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Supplementary Material

This file contains additional information for calculation (Section S1), the proof of Theorem

1 (Section S2), and additional numerical results (Section S3).

S1 Additional information for calculation

S1.1 Calculation for proximal mapping Prox(g; A\, A2, k)
Recall that the proximal mapping problem is defined as:
1
prox(g; A1, Az, k) = argmjn §Hg —d||3 + P(d; M\, do, k), (13)

where d and g denote (¢+1)-dimensional vectors, and the penalty P(d; A1, A2, k) = p(||d||2; Vg + TA1, k)+
SoiES pldks Ao, ).

We can characterize the optimal solution of (13) using the subgradient equation:
d-g+v+w=0, (14)

where v denotes the subgradient of p(||d||2; v/q + IA1, &) with respect tod. w = (0, w2 ..., wgq1) "
with wy (k=2,...,¢+ 1) denoting the subgradient of p(dy; A, k) with respect to di. Specif-



ically, we have:

p'(Idll2; vVa + T, k)d/|[d]l2 d#0

v = ,
e{v:|v|2 <Vq+ 1A} d=0
p'(d; A2, k) di, #0

wg =

S [_>\2,)\2] dk =0

where p/(x; \, k) = sign(x) I(|Jz| < KA)(A — |x|/k) denotes the gradient function for the MCP
penalty.

We can derive that subgradient equation (14) is satisfied with d = 0 if the following

inequality holds:

ST 1(g; Mll2 < Vg + 1A, (15)
where ST_;(x; A) = (21, [sgn(x_1) o (|x_1| = A\)£] ).

Specifically, since inequality (15) holds, we can find a suitable w satisfying that w; = 0,
wg € [=A2, A2] (K €2,...,(¢g+1)), and ||g — w|2 < /g + T\, or equivalently g —w = v for
some ||v]j2 < /¢ + 1A;. This indicates that d = 0 is a solution to equation (14).

Otherwise, when inequality (15) does not holds and d # 0, subgradient function (14)

becomes:

d
d—g+o'(ldll2; v+ U\lﬁ)@ +w =0,

or equivalently
d= e ¥
1+ p/(ldll2; Vg +TAr, 5)/lld]l2
Denote W ={k=1,...,(¢g+1): k=1 or |[gg| > A2} and its complement ¥¢ = {1,..., (¢+

1)} \ . Then we have dj, # 0 for k € ¥ (since |gx —wi| > |gk| — A2 > 0 for k > 2 and k € V)

(16)

and dp = 0 for k € U¢ (since |gi| < Ao, we let dp = 0 and the subgradient wy = g, and

then equation (16) holds in its kth component). Based on these two conclusions, the solution



follows that:

dge =0, (17)

—_ '(q .
dy=— 8% pldwidar) (18)
L+ o/ (||[dyll2; Vg + 1A, 6) /| dl)2

For a@, we first initialize dy = gy and then iterate equation (18) until convergence. Note
that, in all iteration steps, dAk # 0 for k € ¥, and thus the subgradient p'(a\p; A2, k) is in fact

a gradient vector.

The overall procedure for calculating the proximal mapping is presented in Algorithm 1

in the main text.

S1.2 Convergence of the ADMM algorithm

We examine convergence properties of the ADMM algorithm. In Figure 3, for one simula-

(m+1) ||2
> 2

tion replicate, we provide the trace plots of the primal residual Z§=1 ||b§m+1) —d and
dual residual Z§:1 ||d§»m+1) - dg-m) |2 over iterations. We see that the ADMM algorithm con-
verges with a moderate number of iterations. The trend is similar for other simulated cases.
The following Theorem 1 shows that the primal feasibility and dual feasibility are achieved by
the algorithm, and the resulting solution can be a local minimum of the objective function.
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Figure 3: Trace plots of primal residual (left) and dual residual (right) over iterations for
one simulation replicate. Data is generated under Example 1 and the AR(0.3) correlation
structure. Ay = 0.05 and Ay = 0.1.



