Supplement to "A Goodness-of-fit Test on the Number of Biclusters in a Relational Data Matrix"

Chihiro Watanabe • Taiji Suzuki

Appendix A Proof of $\lambda_{1} \leq \tilde{\lambda}_{1}+O_{p}\left(m^{\frac{1}{3}-\epsilon}\right)$ for some $\epsilon>0$ in the null case

Proof By assumption, the background can be divided to H disjoint submatrices, whose row and column sizes are equal to or larger than $n_{\text {min }}$ and $p_{\text {min }}$, respectively. Let $X^{(k)} \in \mathbb{R}^{\left|I_{k}\right| \times\left|J_{k}\right|}$ be a submatrix of matrix $X \in \mathbb{R}^{n \times p}$ corresponding to the row and column indices $\left(I_{k}, J_{k}\right)$ of the k th bicluster. To distinguish the indices of the biclusters from those of the background submatrices, let $X^{(K+h)} \in \mathbb{R}^{\left|I_{K+h}\right| \times\left|J_{K+h}\right|}$ be a submatrix of matrix $X \in \mathbb{R}^{n \times p}$ corresponding to the row and column indices $\left(I_{K+h}, J_{K+h}\right)$ of the h th background submatrix. We define a bicluster-wise constant matrix $Q^{(k)}$ for each k th bicluster $(k=1, \ldots, K)$,

$$
\begin{align*}
Q^{(k)} & \equiv Z^{(k)}-\frac{\tilde{s}_{k}}{s_{k}} \tilde{Z}^{(k)}=\frac{1}{s_{k}}\left(\tilde{P}^{(k)}-P^{(k)}\right) \\
& =\left(\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Z_{i j}\right)\left[\begin{array}{lll}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right] \in \mathbb{R}^{\left|I_{k}\right| \times\left|J_{k}\right|}, \tag{1}
\end{align*}
$$

and a submatrix-wise constant matrix $Q^{(K+h)}$ for each h th background submatrix $(h=1, \ldots, H)$,

$$
Q^{(K+h)} \equiv Z^{(K+h)}-\frac{\tilde{s}_{0}}{s_{0}} \tilde{Z}^{(K+h)}=\frac{1}{s_{0}}\left(\tilde{P}^{(K+h)}-P^{(K+h)}\right)
$$

[^0]

Fig. 1 Decomposition of the noise matrix Z to the K biclusters $\left\{\underline{Z}^{(k)}\right\}, k=1, \ldots, K$ and the H background submatrices $\left\{\underline{Z}^{(K+h)}\right\}, h=1, \ldots, H$. In the case of this figure, $K=3$ and $H=6$.

$$
=\left(\frac{1}{\left|\mathcal{I}_{0}\right|} \sum_{(i, j) \in \mathcal{I}_{0}} Z_{i j}\right)\left[\begin{array}{lll}
1 & \cdots & 1 \tag{2}\\
\vdots & & \vdots \\
1 \cdots & 1
\end{array}\right] \in \mathbb{R}^{\left|I_{K+h}\right| \times\left|J_{K+h}\right|}
$$

Based on these matrices, let $\underline{Z}^{(k)}, \underline{\tilde{Z}}^{(k)}$, and $Q^{(k)}$, respectively, be $n \times p$ matrices whose entries in the k th bicluster (i.e., $\left.\overline{\{ }(i, j): i \in I_{k}, j \in J_{k}\right\}$) are $Z^{(k)}, \tilde{Z}^{(k)}$ and $Q^{(k)}$ and whose all the other entries are zero. Similarly, let $\underline{Z}^{(K+h)}, \underline{\tilde{Z}}^{(K+h)}$, and $\underline{Q}^{(K+h)}$, respectively, be $n \times p$ matrices whose entries in the h th background submatrix (i.e., $\left.\left\{(i, j): i \in I_{K+h}, j \in J_{K+h}\right\}\right)$ are $Z^{(K+h)}$, $\tilde{Z}^{(K+h)}$ and $Q^{(K+h)}$ and whose all the other entries are zero. Figure 1 shows an example of $\left\{\underline{Z}^{(k)}\right\}$, where $k=1, \ldots, K+H$. Finally, we define matrix Q by $Q \equiv \sum_{k=1}^{K+H} \underline{Q}^{(k)}$.

Let \boldsymbol{v}_{1} be the normalized eigenvector of matrix $Z^{\top} Z$ corresponding to the maximum eigenvalue λ_{1}. Since the largest singular value $\sqrt{\tilde{\lambda}_{1}}$ of matrix \tilde{Z} is equal to the operator norm of \tilde{Z}, we have

$$
\begin{aligned}
& \tilde{\lambda}_{1}=\left(\sup _{\boldsymbol{u}} \frac{\|\tilde{Z} \boldsymbol{u}\|}{\|\boldsymbol{u}\|}\right)^{2} \geq\left(\frac{\left\|\tilde{Z} \boldsymbol{v}_{1}\right\|}{\left\|\boldsymbol{v}_{1}\right\|}\right)^{2}=\left\|\tilde{Z} \boldsymbol{v}_{1}\right\|^{2}=\left\|\sum_{k=1}^{K+H} \underline{\tilde{Z}}^{(k)} \boldsymbol{v}_{1}\right\|^{2} \\
& =\left\|\left[\sum_{k=1}^{K}\left(\frac{s_{k}}{\tilde{s}_{k}}\right)\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right]+\left[\sum_{h=1}^{H}\left(\frac{s_{0}}{\tilde{s}_{0}}\right)\left(\underline{Z}^{(K+h)}-\underline{Q}^{(K+h)}\right) \boldsymbol{v}_{1}\right]\right\|^{2} \\
& =\left\|\left[\sum_{k=1}^{K+H}\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right]+\left[\sum_{k=1}^{K+H}\left(\frac{s_{k}}{\tilde{s}_{k}}-1\right)\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right]\right\|^{2} \\
& \geq\left[\left\|\sum_{k=1}^{K+H}\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right\|-\left\|\sum_{k=1}^{K+H}\left(1-\frac{s_{k}}{\tilde{s}_{k}}\right)\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right\|\right]^{2} \\
& =\left[\left\|(Z-Q) \boldsymbol{v}_{1}\right\|-\left\|\sum_{k=1}^{K+H}\left(1-\frac{s_{k}}{\tilde{s}_{k}}\right)\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right\|\right]^{2} \\
& \left.\geq\left\|(Z-Q) \boldsymbol{v}_{1}\right\|^{2}-2\left\|(Z-Q) \boldsymbol{v}_{1}\right\|\left\|\sum_{k=1}^{K+H}\left(1-\frac{s_{k}}{\tilde{s}_{k}}\right)\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right\|\right] \\
& \geq\left\|(Z-Q) \boldsymbol{v}_{1}\right\|^{2}-2\left\|(Z-Q) \boldsymbol{v}_{1}\right\|\left[\sum_{k=1}^{K+H}\left|1-\frac{s_{k}}{\tilde{s}_{k}}\right|\left\|\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \boldsymbol{v}_{1}\right\|\right]
\end{aligned}
$$

$$
\begin{align*}
& \geq\left\|(Z-Q) \boldsymbol{v}_{1}\right\|^{2}-2\left\|(Z-Q) \boldsymbol{v}_{1}\right\|\left[\sum_{k=1}^{K+H}\left|1-\frac{s_{k}}{\tilde{s}_{k}}\right|\left(\left\|\underline{Z}^{(k)} \boldsymbol{v}_{1}\right\|+\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|\right)\right] \\
& \geq\left\|(Z-Q) \boldsymbol{v}_{1}\right\|^{2}-2\left\|(Z-Q) \boldsymbol{v}_{1}\right\|\left[\sum_{k=1}^{K+H}\left|1-\frac{s_{k}}{\tilde{s}_{k}}\right|\left(\sqrt{\lambda_{1}^{(k)}}+\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|\right)\right] \\
& \geq \lambda_{1}-2 \sqrt{\lambda_{1}}\left\|Q \boldsymbol{v}_{1}\right\| \\
& -2\left(\sqrt{\lambda_{1}}+\left\|Q \boldsymbol{v}_{1}\right\|\right)\left[\sum_{k=1}^{K+H}\left|1-\frac{s_{k}}{\tilde{s}_{k}}\right|\left(\sqrt{\lambda_{1}^{(k)}}+\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|\right)\right] \tag{3}
\end{align*}
$$

where $\lambda_{1}^{(k)}$ is the maximum eigenvalue of matrix $\left(\underline{Z}^{(k)}\right)^{\top} \underline{Z}^{(k)}$ (which is equal to that of matrix $\left.\left(Z^{(k)}\right)^{\top} Z^{(k)}\right)$. From the third line in (3), we used the notation that $s_{K+1}=\cdots=s_{K+H}=s_{0}$ for simplicity.

Subsequently, we show the probabilistic orders of $\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|$ and $\left\|Q \boldsymbol{v}_{1}\right\|$. The non-zero entries in matrix $\left(\underline{Q}^{(k)}\right)^{\top} \underline{Q}^{(k)}$ is only located in a submatrix $\left\{(i, j): i \in J_{k}, j \in J_{k}\right\}$, and all of their values are $\left|I_{k}\right| \eta_{k}^{2}$ by (1) and (2), where

$$
\begin{equation*}
\eta_{k} \equiv \frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Z_{i j}=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) . \tag{4}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left(\underline{Q}^{(k)}\right)^{\top} \underline{Q}^{(k)} \boldsymbol{v}_{1}=\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left(\boldsymbol{v}_{1}^{\top} \boldsymbol{u}^{(k)}\right) \boldsymbol{u}^{(k)} \tag{5}
\end{equation*}
$$

where $\boldsymbol{u}^{(k)} \in \mathbb{R}^{p}$ is a vector whose entries are defined by $\boldsymbol{u}_{j}^{(k)}=\frac{1}{\sqrt{\left|J_{k}\right|}}$ if $j \in J_{k}$ and $\boldsymbol{u}_{j}^{(k)}=0$ otherwise. Note that this vector satisfies $\left\|\boldsymbol{u}^{(k)}\right\|=1$. From (5), we have

$$
\begin{equation*}
\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|=\sqrt{\boldsymbol{v}_{1}^{\top}\left(\underline{Q}^{(k)}\right)^{\top} \underline{Q}^{(k)} \boldsymbol{v}_{1}}=\sqrt{\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left(\boldsymbol{v}_{1}^{\top} \boldsymbol{u}^{(k)}\right)^{2}} \tag{6}
\end{equation*}
$$

To upper bound the right side of (6), we refer to the following important property of each j th eigenvector \boldsymbol{v}_{j} of matrix $Z^{\top} Z$, which has been proven in (Bloemendal et al. 2016).

