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Appendix A Proof of λ1 ≤ λ̃1 + Op

(
m

1
3−ϵ

)
for some ϵ > 0 in the

null case

Proof By assumption, the background can be divided to H disjoint submatri-
ces, whose row and column sizes are equal to or larger than nmin and pmin,
respectively. Let X(k) ∈ R|Ik|×|Jk| be a submatrix of matrix X ∈ Rn×p cor-
responding to the row and column indices (Ik, Jk) of the kth bicluster. To
distinguish the indices of the biclusters from those of the background sub-
matrices, let X(K+h) ∈ R|IK+h|×|JK+h| be a submatrix of matrix X ∈ Rn×p

corresponding to the row and column indices (IK+h, JK+h) of the hth back-
ground submatrix. We define a bicluster-wise constant matrix Q(k) for each
kth bicluster (k = 1, . . . ,K),

Q(k) ≡ Z(k) − s̃k
sk

Z̃(k) =
1

sk

(
P̃ (k) − P (k)

)

=

 1

|Ik|
∑

(i,j)∈Ik

Zij


1 · · · 1
...

...
1 · · · 1

 ∈ R|Ik|×|Jk|, (1)

and a submatrix-wise constant matrix Q(K+h) for each hth background sub-
matrix (h = 1, . . . , H),

Q(K+h) ≡ Z(K+h) − s̃0
s0

Z̃(K+h) =
1

s0

(
P̃ (K+h) − P (K+h)

)
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Fig. 1 Decomposition of the noise matrix Z to the K biclusters {Z(k)}, k = 1, . . . ,K and
the H background submatrices {Z(K+h)}, h = 1, . . . , H. In the case of this figure, K = 3
and H = 6.

=

 1

|I0|
∑

(i,j)∈I0

Zij


1 · · · 1
...

...
1 · · · 1

 ∈ R|IK+h|×|JK+h|. (2)

Based on these matrices, let Z(k), Z̃
(k)

, and Q(k), respectively, be n × p
matrices whose entries in the kth bicluster (i.e., {(i, j) : i ∈ Ik, j ∈ Jk}) are
Z(k), Z̃(k) and Q(k) and whose all the other entries are zero. Similarly, let

Z(K+h), Z̃
(K+h)

, and Q(K+h), respectively, be n× p matrices whose entries in

the hth background submatrix (i.e., {(i, j) : i ∈ IK+h, j ∈ JK+h}) are Z(K+h),
Z̃(K+h) and Q(K+h) and whose all the other entries are zero. Figure 1 shows
an example of {Z(k)}, where k = 1, . . . ,K + H. Finally, we define matrix Q

by Q ≡
∑K+H

k=1 Q(k).

Let v1 be the normalized eigenvector of matrix Z⊤Z corresponding to the

maximum eigenvalue λ1. Since the largest singular value
√

λ̃1 of matrix Z̃ is
equal to the operator norm of Z̃, we have

λ̃1 =

(
sup
u

∥Z̃u∥
∥u∥

)2

≥

(
∥Z̃v1∥
∥v1∥

)2

= ∥Z̃v1∥2 =

∥∥∥∥∥
K+H∑
k=1

Z̃
(k)

v1

∥∥∥∥∥
2

=

∥∥∥∥∥
[

K∑
k=1

(
sk
s̃k

)
(Z(k) −Q(k))v1

]
+

[
H∑

h=1

(
s0
s̃0

)
(Z(K+h) −Q(K+h))v1

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
K+H∑
k=1

(Z(k) −Q(k))v1

]
+

[
K+H∑
k=1

(
sk
s̃k

− 1

)
(Z(k) −Q(k))v1

]∥∥∥∥∥
2

≥

[∥∥∥∥∥
K+H∑
k=1

(Z(k) −Q(k))v1

∥∥∥∥∥−
∥∥∥∥∥
K+H∑
k=1

(
1− sk

s̃k

)
(Z(k) −Q(k))v1

∥∥∥∥∥
]2

=

[
∥(Z −Q)v1∥ −

∥∥∥∥∥
K+H∑
k=1

(
1− sk

s̃k

)
(Z(k) −Q(k))v1

∥∥∥∥∥
]2

≥ ∥(Z −Q)v1∥2 − 2∥(Z −Q)v1∥

∥∥∥∥∥
K+H∑
k=1

(
1− sk

s̃k

)
(Z(k) −Q(k))v1

∥∥∥∥∥
≥ ∥(Z −Q)v1∥2 − 2∥(Z −Q)v1∥

[
K+H∑
k=1

∣∣∣∣1− sk
s̃k

∣∣∣∣ ∥(Z(k) −Q(k))v1∥

]
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≥ ∥(Z −Q)v1∥2 − 2∥(Z −Q)v1∥

[
K+H∑
k=1

∣∣∣∣1− sk
s̃k

∣∣∣∣ (∥Z(k)v1∥+ ∥Q(k)v1∥
)]

≥ ∥(Z −Q)v1∥2 − 2∥(Z −Q)v1∥

[
K+H∑
k=1

∣∣∣∣1− sk
s̃k

∣∣∣∣ (√λ
(k)
1 + ∥Q(k)v1∥

)]
≥ λ1 − 2

√
λ1∥Qv1∥

− 2(
√
λ1 + ∥Qv1∥)

[
K+H∑
k=1

∣∣∣∣1− sk
s̃k

∣∣∣∣ (√λ
(k)
1 + ∥Q(k)v1∥

)]
. (3)

where λ
(k)
1 is the maximum eigenvalue of matrix (Z(k))⊤Z(k) (which is equal

to that of matrix (Z(k))⊤Z(k)). From the third line in (3), we used the notation
that sK+1 = · · · = sK+H = s0 for simplicity.

Subsequently, we show the probabilistic orders of ∥Q(k)v1∥ and ∥Qv1∥.
The non-zero entries in matrix (Q(k))⊤Q(k) is only located in a submatrix

{(i, j) : i ∈ Jk, j ∈ Jk}, and all of their values are |Ik|η2k by (1) and (2), where

ηk ≡ 1

|Ik|
∑

(i,j)∈Ik

Zij = Op

(
1√
|Ik|

)
. (4)

Therefore, we have

(Q(k))⊤Q(k)v1 = |Ik||Jk|η2k(v⊤
1 u

(k))u(k), (5)

where u(k) ∈ Rp is a vector whose entries are defined by u
(k)
j = 1√

|Jk|
if j ∈ Jk

and u
(k)
j = 0 otherwise. Note that this vector satisfies ∥u(k)∥ = 1. From (5),

we have

∥Q(k)v1∥ =
√
v⊤
1 (Q

(k))⊤Q(k)v1 =
√
|Ik||Jk|η2k(v⊤

1 u
(k))2. (6)

To upper bound the right side of (6), we refer to the following important
property of each jth eigenvector vj of matrix Z⊤Z, which has been proven in
(Bloemendal et al. 2016).