Theorem 1. The primal residual v = yec [B(m+1)] — vec [D(m+1)] and the dual residual
s(m+D) = yec [DMHD] — vec [D™)] of the ADMM algorithm satisfy limy, oo [ V|3 = 0
and lim, o [|s"1]13 = 0.
Proof. Recall Q(¢,D) in (5) and the corresponding Lagrangian Qy (¢, D, Y) in (6). By the
definition D™+ = arg minp Q¢(¢(m+1), D, T(m)), for any (¢ + 1) x p- dimensional matrix
D:

Qw(d,(mﬂ)’ D(m+1)’ 'r(m)) < Qw((b(mﬂ)’ D, 'r(m))_ (19)

Let D = B(™tD and we have:

FH) = Q) BMHD x(m)y — Q(opm+D) B > Q (D) DM+ A (m)),
(20)
It is noted that for any integer t > 2, the scaled dual variable v; (j = 1,...,p) can be
represented as 'Ug.mﬁfl) ™ 4 Z ( plm D d§m+i)). Thus we have:

Q¢ (¢(m+t) D(m+t) T(m—i—t—l))
_Q(d)(m—i-t) Dm+t wz (”b m+-t) m+t)+ (m+t 1) ||2 v (m+t—1)||2)
= v; 2
Jj=1
A m (m 7/] m m m)T m m (21)
=Q(p(m+), Dm+i)) 52{“’( +t) *”H%+2v§- ) [b§. +t)—d§. +t)”

p
(m+t) m+t) (mA4i)  q(m+i) (m-+t)
+¢Z [b d } [bj df }gfm .
Jj=11i=1
It is noted that function Q¢(qf), D, Y) is convex and differentiable with respect to ¢. When
1 is sufficiently large, it is also convex with respect to D. Thus by Theorem 4.1 in Tseng
(2001), we conclude that the sequence {¢™, D™} has a limit point {¢!, DT}. Then,

fi=Tim fOH) = dim (0 = Q(gf, BY). (22)

m—0o0



Meanwhile, we have:

lim Q¢(¢ m—i—t)7 D(m-i—t)’ -r(m—i-t—l))

m—0o0

p
= Q(¢!,D') + lim Zw{vﬁ»’”” [bf —dl] + (¢ — )b} - d}\@)} < f.

m—+00 £

(23)

To ensure that (23) holds for all integer ¢ > 0, we have that ||b;—d; |2=0(j=1,...,p). Thus
we can conclude that the primal residual satisfies limy, oo [|[vec(B+1)) — vec(D™+1)||2 =
limg o0 30y BV — a2 = 5o bf — df[3 = 0. Thus the primal feasibility is

proved.

Moreover, ¢! = arg ming Qw (¢, D™ 1)) indidates that the following sub-gradient

equation holds:

0Qy (¢, DM, T (™)

0= ) [vee(Bm)]

Therefore, we have:

0Q(¢"+), D)
0

st = vee(D™H) — vee(DIM) = — [vec(B(m+D)]

; ~vee(THY. (25)

It is noted that, at the limiting point, Hb;r — d}LH% =0(j=1,...,p). Thus we also have:

a@w(q;(mﬂ)’])(m)’ﬁf(m)) B 3Q(¢T,DT)

0= 1l = TH. 26
e300 9 [vec(BT)] ey T Yvec(t) (26)
This indicates that lim,,—s s(m+1) = 0. This concludes the proof. O



S2 Proof of Theorem 1

S2.1 Proof of results (a) and (b)

Proof. Define the oracle estimator E)o as g?); =0 and (?1(1) = argmaxg, Ly (¢;), where

L (1) = 12/ { Ai v, —log (Z Yir(t) exp( z‘/,\lfébl))}dNi(t)- (27)

Our proof contains two steps. In the first step, we establish estimation consistency of gAbo.
And in the second step, we show that with probability tending to 1, (/50 is a local minimizer

of objective function Q,(¢).

Step 1. We show that ‘ P — = H(?)i — @] L= O, («/s/n). It is sufficient to show
that, for any € > 0, there exists a large constant B such that:
Pr| sup £5(¢1) = L3(9]) | 21—, (28)
¢ €T

where Z = {¢; : ||¢; — ¢7||]2 = By/s/n}. This indicates that, with probability tending to
1, function £ (¢,) has a local maximizer q/i\)(l) within the ball {¢; : ||¢; — @]ll2 < B/s/n}.
That is, a)(lj satisfies H(/]f\);) — @ill2 = Op(y/s/n). The proof of Step 1 follows the strategy of

Bradic et al (2011). The main steps are as follows.