Theorem 1 (Delocalization property of an eigenvector of a sample covariance matrix (Bloemendal et al. 2016)) Under the assumptions in Sect. 2, from Theorem 2.17 in (Bloemendal et al. 2016), a normalized eigenvector \boldsymbol{v}_{j} of matrix $Z^{\top} Z$ (i.e., $\left\|\boldsymbol{v}_{j}\right\|=1$) has a delocalization property, that is, for all $\tilde{d} \in \mathbb{N}$, for any deterministic vectors $\left\{\boldsymbol{w}^{(i)}\right\}$ that satisfies $\left\|\boldsymbol{w}^{(i)}\right\|=1$ for $i=1, \ldots, m^{\tilde{d}}$, for all $\epsilon>0$,

$$
\begin{equation*}
\max _{i \in 1, \ldots, m^{\tilde{d}}} \max _{j=1, \ldots, p}\left|\boldsymbol{v}_{j}^{\top} \boldsymbol{w}^{(i)}\right|=O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right) \tag{7}
\end{equation*}
$$

Based on the above delocalization property of vector \boldsymbol{v}_{1} and (6), we have

$$
\begin{equation*}
\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|=\sqrt{\left|\mathcal{I}_{k}\right| O_{p}\left(\frac{1}{\left|\mathcal{I}_{k}\right|}\right) O_{p}\left(m^{-1+2 \epsilon}\right)}=O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right), \text { for all } \epsilon>0 \tag{8}
\end{equation*}
$$

As for $\left\|Q \boldsymbol{v}_{1}\right\|$, we can derive its upper bound by

$$
\begin{align*}
& \left\|Q \boldsymbol{v}_{1}\right\|=\left\|\sum_{k=1}^{K+H} \underline{Q}^{(k)} \boldsymbol{v}_{1}\right\| \leq \sum_{k=1}^{K+H}\left\|\underline{Q}^{(k)} \boldsymbol{v}_{1}\right\|=\sum_{k=1}^{K+H} \sqrt{\left|\mathcal{I}_{k}\right| \eta_{k}^{2}\left(\boldsymbol{v}_{1}^{\top} \boldsymbol{u}^{(k)}\right)^{2}} \\
& =\sum_{k=1}^{K+H} \sqrt{\left|\mathcal{I}_{k}\right| O_{p}\left(\frac{1}{\left|\mathcal{I}_{k}\right|}\right)}\left|\boldsymbol{v}_{1}^{\top} \boldsymbol{u}^{(k)}\right|=(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right) . \tag{9}
\end{align*}
$$

Here, we used the fact that (7) holds from (Bloemendal et al. 2016).
From Lemma B1 in Appendix B, $\left|\tilde{s}_{k}-s_{k}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right)$ holds, which results in

$$
\begin{equation*}
\left|1-\frac{s_{k}}{\tilde{s}_{k}}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) . \tag{10}
\end{equation*}
$$

By substituting (8), (9), (10), and the fact that $\sqrt{\lambda_{1}^{(k)}}=O_{p}\left(\left|\mathcal{I}_{k}\right|^{\frac{1}{4}}\right)$ from (Pillai and Yin 2014), into (3), we obtain

$$
\begin{align*}
\tilde{\lambda}_{1} & \geq \lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)-2\left[O_{p}\left(m^{\frac{1}{2}}\right)+(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right] \\
& \left\{\sum_{k=1}^{K+H} O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{2}}\right)\left[O_{p}\left(\left|\mathcal{I}_{k}\right|^{\frac{1}{4}}\right)+O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right]\right\} \\
& =\lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)-2\left[O_{p}\left(m^{\frac{1}{2}}\right)+(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right] \\
& \left\{\sum_{k=1}^{K+H}\left[O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}}\right)+O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{2}} m^{-\frac{1}{2}+\epsilon}\right)\right]\right\} . \tag{11}
\end{align*}
$$

By taking $\epsilon<\frac{1}{2}$, the lower bound in (11) can be simplified as follows:

$$
\begin{aligned}
\tilde{\lambda}_{1} & \geq \lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)-2\left[O_{p}\left(m^{\frac{1}{2}}\right)+(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right] \\
& \left\{\sum_{k=1}^{K+H}\left[O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}}\right)+O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{2}}\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}+\frac{1}{2} \epsilon}\right)\right]\right\} \\
& =\lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)-2\left[O_{p}\left(m^{\frac{1}{2}}\right)+(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right] \\
& {\left[\sum_{k=1}^{K+H} O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}}\right)\right] }
\end{aligned}
$$

$$
\begin{align*}
& \geq \lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)-2\left[O_{p}\left(m^{\frac{1}{2}}\right)+(K+H) O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\right] \\
& (K+H) O_{p}\left[\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& =\lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right)\left\{O_{p}(1)+O_{p}\left[m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right]\right\} \\
& =\lambda_{1}-2(K+H) O_{p}\left(m^{\epsilon}\right) O_{p}\left[m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& =\lambda_{1}-2(K+H) O_{p}\left[m^{\frac{1}{2}+\epsilon}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \tag{12}
\end{align*}
$$

From the assumption (iv) that $(K+H)\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}=O\left(m^{-\frac{1}{6}-\epsilon_{1}}\right)$ for some $\epsilon_{1}>0$, by taking $\epsilon<\epsilon_{1}$, we have

$$
\begin{equation*}
\lambda_{1} \leq \tilde{\lambda}_{1}+O_{p}\left(m^{\frac{1}{3}-\left(\epsilon_{1}-\epsilon\right)}\right) \tag{13}
\end{equation*}
$$

which concludes the proof.

Appendix B Proof of $\left|\tilde{s}_{k}-s_{k}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right)$.
Let $A^{(k)}, P^{(k)}$, and $\tilde{P}^{(k)}$, respectively, be the k th null bicluster $(k=1, \ldots, K)$ or background ($k=0$) of matrices A, P, and \tilde{P}.

Lemma B1 Under the assumption that $\mathbb{E}\left[Z_{i j}^{4}\right]<\infty$,

$$
\begin{equation*}
\left|\tilde{s}_{k}-s_{k}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) \tag{14}
\end{equation*}
$$

where $\mathcal{I}_{k} \equiv\left\{(i, j): g_{i j}=k\right\}$ (i.e., the set of entries in the k th group).
Proof By definition, we have

$$
\begin{align*}
\tilde{s}_{k}^{2} & \equiv \frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left(A_{i j}^{(k)}-\tilde{b}_{k}\right)^{2}=\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left[\left(A_{i j}^{(k)}\right)^{2}-\tilde{b}_{k}^{2}\right] \\
& =\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left[\left(A_{i j}^{(k)}\right)^{2}-\tilde{b}_{k}^{2}\right]-\frac{1}{\left|\mathcal{I}_{k}\right|} 2 b_{k} \sum_{(i, j) \in \mathcal{I}_{k}}\left(A_{i j}^{(k)}-\tilde{b}_{k}\right) \\
& =\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left(A_{i j}^{(k)}-b_{k}\right)^{2}-\left(b_{k}-\tilde{b}_{k}\right)^{2}, \tag{15}
\end{align*}
$$

where $\tilde{b}_{k} \equiv \frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} A_{i j}^{(k)}$.

From (15), we have

$$
\begin{align*}
\tilde{s}_{k}^{2}-s_{k}^{2} & =\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left(A_{i j}^{(k)}-b_{k}\right)^{2}-s_{k}^{2}-\left(b_{k}-\tilde{b}_{k}\right)^{2} \\
& =\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}-\left(b_{k}-\tilde{b}_{k}\right)^{2} \tag{16}
\end{align*}
$$

where used the notation that $Y_{i j}^{(k)} \equiv\left(A_{i j}^{(k)}-b_{k}\right)^{2}-s_{k}^{2}$. Based on the assumption that the entries $\left(A_{i j}^{(k)}\right)_{(i, j) \in \mathcal{I}_{k}}$ are generated in the i.i.d. sense in each k th group, the random variables $\left(Y_{i j}^{(k)}\right)_{(i, j) \in \mathcal{I}_{k}}$ are also independent, and their expectations and variances satisfy

$$
\begin{align*}
& \mathbb{E}\left[Y_{i j}^{(k)}\right]=\mathbb{E}\left[\left(A_{i j}^{(k)}-b_{k}\right)^{2}\right]-s_{k}^{2}=0 \\
& \mathbb{V}\left[Y_{i j}^{(k)}\right]=\mathbb{E}\left[\left(Y_{i j}^{(k)}\right)^{2}\right]=s_{k}^{4}\left(\mathbb{E}\left[\left(Z_{i j}^{(k)}\right)^{4}\right]-1\right), \tag{17}
\end{align*}
$$

which results in

$$
\begin{align*}
& \mathbb{E}\left[\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}\right]=0 \\
& \mathbb{V}\left[\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}\right]=\frac{1}{\left|\mathcal{I}_{k}\right|} s_{k}^{4}\left(\mathbb{E}\left[\left(Z_{i j}^{(k)}\right)^{4}\right]-1\right) \tag{18}
\end{align*}
$$

