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Abstract

This supplementary material contains full proof of the identifiability of the

SBM, while the paper proves the identifiability in representative cases.

To ensure the readability of the supplementary file, we include some materials in

the paper so that the readers need not go back to find the meaning of some notation

and facts. The probability mass function of the proposed SBM model is given by

SBM(r;m,G) = π

(
m− 1

m− r

)
θm−r1 (1− θ1)r−1 + (1− π)

(
m− s
m− r

)
θm−r2 (1− θ2)r−s

= π B1(r;m, θ1) + (1− π)Bs(r;m, θ2) (1)

for r = 1, 2, · · · ,m.

Identifiability Theorem: Suppose G,G′ ∈ G and m ≥ 5. Then, SBM(m,G) =

SBM(m,G′) if and only if G = G′.

We write two mixing distributions as

G = π{(1, θ1)}+ (1− π){(s, θ2)}; G′ = α{(1, η1)}+ (1− α){(t, η2)}.

For a real x and positive integer k, we define its kth factorial x(k) = x(x − 1) · · · (x −
k + 1). Further, we let x(0) = 1 when x 6= 0 and 0(0) = 0. When X has a binomial

distribution with the parameters m and θ, it is easy to verify that E{X(k)} = m(k)θk.

When R has a shifted binomial distribution, m−R has a binomial distribution. Hence,

when R has SBM(m,G) or SBM(m,G′) distributions, the factorial moments of (m−R)

are found to be

EG{(m−R)(k)} = π(m− 1)(k)θk1 + (1− π)(m− s)(k)θk2 ,

EG′{(m−R)(k)} = α(m− 1)(k)ηk1 + (1− α)(m− t)(k)ηk2 .
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When SBM(m,G) = SBM(m,G′), we have

π(m− 1)(k)θk1 + (1− π)(m− s)(k)θk2 = α(m− 1)(k)ηk1 + (1− α)(m− t)(k)ηk2

for k = 0, 1, . . . ,m− 1. Introduce column vectors

a1 = (a10, a11, . . . , a1,m−1)
>, a2 = (a20, a21, . . . , a2,m−1)

>,

b1 = (b10, b11, . . . , b1,m−1)
>, b2 = (b20, b21, . . . , b2,m−1)

>

with its entries being

a1k = π(m− 1)(k), a2k = (1− π)(m− s)(k); (2)

b1k = α(m− 1)(k), b2k = (1− α)(m− t)(k). (3)

We summarize the moment equations by a matrix equation:

[
a1 −b1 a2 −b2

]
×


1 θ1 θ21 . . . θm−11

1 η1 η21 . . . ηm−11

1 θ2 θ22 . . . θm−12

1 η2 η22 . . . ηm−12

 = 0.

The second matrix in the above equation is a Vandermonde matrix. Such a matrix has

full row rank 4 when m ≥ 5 and θ1, η1, θ2, η2 have distinct values. When m ≥ 5 and

the above matrix equation holds, we show G = G′. The proof is straightforward as

claimed in the main paper. The task here is go over each of many trivial and tedious

cases. We form cases by how many distinct values θ1, η1, θ2, η2 assume and organize

this supplement accordingly.

1 The first Case

All θ1, θ2, η1, η2 have distinct values.

In this case, the Vandermonde matrix has full row rank 4. The linear combination of

four rows is not zero unless all coefficients are zero. Therefore, a1 = b1 = a2 = b2 = 0.
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This leads to equations on the mixing proportions and shift parameters:

π(m− 1)(k) = (1− π)(m− s)(k) = α(m− 1)(k) = (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m− 1 in view of (2) and (3). Note that all the terms are non-negative

and 0(0) = 0. There exists only one solution: π = α = 0 and s = t = m. The

corresponding mixing distributions are as follows

G = 0{(1, θ1)}+ 1{(m, 0)}; G′ = 0{(1, η1)}+ 1{(m, 0)}.

It is seen G = G′ regardless θ1 6= η1.

2 The Second case

Parameters θ1, θ2, η1, η2 assume 3 distinct values.

In this case, there can be only three sub-cases due to symmetry: (a) θ1 = θ2, (b)

θ1 = η1, and (c) θ2 = η2.

In sub-case (a), with θ1 = θ2, the matrix equation is simplified to the following

[
a1 + a2 −b1 −b2

]
×


1 θ1 θ21 . . . θm−11

1 η1 η21 . . . ηm−11

1 η2 η22 . . . ηm−12

 = 0.

The linear independence of the three rows imply a1 + a2 = b1 = b2 = 0. They imply

π(m− 1)(k) + (1− π)(m− s)(k) = α(m− 1)(k) = (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m − 1 in view of (2) and (3). Note again that all the terms are

non-negative. Hence, it is the same as

π(m− 1)(k) = (1− π)(m− s)(k) = α(m− 1)(k) = (1− α)(m− t)(k) = 0,

which implies G = G′, as shown in the first case.

In sub-case (b) with θ1 = η1, the matrix equation can be simplified in a similar way.
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This time, we get a1 − b1 = a2 = b2 = 0. They imply

π(m− 1)(k) − α(m− 1)(k) = (1− π)(m− s)(k) = (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m − 1 in view of (2) and (3). The first term implies π = α. If

π = α = 1, it leads to G = G′ because θ1 = η1. If π = α < 1, the second and third

term are zero only if s = t = m. This leads to the conventional value θ2 = η2 = 0 as

required by G. The corresponding mixing distributions are as follows:

G = G′ = π{(1, θ1)}+ (1− π){(m, 0)}.

That is, we also have G = G′.

In sub-case (c) with θ2 = η2, the matrix equation leads to a1 = b1 = a2 − b2 = 0.