Theorem 1 (Delocalization property of an eigenvector of a sample
covariance matrix (Bloemendal et al. 2016)) Under the assumptions in
Sect. 2, from Theorem 2.17 in (Bloemendal et al. 2016), a normalized eigen-
vector vj of matrix Z⊤Z (i.e., ∥vj∥ = 1) has a delocalization property, that

is, for all d̃ ∈ N, for any deterministic vectors {w(i)} that satisfies ∥w(i)∥ = 1

for i = 1, . . . ,md̃, for all ϵ > 0,

max
i∈1,...,md̃

max
j=1,...,p

|v⊤
j w

(i)| = Op

(
m− 1

2+ϵ
)
. (7)
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Based on the above delocalization property of vector v1 and (6), we have

∥Q(k)v1∥ =

√
|Ik|Op

(
1

|Ik|

)
Op (m−1+2ϵ) = Op

(
m− 1

2+ϵ
)
, for all ϵ > 0.

(8)

As for ∥Qv1∥, we can derive its upper bound by

∥Qv1∥ =

∥∥∥∥∥
K+H∑
k=1

Q(k)v1

∥∥∥∥∥ ≤
K+H∑
k=1

∥Q(k)v1∥ =

K+H∑
k=1

√
|Ik|η2k(v⊤

1 u
(k))2

=

K+H∑
k=1

√
|Ik|Op

(
1

|Ik|

)
|v⊤

1 u
(k)| = (K +H)Op

(
m− 1

2+ϵ
)
. (9)

Here, we used the fact that (7) holds from (Bloemendal et al. 2016).

From Lemma B1 in Appendix B, |s̃k − sk| = Op

(
1√
|Ik|

)
holds, which

results in ∣∣∣∣1− sk
s̃k

∣∣∣∣ = Op

(
1√
|Ik|

)
. (10)

By substituting (8), (9), (10), and the fact that

√
λ
(k)
1 = Op

(
|Ik|

1
4

)
from

(Pillai and Yin 2014), into (3), we obtain

λ̃1 ≥ λ1 − 2(K +H)Op (m
ϵ)− 2

[
Op

(
m

1
2

)
+ (K +H)Op

(
m− 1

2+ϵ
)]

{
K+H∑
k=1

Op

(
|Ik|−

1
2

) [
Op

(
|Ik|

1
4

)
+Op

(
m− 1

2+ϵ
)]}

= λ1 − 2(K +H)Op (m
ϵ)− 2

[
Op

(
m

1
2

)
+ (K +H)Op

(
m− 1

2+ϵ
)]

{
K+H∑
k=1

[
Op

(
|Ik|−

1
4

)
+Op

(
|Ik|−

1
2m− 1

2+ϵ
)]}

. (11)

By taking ϵ < 1
2 , the lower bound in (11) can be simplified as follows:

λ̃1 ≥ λ1 − 2(K +H)Op (m
ϵ)− 2

[
Op

(
m

1
2

)
+ (K +H)Op

(
m− 1

2+ϵ
)]

{
K+H∑
k=1

[
Op

(
|Ik|−

1
4

)
+Op

(
|Ik|−

1
2 |Ik|−

1
4+

1
2 ϵ
)]}

= λ1 − 2(K +H)Op (m
ϵ)− 2

[
Op

(
m

1
2

)
+ (K +H)Op

(
m− 1

2+ϵ
)]

[
K+H∑
k=1

Op

(
|Ik|−

1
4

)]
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≥ λ1 − 2(K +H)Op (m
ϵ)− 2

[
Op

(
m

1
2

)
+ (K +H)Op

(
m− 1

2+ϵ
)]

(K +H)Op

[(
min

k=1,...,K+H
|Ik|

)− 1
4

]

= λ1 − 2(K +H)Op (m
ϵ)

{
Op(1) +Op

[
m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]}

= λ1 − 2(K +H)Op (m
ϵ)Op

[
m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]

= λ1 − 2(K +H)Op

[
m

1
2+ϵ

(
min

k=1,...,K+H
|Ik|

)− 1
4

]
. (12)

From the assumption (iv) that (K+H) (mink=1,...,K+H |Ik|)−
1
4 = O

(
m− 1

6−ϵ1
)

for some ϵ1 > 0, by taking ϵ < ϵ1, we have

λ1 ≤ λ̃1 +Op

(
m

1
3−(ϵ1−ϵ)

)
, (13)

which concludes the proof. ⊓⊔

Appendix B Proof of |s̃k − sk| = Op

(
1√
|Ik|

)
.

Let A(k), P (k), and P̃ (k), respectively, be the kth null bicluster (k = 1, . . . ,K)
or background (k = 0) of matrices A, P , and P̃ .

Lemma B1 Under the assumption that E[Z4
ij ] < ∞,

|s̃k − sk| = Op

(
1√
|Ik|

)
, (14)

where Ik ≡ {(i, j) : gij = k} (i.e., the set of entries in the kth group).

Proof By definition, we have

s̃2k ≡ 1

|Ik|
∑

(i,j)∈Ik

(
A

(k)
ij − b̃k

)2
=

1

|Ik|
∑

(i,j)∈Ik

[(
A

(k)
ij

)2
− b̃2k

]

=
1

|Ik|
∑

(i,j)∈Ik

[(
A

(k)
ij

)2
− b̃2k

]
− 1

|Ik|
2bk

∑
(i,j)∈Ik

(
A

(k)
ij − b̃k

)
=

1

|Ik|
∑

(i,j)∈Ik

(
A

(k)
ij − bk

)2
−
(
bk − b̃k

)2
, (15)

where b̃k ≡ 1
|Ik|

∑
(i,j)∈Ik

A
(k)
ij .
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From (15), we have

s̃2k − s2k =
1

|Ik|
∑

(i,j)∈Ik

(
A

(k)
ij − bk

)2
− s2k −

(
bk − b̃k

)2
=

1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij −

(
bk − b̃k

)2
, (16)

where used the notation that Y
(k)
ij ≡

(
A

(k)
ij − bk

)2
−s2k. Based on the assump-

tion that the entries
(
A

(k)
ij

)
(i,j)∈Ik

are generated in the i.i.d. sense in each kth

group, the random variables
(
Y

(k)
ij

)
(i,j)∈Ik

are also independent, and their

expectations and variances satisfy

E
[
Y

(k)
ij

]
= E

[(
A

(k)
ij − bk

)2]
− s2k = 0,

V
[
Y

(k)
ij

]
= E

[(
Y

(k)
ij

)2]
= s4k

(
E
[(

Z
(k)
ij

)4]
− 1

)
, (17)

which results in

E

 1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij

 = 0,

V

 1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij

 =
1

|Ik|
s4k

(
E
[(

Z
(k)
ij

)4]
− 1

)
. (18)

From (18) and Chebyshev’s inequality, for all t > 0, we have

Pr

∣∣∣∣∣∣ 1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij

∣∣∣∣∣∣ ≥ t

√
1

|Ik|
s4k

(
E
[(

Z
(k)
ij

)4]
− 1

) ≤ 1

t2
, (19)

which results in ∣∣∣∣∣∣ 1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij

∣∣∣∣∣∣ = Op

(
1√
|Ik|

)
. (20)

from the assumption of E
[(

Z
(k)
ij

)4]
< ∞.