From (18) and Chebyshev's inequality, for all $t>0$, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}\right| \geq t \sqrt{\frac{1}{\left|\mathcal{I}_{k}\right|} s_{k}^{4}\left(\mathbb{E}\left[\left(Z_{i j}^{(k)}\right)^{4}\right]-1\right)}\right] \leq \frac{1}{t^{2}} \tag{19}
\end{equation*}
$$

which results in

$$
\begin{equation*}
\left|\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) \tag{20}
\end{equation*}
$$

from the assumption of $\mathbb{E}\left[\left(Z_{i j}^{(k)}\right)^{4}\right]<\infty$.
As for the second term in (16), we have

$$
\begin{equation*}
\left(b_{k}-\tilde{b}_{k}\right)^{2}=\left[\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}}\left(P_{i j}^{(k)}-A_{i j}^{(k)}\right)\right]^{2}=\frac{s_{k}^{2}}{\left|\mathcal{I}_{k}\right|^{2}}\left(\sum_{(i, j) \in \mathcal{I}_{k}} Z_{i j}^{(k)}\right)^{2} . \tag{21}
\end{equation*}
$$

From (21), we have

$$
\begin{equation*}
\mathbb{E}\left[\left(b_{k}-\tilde{b}_{k}\right)^{2}\right]=\frac{s_{k}^{2}}{\left|\mathcal{I}_{k}\right|^{2}} \mathbb{V}\left[\sum_{(i, j) \in \mathcal{I}_{k}} Z_{i j}^{(k)}\right]=\frac{s_{k}^{2}}{\left|\mathcal{I}_{k}\right|} \tag{22}
\end{equation*}
$$

since $Z_{i j}^{(k)}$ has a unit variance.
From (22) and Markov's inequality, we have

$$
\begin{gather*}
\forall t>0, \operatorname{Pr}\left[\left(b_{k}-\tilde{b}_{k}\right)^{2} \geq t\right] \leq \frac{s_{k}^{2}}{\left|\mathcal{I}_{k}\right|} \frac{1}{t} \\
\Longleftrightarrow \forall t^{\prime}>0, \operatorname{Pr}\left[\left(b_{k}-\tilde{b}_{k}\right)^{2} \geq \frac{s_{k}^{2}}{\left|\mathcal{I}_{k}\right|} t^{\prime}\right] \leq \frac{1}{t^{\prime}}, \tag{23}
\end{gather*}
$$

which results in

$$
\begin{equation*}
\left(b_{k}-\tilde{b}_{k}\right)^{2}=O_{p}\left(\frac{1}{\left|\mathcal{I}_{k}\right|}\right) . \tag{24}
\end{equation*}
$$

Using (20), (24), and (16), we finally obtain

$$
\begin{equation*}
\left|\tilde{s}_{k}^{2}-s_{k}^{2}\right| \leq\left|\frac{1}{\left|\mathcal{I}_{k}\right|} \sum_{(i, j) \in \mathcal{I}_{k}} Y_{i j}^{(k)}\right|+\left|\left(b_{k}-\tilde{b}_{k}\right)^{2}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) \tag{25}
\end{equation*}
$$

which results in

$$
\begin{equation*}
\left|\tilde{s}_{k}-s_{k}\right|=\frac{\left|\tilde{s}_{k}^{2}-s_{k}^{2}\right|}{\left|\tilde{s}_{k}+s_{k}\right|} \tag{26}
\end{equation*}
$$

From (25), we see that \tilde{s}_{k} converges in probability to s_{k}, and thus $\frac{1}{\left|\tilde{s}_{k}+s_{k}\right|}$ converges in probability to $\frac{1}{2 s_{k}}>0$. Therefore, we have

$$
\begin{equation*}
\left|\tilde{s}_{k}-s_{k}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) \tag{27}
\end{equation*}
$$

which concludes the proof.

Appendix C Proof of $\tilde{\lambda}_{1} \leq \lambda_{1}+O_{p}\left(m^{\frac{1}{3}-\epsilon}\right)$ for some $\epsilon>0$ in the null case

Proof Let $\tilde{\boldsymbol{v}}_{1}^{(k)} \in \mathbb{R}^{\left|J_{k}\right|}$ be a subvector of $\tilde{\boldsymbol{v}}_{1}$ corresponding to the columns of the k th submatrix in observed matrix A, and let $\tau_{k} \equiv \frac{s_{k}}{\tilde{\varsigma}_{k}}$. In (10), we have already shown that $\left|1-\tau_{k}\right|=O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right)$. The maximum eigenvalue $\tilde{\lambda}_{1}$ of matrix $\tilde{Z}^{\top} \tilde{Z}$ can be upper bounded as follows:

$$
\tilde{\lambda}_{1}=\left\|\tilde{Z} \tilde{\boldsymbol{v}}_{1}\right\|^{2}=\left\|\sum_{k=1}^{K+H} \tau_{k}\left(\underline{Z}^{(k)}-\underline{Q}^{(k)}\right) \tilde{\boldsymbol{v}}_{1}\right\|^{2} \quad(\because(1))
$$

$$
\begin{aligned}
& =\left\|\left\{Z+\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right]\right\} \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1} \\
& +\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& \leq\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2 \sqrt{\lambda_{1}} \sum_{k=1}^{K+H}\left|\tau_{k}-1\right|\left\|\underline{Z}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|-2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& +\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2 \sqrt{\lambda_{1}} \sum_{k=1}^{K+H}\left|\tau_{k}-1\right|\left\|Z^{(k)} \tilde{\boldsymbol{v}}_{1}^{(k)}\right\|-2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& +\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& \leq\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2 \sqrt{\lambda_{1}} \sum_{k=1}^{K+H}\left|\tau_{k}-1\right| \sqrt{\lambda_{1}^{(k)}}-2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& +\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2 O_{p}\left(m^{\frac{1}{2}}\right) \sum_{k=1}^{K+H} O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}}\right)-2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& +\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2(K+H) O_{p}\left[m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& -2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+\left\|\sum_{k=1}^{K+H}\left[\left(\tau_{k}-1\right) \underline{Z}^{(k)}-\tau_{k} \underline{Q}^{(k)}\right] \tilde{\boldsymbol{v}}_{1}\right\|^{2} \\
& \leq\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2(K+H) O_{p}\left[m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& -2 \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \sum_{k=1}^{K+H} \tau_{k} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+\left[\sum_{k=1}^{K+H}\left|\tau_{k}-1\right|\left\|\underline{Z}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|+\sum_{k=1}^{K+H} \tau_{k}\left\|\underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|\right]^{2}
\end{aligned}
$$

$$
\begin{align*}
& \leq\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+2(K+H) O_{p}\left[m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& -2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+\left[\sum_{k=1}^{K+H} O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{4}}\right)+\sum_{k=1}^{K+H} \tau_{k}\left\|\underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|\right]^{2} \\
& \left(\because\left\|\underline{Z}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\| \leq \sqrt{\lambda_{1}^{(k)}}=O_{p}\left(\left|\mathcal{I}_{k}\right|^{\frac{1}{4}}\right)\right) \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}+O_{p}\left[m^{\frac{1}{2}} C^{(K, H)}\right]-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& +\left[O_{p}\left(C^{(K, H)}\right)+\sum_{k=1}^{K+H} \tau_{k}\left\|\underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|\right]^{2}, \tag{28}
\end{align*}
$$

where we denote $C^{(K, H)} \equiv(K+H)\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}$.
The eigenvectors $\left\{\boldsymbol{v}_{j}\right\}$ of symmetric matrix $Z^{\top} Z$ form an orthonormal system, and thus there exists a unique set of coefficients $\left\{c_{j}\right\}$ such that

$$
\begin{equation*}
\tilde{\boldsymbol{v}}_{1}=\sum_{j=1}^{p} c_{j} \boldsymbol{v}_{j}=\tilde{\boldsymbol{v}}^{\mathrm{L}}+\tilde{\boldsymbol{v}}^{\mathrm{S}} \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\boldsymbol{v}}^{\mathrm{L}} \equiv \sum_{j=1}^{t} c_{j} \boldsymbol{v}_{j}, \quad \tilde{\boldsymbol{v}}^{\mathrm{S}} \equiv \sum_{j=t+1}^{p} c_{j} \boldsymbol{v}_{j}, \\
& \lambda_{t} \geq \lambda_{1}-n^{d}, \quad \lambda_{t+1}<\lambda_{1}-n^{d}, \quad d=\frac{5}{7} . \tag{30}
\end{align*}
$$

By substituting (29) into the last term in (28) and from the similar discussion as in (5),

$$
\begin{align*}
& \left\|\underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}\right\|^{2}=\tilde{\boldsymbol{v}}_{1}^{\top}\left(\underline{Q}^{(k)}\right)^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}=\sum_{j=1}^{p} \sum_{j^{\prime}=1}^{p} c_{j} c_{j^{\prime}} \boldsymbol{v}_{j}^{\top}\left(\underline{Q}^{(k)}\right)^{\top} \underline{Q}^{(k)} \boldsymbol{v}_{j^{\prime}} \\
& =\sum_{j=1}^{p} \sum_{j^{\prime}=1}^{p} c_{j} c_{j^{\prime}}\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)\left(\boldsymbol{v}_{j^{\prime}}^{\top} \boldsymbol{u}^{(k)}\right)=\left|I_{k} \| J_{k}\right| \eta_{k}^{2}\left[\sum_{j=1}^{p} c_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)\right]^{2} \\
& \leq\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left[\sqrt{\sum_{j=1}^{p} c_{j}^{2}} \sqrt{\sum_{j=1}^{p}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)^{2}}\right]^{2}=\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left\|\tilde{\boldsymbol{v}}_{1}\right\|^{2}\left[\sum_{j=1}^{p}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)^{2}\right] \\
& =\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2}\left[\sum_{j=1}^{p}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)^{2}\right] \leq\left|I_{k}\right|\left|J_{k}\right| \eta_{k}^{2} p \max _{j=1, \ldots, p}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)^{2} \\
& =\left|\mathcal{I}_{k}\right| O_{p}\left(\left|\mathcal{I}_{k}\right|^{-1}\right) p O_{p}\left(m^{-1+2 \epsilon}\right)=O_{p}\left(m^{2 \epsilon}\right) . \tag{31}
\end{align*}
$$