For ¢, € Z, we rewrite ¢p; = @] + y,u, where v, = By/s/n and |lu||2 = 1. The first and

second order derivatives of £ (¢,) are:

un(¢1) =

3(,251 = 12/ —Hnl(t,dﬁ)}dNi(t),

LD
Un (1) = 8(]!)18(7,')1 Z/ Vi (t, ¢1)dNi(2).

With Taylor expansion, we have:

L5(p1) = L3(#7) = L (@1 +mu) — L(91)

1
=t Un($7) + S0 Oy (P7) 0+ 7,



where r,, = Op(72).

With Conditions 1, 3, 4 and based on Lemmas 2.2, 2.3, 4.1 in Bradic et al (2011), we
have [[Un(@7)|l2 = Op(y/s/n) and ||0UL(¢]) — Z(P])|l2 = 0p(1). It follows that:

u' Uy (d7)u = u" {S(¢7) + [0Un(#7) — (P71)]} u > omin [E(d17)] + 0p(1).
Overall, we have:

£3(n) — £3(61) = 7o Un(1) + 320" (9]0 + 7

> o [ {omin [£(61)] + 0, (1)} 30 = Op(v/5/m)] -

Then with probability tending to 1, £ (¢,) — L) (¢7) > 0 for v, = By/s/n with a sufficiently
large constant B, which implies (28).

Step 2. We show that with probability tending to 1, the oracle estimator gAbo is a local
minimizer of Q,,(¢). To this end, we need to verify the following first order Karush-Kuhn-

Tucher (KKT) conditions with respect to ¢ = (lA)‘fT, ce lA)Io)T e’

3Qn(¢)’ ~o0
- = —Unn(¢P1) =0, 29
m sz n(P1) (29)
~o0 oP BQ;)\ ,)\ , K
83%,(_@ = —Un,j(¢1) + ( JAOI 2 _ 0,j €@, (30)
7= lg=¢° abj,zj
00, o OP(b% AL, A2y K
3Qb (:/5) = —Vn,j(¢1) + ( j/\ol 2 ) =0,j €9, (31)
Jr= ¢:$o abJ’Eg
8Qn<¢>‘ o OP(D%AL N E)
= —Vni(¢y) + = =0,j € o, 392
ob; | 4_ge i(é1) b (32)

where Uy, () denotes the sub-vector of U, (¢;) corresponding to n, and U, ;j(¢;), j € Py de-
notes the sub-vector of U, (¢;) corresponding to b;=.. We also denote Vy,(¢p) = 9L, ($)/0o
and use V, j(¢) to denote the corresponding sub-vector with respect to bjE; for j € ® or b,

for j € ®°.

With the specific definition of the oracle estimate (?SO, equation (29) is already satisfied.

For equation (30), considering the minimal signal condition (Condition 6), we can conclude



that for j € @, ”bj’EjHQ > bmin — Hbjg]. — b;f,EjH2 > Aq, and ’bjyk‘ > Mmin — ‘b?,k — b;,k‘ > Ao,
k € Z;\ {1}. Based on these two results and the properties of the folded-concave penalty

function (Condition 7) p'(z; A, k) = 0 for |z| > kA, we obtain:

OP(b%: A1, Na,k) P (12,12 VA F Tha, 6)69,

86?,1 Hbj,aj 2
OP(b% A1, Ao, k) P (052 llos /a + Thr, k)B° - _
T = Pt g (B ey k) = 0, k€ 55\ {1)

o3, [6;=,1l2

=y

These two equations imply that 8P(B?; A1, A2, K)/ 83‘?’% =0 (j € ). Additionally, we have
Z/lnj(c/z.'\)i) = 0 (j € ®) by the definition of the oracle estimate. Then we conclude that equation
(30) holds.