As for the second term in (16), we have

(
bk − b̃k

)2
=

 1

|Ik|
∑

(i,j)∈Ik

(
P

(k)
ij −A

(k)
ij

)2

=
s2k

|Ik|2

 ∑
(i,j)∈Ik

Z
(k)
ij

2

. (21)
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From (21), we have

E
[(

bk − b̃k

)2]
=

s2k
|Ik|2

V

 ∑
(i,j)∈Ik

Z
(k)
ij

 =
s2k
|Ik|

, (22)

since Z
(k)
ij has a unit variance.

From (22) and Markov’s inequality, we have

∀t > 0, Pr

[(
bk − b̃k

)2
≥ t

]
≤ s2k

|Ik|
1

t

⇐⇒ ∀t′ > 0, Pr

[(
bk − b̃k

)2
≥ s2k

|Ik|
t′
]
≤ 1

t′
, (23)

which results in (
bk − b̃k

)2
= Op

(
1

|Ik|

)
. (24)

Using (20), (24), and (16), we finally obtain

|s̃2k − s2k| ≤ | 1

|Ik|
∑

(i,j)∈Ik

Y
(k)
ij |+ |

(
bk − b̃k

)2
| = Op

(
1√
|Ik|

)
, (25)

which results in

|s̃k − sk| =
|s̃2k − s2k|
|s̃k + sk|

. (26)

From (25), we see that s̃k converges in probability to sk, and thus 1
|s̃k+sk|

converges in probability to 1
2sk

> 0. Therefore, we have

|s̃k − sk| = Op

(
1√
|Ik|

)
, (27)

which concludes the proof. ⊓⊔

Appendix C Proof of λ̃1 ≤ λ1 + Op

(
m

1
3−ϵ

)
for some ϵ > 0 in the

null case

Proof Let ṽ
(k)
1 ∈ R|Jk| be a subvector of ṽ1 corresponding to the columns of

the kth submatrix in observed matrix A, and let τk ≡ sk
s̃k
. In (10), we have

already shown that |1− τk| = Op

(
1√
|Ik|

)
. The maximum eigenvalue λ̃1 of

matrix Z̃⊤Z̃ can be upper bounded as follows:

λ̃1 = ∥Z̃ṽ1∥2 =

∥∥∥∥∥
K+H∑
k=1

τk

(
Z(k) −Q(k)

)
ṽ1

∥∥∥∥∥
2

(∵ (1))
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=

∥∥∥∥∥
{
Z +

K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]}

ṽ1

∥∥∥∥∥
2

= ∥Zṽ1∥2 + 2ṽ⊤
1 Z

⊤
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

+

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

≤ ∥Zṽ1∥2 + 2
√
λ1

K+H∑
k=1

|τk − 1|∥Z(k)ṽ1∥ − 2ṽ⊤
1 Z

⊤
K+H∑
k=1

τkQ
(k)ṽ1

+

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

= ∥Zṽ1∥2 + 2
√
λ1

K+H∑
k=1

|τk − 1|∥Z(k)ṽ
(k)
1 ∥ − 2ṽ⊤

1 Z
⊤

K+H∑
k=1

τkQ
(k)ṽ1

+

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

≤ ∥Zṽ1∥2 + 2
√
λ1

K+H∑
k=1

|τk − 1|
√

λ
(k)
1 − 2ṽ⊤

1 Z
⊤

K+H∑
k=1

τkQ
(k)ṽ1

+

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

= ∥Zṽ1∥2 + 2Op

(
m

1
2

)K+H∑
k=1

Op

(
|Ik|−

1
4

)
− 2ṽ⊤

1 Z
⊤

K+H∑
k=1

τkQ
(k)ṽ1

+

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

= ∥Zṽ1∥2 + 2(K +H)Op

[
m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]

− 2ṽ⊤
1 Z

⊤
K+H∑
k=1

τkQ
(k)ṽ1 +

∥∥∥∥∥
K+H∑
k=1

[
(τk − 1)Z(k) − τkQ

(k)
]
ṽ1

∥∥∥∥∥
2

≤ ∥Zṽ1∥2 + 2(K +H)Op

[
m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]

− 2ṽ⊤
1 Z

⊤
K+H∑
k=1

τkQ
(k)ṽ1 +

[
K+H∑
k=1

|τk − 1|∥Z(k)ṽ1∥+
K+H∑
k=1

τk∥Q(k)ṽ1∥

]2



A Goodness-of-fit Test on the Number of Biclusters 9

≤ ∥Zṽ1∥2 + 2(K +H)Op

[
m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]

− 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 +

[
K+H∑
k=1

Op

(
|Ik|−

1
4

)
+

K+H∑
k=1

τk∥Q(k)ṽ1∥

]2
(
∵ ∥Z(k)ṽ1∥ ≤

√
λ
(k)
1 = Op

(
|Ik|

1
4

))
= ∥Zṽ1∥2 +Op

[
m

1
2C(K,H)

]
− 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

+

[
Op

(
C(K,H)

)
+

K+H∑
k=1

τk∥Q(k)ṽ1∥

]2
, (28)

where we denote C(K,H) ≡ (K +H) (mink=1,...,K+H |Ik|)−
1
4 .

The eigenvectors {vj} of symmetric matrix Z⊤Z form an orthonormal
system, and thus there exists a unique set of coefficients {cj} such that

ṽ1 =

p∑
j=1

cjvj = ṽL + ṽS, (29)

where

ṽL ≡
t∑

j=1

cjvj , ṽS ≡
p∑

j=t+1

cjvj ,

λt ≥ λ1 − nd, λt+1 < λ1 − nd, d =
5

7
. (30)

By substituting (29) into the last term in (28) and from the similar discussion
as in (5),

∥Q(k)ṽ1∥2 = ṽ⊤
1 (Q

(k))⊤Q(k)ṽ1 =

p∑
j=1

p∑
j′=1

cjcj′v
⊤
j (Q

(k))⊤Q(k)vj′

=

p∑
j=1

p∑
j′=1

cjcj′ |Ik||Jk|η2k(v⊤
j u

(k))(v⊤
j′u

(k)) = |Ik||Jk|η2k

 p∑
j=1

cj(v
⊤
j u

(k))