Here, we used the fact that (7) holds from (Bloemendal et al. 2016).
By combining (28) and (31),

$$
\begin{align*}
& \tilde{\lambda}_{1} \leq\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+O_{p}\left[m^{\frac{1}{2}} C^{(K, H)}\right] \\
& +\left[O_{p}\left(C^{(K, H)}\right)+\sum_{k=1}^{K+H} \tau_{k} O_{p}\left(m^{\epsilon}\right)\right]^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+O_{p}\left[m^{\frac{1}{2}} C^{(K, H)}\right] \\
& +\left[O_{p}\left(C^{(K, H)}\right)+\sum_{k=1}^{K+H}\left(1+O_{p}\left(\left|\mathcal{I}_{k}\right|^{-\frac{1}{2}}\right)\right) O_{p}\left(m^{\epsilon}\right)\right]^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+O_{p}\left[m^{\frac{1}{2}} C^{(K, H)}\right] \\
& +\left[O_{p}\left(C^{(K, H)}\right)+(K+H) O_{p}\left(m^{\epsilon}\right)\right]^{2} \\
& =\left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}+O_{p}\left[(K+H) m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right] \\
& +O_{p}\left[(K+H)^{2} m^{2 \epsilon}\right] . \tag{32}
\end{align*}
$$

As for the third term in (32), based on the assumption (iv),

$$
\begin{equation*}
O_{p}\left[(K+H) m^{\frac{1}{2}}\left(\min _{k=1, \ldots, K+H}\left|\mathcal{I}_{k}\right|\right)^{-\frac{1}{4}}\right]=O_{p}\left(m^{\frac{1}{3}-\epsilon_{1}}\right) . \tag{33}
\end{equation*}
$$

With regard to the fourth term in (32), based on the assumption (iv) that $K+H=O\left(m^{\frac{1}{42}-\epsilon_{1}}\right)$ for some $\epsilon_{1}>0$, by taking $\epsilon<\epsilon_{1}$,

$$
\begin{equation*}
O_{p}\left[(K+H)^{2} m^{2 \epsilon}\right]=O_{p}\left(m^{\frac{1}{21}-2\left(\epsilon_{1}-\epsilon\right)}\right) . \tag{34}
\end{equation*}
$$

An upper bound of the first and second terms in (32) is given by

$$
\begin{aligned}
& \left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\left(\tilde{\boldsymbol{v}}^{\mathrm{L}}+\tilde{\boldsymbol{v}}^{\mathrm{S}}\right)^{\top} Z^{\top} Z\left(\tilde{\boldsymbol{v}}^{\mathrm{L}}+\tilde{\boldsymbol{v}}^{\mathrm{S}}\right)-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\left(\tilde{\boldsymbol{v}}^{\mathrm{L}}\right)^{\top} Z^{\top} Z \tilde{\boldsymbol{v}}^{\mathrm{L}}+\left(\tilde{\boldsymbol{v}}^{\mathrm{S}}\right)^{\top} Z^{\top} Z \tilde{\boldsymbol{v}}^{\mathrm{S}}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1}
\end{aligned}
$$

$$
\begin{align*}
& =\left(\sum_{j=1}^{t} c_{j} \boldsymbol{v}_{j}\right)^{\top}\left(\sum_{j=1}^{t} c_{j} Z^{\top} Z \boldsymbol{v}_{j}\right)+\left(\sum_{j=t+1}^{p} c_{j} \boldsymbol{v}_{j}\right)^{\top}\left(\sum_{j=t+1}^{p} c_{j} Z^{\top} Z \boldsymbol{v}_{j}\right) \\
& -2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\left(\sum_{j=1}^{t} c_{j} \boldsymbol{v}_{j}\right)^{\top}\left(\sum_{j=1}^{t} c_{j} \lambda_{j} \boldsymbol{v}_{j}\right)+\left(\sum_{j=t+1}^{p} c_{j} \boldsymbol{v}_{j}\right)^{\top}\left(\sum_{j=t+1}^{p} c_{j} \lambda_{j} \boldsymbol{v}_{j}\right) \\
& -2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\sum_{j=1}^{t} c_{j}^{2} \lambda_{j}\left\|\boldsymbol{v}_{j}\right\|^{2}+\sum_{j=t+1}^{p} c_{j}^{2} \lambda_{j}\left\|\boldsymbol{v}_{j}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\sum_{j=1}^{t} c_{j}^{2} \lambda_{j}+\sum_{j=t+1}^{p} c_{j}^{2} \lambda_{j}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& \leq \lambda_{1} \sum_{j=1}^{t} c_{j}^{2}+\lambda_{t+1} \sum_{j=t+1}^{p} c_{j}^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& \leq \lambda_{1} \sum_{j=1}^{t} c_{j}^{2}+\left(\lambda_{1}-n^{d}\right) \sum_{j=t+1}^{p} c_{j}^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \quad(\because(30)) \\
& =\lambda_{1} \sum_{j=1}^{p} c_{j}^{2}-n^{d} \sum_{j=t+1}^{p} c_{j}^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\lambda_{1}\left\|\tilde{\boldsymbol{v}}_{1}\right\|^{2}-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& =\lambda_{1}-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{L}}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{S}} . \tag{35}
\end{align*}
$$

Let $\boldsymbol{u}^{(k)} \in \mathbb{R}^{p}$ be a vector whose entries are defined by $\boldsymbol{u}_{j}^{(k)}=\frac{1}{\sqrt{\left|J_{k}\right|}}$ if $j \in J_{k}$ and $\boldsymbol{u}_{j}^{(k)}=0$ otherwise. As for the third term in (35), using the fact that $\underline{Q}^{(k)} \boldsymbol{v}_{j}=\eta_{k}\left|J_{k}\right|\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right) \boldsymbol{u}^{(k)}$, for all $\epsilon>0$,

$$
\begin{aligned}
& -\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{L}} \leq\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{L}}\right|=\left|\sum_{j=1}^{t} c_{j} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \boldsymbol{v}_{j}\right| \\
& =\left|\eta_{k}\right| J_{k}\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)} \sum_{j=1}^{t} c_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)\right|
\end{aligned}
$$

$$
\begin{align*}
& =O_{p}\left(\left|\mathcal{I}_{k}\right|^{\frac{1}{2}}\right)\left|J_{k}\right|\left|\sum_{j=1}^{t} c_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)\right|\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)}\right| \\
& =O_{p}(1)\left|\sum_{j=1}^{t} c_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right)\right|\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)}\right| \\
& \leq O_{p}(1) \sqrt{\sum_{j=1}^{t} c_{j}^{2}} \sqrt{\sum_{j=1}^{t}\left|\boldsymbol{v}_{j}^{\top} \boldsymbol{u}^{(k)}\right|^{2}}\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)}\right| \\
& \leq O_{p}(1)\left\|\tilde{\boldsymbol{v}}_{1}\right\| \sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)}\right| \\
& =\sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \boldsymbol{u}^{(k)}\right| \leq \sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\left\|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top}\right\|\left\|\boldsymbol{u}^{(k)}\right\| \\
& =\sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right)\left\|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top}\right\| \leq \sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right) \sqrt{\lambda_{1}} \\
& =\sqrt{t} O_{p}\left(m^{-\frac{1}{2}+\epsilon}\right) O_{p}\left(m^{\frac{1}{2}}\right)=\sqrt{t} O_{p}\left(m^{\epsilon}\right) . \tag{36}
\end{align*}
$$

With regard to the fourth term in (35), we have

$$
\begin{align*}
& -\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{S}} \leq\left|\tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{S}}\right| \leq\left\|\tilde{\boldsymbol{v}}_{1}\right\|\left\|Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|=\left\|Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| \\
& \leq\left\|Z^{\top} \underline{Q}^{(k)}\right\|_{\mathrm{op}}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| \leq\|Z\|_{\mathrm{op}}\left\|\underline{Q}^{(k)}\right\| \tilde{\boldsymbol{v}}_{\mathrm{F}}^{\mathrm{S}}\left\|=\sqrt{\lambda_{1}\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|\right\| \tilde{\boldsymbol{v}}^{\mathrm{S}} \| . \tag{37}
\end{align*}
$$

By substituting (36) and (37) into (35),

$$
\begin{align*}
& \left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& \leq \lambda_{1}-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}+2 \sum_{k=1}^{K+H} \tau_{k} \sqrt{t} O_{p}\left(m^{\epsilon}\right)+2 \sum_{k=1}^{K+H} \tau_{k} \sqrt{\lambda_{1}\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| \\
& =\lambda_{1}-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}+2 \sum_{k=1}^{K+H} \sqrt{t} O_{p}\left(m^{\epsilon}\right)+2 \sum_{k=1}^{K+H} \tau_{k} \sqrt{\lambda_{1}\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| \\
& =\lambda_{1}-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}+\sqrt{t} O_{p}\left[(K+H) m^{\epsilon}\right]+2 \sum_{k=1}^{K+H} \tau_{k} \sqrt{\lambda_{1}\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| . \tag{38}
\end{align*}
$$

From now on, we derive the probabilistic order of t. We denote the j th normalized eigenvalue of matrix $Z^{\top} Z$ as $\nu_{j} \equiv \frac{1}{n} \lambda_{j}$, and define the following variables:

$$
\begin{equation*}
\nu_{+} \equiv\left(1+\sqrt{\frac{p}{n}}\right)^{2}, \quad \nu_{-} \equiv\left(1-\sqrt{\frac{p}{n}}\right)^{2}, \quad \epsilon_{3} \equiv \nu_{+}-\nu_{1} \tag{39}
\end{equation*}
$$

Note that $\left|\epsilon_{3}\right|=O_{p}\left(\phi^{C} m^{-\frac{2}{3}}\right)$ holds for some constant $C>0$ and $\phi \equiv$ $(\log p)^{\log \log p}$ from (4.1) of (Pillai and Yin 2014). Since $\phi=o\left(m^{\epsilon_{4}}\right)$ holds for
any $\epsilon_{4}>0$, by taking $\epsilon_{5} \equiv C \epsilon_{4}$, we have

$$
\begin{equation*}
\left|\epsilon_{3}\right|=O_{p}\left(m^{-\frac{2}{3}+\epsilon_{5}}\right), \text { for any } \epsilon_{5}>0 \tag{40}
\end{equation*}
$$

