisson
f1 f2 f3 f4 f5

f1 0.01 0.00 0.04 0.43
f2 0.17 0.00 0.06 0.50
f3 0.77 0.68 0.64 0.96
f4 0.07 0.05 0.00 1.00
f5 0.00 0.00 0.00 0.00

misspecified no interaction and inhibition forecasts f3, f4 and f5 lead to considerably
higher mean scores. A similar, but mirrored behaviour is apparent in the inhibition ex-
periment (right subfigure): The forecast f4, which gets the nature of point interactions
right, attains low mean scores, even though it is not optimal. The mean scores of the
Poisson forecast f3 are always in between the “extremes”. The DM test probabilities of
the three experiments are given in Table S3 and support these observations. Addition-
ally, the DM results illustrate that the clustering forecasts f1 and f2 are preferred more
often over the inhibition forecast f5 in the case of Poisson data (centre table).

S4 Additional details for the case study

This material extends Section 5.2. Figure S6 reproduces Figure 3 but with the quadratic
score Squad rather than the Poisson score Spois. In contrast to Figure 3 we see that there
are periods without events where the LG model rather than the FMC model attains the
lowest scores.

Figures S7 and S8 use the same methods as in Figure 4 to compare the LM model to
the LG and the SMA model. The regions of superior or inferior forecast performance of
the LM model remain generally the same across the three comparisons. The right plots
of these figures compare the forecasts after spatial aggregation, for which we give details
now.
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Figure S6: Daily scores sj,t from (10) based on Squad for the four forecasting models
from 2005 to 2020, logarithmic scale. The circles indicate the days of M4+ earthquakes
and the tickmarks on the horizontal axis mark the first day of each year.

S4.1 Spatial aggregation

We follow the notation of Section 5.2, except that we introduce a coordinate notation
for the testing region (Figure 2). For each grid cell Bi we now write Bk,l where k is the
horizontal and l the vertical coordinate. A cell with a higher value of k is further east
and a cell with a higher value of l is further north. Similarly, let x

(j)
k,l,t be the forecast

of model j corresponding to cell Bk,l on day t. For combinations of k and l that fall

outside the testing region we use the convention x
(j)
k,l,t = 0 and Bk,l = ∅.

Let δ ∈ N0 be a given level of aggregation. We define the locally aggregated forecast
and the locally aggregated grid cell at coordinate (k, l) and aggregation level δ via

x̄
(j)
k,l,t :=

δ∑
µ=−δ

δ∑
ν=−δ

x
(j)
k+µ,l+ν,t and B̄k,l :=

δ⋃
µ=−δ

δ⋃
ν=−δ

Bk+µ,l+ν

respectively. In the interior of the testing region, this is an aggregation of the forecasts
over a square neighbourhood with edge length 2δ+1 centred at (k, l). At the boundary
of the testing region the aggregation neighbourhoods will be smaller, however, as there
are almost no events in this area, this does not affect the plots. Due to the linearity
of expectations, the values x̄

(j)
k,l,t are again valid mean forecasts that can be compared

via consistent scoring functions, e.g. the Poisson score (9). The right plots of Figures 4,
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S7, and S8 show this comparison via the mean score difference of the locally aggregated
forecasts

∆̄
(j,j′)
k,l :=

1

5514

5514∑
t=1

(
Spois(x̄

(j)
k,l,t, φt(B̄k,l))− Spois(x̄

(j′)
k,l,t, φt(B̄k,l))

)
,

where δ = 5. For δ = 0 there is no aggregation, so ∆̄
(j,j′)
k,l simplifies to ∆

(j,j′)
i , the (non-

aggregated) mean score difference (11). For δ large enough there is essentially only one
big grid cell and one forecasted number remaining. The corresponding plot would show
only one colour, indicating the forecast performance of the models with respect to the
total number of events in the testing region.

S4.2 Sample size considerations

Point process forecasting is often challenged by a lack of data, and particularly a lack
of data to properly test newly proposed prediction models. In this light, a critical
question is how much data is required to reach valid conclusions on superior predictive
ability. As discussed, a commonly used tool is the Diebold–Mariano (DM) test, which
is a one-sample t-test applied to the score differentials, with adaptations to time series
settings. Standard power calculations for t-tests apply to independent samples, and a
well known, crude rule of thumb (Lehr, 1992; van Belle, 2008) states that for a one-
sample, two-tailed t-test with level 0.05, a sample size n = 8s2/d2 yields an approximate
power of 0.80, where s2 is the variance of the score differentials, and d is the difference
to be detected. Phrased differently, if the variance s2 and the sample size n are given,
a difference dn = (8s2/n)1/2 is detectable, subject to the above specifications of the size
and the power of the t-test.

In Tables S4 and S5 we return to Table 1 in the main paper, where we compare
the predictive performance of the LM, FMC, LG, and SMA models, respectively. We
show the mean score differential and its variance, and find the detectable difference
d5514 at the given sample size of n = 5514 daily forecasts of earthquake activity over the
subsequent seven-day period, for the Poisson score and the quadratic score, respectively.
Figures S9 and S10 show the sample autocorrelation function for the score differentials.
Not surprisingly, there is considerable dependency at lags up to about seven to nine days
ahead, due to the overlap in the seven-day outlook, though autocorrelations are small to
negligible at higher lags. As standard power calculations assume independent samples,
a more appropriate quantification of a detectable difference is based on a sample size of
[5514/7] = 787. A further alternative is to use an estimate of the effective sample size
(Thiébaux and Zwiers, 1984), which reduces the regular sample size according to the
autocorrelation of the series, in line with the handling of dependencies in DM tests.
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Table S4: Mean m and variance s2 of the score differential, and detectable difference dn
for sample size n = 787 and n = 5514 according to the rule of thumb by Lehr (1992),
under the Poisson score and for the models from Table 1 in the main paper.

Poisson score LG−LM LG−SMA LG−FMC FMC−LM FMC−SMA SMA−LM
Mean m 0.307 0.285 0.221 0.086 0.064 0.022
Variance s2 11.936 6.438 4.885 2.542 0.695 0.983
d5514 0.132 0.097 0.084 0.061 0.032 0.038
d787 0.348 0.256 0.223 0.161 0.084 0.100

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LG−LM

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LG−SMA

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LG−FMC

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FMC−LM

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FMC−SMA

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SMA−LM

Figure S9: Sample autocorrelation function of the Poisson score differentials for the
forecasts from Table 1 in the main paper, with lag in days
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Table S5: Same as Table S4, but under the quadratic score. All entries are to be divided
by a factor of 100.

Quadratic score LG−LM FMC−LM SMA−LM LG−SMA FMC−SMA LG−FMC
Mean m 0.563 0.505 0.293 0.270 0.211 0.058
Variance s2 1.690 1.303 0.605 0.295 0.159 0.152
d5514 0.495 0.435 0.296 0.207 0.152 0.149
d787 1.311 1.151 0.784 0.548 0.402 0.393
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Figure S10: Same as Figure S9, but under the quadratic score
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Interestingly, under both the Poisson and the quadratic score, and for each of the
six binary model comparisons, the actual mean score differential m tends to be nested
in between the (overly) optimistic estimate d5514 and the (arguably) realistic estimate
d787 for a detectable difference, which indicates that the comparative evaluation might
reasonably be considered to be based on sufficient data. Evidently, this current analysis
is crude and preliminary, using default specifications from the biostatistical literature
for size and power, and we encourage follow-up studies.
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