2

≤ |Ik||Jk|η2k

√√√√ p∑
j=1

c2j

√√√√ p∑
j=1

(v⊤
j u

(k))2

2

= |Ik||Jk|η2k∥ṽ1∥2
 p∑
j=1

(v⊤
j u

(k))2


= |Ik||Jk|η2k

 p∑
j=1

(v⊤
j u

(k))2

 ≤ |Ik||Jk|η2k p max
j=1,...,p

(v⊤
j u

(k))2

= |Ik|Op

(
|Ik|−1

)
p Op

(
m−1+2ϵ

)
= Op

(
m2ϵ

)
. (31)
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Here, we used the fact that (7) holds from (Bloemendal et al. 2016).
By combining (28) and (31),

λ̃1 ≤ ∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 +Op

[
m

1
2C(K,H)

]

+

[
Op

(
C(K,H)

)
+

K+H∑
k=1

τkOp (m
ϵ)

]2

= ∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 +Op

[
m

1
2C(K,H)

]

+

[
Op

(
C(K,H)

)
+

K+H∑
k=1

(
1 +Op

(
|Ik|−

1
2

))
Op (m

ϵ)

]2

= ∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 +Op

[
m

1
2C(K,H)

]
+
[
Op

(
C(K,H)

)
+ (K +H)Op (m

ϵ)
]2

= ∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 +Op

[
(K +H)m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]
+Op

[
(K +H)2m2ϵ

]
. (32)

As for the third term in (32), based on the assumption (iv),

Op

[
(K +H)m

1
2

(
min

k=1,...,K+H
|Ik|

)− 1
4

]
= Op

(
m

1
3−ϵ1

)
. (33)

With regard to the fourth term in (32), based on the assumption (iv) that

K +H = O
(
m

1
42−ϵ1

)
for some ϵ1 > 0, by taking ϵ < ϵ1,

Op

[
(K +H)2m2ϵ

]
= Op

(
m

1
21−2(ϵ1−ϵ)

)
. (34)

An upper bound of the first and second terms in (32) is given by

∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

= (ṽL + ṽS)⊤Z⊤Z(ṽL + ṽS)− 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

=
(
ṽL
)⊤

Z⊤ZṽL +
(
ṽS
)⊤

Z⊤ZṽS − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1



A Goodness-of-fit Test on the Number of Biclusters 11

=

 t∑
j=1

cjvj

⊤ t∑
j=1

cjZ
⊤Zvj

+

 p∑
j=t+1

cjvj

⊤ p∑
j=t+1

cjZ
⊤Zvj


− 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

=

 t∑
j=1

cjvj

⊤ t∑
j=1

cjλjvj

+

 p∑
j=t+1

cjvj

⊤ p∑
j=t+1

cjλjvj


− 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

=

t∑
j=1

c2jλj∥vj∥2 +
p∑

j=t+1

c2jλj∥vj∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

=

t∑
j=1

c2jλj +

p∑
j=t+1

c2jλj − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

≤ λ1

t∑
j=1

c2j + λt+1

p∑
j=t+1

c2j − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

≤ λ1

t∑
j=1

c2j + (λ1 − nd)

p∑
j=t+1

c2j − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1 (∵ (30))

= λ1

p∑
j=1

c2j − nd

p∑
j=t+1

c2j − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

= λ1∥ṽ1∥2 − nd∥ṽS∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

= λ1 − nd∥ṽS∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽL − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽS. (35)

Let u(k) ∈ Rp be a vector whose entries are defined by u
(k)
j = 1√

|Jk|
if

j ∈ Jk and u
(k)
j = 0 otherwise. As for the third term in (35), using the fact

that Q(k)vj = ηk|Jk|(v⊤
j u

(k))u(k), for all ϵ > 0,

− ṽ⊤
1 Z

⊤Q(k)ṽL ≤ |ṽ⊤
1 Z

⊤Q(k)ṽL| =

∣∣∣∣∣∣
t∑

j=1

cj ṽ
⊤
1 Z

⊤Q(k)vj

∣∣∣∣∣∣
=

∣∣∣∣∣∣ηk|Jk|ṽ⊤
1 Z

⊤u(k)
t∑

j=1

cj(v
⊤
j u

(k))

∣∣∣∣∣∣
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= Op

(
|Ik|−

1
2

)
|Jk|

∣∣∣∣∣∣
t∑

j=1

cj(v
⊤
j u

(k))

∣∣∣∣∣∣
∣∣∣ṽ⊤

1 Z
⊤u(k)

∣∣∣
= Op(1)

∣∣∣∣∣∣
t∑

j=1

cj(v
⊤
j u

(k))

∣∣∣∣∣∣
∣∣∣ṽ⊤

1 Z
⊤u(k)

∣∣∣
≤ Op(1)

√√√√ t∑
j=1

c2j

√√√√ t∑
j=1

|v⊤
j u

(k)|2
∣∣∣ṽ⊤

1 Z
⊤u(k)

∣∣∣
≤ Op(1)∥ṽ1∥

√
t Op

(
m− 1

2+ϵ
) ∣∣∣ṽ⊤

1 Z
⊤u(k)

∣∣∣
=

√
t Op

(
m− 1

2+ϵ
) ∣∣∣ṽ⊤

1 Z
⊤u(k)

∣∣∣ ≤ √
t Op

(
m− 1

2+ϵ
)
∥ṽ⊤

1 Z
⊤∥∥u(k)∥

=
√
t Op

(
m− 1

2+ϵ
)
∥ṽ⊤

1 Z
⊤∥ ≤

√
t Op

(
m− 1

2+ϵ
)√

λ1

=
√
t Op

(
m− 1

2+ϵ
)
Op

(
m

1
2

)
=

√
t Op (m

ϵ) . (36)

With regard to the fourth term in (35), we have

− ṽ⊤
1 Z

⊤Q(k)ṽS ≤ |ṽ⊤
1 Z

⊤Q(k)ṽS| ≤ ∥ṽ1∥∥Z⊤Q(k)ṽS∥ = ∥Z⊤Q(k)ṽS∥

≤ ∥Z⊤Q(k)∥op∥ṽS∥ ≤ ∥Z∥op∥Q(k)∥F∥ṽS∥ =
√
λ1|Ik| |ηk| ∥ṽS∥. (37)

By substituting (36) and (37) into (35),

∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

≤ λ1 − nd∥ṽS∥2 + 2

K+H∑
k=1

τk
√
t Op (m

ϵ) + 2

K+H∑
k=1

τk
√
λ1|Ik| |ηk| ∥ṽS∥

= λ1 − nd∥ṽS∥2 + 2

K+H∑
k=1

√
t Op (m

ϵ) + 2

K+H∑
k=1

τk
√
λ1|Ik| |ηk| ∥ṽS∥

= λ1 − nd∥ṽS∥2 +
√
t Op [(K +H)mϵ] + 2

K+H∑
k=1

τk
√
λ1|Ik| |ηk| ∥ṽS∥. (38)

From now on, we derive the probabilistic order of t. We denote the jth
normalized eigenvalue of matrix Z⊤Z as νj ≡ 1

nλj , and define the following
variables:

ν+ ≡
(
1 +

√
p

n

)2

, ν− ≡
(
1−

√
p

n

)2

, ϵ3 ≡ ν+ − ν1. (39)

Note that |ϵ3| = Op

(
ϕCm− 2

3

)
holds for some constant C > 0 and ϕ ≡

(log p)log log p from (4.1) of (Pillai and Yin 2014). Since ϕ = o(mϵ4) holds for
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any ϵ4 > 0, by taking ϵ5 ≡ Cϵ4, we have

|ϵ3| = Op

(
m− 2

3+ϵ5
)
, for any ϵ5 > 0. (40)

From (3.7) of (Pillai and Yin 2014), we have∣∣∣∣n̄− t

p

∣∣∣∣ = Op

(
m−1+ϵ6

)
, for all ϵ6 > 0, (41)

where n̄ ≡
∫∞
ν1−nd−1 q(x)dx and

q(x) =
1

2π

n

p

√
max{(ν+ − x)(x− ν−), 0}

x
. (42)

From (42), by taking ϵ5 < d− 1
3 = 8

21 , we have

q(ν1 − nd−1) = q(ν+ − nd−1 − ϵ3)

=

√
ν+ − ν−
ν+

[
n

d−1
2 +Op

(
m− 1

3+
ϵ5
2

)] [
1 +O

(
m

d−1
2

)
+Op

(
m− 1

3+
ϵ5
2

)]
=

√
ν+ − ν−
ν+

n
d−1
2 +Op

(
m

d−1
2

)
. (43)

From (40) and (43), by setting ϵ5 < d− 1
3 ,

n̄ =

∫ ∞

ν1−nd−1

q(x)dx ≤
∣∣∣∣∫ ν+

ν1−nd−1

q(x)dx

∣∣∣∣+
∣∣∣∣∣
∫ ∞

ν+

q(x)dx

∣∣∣∣∣ =
∣∣∣∣∫ ν+

ν1−nd−1

q(x)dx

∣∣∣∣
≤ |ϵ3 + nd−1| q(ν1 − nd−1) = Op

(
md−1

)
Op

(
m

d−1
2

)
= Op

(
m

3(d−1)
2

)
.

(44)

From (44) and (41), by setting ϵ6 < 3
2d−

1
2 ,

t = Op

(
m

3
2d−

1
2

)
. (45)

By substituting (45) into (38) and from the assumption in (30) that d = 5
7 ,

for all ϵ > 0,

∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

≤ λ1 +Op

[
(K +H)m

2
7+ϵ
]
+ ∥ṽS∥

(
2
√
λ1

K+H∑
k=1

τk
√
|Ik| |ηk| − nd∥ṽS∥

)
= λ1 +Op

[
(K +H)m

2
7+ϵ
]
+ ∥ṽS∥

(
2
√
λ1 ϖ − nd∥ṽS∥

)
, (46)
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where

ϖ ≡
K+H∑
k=1

τk
√
|Ik| |ηk| =

K+H∑
k=1

[
1 +Op

(
1√
|Ik|

)]√
|Ik| Op

(
1√
|Ik|

)
= Op(K +H). (47)

By using d = 5
7 and (47), the third term in the right side of (46) can be

upper bounded by

∥ṽS∥
(
2
√
λ1 ϖ − nd∥ṽS∥

)
= 2∥ṽS∥

√
λ1 ϖ − nd∥ṽS∥2 − λ1ϖ

2

nd
+

λ1ϖ
2

nd

= − (
√
λ1 ϖ − nd∥ṽS∥)2

nd
+

λ1ϖ
2

nd
≤ λ1ϖ

2

nd
= Op

[
(K +H)2m

2
7

]
, (48)

which results in that

∥Zṽ1∥2 − 2

K+H∑
k=1

τkṽ
⊤
1 Z

⊤Q(k)ṽ1

≤ λ1 +Op

[
(K +H)m

2
7+ϵ
]
+Op

[
(K +H)2m

2
7

]
≤ λ1 +Op

[
(K +H)2m

2
7+ϵ
]
, for all ϵ > 0. (49)

Therefore, from (32), (33), and (34), for all ϵ > 0,

λ̃1 ≤ λ1 +Op

[
(K +H)2m

2
7+ϵ
]
+Op

(
m

1
3−ϵ1

)
+Op

(
m

1
21−2(ϵ1−ϵ)

)
. (50)

From the assumption (iv) that K +H = O
(
m

1
42−ϵ1

)
for some ϵ1 > 0, by

taking ϵ < ϵ1, we finally obtain

λ̃1 ≤ λ1 +Op

(
m

1
3−ϵ̃
)
, for some ϵ̃ > 0, (51)

which concludes the proof. ⊓⊔

Appendix D Disjoint submatrix localization algorithm based on
simulated annealing

In this section, we develop a simulated annealing (SA) algorithm to find
the bicluster structure of a given observed matrix. As in (Flynn and Perry
2020), the proposed algorithm is based on the (generalized) profile likelihood
(Murphy and Vaart 2000). Given an estimated bicluster assignment ĝ, the gen-
eralized profile-likelihood criterion for an exponential family model is given by

F (ĝ) ≡
K∑

k=0

p̂kf

 1

|Îk|

∑
(i,j)∈Îk

Aij

 , (52)
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where p̂k ∈ R is the proportion of entries in the kth group (k ∈ {0, 1, . . . ,K})
in the estimated bicluster structures to all the np entries and f : R 7→ R is
a given function. The specific definition of function f for each experiment is
given in Sect. 4. These settings in Sect. 4 is based on the following derivation.

Gaussian LBM (G-LBM) We assume that each entry Aij in the kth group
of the data matrix independently follows the Gaussian distribution N (bk, σ),
where σ is a known standard deviation, which is common to all the groups. This
assumption is necessary for deriving function f in the framework of profile like-
lihood maximization, and to derive another submatrix localization algorithm
that does not require such assumption is beyond the scope of this paper. In
this case, the log likelihood is given by

L(ĝ) =
K∑

k=0

∑
(i,j)∈Îk

(
− log

√
2πσ2 − (Aij − bk)

2

2σ2

)

= −np log
√
2πσ2 − 1

2σ2

K∑
k=0

∑
(i,j)∈Îk

(Aij − bk)
2. (53)

By replacing bk with the maximum likelihood estimator b̂k = 1
|Îk|

∑
(i,j)∈Îk

Aij ,

we obtain

F (0)(ĝ) ≡ −np log
√
2πσ2 − 1

2σ2

K∑
k=0

∑
(i,j)∈Îk

(Aij − b̂k)
2

= −np log
√
2πσ2 − 1

2σ2
∥A∥2F +

K∑
k=0

|Îk|
b̂2k
2σ2

= −np log
√
2πσ2 − 1

2σ2
∥A∥2F +

np

σ2

K∑
k=0

p̂k
b̂2k
2
. (54)

Since maximization of F (0)(ĝ) is equivalent to that of F (ĝ) ≡
∑K

k=0 p̂k
b̂2k
2 ,

we define F (ĝ) as the profile likelihood. This corresponds to the definition of
f(x) ≡ x2/2 in (52).

Bernoulli LBM (B-LBM) We assume that each entry Aij in the kth
group of the data matrix independently follows the Bernoulli distribution
Bernoulli(bk). In this case, the log likelihood is given by

L(ĝ) =
K∑

k=0

∑
(i,j)∈Îk

log
[
b
Aij

k (1− bk)
1−Aij

]

=

K∑
k=0

[
|Îk|b̂k log bk + |Îk|(1− b̂k) log(1− bk)

]
. (55)
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By replacing bk with b̂k, we obtain

F (0)(ĝ) ≡
K∑

k=0

[
|Îk|b̂k log b̂k + |Îk|(1− b̂k) log(1− b̂k)

]
= np

K∑
k=0

p̂k

[
b̂k log b̂k + (1− b̂k) log(1− b̂k)

]
. (56)

Since maximization of F (0)(ĝ) is equivalent to that of F (ĝ) ≡ 1
npF

(0)(ĝ), we

define F (ĝ) as the profile likelihood. This corresponds to the definition of
f(x) ≡ x log x+ (1− x) log(1− x) in (52).

Poisson LBM (P-LBM) We assume that each entry Aij in the kth group
of the data matrix independently follows the Poisson distribution Pois(bk). In
this case, the log likelihood is given by

L(ĝ) =
K∑

k=0

∑
(i,j)∈Îk

log

(
b
Aij

k exp(−bk)

Aij !

)

=

K∑
k=0

|Îk|b̂k log bk −
K∑

k=0

|Îk|bk −
n∑

i=1

p∑
j=1

log(Aij !). (57)

By replacing bk with b̂k, we obtain

F (0)(ĝ) ≡
K∑

k=0

|Îk|(b̂k log b̂k − b̂k)−
n∑

i=1

p∑
j=1

log(Aij !)

= np

K∑
k=0

p̂k(b̂k log b̂k − b̂k)−
n∑

i=1

p∑
j=1

log(Aij !). (58)

Since maximization of F (0)(ĝ) is equivalent to that of F (ĝ) ≡
∑K

k=0 p̂k(b̂k log b̂k−
b̂k), we define F (ĝ) as the profile likelihood. This corresponds to the definition
of f(x) ≡ x log x− x in (52).

D.0.1 The naive implementation of SA-based submatrix localization

Let GK be a set of all bicluster structures with (non-empty)K biclusters, which
are disjoint, but which are not necessarily bi-disjoint. In SA, we first define a
sequence of temperatures {Tt}∞t=0, a threshold ϵSA, and the initial state (i.e.,
bicluster assignment) ĝ(0) ∈ GK . For each state g ∈ GK , we also define a set
of its neighbors N(g) ⊆ GK and a transition probability R(g, g′) ∈ [0, 1] to a
given state g′ ∈ GK . Here, we set R(g, g′) = 0 iff g′ /∈ N(g).

For each step t = 0, 1, 2, . . . , if Tt < ϵ, we stop the algorithm and output
the final state ĝ(t). If Tt ≥ ϵ, we randomly choose a candidate for the next
state g̃ ∈ N(ĝ(t)) with probability R(ĝ(t), g̃), and compute the difference of
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the objective function value ∆F ≡ F (g̃) − F (ĝ(t)). If ∆F > 0, we set the
next state at ĝ(t+1) = g̃. If ∆F ≤ 0, we set the next state at ĝ(t+1) = g̃

with probability exp
(

∆F
Tt

)
, and set it at the current state ĝ(t+1) = ĝ(t) with

probability 1− exp
(

∆F
Tt

)
.

Specifically, we propose Algorithm 1 as an example of SA for approximately
maximizing the generalized profile likelihood F . In Algorithm 1, we define that
the neighbors N(g) of a state g is a set of all possible bicluster assignments that
can be obtained by adding/removing one row or column to/from one bicluster
in g. As for the transition probability, we define that one of the elements in
N(g) is chosen from the uniform distribution on N(g) (i.e., R(g, g′) = 1/|N(g)|
for g′ ∈ N(g)).

We can easily check that the above settings satisfy the following irreducibil-
ity and weak reversibility :

– Irreducibility: for any pair g, g′ ∈ GK , there exists some sequence of tran-
sitions from g to g′ with non-zero probability.

– Weak reversibility: for any pair g, g′ ∈ GK and F̃ ∈ R, the following two
propositions (P1) and (P2) are mutually equivalent:
– (P1) there exists some sequence of transitions g1 = g, g2, . . . , gp = g′

with non-zero probability that satisfies F (gt) ≥ F̃ for all t ∈ {1, . . . , p}.
– (P2) there exists some sequence of transitions g1 = g′, g2, . . . , gp = g

with non-zero probability that satisfies F (gt) ≥ F̃ for all t ∈ {1, . . . , p}.
We define that a state g is locally optimal if there is no state g′ ∈ GK that
satisfies the following two conditions simultaneously: F (g′) > F (g), and there
exists some sequence of transitions g1 = g, g2, . . . , gp = g′ with non-zero prob-
ability that satisfies F (gt) ≥ F (g) for all t ∈ {1, . . . , p}. For a locally but not
globally optimal solution g, we define its depth as the minimum r that satis-
fies the following condition: there exists some g′ such that F (g′) > F (g) and
there exists some sequence of transitions g1 = g, g2, . . . , gp = g′ with non-zero
probability that satisfies F (gt) ≥ F (g)−r for all t ∈ {1, . . . , p}. By setting the
sequence of temperatures at Tt = [maxg∈GK

F (g)−ming∈GK
F (g)]/ log(t+ 2)

for all t ≥ 0 (Hajek 1988), for example, the proposed Algorithm 1 also satisfies
the following conditions:

– Tt ≥ Tt+1 holds for all t ≥ 0, and limt→∞ Tt = 0.

–
∑∞

t=0 exp
(
− r∗

Tt

)
= +∞, where r∗ is the maximum depth of all the locally

but not globally optimal solutions.

It has been proven that under the above conditions, the probability that
an SA algorithm outputs the global optimal solution converges to one in the
limit of t → ∞ (Hajek 1988).

D.0.2 A further approximated version of SA-based submatrix localization
algorithm

Although the naive SA algorithm in Sect. D.0.1 is tractable compared to the
exhaustive search, it still requires too many steps for the algorithm to converge.
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Algorithm 1 A naive SA algorithm for finding the maximum profile likelihood
solution ĝ.

Require: A cooling schedule of temperature {Tt}∞t=0 and a threshold ϵSA.
Ensure: Approximated optimal bicluster assignment ĝ.
1: t← 0.
2: Randomly generate an initial bicluster assignment ĝ, which is disjoint but not necessarily

bi-disjoint.
3: while Tt ≥ ϵSA do
4: Set g̃ ← ĝ and randomly choose an index k0 from the uniform distribution on

{1, . . . , 2K}.
5: if k0 ≤ K then
6: Set bicluster index k ← k0.
7: Let Ik and Jk = {j1, . . . , j|Jk|}, respectively, be the sets of row and column indices

in the kth bicluster. We define add and remove lists as follows.
8: For i ∈ Ik, let Iremki be the set of entries in the ith row of the kth bicluster (i.e.,

{(i, j1), (i, j2), . . . , (i, j|Jk|)}). We define the remove list as Iremk = {Iremki }i∈Ik .

9: Let Īk be the set of row indices i that satisfies
∩|Jk|

s=1

∩K
k′=1[(i, js) /∈ Ik′ ]. For i ∈ Īk,

let Iaddki be the set of entries {(i, j1), (i, j2), . . . , (i, j|Jk|)}. We define the add list

as Iaddk = {Iaddki }i∈Īk
.

10: Let I0 be the set of background entries in g̃. Set yadd ← (|Īk| ≥ 2) ∪ [(|Īk| =
1)∩(I0 ̸= Iaddk )], which is a flag of whether or not we can execute “add” operation.
This guarantees that the set of background entries is not null.

11: if |Ik| ≥ 2 and yadd = True then
12: Randomly choose i from the uniform distribution on {1, . . . , |Ik|+ |Īk|}. If i ≤

|Ik|, remove Iremki from the kth bicluster and add it to the background in g̃. If

i > |Ik|, remove Iadd
k(i−|Ik|)

from the background and add it to the kth bicluster

in g̃.
13: else if |Ik| ≥ 2 then
14: Randomly choose i from the uniform distribution on {1, . . . , |Ik|}. Remove Iremki

from the kth bicluster and add it to the background in g̃.
15: else if yadd = True then
16: Randomly choose i from the uniform distribution on {1, . . . , |Īk|}. Remove Iaddki

from the background and add it to the kth bicluster in g̃.
17: end if
18: else
19: Set the bicluster index k ← k0 −K.
20: Execute lines 7 to 17 by swapping the rows and columns in all the operations.
21: end if
22: if F (g̃)− F (ĝ) > 0 then
23: ĝ ← g̃.
24: else
25: With probability exp

(
F (g̃)−F (ĝ)

Tt

)
, ĝ ← g̃.

26: end if
27: t← t+ 1.
28: end while

Therefore, in this subsection, we propose a further approximation of Algorithm
1. The main idea here is to first compress an observed data matrix A by using
row-column clustering, and then apply an SA algorithm on the compressed
data matrix.

Remark that the null group-wise mean matrix P with K biclusters has
at most 2K distinct rows, depending on whether or not it includes each kth
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bicluster (k = 1, . . . ,K). Based on this fact, we first apply a clustering method
(e.g., hierarchical clustering) to the rows of matrix A, by setting the number
of clusters at L1 ∈ N, which satisfies min{2K , n} ≤ L1 ≤ n. Based on a similar
discussion, we also perform column clustering with number of clusters L2 that
satisfies min{2K , p} ≤ L2 ≤ p. Then, we define the compressed observed
matrix Acomp ∈ RL1×L2 and matrix M ∈ NL1×L2 as follows:

Acomp = (Acomp
hh′ )1≤h≤L1,1≤h′≤L2

, Acomp
hh′ =

1

|Icomp
hh′ |

∑
(i,j)∈Icomp

hh′

Aij ,

M = (Mhh′)1≤h≤L1,1≤h′≤L2
, Mhh′ = |Icomp

hh′ |, (59)

where Icomp
hh′ is the set of entries of matrix A in the hth row cluster and the

h′th column cluster.
Next, we apply an SA algorithm to the compressed observed matrix Acomp.

Let ĝcomp
hh′ ∈ {0, 1, . . . ,K} be the estimated group index of the (h, h′)th entry

of matrix Acomp, and let J comp
k ⊆ {(1, 1), . . . , (L1, L2)} be the set of entries

in the kth estimated group (k = 0, 1, . . . ,K) of matrix Acomp. Note that we
have J comp

k = {(h, h′) : ĝcomp
hh′ = k}.

The key insight is that we have

p̂k =
1

np

∑
(h,h′)∈J comp

k

Mhh′ ,

1

|Îk|

∑
(i,j)∈Îk

Aij =
1

npp̂k

∑
(h,h′)∈J comp

k

Mhh′Acomp
hh′ . (60)

Based on the above fact, we can compute the objective function value (i.e.,
profile likelihood) based on the matrices Acomp and M , and the bicluster as-
signment ĝcomp = (ĝcomp

hh′ )1≤h≤L1,1≤h′≤L2
by

F (ĝcomp) ≡
K∑

k=0

 1

np

∑
(h,h′)∈J comp

k

Mhh′

 f

 1

npp̂k

∑
(h,h′)∈J comp

k

Mhh′Acomp
hh′

 .

(61)

From these observations, Algorithm 2 provides an approximated solution of
Algorithm 1.

Appendix E Greedy submatrix localization algorithm

To check the sensitivity of the proposed test with regard to the biclustering
method, we also try Algorithm 3, which is an extension of the greedy bicluster-
ing method in (Flynn and Perry 2020) to general disjoint bicluster structure.
We first use the same approximation method as in Algorithm 2 to compress a
data matrix and then apply Algorithm 3 to the compressed data matrix.
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Algorithm 2 Approximated SA algorithm for finding the maximum profile
likelihood solution ĝ.

Require: A set of row and column cluster numbers (L1, L2) that satisfies L1 ≥ 2K and
L2 ≥ 2K , a cooling schedule of temperature {Tt}∞t=0 and a threshold ϵSA.

Ensure: An approximated optimal bicluster assignment ĝ.
1: Apply a clustering algorithm to the rows of observed matrix A with the number of

clusters L1.
2: Apply a clustering algorithm to the columns of observed matrix A with the number of

clusters L2.
3: Let Icomp

hh′ be the set of entries of matrix A in the hth row cluster and the h′th column

cluster, and let Icomp = (Icomp
hh′ )1≤h≤L1,1≤h′≤L2

. Based on the clustering result Icomp,
define the matrices Acomp and M by (59).

4: t← 0.
5: Randomly generate initial (compressed) bicluster assignment ĝcomp, which is disjoint

but not necessarily bi-disjoint.
6: Execute lines 3 to 28 in Algorithm 1 by replacing A and ĝ with Acomp and ĝcomp,

respectively. As for the objective function value, we can compute it by using (61).
7: Convert the set of results Icomp and ĝcomp into the bicluster assignment ĝ of the original

observed matrix A.
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Fig. 2 The accuracy of the proposed test in selecting the number of biclusters K when using
the greedy submatrix localization algorithm. The left, center, and right figures, respectively,
illustrate the results where each entry of observed matrix A was generated using Gaussian,
Bernoulli, and Poisson distributions.