From (3.7) of (Pillai and Yin 2014), we have

$$
\begin{equation*}
\left|\bar{n}-\frac{t}{p}\right|=O_{p}\left(m^{-1+\epsilon_{6}}\right), \text { for all } \epsilon_{6}>0 \tag{41}
\end{equation*}
$$

where $\bar{n} \equiv \int_{\nu_{1}-n^{d-1}}^{\infty} q(x) \mathrm{d} x$ and

$$
\begin{equation*}
q(x)=\frac{1}{2 \pi} \frac{n}{p} \frac{\sqrt{\max \left\{\left(\nu_{+}-x\right)\left(x-\nu_{-}\right), 0\right\}}}{x} \tag{42}
\end{equation*}
$$

From (42), by taking $\epsilon_{5}<d-\frac{1}{3}=\frac{8}{21}$, we have

$$
\begin{align*}
& q\left(\nu_{1}-n^{d-1}\right)=q\left(\nu_{+}-n^{d-1}-\epsilon_{3}\right) \\
& =\frac{\sqrt{\nu_{+}-\nu_{-}}}{\nu_{+}}\left[n^{\frac{d-1}{2}}+O_{p}\left(m^{-\frac{1}{3}+\frac{\epsilon_{5}}{2}}\right)\right]\left[1+O\left(m^{\frac{d-1}{2}}\right)+O_{p}\left(m^{-\frac{1}{3}+\frac{\epsilon_{5}}{2}}\right)\right] \\
& =\frac{\sqrt{\nu_{+}-\nu_{-}}}{\nu_{+}} n^{\frac{d-1}{2}}+O_{p}\left(m^{\frac{d-1}{2}}\right) \tag{43}
\end{align*}
$$

From (40) and (43), by setting $\epsilon_{5}<d-\frac{1}{3}$,

$$
\begin{align*}
\bar{n} & =\int_{\nu_{1}-n^{d-1}}^{\infty} q(x) \mathrm{d} x \leq\left|\int_{\nu_{1}-n^{d-1}}^{\nu_{+}} q(x) \mathrm{d} x\right|+\left|\int_{\nu_{+}}^{\infty} q(x) \mathrm{d} x\right|=\left|\int_{\nu_{1}-n^{d-1}}^{\nu_{+}} q(x) \mathrm{d} x\right| \\
& \leq\left|\epsilon_{3}+n^{d-1}\right| q\left(\nu_{1}-n^{d-1}\right)=O_{p}\left(m^{d-1}\right) O_{p}\left(m^{\frac{d-1}{2}}\right)=O_{p}\left(m^{\frac{3(d-1)}{2}}\right) . \tag{44}
\end{align*}
$$

From (44) and (41), by setting $\epsilon_{6}<\frac{3}{2} d-\frac{1}{2}$,

$$
\begin{equation*}
t=O_{p}\left(m^{\frac{3}{2} d-\frac{1}{2}}\right) \tag{45}
\end{equation*}
$$

By substituting (45) into (38) and from the assumption in (30) that $d=\frac{5}{7}$, for all $\epsilon>0$,

$$
\begin{align*}
& \left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& \leq \lambda_{1}+O_{p}\left[(K+H) m^{\frac{2}{7}+\epsilon}\right]+\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\left(2 \sqrt{\lambda_{1}} \sum_{k=1}^{K+H} \tau_{k} \sqrt{\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\right) \\
& =\lambda_{1}+O_{p}\left[(K+H) m^{\frac{2}{7}+\epsilon}\right]+\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\left(2 \sqrt{\lambda_{1}} \varpi-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\right) \tag{46}
\end{align*}
$$

where

$$
\begin{align*}
\varpi & \equiv \sum_{k=1}^{K+H} \tau_{k} \sqrt{\left|\mathcal{I}_{k}\right|}\left|\eta_{k}\right|=\sum_{k=1}^{K+H}\left[1+O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right)\right] \sqrt{\left|\mathcal{I}_{k}\right|} O_{p}\left(\frac{1}{\sqrt{\left|\mathcal{I}_{k}\right|}}\right) \\
& =O_{p}(K+H) . \tag{47}
\end{align*}
$$

By using $d=\frac{5}{7}$ and (47), the third term in the right side of (46) can be upper bounded by

$$
\begin{align*}
& \left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\left(2 \sqrt{\lambda_{1}} \varpi-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\right)=2\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\| \sqrt{\lambda_{1}} \varpi-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|^{2}-\frac{\lambda_{1} \varpi^{2}}{n^{d}}+\frac{\lambda_{1} \varpi^{2}}{n^{d}} \\
& =-\frac{\left(\sqrt{\lambda_{1}} \varpi-n^{d}\left\|\tilde{\boldsymbol{v}}^{\mathrm{S}}\right\|\right)^{2}}{n^{d}}+\frac{\lambda_{1} \varpi^{2}}{n^{d}} \leq \frac{\lambda_{1} \varpi^{2}}{n^{d}}=O_{p}\left[(K+H)^{2} m^{\frac{2}{7}}\right] \tag{48}
\end{align*}
$$

which results in that

$$
\begin{align*}
& \left\|Z \tilde{\boldsymbol{v}}_{1}\right\|^{2}-2 \sum_{k=1}^{K+H} \tau_{k} \tilde{\boldsymbol{v}}_{1}^{\top} Z^{\top} \underline{Q}^{(k)} \tilde{\boldsymbol{v}}_{1} \\
& \leq \lambda_{1}+O_{p}\left[(K+H) m^{\frac{2}{7}+\epsilon}\right]+O_{p}\left[(K+H)^{2} m^{\frac{2}{7}}\right] \\
& \leq \lambda_{1}+O_{p}\left[(K+H)^{2} m^{\frac{2}{7}+\epsilon}\right], \text { for all } \epsilon>0 . \tag{49}
\end{align*}
$$

Therefore, from (32), (33), and (34), for all $\epsilon>0$,

$$
\begin{equation*}
\tilde{\lambda}_{1} \leq \lambda_{1}+O_{p}\left[(K+H)^{2} m^{\frac{2}{7}+\epsilon}\right]+O_{p}\left(m^{\frac{1}{3}-\epsilon_{1}}\right)+O_{p}\left(m^{\frac{1}{21}-2\left(\epsilon_{1}-\epsilon\right)}\right) . \tag{50}
\end{equation*}
$$

From the assumption (iv) that $K+H=O\left(m^{\frac{1}{42}-\epsilon_{1}}\right)$ for some $\epsilon_{1}>0$, by taking $\epsilon<\epsilon_{1}$, we finally obtain

$$
\begin{equation*}
\tilde{\lambda}_{1} \leq \lambda_{1}+O_{p}\left(m^{\frac{1}{3}-\tilde{\epsilon}}\right), \text { for some } \tilde{\epsilon}>0 \tag{51}
\end{equation*}
$$

which concludes the proof.

Appendix D Disjoint submatrix localization algorithm based on simulated annealing

In this section, we develop a simulated annealing (SA) algorithm to find the bicluster structure of a given observed matrix. As in (Flynn and Perry 2020), the proposed algorithm is based on the (generalized) profile likelihood (Murphy and Vaart 2000). Given an estimated bicluster assignment \hat{g}, the generalized profile-likelihood criterion for an exponential family model is given by

$$
\begin{equation*}
F(\hat{g}) \equiv \sum_{k=0}^{K} \hat{p}_{k} f\left(\frac{1}{\left|\hat{\mathcal{I}}_{k}\right|} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}} A_{i j}\right) \tag{52}
\end{equation*}
$$

where $\hat{p}_{k} \in \mathbb{R}$ is the proportion of entries in the k th group $(k \in\{0,1, \ldots, K\})$ in the estimated bicluster structures to all the $n p$ entries and $f: \mathbb{R} \mapsto \mathbb{R}$ is a given function. The specific definition of function f for each experiment is given in Sect. 4. These settings in Sect. 4 is based on the following derivation.

Gaussian $\boldsymbol{L B M}$ ($\boldsymbol{G}-\boldsymbol{L B M}$) We assume that each entry $A_{i j}$ in the k th group of the data matrix independently follows the Gaussian distribution $\mathcal{N}\left(b_{k}, \sigma\right)$, where σ is a known standard deviation, which is common to all the groups. This assumption is necessary for deriving function f in the framework of profile likelihood maximization, and to derive another submatrix localization algorithm that does not require such assumption is beyond the scope of this paper. In this case, the log likelihood is given by

$$
\begin{align*}
\mathcal{L}(\hat{g}) & =\sum_{k=0}^{K} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}}\left(-\log \sqrt{2 \pi \sigma^{2}}-\frac{\left(A_{i j}-b_{k}\right)^{2}}{2 \sigma^{2}}\right) \\
& =-n p \log \sqrt{2 \pi \sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{k=0}^{K} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}}\left(A_{i j}-b_{k}\right)^{2} . \tag{53}
\end{align*}
$$

By replacing b_{k} with the maximum likelihood estimator $\hat{b}_{k}=\frac{1}{\left|\hat{\mathcal{I}}_{k}\right|} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}} A_{i j}$, we obtain

$$
\begin{align*}
F^{(0)}(\hat{g}) & \equiv-n p \log \sqrt{2 \pi \sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{k=0}^{K} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}}\left(A_{i j}-\hat{b}_{k}\right)^{2} \\
& =-n p \log \sqrt{2 \pi \sigma^{2}}-\frac{1}{2 \sigma^{2}}\|A\|_{\mathrm{F}}^{2}+\sum_{k=0}^{K}\left|\hat{\mathcal{I}}_{k}\right| \frac{\hat{b}_{k}^{2}}{2 \sigma^{2}} \\
& =-n p \log \sqrt{2 \pi \sigma^{2}}-\frac{1}{2 \sigma^{2}}\|A\|_{\mathrm{F}}^{2}+\frac{n p}{\sigma^{2}} \sum_{k=0}^{K} \hat{p}_{k} \frac{\hat{b}_{k}^{2}}{2} . \tag{54}
\end{align*}
$$

Since maximization of $F^{(0)}(\hat{g})$ is equivalent to that of $F(\hat{g}) \equiv \sum_{k=0}^{K} \hat{p}_{k} \frac{\hat{b}_{k}^{2}}{2}$, we define $F(\hat{g})$ as the profile likelihood. This corresponds to the definition of $f(x) \equiv x^{2} / 2$ in (52).