For equation (31), we have that for j € ®, 8P(IA)3?; A1, Ag, m)/@g?m = Xow; with ||[W;]|o <
[

1. Then we can express equation (31) as an((?)i) = Xw; or equivalently:

V(@)oo < Aoy, j €, (33)

where || - || denotes the infinite norm.

For equation (32), we have that, for j € ®¢, the subgradient 8P(B;?;/\1,)\2,f<;)/agg? =
Va+ T vy 4+ Aaw; with [[vj|l2 < 1, ||[Wj|l < 1, and w;; = 0. Hence, we can reformulate
equation (32) as Vn]((?;l)) — AoW; = /g + 1\ v}, which is equivalent to:

~0 ~ .
[Vnj(@1) — Aawill2 < \/g+ 1A, j€ P
Additionally, by considering the range of w;, we can further express as:

IST_1 (Vo (@) M) ]2 < Va+ 1Ny, j € 7, (34)

where ST_1(x; A) = (z1, [sgn(x_1) o (Jx_1| = A)4]")T is a special type of soft-thresholding

function in that soft-thresholding shrinkage is applied to all elements except for the first one



of vector x. For inequality (34), it is sufficient to verify that:

Vg (@)oo < A1, € @°. (35)

Based on the above, we are left to verify (33) and (35), for which it is sufficient to show
that ||Va(6°)]lce < min{A;, A2}

We define the sequence u, = n%5+21 and event M = {||[Vi(¢?)|loo < un//n}. Based on
Conditions 1, 2 and the assumption max; (0]2-) = O(n%3+21) = O(u,), we have that Theorem

3.1 of Bradic et al (2011) holds, which implies that there exist positive constants ¢y and ¢;
such that:
Pr(|§| > upn) < coe” MM, §=1,....[p(g+1)+q—s],

where £, denotes the j'th element of V,(¢7). In this case, by using the Bonferroni union

bound formula, we can derive that:
Pr(M) = Pr <m.aX &5 < Un) >1—co[p(q+1)+q—sle” " =1,
]l

since logp = O(n<°), u,, = n%5¢+1 and ¢y < 0.5¢ + o.

Under event M and Condition 5, we follow the proof of Theorem 4.3 in Bradic et al
(2011) and obtain that:

V(@)oo < 1Va(@D)lloo + V(1) — Va(#)) ]l

= Op(un/vn) + Op | sup sup  [|[Vinau (L, ¢1)
OStSOO ¢l€‘81(¢i’¢rnin)

~o0
2,00/ ®1 — ¢TII2>

_ Op(n0.54+o¢1—0.5).

Under assumptions A; > n0-%+a1=05 and Ay > n05¢+a1-05 e have that an(ao)uoo <

min{\;, A2} holds with probability tending to 1. This concludes the proof. O



S2.2 Proof of result (c)

Proof. Based on results (a) and (b), we have that the estimate (?)1 = argmaxg, Ly (¢,), and

it satisfies Z/In(a‘)l) = 0. With Taylor’s expansion at the true value ¢7, we have:

~

Un(1) = Un(@}) + OUn(@7) (1 — 67) + 10, (36)

where 1], is a s-dimensional residual vector, its jth element is defined as:

with ¢, being a vector locating between 351 and @7, and Uy, ;(¢,) denotes the jth element of
Uy (¢, ). Following (36), we can derive that:

Vv (1) (@1 — ¢1) = (62 U (1)) [0 Ua(e1)]
(1) 2 [0 ()] [0 (38)

=Wn1 + Wn2.

We note that 82%”’7(;(;?) = Op(1). Thus by adopting the Cauchy-Schwarz inequality in
1991 |9
(37), we can derive that:
751 < lldy — @111305(1) = Op(s/n), (39)

and thus |[n'/?¢! ||a = O,(s%?/n'/?) = 0,(1). Furthermore, based on Condition 4 and Lem-
mas 2.3 and 4.1 in Bradic et al (2011), we have that [|3(¢7)||2 < 1 and ||0U,(¢]) —Z(P])]||2 =

op(1). It follows from the Cauchy-Schwarz inequality that:

jwnzl < 1wzl 2(@7)2ll2 [IB(B7)]12 + 10U (67) = (B 12] " 102212 = 0p(1).