We checked the accuracy of the proposed test by using Algorithm 3 for
submatrix localization. Aside from the submatrix localization algorithm, we
used the same experimental settings as in Sect. 4.3. We applied Algorithm 3 to
each observed matrix 1, 000 times and adopted the best solution that achieved
the maximum profile likelihood in the last step of the algorithm.

Figure 2 shows the accuracy of the proposed test. Although Algorithm 3 has
no theoretical guarantee for obtaining the global optimal bicluster structure,
we see that the proposed test with Algorithm 3 could achieve higher accuracy
than that with the SA-based algorithm in most cases under this experimental
setting.

Appendix F Attributes of the Divorce Predictors data set

Table 1 indicates the meaning of each attribute index of the Divorce Predictors
data set (Yöntem et al. 2019), which we used in the experiment.
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Algorithm 3 Greedy algorithm for finding the maximum profile likelihood
solution ĝ.
Ensure: Approximated optimal bicluster assignment ĝ.
1: Randomly generate an initial bicluster assignment ĝ, which is disjoint but not necessarily

bi-disjoint. Let Ik and Jk, respectively, be the sets of row and column indices in the kth
bicluster (k = 1, . . . ,K) in ĝ.

2: while True do
3: ĝ(0) ← ĝ.
4: for k = 1, . . . ,K do
5: ∆F ←

[
0 · · · 0

]
∈ Rn+p.

6: for i = 1, . . . , n do
7: g̃ ← ĝ.
8: if i ∈ Ik then
9: if |Ik| > 1 then
10: g̃ij ← 0 for j ∈ Jk.
11: end if
12: else
13: Let y = True if there is at least one background entry when the ith row is

added to the kth bicluster in g̃, and let y = False otherwise. Let y′ = True
if no entry in the ith row with column indices Jk are included in any other
bicluster than the kth one in ĝ (i.e., the disjoint condition is satisfied).

14: if y ∩ y′ then
15: g̃ij ← k for j ∈ Jk.
16: end if
17: end if
18: F̃ ← F (g̃). ∆Fi ← F̃ − F (ĝ).
19: end for
20: for j = 1, . . . , p do
21: Execute lines 7 to 18 by swapping the rows and columns in all the operations.
22: end for
23: Let ncand be the number of entries in ∆F that satisfy ∆Fi > 0 and let θ =

(θi)1≤i≤ncand be the descending order of the indices of ∆F (i.e., ∆Fθ1 ≥ · · · ≥
∆Fθ

ncand
> 0). g̃ ← ĝ. gopt ← ĝ. ∆F opt ← −∞. F opt ← F (ĝ).

24: for i = 1, . . . , ncand do
25: t ← θi. Let Ĩk and J̃k, respectively, be the sets of row and column indices in

the kth bicluster (k = 1, . . . ,K) in g̃.
26: if t ≤ n then
27: if t ∈ Ĩk then
28: if |Ĩk| > 1 then
29: g̃tj ← 0 for j ∈ J̃k.
30: end if
31: else
32: Let y = True if there is at least one background entry when the tth row is

added to the kth bicluster in g̃, and let y = False otherwise. Let y′ = True
if no entry in the tth row with column indices J̃k are included in any other
bicluster than the kth one in g̃.

33: if y ∩ y′ then
34: g̃tj ← k for j ∈ J̃k.
35: end if
36: end if
37: F̃ ← F (g̃). ∆F ← F̃ − F (ĝ).
38: else
39: Execute lines 27 to 37 by swapping the rows and columns in all the operations.
40: end if
41: if ∆F > ∆F opt then
42: gopt ← g̃. F opt ← F̃ . ∆F opt ← ∆F .
43: end if
44: end for
45: ĝ ← gopt.
46: end for
47: if ĝ(0) = ĝ then
48: break
49: end if
50: end while
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Table 1 Attributes of the Divorce Predictors data set (Yöntem et al. 2019).

1 If one of us apologizes when our discussion deteriorates, the discussion ends.
2 I know we can ignore our differences, even if things get hard sometimes.
3 When we need it, we can take our discussions with my spouse from the beginning

and correct it.
4 When I discuss with my spouse, to contact him will eventually work.
5 The time I spent with my wife is special for us.
6 We don’t have time at home as partners.
7 We are like two strangers who share the same environment at home rather than

family.
8 I enjoy our holidays with my wife.
9 I enjoy traveling with my wife.
10 Most of our goals are common to my spouse.
11 I think that one day in the future, when I look back, I see that my spouse and I

have been in harmony with each other.
12 My spouse and I have similar values in terms of personal freedom.
13 My spouse and I have similar sense of entertainment.
14 Most of our goals for people (children, friends, etc.) are the same.
15 Our dreams with my spouse are similar and harmonious.
16 We’re compatible with my spouse about what love should be.
17 We share the same views about being happy in our life with my spouse.
18 My spouse and I have similar ideas about how marriage should be.
19 My spouse and I have similar ideas about how roles should be in marriage.
20 My spouse and I have similar values in trust.
21 I know exactly what my wife likes.
22 I know how my spouse wants to be taken care of when she/he sick.
23 I know my spouse’s favorite food.
24 I can tell you what kind of stress my spouse is facing in her/his life.
25 I have knowledge of my spouse’s inner world.
26 I know my spouse’s basic anxieties.
27 I know what my spouse’s current sources of stress are.
28 I know my spouse’s hopes and wishes.
29 I know my spouse very well.
30 I know my spouse’s friends and their social relationships.
31 I feel aggressive when I argue with my spouse.
32 When discussing with my spouse, I usually use expressions such as ‘you always’

or ‘you never.’
33 I can use negative statements about my spouse’s personality during our discus-

sions.
34 I can use offensive expressions during our discussions.
35 I can insult my spouse during our discussions.
36 I can be humiliating when we discussions.
37 My discussion with my spouse is not calm.
38 I hate my spouse’s way of open a subject.
39 Our discussions often occur suddenly.
40 We’re just starting a discussion before I know what’s going on.
41 When I talk to my spouse about something, my calm suddenly breaks.
42 When I argue with my spouse, I only go out and I don’t say a word.
43 I mostly stay silent to calm the environment a little bit.
44 Sometimes I think it’s good for me to leave home for a while.
45 I’d rather stay silent than discuss with my spouse.
46 Even if I’m right in the discussion, I stay silent to hurt my spouse.
47 When I discuss with my spouse, I stay silent because I am afraid of not being

able to control my anger.
48 I feel right in our discussions.
49 I have nothing to do with what I’ve been accused of.
50 I’m not actually the one who’s guilty about what I’m accused of.
51 I’m not the one who’s wrong about problems at home.
52 I wouldn’t hesitate to tell my spouse about her/his inadequacy.
53 When I discuss, I remind my spouse of her/his inadequacy.
54 I’m not afraid to tell my spouse about her/his incompetence.
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