Bernoulli LBM (B-LBM) We assume that each entry $A_{i j}$ in the k th group of the data matrix independently follows the Bernoulli distribution Bernoulli $\left(b_{k}\right)$. In this case, the log likelihood is given by

$$
\begin{align*}
\mathcal{L}(\hat{g}) & =\sum_{k=0}^{K} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}} \log \left[b_{k}^{A_{i j}}\left(1-b_{k}\right)^{1-A_{i j}}\right] \\
& =\sum_{k=0}^{K}\left[\left|\hat{\mathcal{I}}_{k}\right| \hat{b}_{k} \log b_{k}+\left|\hat{\mathcal{I}}_{k}\right|\left(1-\hat{b}_{k}\right) \log \left(1-b_{k}\right)\right] \tag{55}
\end{align*}
$$

By replacing b_{k} with \hat{b}_{k}, we obtain

$$
\begin{align*}
F^{(0)}(\hat{g}) & \equiv \sum_{k=0}^{K}\left[\left|\hat{\mathcal{I}}_{k}\right| \hat{b}_{k} \log \hat{b}_{k}+\left|\hat{\mathcal{I}}_{k}\right|\left(1-\hat{b}_{k}\right) \log \left(1-\hat{b}_{k}\right)\right] \\
& =n p \sum_{k=0}^{K} \hat{p}_{k}\left[\hat{b}_{k} \log \hat{b}_{k}+\left(1-\hat{b}_{k}\right) \log \left(1-\hat{b}_{k}\right)\right] . \tag{56}
\end{align*}
$$

Since maximization of $F^{(0)}(\hat{g})$ is equivalent to that of $F(\hat{g}) \equiv \frac{1}{n p} F^{(0)}(\hat{g})$, we define $F(\hat{g})$ as the profile likelihood. This corresponds to the definition of $f(x) \equiv x \log x+(1-x) \log (1-x)$ in (52).

Poisson LBM (P-LBM) We assume that each entry $A_{i j}$ in the k th group of the data matrix independently follows the Poisson distribution $\operatorname{Pois}\left(b_{k}\right)$. In this case, the log likelihood is given by

$$
\begin{align*}
\mathcal{L}(\hat{g}) & =\sum_{k=0}^{K} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}} \log \left(\frac{b_{k}^{A_{i j}} \exp \left(-b_{k}\right)}{A_{i j}!}\right) \\
& =\sum_{k=0}^{K}\left|\hat{\mathcal{I}}_{k}\right| \hat{b}_{k} \log b_{k}-\sum_{k=0}^{K}\left|\hat{\mathcal{I}}_{k}\right| b_{k}-\sum_{i=1}^{n} \sum_{j=1}^{p} \log \left(A_{i j}!\right) . \tag{57}
\end{align*}
$$

By replacing b_{k} with \hat{b}_{k}, we obtain

$$
\begin{align*}
F^{(0)}(\hat{g}) & \equiv \sum_{k=0}^{K}\left|\hat{\mathcal{I}}_{k}\right|\left(\hat{b}_{k} \log \hat{b}_{k}-\hat{b}_{k}\right)-\sum_{i=1}^{n} \sum_{j=1}^{p} \log \left(A_{i j}!\right) \\
& =n p \sum_{k=0}^{K} \hat{p}_{k}\left(\hat{b}_{k} \log \hat{b}_{k}-\hat{b}_{k}\right)-\sum_{i=1}^{n} \sum_{j=1}^{p} \log \left(A_{i j}!\right) . \tag{58}
\end{align*}
$$

Since maximization of $F^{(0)}(\hat{g})$ is equivalent to that of $F(\hat{g}) \equiv \sum_{k=0}^{K} \hat{p}_{k}\left(\hat{b}_{k} \log \hat{b}_{k}-\right.$ \hat{b}_{k}), we define $F(\hat{g})$ as the profile likelihood. This corresponds to the definition of $f(x) \equiv x \log x-x$ in (52).

D.0. 1 The naive implementation of SA-based submatrix localization

Let \mathcal{G}_{K} be a set of all bicluster structures with (non-empty) K biclusters, which are disjoint, but which are not necessarily bi-disjoint. In SA, we first define a sequence of temperatures $\left\{T_{t}\right\}_{t=0}^{\infty}$, a threshold ϵ^{SA}, and the initial state (i.e., bicluster assignment) $\hat{g}^{(0)} \in \mathcal{G}_{K}$. For each state $g \in \mathcal{G}_{K}$, we also define a set of its neighbors $N(g) \subseteq \mathcal{G}_{K}$ and a transition probability $R\left(g, g^{\prime}\right) \in[0,1]$ to a given state $g^{\prime} \in \mathcal{G}_{K}$. Here, we set $R\left(g, g^{\prime}\right)=0$ iff $g^{\prime} \notin N(g)$.

For each step $t=0,1,2, \ldots$, if $T_{t}<\epsilon$, we stop the algorithm and output the final state $\hat{g}^{(t)}$. If $T_{t} \geq \epsilon$, we randomly choose a candidate for the next state $\tilde{g} \in N\left(\hat{g}^{(t)}\right)$ with probability $R\left(\hat{g}^{(t)}, \tilde{g}\right)$, and compute the difference of
the objective function value $\Delta F \equiv F(\tilde{g})-F\left(\hat{g}^{(t)}\right)$. If $\Delta F>0$, we set the next state at $\hat{g}^{(t+1)}=\tilde{g}$. If $\Delta F \leq 0$, we set the next state at $\hat{g}^{(t+1)}=\tilde{g}$ with probability $\exp \left(\frac{\Delta F}{T_{t}}\right)$, and set it at the current state $\hat{g}^{(t+1)}=\hat{g}^{(t)}$ with probability $1-\exp \left(\frac{\Delta F}{T_{t}}\right)$.

Specifically, we propose Algorithm 1 as an example of SA for approximately maximizing the generalized profile likelihood F. In Algorithm 1, we define that the neighbors $N(g)$ of a state g is a set of all possible bicluster assignments that can be obtained by adding/removing one row or column to/from one bicluster in g. As for the transition probability, we define that one of the elements in $N(g)$ is chosen from the uniform distribution on $N(g)$ (i.e., $R\left(g, g^{\prime}\right)=1 /|N(g)|$ for $\left.g^{\prime} \in N(g)\right)$.

We can easily check that the above settings satisfy the following irreducibility and weak reversibility:

- Irreducibility: for any pair $g, g^{\prime} \in \mathcal{G}_{K}$, there exists some sequence of transitions from g to g^{\prime} with non-zero probability.
- Weak reversibility: for any pair $g, g^{\prime} \in \mathcal{G}_{K}$ and $\tilde{F} \in \mathbb{R}$, the following two propositions (P1) and (P2) are mutually equivalent:
- (P1) there exists some sequence of transitions $g_{1}=g, g_{2}, \ldots, g_{p}=g^{\prime}$ with non-zero probability that satisfies $F\left(g_{t}\right) \geq \tilde{F}$ for all $t \in\{1, \ldots, p\}$.
- (P2) there exists some sequence of transitions $g_{1}=g^{\prime}, g_{2}, \ldots, g_{p}=g$ with non-zero probability that satisfies $F\left(g_{t}\right) \geq \tilde{F}$ for all $t \in\{1, \ldots, p\}$.
We define that a state g is locally optimal if there is no state $g^{\prime} \in \mathcal{G}_{K}$ that satisfies the following two conditions simultaneously: $F\left(g^{\prime}\right)>F(g)$, and there exists some sequence of transitions $g_{1}=g, g_{2}, \ldots, g_{p}=g^{\prime}$ with non-zero probability that satisfies $F\left(g_{t}\right) \geq F(g)$ for all $t \in\{1, \ldots, p\}$. For a locally but not globally optimal solution g, we define its depth as the minimum r that satisfies the following condition: there exists some g^{\prime} such that $F\left(g^{\prime}\right)>F(g)$ and there exists some sequence of transitions $g_{1}=g, g_{2}, \ldots, g_{p}=g^{\prime}$ with non-zero probability that satisfies $F\left(g_{t}\right) \geq F(g)-r$ for all $t \in\{1, \ldots, p\}$. By setting the sequence of temperatures at $T_{t}=\left[\max _{g \in \mathcal{G}_{K}} F(g)-\min _{g \in \mathcal{G}_{K}} F(g)\right] / \log (t+2)$ for all $t \geq 0$ (Hajek 1988), for example, the proposed Algorithm 1 also satisfies the following conditions:
$-T_{t} \geq T_{t+1}$ holds for all $t \geq 0$, and $\lim _{t \rightarrow \infty} T_{t}=0$.
$-\sum_{t=0}^{\infty} \exp \left(-\frac{r^{*}}{T_{t}}\right)=+\infty$, where r^{*} is the maximum depth of all the locally but not globally optimal solutions.
It has been proven that under the above conditions, the probability that an SA algorithm outputs the global optimal solution converges to one in the limit of $t \rightarrow \infty$ (Hajek 1988).