They imply

π(m− 1)(k) = α(m− 1)(k) = (1− π)(m− s)(k) − (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m − 1 in view of (2) and (3). The first two entries imply π = α = 0.

Subsequently, the third entry has solution s = t. With θ2 = η2, the resulting G and G′

are given by

G = 0{(1, θ1)}+ 1{(s, θ2)}; G′ = 0{(1, η1)}+ 1{(s, θ2)}.

It is seen that G = G′ regardless of θ1 6= η1.

3 The third case

Parameters θ1, θ2, η1, η2 assume two distinct values.

In spite of symmetry, there are still five different sub-cases: (a) θ1 = θ2 = η1 6= η2,

(b) θ1 = θ2 = η2 6= η1, (c) θ1 = θ2 6= η1 = η2, (d) θ1 = η1 6= θ2 = η2, and (e)

θ1 = η2 6= θ2 = η1. They are formed by having one of θ1, θ2, η1, η2 singled out to have

a different value or by having their values paired up.

For sub-case (a) θ1 = θ2 = η1 6= η2, the simplified matrix equation implies a1−b1 +

4



a2 = b2 = 0. They imply

π(m− 1)(k) − α(m− 1)(k) + (1− π)(m− s)(k) = (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m − 1 in view of (2) and (3). Suppose s < m. Letting k = 0 in the

first entry, we obtain

π(m− 1)(0) − α(m− 1)(0) + (1− π)(m− s)(0) = 1− α = 0,

so we have α = 1. With α = 1 and letting k = 1, we get

π(m− 1)(1) − (m− 1)(1) + (1− π)(m− s)(1) = (1− π)(1− s) = 0.

The equality holds only when s = 1 or π = 1. Both result in G and G′ given by

G = π{(1, θ1)}+ (1− π){(1, θ1)}; G′ = 1{(1, θ1)}+ 0{(t, η2)}.

It is seen that G = G′ in spite of their different appearances. Suppose s = m in the

first place. Then π(m − 1)(k) − α(m − 1)(k) + (1 − π)(m − s)(k) = 0, which implies

π = α. If π = α = 1, then

G = 1{(1, θ1)}+ 0{(s, θ1)}; G′ = 1{(1, θ1)}+ 0{(t, η2)}

and G = G′. If π = α < 1, then (1− α)(m− t)(k) = 0 implies t = m. Hence, G = G′.

In the sub-case (b), θ1 = θ2 = η2 6= η1, the solution to the simplified matrix equation

must satisfy a1 +a2−b2 = b1 = 0. From b1 = 0, we find α = 0. From a1−b1−b2 = 0

and examine the situation of k = 0, we get we also have

π − 1 = 0.

With α = π = 1 and θ1 = θ2, we get G = G′ = 1{1, θ1}+ 0{1, θ2}.

In the sub-case (c), θ1 = θ2 6= η1 = η2, the solution to the simplified matrix equation

must satisfy a1 − a2 = b1 − b2 = 0. By inspecting the expressions of a1 and a2, we

know that it can only happen only if s = 1. With θ1 = θ2 given previously and s = 1

obtained now, we find G = 1{1, θ1}. The same derivation will lead to G′ = 1{1, η1}.
Hence, we have must G = G′ when two mixtures are the same.

5



In the sub-case (d) θ1 = η1 6= θ2 = η2, the solution to the simplified matrix equation

must satisfy a1 − b1 = a2 − b2 = 0. They imply

π(m− 1)(k) − α(m− 1)(k) = (1− π)(m− s)(k) − (1− α)(m− t)(k) = 0

for k = 0, 1, . . . ,m − 1 in view of (2) and (3). The first entry implies π = α. After

which, the second entry requires s = t. Hence G = G′.

In the sub-case (e) θ1 = η2 6= θ2 = η1, the solution to the simplified matrix equation

must satisfy a1 − b2 = a2 − b1 = 0. If π = 0, then a1 − b2 implies α = 1. Because in

addition a2 = b1, it implies s = 1. The corresponding mixing distributions are

G = 0{(1, θ1)}+ 1{(1, θ2)}

and

G′ = 1{(1, η1)}+ 0{(1, η2)}

While the expressions of G and G′ appear different, they are the same because η1 = θ2.

Due to symmetry, α = 0 will also lead to G = G′.

When both π 6= 0 and α 6= 0, we find that a1 = b2 = 0 and a2 = b1 imply both

s = 1 and t = 1.

G = π{(1, θ1)}+ (1− π){(1, θ2)}

and

G′ = α{(1, η1)}+ (1− α){(1, η2)}.

The make both SBM(m,G) and SBM(m,G′) plain two component binomial mixtures.

Hence, we must have G = G′ which holds when 1− π = α.

We have now exhausted all five sub-cases and therefore completed the proof of the

third case.

4 The fourth case

. The parameter values satisfy θ1 = θ2 = η1 = η2.

The solution to the simplified matrix equation must satisfy a1 + a2 = b1 + b2. It
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implies

π(m− 1)(k) + (1− π)(m− s)(k) = α(m− 1)(k) + (1− α)(m− t)(k)

for k = 0, 1, . . . ,m− 1 in view of (2) and (3).

(i) If s, t > 1, then (m − s)(k) = (m − t)(k) = 0 but (m − 1)(k) = (m − 1)! when

k = m−1. The above equation becomes π(m−1)! = α(m−1)! so π = α. After which,

the equation becomes (m− s)(k) = (m− t)(k), implying s = t. Hence, G = G′.

(ii) If s = 1 instead, the left side of the above equation is equal to (m− 1)(k), and

the equation becomes (m − 1)(k) = α(m − 1)(k) + (1 − α)(m − t)(k). The solutions to

the equation are t = 1 or α = 1. They all imply G = G′.

5 Conclusion

We have exhausted all cases, therefore have established the identifiability of SBM.
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