On the other hand, since ||0Uy, (¢]) — 3(@7)||2 = 0p(1), we have that wy1 —p w); with
Wiy = v B [ U (07)] (10)

10



It is now sufficient to prove the asymptotic normality of w/,;. Recall that:
n T
(@) =ty [ {Aly - HaeD}avi)
0

i=1
=t > [T {Al - HatoD} avi),

i=1

where M;(t) = N;(t) —A;(t) is a martingale on the time interval [0, 7], and the second equality

follows from the fact that:

;/0 {AzT\If —H,(t, fiﬁ)} dA;(t)
— [ 3 [AT0 exp{Asusit] dt — [ nBa(egin Y D0 exp(ALaei di
i=1 =1
= [TusDm gt~ [t onsy (e = o
0 0

Based on (41), we have that E [U,(¢])] =0, E(w],) = 0 and

{AL -Haton)

; S(61) " PrndAi(t)

Var(uly) =B |3 /0 VTS (gh)
=1

I S AT - Hal D)} A0
0

— v (g7) R -

dt | =(¢7) v

= v 5(¢}) V/E _ / Vw4 6]) SO, ¢*)dt] () 2w
LJO

By Lemma 4.1 in Bradic et al (2011), we can obtain that E [fOT Vo (¢, ¢7) Sfmo)(t, ¢*)dt| =
3(¢7}), which leads to Var(w/,;) = 1. Therefore, by using the central limit theorem (Andersen
and Gill, 1982; Fleming and Harrington, 2011), we get that w/,; —4 N (0,1). Combining the
above results, we have that \/nv,| 2(¢%)!/? @1 — d)”f) —4 N(0,1), which concludes the

proof.

11



S3 Additional numeric results

S3.1 Additional simulation Results

Table 3: Simulation results under the Bandl and Band2 correlation structures. In each cell,
mean (sd) based on 100 replicates.

Main effects (M)

Interactions (I)

Example Correlation = Method SSE C-index
TP FP TP FP
Proposed 12.8(2.5) 0.2(0.4) 5.8(2.3) 1.4(1.4) 5.030(1.533)  0.827(0.031)
Bandl MCP  8.2(2.6) 0.1(0.4) 5.9(2.1)  3.5(2.8)  7.082(1.147) 0.788(0.034)
grMCP 8.2(3.8)  0.0(0.0) 9.4(1.9) 31.8(17.1) 6.887(1.539) 0.784(0.046)
) Marginal ~ 1.0(1.5) 3.5(5.6) 1.9(1.4) 27.1(35.3) () -(-)
Proposed 13.4(2.2) 1.2(1.2) 5.8(2.8)  2.8(2.3)  5.936(1.342) 0.819(0.031)
Band2 MCP 8.2(1.6) 0.8(0.8) 5.7(2.6) 4.7(3.0) 7.755(1.038)  0.783(0.031)
grMCP 7.3(3.9) 0.3(1.1) 8.2(2.2) 30.0(21.8) 7.951(1.445) 0.767(0.048)
Marginal ~ 1.1(1.4) 4.2(5.2) 1.3(1.4) 31.7(34.5) () ()
Proposed  7.3(0.7)  0.2(0.6) 5.1(1.0) 1.8(1.6) 2.315(0.635)  0.842(0.021)
Bandl MCP  6.0(1.0) 0.2(0.5) 4.7(1.3)  3.3(1.4)  2.738(0.577) 0.810(0.025)
erMCP 7.1(1.0) 0.1(0.4) 5.9(0.4) 30.4(4.8)  2.773(0.440) 0.837(0.019)
) Marginal ~ 0.8(1.0) 3.4(4.4) 24(1.3)  31.0(31.4) () )
Proposed  7.1(0.6)  0.3(0.5) 4.6(1.1)  2.1(1.5)  2.910(0.733)  0.850(0.019)
Band2 MCP 4.8(1.3) 0.2(0.4) 4.2(1.3) 3.8(1.9) 3.268(0.903)  0.820(0.022)
grMCP 6.7(0.9) 0.6(0.5)  6.0(0.2) 30.3(4.8)  3.212(0.798) 0.845(0.020)
Marginal ~ 0.9(1.0) 3.8(5.1) 1.8(1.3)  35.3(38.5) () )
Proposed 10.9(1.0) 0.2(0.4)  0.0(0.0) 2.0(1.4) 1.554(0.556)  0.843(0.016)
Band1 MCP 9.3(1.3) 0.2(0.4) 0.0(0.0) 3.9(2.2) 2.534(0.527)  0.807(0.012)
grMCP 8.9(3.0) 0.0(0.0) 0.0(0.0) 44.8(15.0) 3.202(0.718) 0.807(0.037)
3 Marginal  1.2(1.6) 4.3(7.5) 0.0(0.0)  25.9(36.5) -(-) -(-)
Proposed 11.3(1.0) 0.5(0.8) 0.0(0.0)  2.1(1.7)  1.929(0.610) 0.854(0.017)
Band? MCP 10.1(1.5) 0.5(0.6)  0.0(0.0) 3.4(2.4) 2.730(0.661)  0.819(0.018)
grMCP 8.4(3.0) 0.2(0.5) 0.0(0.0) 43.0(16.3) 3.625(0.836) 0.809(0.046)
Marginal ~ 1.6(1.7) 5.7(8.8)  0.0(0.0) 34.1(43.3) () ()
Proposed  4.0(0.0)  0.2(0.7) 12.6(3.9) 0.1(0.3) 4.284(1.314)  0.860(0.013)
Band1 MCP 3.6(0.6)  0.0(0.0) 10.1(3.1) 0.3(0.8) 4.824(0.856)  0.845(0.017)
grMCP 4.0(0.0)  0.0(0.0) 20.0(0.0) 0.0(0.0) 2.407(0.465)  0.878(0.011)
4 Marginal ~ 0.2(0.4) 2.8(3.9) 1.6(1.6) 32.2(30.8) -(-) -(-)
Proposed  4.0(0.0) 0.1(0.3) 13.1(2.8)  0.0(0.0)  4.548(1.451) 0.869(0.013)
Band? MCP 2.5(1.1)  0.1(0.3) 12.1(2.6) 0.7(1.1) 4.712(0.991)  0.848(0.016)
grMCP 4.0(0.0)  0.0(0.0) 20.0(0.0) 0.0(0.0) 2.374(0.571)  0.881(0.010)
Marginal ~ 0.1(0.3)  2.2(3.6) 1.0(1.1)  29.5(36.8) () ()

12



Table 4: Simulation results under the CS(0.3) and CS(0.5) correlation structures. In each
cell, mean (sd) based on 100 replicates.

Main effects (M)

Interactions (I)

Example Correlation = Method SSE C-index
TP FP TP FP
Proposed 14.8(1.1)  1.8(2.1) 5.6(2.8)  2.4(25)  4.884(1.219) 0.922(0.015)
CS(0.3) MCP 13.2(1.4) 2.2(1.9) 5.3(2.3) 3.8(2.0) 6.075(1.203)  0.903(0.024)
: grMCP  13.9(1.9)  0.6(0.8) 11.3(1.0)  61.1(11.2) 5.449(1.228)  0.914(0.021)
) Marginal ~ 2.8(2.3)  36.6(33.7)  0.1(0.2)  0.5(1.1) (=) -(-)
Proposed  14.6(0.9) 6.2(4.2) 6.0(2.2) 4.7(3.8) 5.321(0.786)  0.938(0.011)
0S(0.5) MCP  12.1(1.7)  4.8(2.7) 5.8(2.0)  7.3(3.2)  6.122(0.830) 0.930(0.015)
' grMCP  12.2(2.8) 1.1(1.4) 10.6(1.2) 55.6(16.8) 6.050(1.231)  0.925(0.020)
Marginal ~ 8.5(4.0) 217.8(127.8)  0.0(0.2)  0.7(1.2) -(-) -(-)
Proposed  7.5(0.9) 0.7(1.6) 4.3(1.5) 1.4(1.2) 2.431(0.639)  0.879(0.030)
CS(0.3) MCP 6.2(1.2) 1.6(1.9) 4.4(1.4) 3.9(2.6) 2.750(0.753)  0.851(0.030)
’ grMCP 7.5(0.8) 0.6(0.9) 5.8(0.5) 34.6(5.5)  2.600(0.593) 0.878(0.023)
) Marginal ~ 0.8(1.2)  8.3(13.9)  0.6(0.8)  1.3(2.6) (=) (=)
Proposed  7.1(1.0) 1.8(2.9) 3.5(1.7)  2.0(2.5)  2.702(0.864)  0.892(0.017)
CS(0.5) MCP 5.8(1.4) 3.4(2.0) 3.9(1.4)  7.7(3.8)  3.079(0.940) 0.871(0.022)
’ grMCP 7.2(0.9) 1.6(1.6) 5.8(0.4) 37.6(9.1)  2.850(0.757) 0.890(0.012)
Marginal — 2.8(2.2) 75.7(80.9) 0.4(0.6) 4.7(9.3) -(-) -(-)
Proposed 11.6(0.5)  0.5(0.6) 0.0(0.0)  0.5(0.9)  1.340(0.437)  0.923(0.010)
CS(0.3) MCP  11.7(0.7)  0.8(1.0) 0.0(0.0)  1.4(1.3)  1.481(0.552)  0.900(0.018)
’ grMCP 11.3(0.9) 0.5(0.7) 0.0(0.0) 59.2(6.5)  2.076(0.553)  0.906(0.017)
3 Marginal ~ 3.4(2.2)  53.3(46.9)  0.0(0.0)  0.2(0.7) (=) -(-)
Proposed 11.2(1.1) 0.9(1.4) 0.0(0.0) 0.1(0.2) 1.452(0.557)  0.935(0.010)
CS(0.5) MCP 11.4(0.8) 3.1(2.6) 0.0(0.0) 1.4(1.1) 1.716(0.599)  0.915(0.013)
' grMCP  10.6(1.4)  0.8(1.1) 0.0(0.0)  57.0(10.4)  2.357(0.625) 0.914(0.016)
Marginal ~ 8.4(3.0)  282.6(142.6) 0.0(0.0)  0.5(1.3) (=) -(-)
Proposed  4.0(0.0) 0.7(1.2) 15.4(2.8)  0.4(0.8)  3.161(0.881) 0.888(0.023)
CS(0.3) MCP 1.9(1.2) 0.1(0.3) 13.2(3.4)  0.8(1.2)  4.127(1.002) 0.874(0.026)
' grMCP 4.0(0.0) 0.0(0.0) 20.0(0.0) 0.0(0.0) 1.954(0.498)  0.905(0.015)
A Marginal  0.0(0.0) 0.0(0.0) 0.7(0.9)  5.6(5.7) -(-) -(-)
Proposed  4.0(0.0) 2.9(2.0) 17.1(1.9)  2.0(2.0)  2.823(0.755) 0.912(0.015)
CS(0.5) MCP 1.4(0.9) 0.6(0.8) 15.9(2.2) 3.6(2.3) 3.420(0.678)  0.904(0.016)
’ grMCP 4.0(0.0) 0.0(0.0) 20.0(0.0) 0.0(0.0) 1.709(0.323)  0.922(0.011)
Marginal  0.0(0.0) 0.0(0.0) 1.0(1.1)  21.3(15.1) -(-) -(-)
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S3.2 Additional data analysis results
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Figure 4: Histogram (left) and Kaplan-Meier curve (right) of the response variable.

Table 5: Data analysis using the proposed and alterative methods: number of overlapping
identifications (RV-coefficient) for the main G effects and G-E interactions.

Main G effects Proposed  MCP grMCP  Marginal

Proposed 11 3(0.436) 2(0.415)  1(0.236)
MCP 10 1(0.222)  1(0.269)
grMCP 2 1(0.502)
Marginal 2
Interactions Proposed MCP grMCP  Marginal
Proposed 12 9(0.577) 5(0.515)  0(0.057)
MCP 25 4(0.283)  0(0.077)
grMCP 10 0(0.020)
Marginal 9
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