D.0.2 A further approximated version of SA-based submatrix localization algorithm

Although the naive SA algorithm in Sect. D.0.1 is tractable compared to the exhaustive search, it still requires too many steps for the algorithm to converge.

```
Algorithm 1 A naive SA algorithm for finding the maximum profile likelihood
solution \(\hat{g}\).
Require: A cooling schedule of temperature \(\left\{T_{t}\right\}_{t=0}^{\infty}\) and a threshold \(\epsilon^{\mathrm{SA}}\).
Ensure: Approximated optimal bicluster assignment \(\hat{g}\).
    \(t \leftarrow 0\).
    Randomly generate an initial bicluster assignment \(\hat{g}\), which is disjoint but not necessarily
    bi-disjoint.
    while \(T_{t} \geq \epsilon^{\mathrm{SA}}\) do
        Set \(\tilde{g} \leftarrow \hat{g}\) and randomly choose an index \(k_{0}\) from the uniform distribution on
        \(\{1, \ldots, 2 K\}\).
        if \(k_{0} \leq K\) then
            Set bicluster index \(k \leftarrow k_{0}\).
            Let \(I_{k}\) and \(J_{k}=\left\{j_{1}, \ldots, j_{\left|J_{k}\right|}\right\}\), respectively, be the sets of row and column indices
            in the \(k\) th bicluster. We define add and remove lists as follows,
            For \(i \in I_{k}\), let \(\mathcal{I}_{k i}^{\mathrm{rem}}\) be the set of entries in the \(i\) th row of the \(k\) th bicluster (i.e.,
            \(\left.\left\{\left(i, j_{1}\right),\left(i, j_{2}\right), \ldots,\left(i, j_{\left|J_{k}\right|}\right)\right\}\right)\). We define the remove list as \(\mathcal{I}_{k}^{\text {rem }}=\left\{\mathcal{I}_{k i}^{\mathrm{rem}}\right\}_{i \in I_{k}}\).
            Let \(\bar{I}_{k}\) be the set of row indices \(i\) that satisfies \(\bigcap_{s=1}^{\left|J_{k}\right|} \bigcap_{k^{\prime}=1}^{K}\left[\left(i, j_{s}\right) \notin \mathcal{I}_{k^{\prime}}\right]\). For \(i \in \bar{I}_{k}\),
            let \(\mathcal{I}_{k i}^{\text {add }}\) be the set of entries \(\left\{\left(i, j_{1}\right),\left(i, j_{2}\right), \ldots,\left(i, j_{\left|J_{k}\right|}\right)\right\}\). We define the add list
            as \(\mathcal{I}_{k}^{\text {add }}=\left\{\mathcal{I}_{k i}^{\text {add }}\right\}_{i \in \bar{I}_{k}}\)
            Let \(\mathcal{I}_{0}\) be the set of background entries in \(\tilde{g}\). Set \(y^{\text {add }} \leftarrow\left(\left|\bar{I}_{k}\right| \geq 2\right) \cup\left[\left(\left|\bar{I}_{k}\right|=\right.\right.\)
            \(\left.1) \cap\left(\mathcal{I}_{0} \neq \mathcal{I}_{k}^{\text {add }}\right)\right]\), which is a flag of whether or not we can execute "add" operation.
            This guarantees that the set of background entries is not null.
            if \(\left|I_{k}\right| \geq 2\) and \(y^{\text {add }}=\) True then
                    Randomly choose \(i\) from the uniform distribution on \(\left\{1, \ldots,\left|I_{k}\right|+\left|\bar{I}_{k}\right|\right\}\). If \(i \leq\)
                    \(\left|I_{k}\right|\), remove \(\mathcal{I}_{k i}^{\mathrm{rem}}\) from the \(k\) th bicluster and add it to the background in \(\tilde{g}\). If
                    \(i>\left|I_{k}\right|\), remove \(\mathcal{I}_{k\left(i-\left|I_{k}\right|\right)}^{\text {add }}\) from the background and add it to the \(k\) th bicluster
                    in \(\tilde{g}\).
            else if \(\left|I_{k}\right| \geq 2\) then
                    Randomly choose \(i\) from the uniform distribution on \(\left\{1, \ldots,\left|I_{k}\right|\right\}\). Remove \(\mathcal{I}_{k i}^{\mathrm{rem}}\)
                    from the \(k\) th bicluster and add it to the background in \(\tilde{g}\).
            else if \(y^{\text {add }}=\) True then
                    Randomly choose \(i\) from the uniform distribution on \(\left\{1, \ldots,\left|\bar{I}_{k}\right|\right\}\). Remove \(\mathcal{I}_{k i}^{\text {add }}\)
                    from the background and add it to the \(k\) th bicluster in \(\tilde{g}\).
            end if
        else
            Set the bicluster index \(k \leftarrow k_{0}-K\).
            Execute lines 7 to 17 by swapping the rows and columns in all the operations.
        end if
        if \(F(\tilde{g})-F(\hat{g})>0\) then
            \(\hat{g} \leftarrow \tilde{g}\).
        else
            With probability \(\exp \left(\frac{F(\tilde{g})-F(\hat{g})}{T_{t}}\right), \hat{g} \leftarrow \tilde{g}\).
        end if
        \(t \leftarrow t+1\).
    end while
```

Therefore, in this subsection, we propose a further approximation of Algorithm 1. The main idea here is to first compress an observed data matrix A by using row-column clustering, and then apply an SA algorithm on the compressed data matrix.

Remark that the null group-wise mean matrix P with K biclusters has at most 2^{K} distinct rows, depending on whether or not it includes each k th
bicluster $(k=1, \ldots, K)$. Based on this fact, we first apply a clustering method (e.g., hierarchical clustering) to the rows of matrix A, by setting the number of clusters at $L_{1} \in \mathbb{N}$, which satisfies $\min \left\{2^{K}, n\right\} \leq L_{1} \leq n$. Based on a similar discussion, we also perform column clustering with number of clusters L_{2} that satisfies $\min \left\{2^{K}, p\right\} \leq L_{2} \leq p$. Then, we define the compressed observed matrix $A^{\text {comp }} \in \mathbb{R}^{L_{1} \times \bar{L}_{2}}$ and matrix $M \in \mathbb{N}^{L_{1} \times L_{2}}$ as follows:

$$
\begin{align*}
& A^{\mathrm{comp}}=\left(A_{h h^{\prime}}^{\text {comp }}\right)_{1 \leq h \leq L_{1}, 1 \leq h^{\prime} \leq L_{2}}, \quad A_{h h^{\prime}}^{\text {comp }}=\frac{1}{\left|\mathcal{I}_{h h^{\prime}}^{\text {comp }}\right|} \sum_{(i, j) \in \mathcal{I}_{h h^{\prime}}^{\text {comp }}} A_{i j}, \\
& M=\left(M_{h h^{\prime}}\right)_{1 \leq h \leq L_{1}, 1 \leq h^{\prime} \leq L_{2}}, \quad M_{h h^{\prime}}=\left|\mathcal{I}_{h h^{\prime}}^{\text {comp }}\right| \tag{59}
\end{align*}
$$

where $\mathcal{I}_{h h^{\prime}}^{\text {comp }}$ is the set of entries of matrix A in the h th row cluster and the h^{\prime} th column cluster.

Next, we apply an SA algorithm to the compressed observed matrix $A^{\text {comp }}$. Let $\hat{g}_{h h^{\prime}}^{\text {comp }} \in\{0,1, \ldots, K\}$ be the estimated group index of the $\left(h, h^{\prime}\right)$ th entry of matrix $A^{\text {comp }}$, and let $\mathcal{J}_{k}^{\text {comp }} \subseteq\left\{(1,1), \ldots,\left(L_{1}, L_{2}\right)\right\}$ be the set of entries in the k th estimated group $(k=0,1, \ldots, K)$ of matrix $A^{\text {comp }}$. Note that we have $\mathcal{J}_{k}^{\text {comp }}=\left\{\left(h, h^{\prime}\right): \hat{g}_{h h^{\prime}}^{\text {comp }}=k\right\}$.

The key insight is that we have

$$
\begin{align*}
& \hat{p}_{k}=\frac{1}{n p} \sum_{\left(h, h^{\prime}\right) \in \mathcal{J}_{k}^{\text {comp }}} M_{h h^{\prime}}, \\
& \frac{1}{\left|\hat{\mathcal{I}}_{k}\right|} \sum_{(i, j) \in \hat{\mathcal{I}}_{k}} A_{i j}=\frac{1}{n p \hat{p}_{k}} \sum_{\left(h, h^{\prime}\right) \in \mathcal{J}_{k}^{\text {comp }}} M_{h h^{\prime}} A_{h h^{\prime}}^{\text {comp }} \tag{60}
\end{align*}
$$

Based on the above fact, we can compute the objective function value (i.e., profile likelihood) based on the matrices $A^{\text {comp }}$ and M, and the bicluster assignment $\hat{g}^{\text {comp }}=\left(\hat{g}_{h h^{\prime}}^{\mathrm{comp}}\right)_{1 \leq h \leq L_{1}, 1 \leq h^{\prime} \leq L_{2}}$ by

$$
\begin{equation*}
F\left(\hat{g}^{\mathrm{comp}}\right) \equiv \sum_{k=0}^{K}\left(\frac{1}{n p} \sum_{\left(h, h^{\prime}\right) \in \mathcal{J}_{k}^{\text {comp }}} M_{h h^{\prime}}\right) f\left(\frac{1}{n p \hat{p}_{k}} \sum_{\left(h, h^{\prime}\right) \in \mathcal{J}_{k}^{\text {comp }}} M_{h h^{\prime}} A_{h h^{\prime}}^{\text {comp }}\right) \tag{61}
\end{equation*}
$$

From these observations, Algorithm 2 provides an approximated solution of Algorithm 1.

Appendix E Greedy submatrix localization algorithm

To check the sensitivity of the proposed test with regard to the biclustering method, we also try Algorithm 3, which is an extension of the greedy biclustering method in (Flynn and Perry 2020) to general disjoint bicluster structure. We first use the same approximation method as in Algorithm 2 to compress a data matrix and then apply Algorithm 3 to the compressed data matrix.

```
Algorithm 2 Approximated SA algorithm for finding the maximum profile
likelihood solution \(\hat{g}\).
```

Require: A set of row and column cluster numbers (L_{1}, L_{2}) that satisfies $L_{1} \geq 2^{K}$ and $L_{2} \geq 2^{K}$, a cooling schedule of temperature $\left\{T_{t}\right\}_{t=0}^{\infty}$ and a threshold ϵ^{SA}.
Ensure: An approximated optimal bicluster assignment \hat{g}.
1: Apply a clustering algorithm to the rows of observed matrix A with the number of clusters L_{1}.
2: Apply a clustering algorithm to the columns of observed matrix A with the number of clusters L_{2}.
3: Let $\mathcal{I}_{h h^{\prime}}^{\text {comp }}$ be the set of entries of matrix A in the h th row cluster and the h^{\prime} th column cluster, and let $\mathcal{I}^{\text {comp }}=\left(\mathcal{I}_{h h^{\prime}}^{\text {comp }}\right)_{1 \leq h \leq L_{1}, 1 \leq h^{\prime} \leq L_{2}}$. Based on the clustering result $\mathcal{I}^{\text {comp }}$, define the matrices $A^{\text {comp }}$ and M by (59).
$t \leftarrow 0$.
5: Randomly generate initial (compressed) bicluster assignment $\hat{g}^{\text {comp }}$, which is disjoint but not necessarily bi-disjoint.
6: Execute lines 3 to 28 in Algorithm 1 by replacing A and \hat{g} with $A^{\text {comp }}$ and $\hat{g}^{\text {comp }}$, respectively. As for the objective function value, we can compute it by using (61).
7: Convert the set of results $\mathcal{I}^{\text {comp }}$ and $\hat{g}^{\text {comp }}$ into the bicluster assignment \hat{g} of the original observed matrix A.

Fig. 2 The accuracy of the proposed test in selecting the number of biclusters K when using the greedy submatrix localization algorithm. The left, center, and right figures, respectively, illustrate the results where each entry of observed matrix A was generated using Gaussian, Bernoulli, and Poisson distributions.

We checked the accuracy of the proposed test by using Algorithm 3 for submatrix localization. Aside from the submatrix localization algorithm, we used the same experimental settings as in Sect. 4.3. We applied Algorithm 3 to each observed matrix 1,000 times and adopted the best solution that achieved the maximum profile likelihood in the last step of the algorithm.

Figure 2 shows the accuracy of the proposed test. Although Algorithm 3 has no theoretical guarantee for obtaining the global optimal bicluster structure, we see that the proposed test with Algorithm 3 could achieve higher accuracy than that with the SA-based algorithm in most cases under this experimental setting.

Appendix F Attributes of the Divorce Predictors data set

Table 1 indicates the meaning of each attribute index of the Divorce Predictors data set (Yöntem et al. 2019), which we used in the experiment.

```
Algorithm 3 Greedy algorithm for finding the maximum profile likelihood
solution \(\hat{g}\).
Ensure: Approximated optimal bicluster assignment \(\hat{g}\).
    1: Randomly generate an initial bicluster assignment \(\hat{g}\), which is disjoint but not necessarily
    bi-disjoint. Let \(I_{k}\) and \(J_{k}\), respectively, be the sets of row and column indices in the \(k\) th
    bicluster \((k=1, \ldots, K)\) in \(\hat{g}\).
    while True do
        \(\hat{g}^{(0)} \leftarrow \hat{g}\).
        for \(k=1, \ldots, K\) do
            \(\Delta F \leftarrow[0 \cdots 0] \in \mathbb{R}^{n+p}\).
            for \(i=1, \ldots, n\) do
            \(\tilde{g} \leftarrow \hat{g}\).
            if \(i \in I_{k}\) then
                if \(\left|I_{k}\right|>1\) then
                    \(\tilde{g}_{i j} \leftarrow 0\) for \(j \in J_{k}\).
                    end if
            else
                Let \(y=\) True if there is at least one background entry when the \(i\) th row is
                added to the \(k\) th bicluster in \(\tilde{g}\), and let \(y=\) False otherwise. Let \(y^{\prime}=\) True
                if no entry in the \(i\) th row with column indices \(J_{k}\) are included in any other
                bicluster than the \(k\) th one in \(\hat{g}\) (i.e., the disjoint condition is satisfied).
                if \(y \cap y^{\prime}\) then
                    \(\tilde{g}_{i j} \leftarrow k\) for \(j \in J_{k}\).
                    end if
            end if
            \(\tilde{F} \leftarrow F(\tilde{g}) . \Delta F_{i} \leftarrow \tilde{F}-F(\hat{g})\).
        end for
        for \(j=1, \ldots, p\) do
            Execute lines 7 to 18 by swapping the rows and columns in all the operations.
        end for
        Let \(n^{\text {cand }}\) be the number of entries in \(\Delta F\) that satisfy \(\Delta F_{i}>0\) and let \(\boldsymbol{\theta}=\)
        \(\left(\theta_{i}\right)_{1 \leq i \leq n^{\text {cand }}}\) be the descending order of the indices of \(\Delta F\) (i.e., \(\Delta F_{\theta_{1}} \geq \cdots \geq\)
        \(\left.\Delta F_{\theta_{n} \text { cand }}>0\right) . \tilde{g} \leftarrow \hat{g} . g^{\text {opt }} \leftarrow \hat{g} . \Delta F^{\mathrm{opt}} \leftarrow-\infty . F^{\mathrm{opt}} \leftarrow F(\hat{g})\).
        for \(i=1, \ldots, n^{\text {cand }}\) do
            \(t \leftarrow \theta_{i}\). Let \(\tilde{I}_{k}\) and \(\tilde{J}_{k}\), respectively, be the sets of row and column indices in
            the \(k\) th bicluster \((k=1, \ldots, K)\) in \(\tilde{g}\).
            if \(t \leq n\) then
                if \(t \in \tilde{I}_{k}\) then
                    if \(\left|\tilde{I}_{k}\right|>1\) then
                    \(\tilde{g}_{t j} \leftarrow 0\) for \(j \in \tilde{J}_{k}\).
                    end if
                    else
                        Let \(y=\) True if there is at least one background entry when the \(t\) th row is
                        added to the \(k\) th bicluster in \(\tilde{g}\), and let \(y=\) False otherwise. Let \(y^{\prime}=\) True
                        if no entry in the \(t\) th row with column indices \(\tilde{J}_{k}\) are included in any other
                    bicluster than the \(k\) th one in \(\tilde{g}\).
                    if \(y \cap y^{\prime}\) then
                        \(\tilde{g}_{t j} \leftarrow k\) for \(j \in \tilde{J}_{k}\).
                    end if
                end if
                \(\tilde{F} \leftarrow F(\tilde{g}) . \Delta F \leftarrow \tilde{F}-F(\hat{g})\).
            else
                Execute lines 27 to 37 by swapping the rows and columns in all the operations.
            end if
            if \(\Delta F>\Delta F^{\text {opt }}\) then
                \(g^{\mathrm{opt}} \leftarrow \tilde{g} . F^{\mathrm{opt}} \leftarrow \tilde{F} . \Delta F^{\mathrm{opt}} \leftarrow \Delta F\).
            end if
        end for
        \(\hat{g} \leftarrow g^{\text {opt }}\).
        end for
        if \(\hat{g}^{(0)}=\hat{g}\) then
            break
        end if
    end while
```

Table 1 Attributes of the Divorce Predictors data set (Yöntem et al. 2019).
If one of us apologizes when our discussion deteriorates, the discussion ends.
I know we can ignore our differences, even if things get hard sometimes.
When we need it, we can take our discussions with my spouse from the beginning and correct it.
When I discuss with my spouse, to contact him will eventually work.
The time I spent with my wife is special for us.
We don't have time at home as partners.
We are like two strangers who share the same environment at home rather than family.
I enjoy our holidays with my wife.
I enjoy traveling with my wife.
Most of our goals are common to my spouse.
I think that one day in the future, when I look back, I see that my spouse and I have been in harmony with each other.
My spouse and I have similar values in terms of personal freedom.
My spouse and I have similar sense of entertainment.
Most of our goals for people (children, friends, etc.) are the same.
Our dreams with my spouse are similar and harmonious.
We're compatible with my spouse about what love should be.
We share the same views about being happy in our life with my spouse.
My spouse and I have similar ideas about how marriage should be.
My spouse and I have similar ideas about how roles should be in marriage.
My spouse and I have similar values in trust.
I know exactly what my wife likes.
I know how my spouse wants to be taken care of when she/he sick.
I know my spouse's favorite food.
I can tell you what kind of stress my spouse is facing in her/his life.
I have knowledge of my spouse's inner world.
I know my spouse's basic anxieties.
I know what my spouse's current sources of stress are.
I know my spouse's hopes and wishes.
I know my spouse very well.
I know my spouse's friends and their social relationships.
I feel aggressive when I argue with my spouse.
When discussing with my spouse, I usually use expressions such as 'you always' or 'you never.'
I can use negative statements about my spouse's personality during our discussions.
I can use offensive expressions during our discussions.
I can insult my spouse during our discussions.
I can be humiliating when we discussions.
My discussion with my spouse is not calm.
I hate my spouse's way of open a subject.
Our discussions often occur suddenly.
We're just starting a discussion before I know what's going on.
When I talk to my spouse about something, my calm suddenly breaks.
When I argue with my spouse, I only go out and I don't say a word.
I mostly stay silent to calm the environment a little bit.
Sometimes I think it's good for me to leave home for a while.
I'd rather stay silent than discuss with my spouse.
Even if I'm right in the discussion, I stay silent to hurt my spouse.
When I discuss with my spouse, I stay silent because I am afraid of not being able to control my anger.
I feel right in our discussions.
I have nothing to do with what I've been accused of.
I'm not actually the one who's guilty about what I'm accused of.
I'm not the one who's wrong about problems at home.
I wouldn't hesitate to tell my spouse about her/his inadequacy.
When I discuss, I remind my spouse of her/his inadequacy.
I'm not afraid to tell my spouse about her/his incompetence.

References

Bloemendal A, Knowles A, Yau HT, Yin J (2016) On the principal components of sample covariance matrices. Probability Theory and Related Fields 164:459-552
Flynn CJ, Perry PO (2020) Profile likelihood biclustering. Electronic Journal of Statistics 14(1):731-768
Hajek B (1988) Cooling schedules for optimal annealing. Mathematics of Operations Research 13(2):311-329
Murphy SA, Vaart AWVD (2000) On profile likelihood. Journal of the American Statistical Association 95(450):449-465
Pillai NS, Yin J (2014) Universality of covariance matrices. Annals of Applied Probability 24(3):935-1001
Yöntem MK, Adem K, Ilhan T, Kılıçarslan S (2019) Divorce prediction using correlation based feature selection and artificial neural networks. Nevşehir HacıBektaş Veli Üniversitesi SBE Dergisi 9:259-273

[^0]: C. Watanabe (corresponding author)

 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
 E-mail: watanabe-chihiro763@g.ecc.u-tokyo.ac.jp
 T. Suzuki

 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1
 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
 Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan

