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Abstract
After a rich history in medicine, randomized control trials (RCTs), both simple and 
complex, are in increasing use in other areas, such as web-based A/B testing and 
planning and design of decisions. A main objective of RCTs is to be able to measure 
parameters, and contrasts in particular, while guarding against biases from hidden 
confounders. After careful definitions of classical entities such as contrasts, an alge-
braic method based on circuits is introduced which gives a wide choice of randomi-
zation schemes.

Keywords  Algebraic statistics and combinatorics · A/B testing · Bias and 
confounders · Big data · Design of experiments

1  Introduction

There are ways in which a regression model can be biased because of the neglect 
of hidden variables, sometimes called hidden confounders. To some extent these 
biases can be removed using randomization. A major source of conceptual difficulty 
is the continuing distinction between passive observation, characterized by the terms 
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“observational study” and controlled experiment. In addition this distinction is fla-
vored by different intellectual traditions. In most fields a controlled experimental 
design is conceived as an intervention. Thus one talks about setting the level of a 
variable X, or applying a treatment or treatment combination. Rather than inter-
fere too much with the state of Nature one may simply select a value of X which is 
already in a population, such as selecting a subject of a particular age. Stratification 
is in this category as is “matching”, observing (or treating) a collection of subjects 
who are close in terms of some multivariate metric applied to the possible con-
founders. “Natural Experiments” exploit opportunities where Nature has unwittingly 
designed an experiment for us. For a very thorough compendium of experimental 
design methodology both as intervention and as selection, see Dean et al. (2015).

Traditions in agriculture and socio-medical sciences have stressed the role of ran-
domization, and indeed the method has been described as one of the greatest contri-
butions of statistics to scientific methodology; a major review is Cox (2009) which 
goes a long way toward updating earlier discussions, such as Kempthorne (1955). 
After a long period in which factorial and optimum controlled experiments may 
be seen to have had a dominant role, influenced by success in product design and 
quality improvement, randomization is making a come back, if indeed it ever left 
the limelight. It is now used extensively outside its traditional areas of clinical tri-
als under the generic term randomized control trials, RCT. Notably, there is a fast 
growing application to experiments in social media, under the heading A/B testing 
in on-line marketing, see Kohavi and Longbotham (2017), and to socio-technical 
experiments, such as smart metering in homes and transport, see e.g., Guzowski 
et al. (2014). Other important developments are in the field of “big data”, where data 
are often collected without experimental design being used at all, so that biases can 
be a serious impediment to model building, see Drovandi et al. (2017), Pesce et al. 
(2019, 2022).

There seems to be no doubt that in nearly all fields the removal of biases in mod-
eling is a major reason to randomize. The question then remains as to whether the 
randomization, or rather the randomization distribution, is to be used in the anal-
ysis, e.g., probability statements are made based on the randomization, for exam-
ple, using nonparametric tests, or whether randomization should only be used in 
the design, e.g., for bias reduction. The latter approach is probably more common 
and is adopted here. A compromise position is a minimax approach which is closely 
related to the use of randomization in finite population sampling, see Scott and 
Smith (1975), Stenger (1979), Stigler (1969), Wynn (1977).

Our approach can be considered a contribution to the subtle relationship between 
randomization and combinatorial design, see Bailey and Rowley (1987). It is based 
on the theory of circuits, which are already studied in operations research (Simões 
Pereira 1975) and algebraic statistics (Fontana et al. 2022). The better known exten-
sions of simple RCT such as block randomization, stratified randomization and the 
less covered hierarchical randomization are covered by our methods, and we shall 
return to this claim in the last section.

After a straightforward formulation of the problem, we formally define valid ran-
domization schemes in Sect. 4, followed by a short discussion on analysis in Sect. 5. 
Sections  6 and  7 are the main developments, with Sect.  6 describing a sufficient 
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condition under which unions of non-negative binary circuits give a valid randomi-
zation. Section 7 gives some special conditions. Final considerations in Sect. 8 con-
clude the paper.

1.1 � A/B testing

Some of the disparate interpretations of randomization can be understood from a 
simple A/B testing (RCT) experiment, which is typically used to assess the differ-
ence between the effect of two treatments A and B with effect parameters �A and �B , 
respectively. That is, we want to estimate � = �A − �B.

A standard model for a response variable Y is to write for subjects i and j receiv-
ing treatments A and B, respectively

where nA, nB are the respective sample sizes and �Ai, �Bj are unit effects of other 
influences, be they errors of measurement or other (hidden) factors effects. YAi and 
YBj are therefore specializations of Y for the two sub-populations A and B. The naive 
estimate of the treatment difference is

Here the estimates of �A and �B are given by the respective sample means:

where for instance ȲA⋅ is the usual notation for the average of measurements over 
group A. The standard argument, and this is probably also the common sense argu-
ment of non-experts, is that if we randomize then the difference between the mean 
values of the deviations due to other factors will cancel out: �A⋅ − �B⋅ , will be approx-
imately zero and will not perturb 𝜙̂ . Of course, if �Ai, �Bj are random with standard 
assumptions then 𝜙̂ is both the least squares estimate and the best linear unbiased 
estimate of �.

A critical question is: what does the model mean, both scientifically and pre-
dictively? What are �A, �B and � ? In other words, do parameter values refer to the 
finite population from which the sample was taken or to which the treatment were 
applied? Or is there some larger population of which the population of units under 
study is a subpopulation, such as all present and future subjects who may benefit 
from a vaccination decision based on the results of the experiment? Or, are A and B 
a “crucial experiment”, to decide between two scientific theories? These questions 
are important also with the A/B testing experiments on people using social media. 
The commercial opportunities in terms of the use of huge (big) data sets come with 
a risk of bias arising from any number of demographic and operations factors. It is 
almost impossible to describe the population of social media users but if bias can 
be removed in some simple way then the estimates can genuinely reflect peoples’ 
choices and behavior.

YAi =�A + �Ai, i = 1,… , nA,

YBj =�B + �Bj, j = 1,… , nB

𝜙̂ = 𝜃̂A − 𝜃̂B .

𝜃̂A = ȲA⋅ , 𝜃̂B = ȲB⋅ ,
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A naive but rather universal conclusion is something like: after randomization we 
can use the model. This is expressed as part of expert advice: make sure you rand-
omize your blocks. On the one hand this paper takes this simple approach, but on 
the other introduces a special technique, based on circuits, to decompose an experi-
ment into mutually exclusive blocks in each of which randomization can be carried 
out separately. Some solutions comprise recognizable combinatorial designs, such 
as matching and stratification. All the others can be derived from the circuits which 
can be computed from running the program 4ti2 (4ti2 team 2018). Our approach 
provides a full solution to the problem of block randomization to control bias, up to 
the computational feasibility, see Sect. 6.1.

2 � Contrasts

Consider an experiment giving a random sample Y1,… , Yn and the following:

Definition 1  A linear function Z =
∑n

i=1
ciYi with fixed coefficients {ci} is called an 

empirical contrast if 
∑n

i=1
ci = 0.

In the A/B case randomization is particularly suited to situations in which stand-
ard estimates are unaffected by a uniform shift of the observations, which is then 
subtracted out.

Now consider a standard regression model in the form

for functions {fj(x)} , x a generic point in some design space X  , for parameters {�j} , 
and � a random error with the usual assumptions (zero mean and constant variance).

An experimental design D = {x(i), i = 1,… , n} , with sample size |D| = n , has 
design matrix

with dimension n × p , and we express the standard regression set-up by:

where � is a vector of parameters with length p and � is the expectation. Definition 2 
follows standard terminology in regression models and design of experiments, see 
Das and Jain (1970).

Definition 2  For a standard regression model a parametric contrast is defined as the 
expectation of an empirical contrast.

In the following we exemplify the basic idea to divide experiment into disjoint 
blocks in each of which we randomize, and then combine the results.

Y(x) =

p∑
j=1

�jfj(x) + �,

X = {fj(x
(i))}

� = �(Y) = X�,
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Example 1  (22 experiment) We consider a simple example from linear regression, 
namely a 22 factorial design problem, with ±1 levels and no replication (for simplic-
ity). We take the model without an interaction

so that design matrix is

If we randomize a large population and uniformly apply the four combination of the 
design, {±1,±1} , the potential bias effect will be negligibly small because the esti-
mators of the �-parameters are unbiased.

But there is an alternative. Split the population into two groups, randomize each 
separately and apply the controls (x1, x2) = {(1, 1), (−1,−1)} to the first group and 
{(1,−1), (−1, 1)} to the second group. Then we can estimate �1 + �2 from the first 
group and �1 − �2 from the second group. Combining these estimates gives the 
same result as if we randomized over the whole 22 experiment. Note that the param-
eters �1 and �2 and their estimates are already respectively parametric contrasts and 
empirical contrasts, with contrast coefficients equal to c = 1

4
(1,−1, 1,−1)T and 

c =
1

4
(1,−1,−1, 1)T , respectively. This can be seen as splitting the 23 experiment 

into two (randomized) A/B experiments.

3 � Writing a model in contrast form

In the case of the orthogonal design described above the X-matrix takes the form

where � is the n-vector of ones, for the constant (intercept) term, and X1 is a matrix 
with dimension n × (p − 1) orthogonal to � , that is �TX1 = 0 . We describe such 
an X-matrix as being in contrast form. All empirical and parametric contrasts are 
derived from X1 . Thus we can prove the following lemma.

Lemma 1  For a regression model with 𝜇 = �(Y) = �(X̃𝜃) , written in contrast form 
X̃ = [𝜉 ∶ X1] the set of all parametric contrasts is {cT� ∶ cTX1 = 0 and �Tc = 0}.

Proof  This follow since �(cTY) = cT [� ∶ X1]� = (cT�, cTX1)� . 	� ◻

Notice that from any model with integer design matrix X it is always possible 
to derive a reparametrization with design matrix X̃ written in contrast form. In 
Sect.  6, we will use the vector � and we will exploit its orthogonality to X1 to 

�(Y) = �0 + �1x1 + �2x2 ,

X =

⎡
⎢⎢⎢⎣

1 1 1

1 − 1 − 1

1 1 − 1

1 − 1 1

⎤⎥⎥⎥⎦
.

X = [� ∶ X1],
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study the connections between randomizations and circuits. Note that the assump-
tion of integer design matrix X is made here only to simplify the computation of 
the circuits introduced in Sect.  6. The theory here is valid for design matrices 
with rational entries. A design matrix with rational entries can be multiplied by 
a constant, namely the least common multiple of the denominators, to obtain a 
matrix with integer entries whose columns generate the same vector space.

Lemma 2  Every model Y = X� + � including the intercept can be transformed to 
contrast form as Y = X̃𝜙 + 𝜖 , where X̃ = [𝜉 ∶ X1] is full-rank and has the same col-
umn space as X and �TX1 = 0.

Proof  We can easily determine the reparametrization which the transformation 
requires. Starting with:

we simply solve for �:

	�  ◻

From Lemma  2, a design matrix X with column space containing the vector 
� = (1, 1,… , 1)T can be transformed to contrast form. The term contrast is espe-
cially prevalent in Analysis of Variance (ANOVA) models, that is additive mod-
els for qualitative factors in which each level of each factor provides a parameter. 
The classical notation for a two-way I × J table with two factors is that the addi-
tive model would have parameters �i, (i = 1,… , I) and �j, (j = 1,… , J) and the 
model for the observations Yij is

where {�ij} are the random errors with standard assumptions. We show below how 
the reparametrization to obtain a model in contrast form works with an example for 
a model as in Eq. 1.

Example 2  Let I = J = 2 . By using indicator variables and setting 
� = (�1, �1, �1, �2)

T we write the model in regression form, �(Y) = X� where

This X-matrix is not in contrast form, but it can be transformed into contrast form:

X̃𝜙 = X𝜃,

𝜙 = (X̃T X̃)−1X̃TX𝜃.

(1)Yij = �i + �j + �ij ,

X =

⎡
⎢⎢⎢⎣

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

⎤
⎥⎥⎥⎦
.
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From this, the reparametrization is:

We have limited the analysis to the decomposition of X̃ into [� ∶ X1] since for 
randomization we are interested in the decomposition of the vector � , but the 
results in this section and many results about the circuit bases in the next sections 
could be written in general for a decomposition of X̃ into [X2 ∶ X1] with XT

2
X1 = 0.

Note that when a full-rank matrix X̃ is decomposed into [� ∶ X1] , also the 
matrix X1 is full-rank. To avoid trivialities, we also assume that all the rows of the 
matrix X1 are not null, i.e., each design point is involved in at least one contrast.

4 � Valid randomizations

Using the representation of the design matrix in contrast form we can provide a 
catalogue of valid randomization systems to address the question stated earlier in 
Sect. 1.1 in the framework of A/B experiments. The elements of the catalogue can 
be computed and in the case of unimodular X1 matrix (see Sect. 7) this catalogue is 
complete. The separation into blocks is a partition of the observations so that there 
are at least two observations in each element of the partition, as described by the fol-
lowing definitions giving the only relevant randomizations to study contrasts.

Definition 3  For observations Yi, (i = 1,… , n) a potential randomization system R 
is a set partition of N = {1, 2,… , n} , namely a decomposition of N  into disjoint 
exhaustive subsets, R1,… ,Rk , called blocks, of size 2 or more: 

1.	
⋃k

i=1
Ri = N

2.	 Ri ∩ Rj = �, 1 ≤ i < j ≤ k

3.	 |Ri| ≥ 2, i = 1,… , k

Definition 4  For a regression model and experimental design Dn with sample size 
n, a design matrix in contrast form [� ∶ X1] and a potential randomization system 
{R1,… ,Rk} , let z(i) = (zi,1,… , zi,n) the binary vectors defined by

X̃ =

⎡
⎢⎢⎢⎣

1 1 1

1 1 − 1

1 − 1 1

1 − 1 − 1

⎤
⎥⎥⎥⎦
.

�0 =
1

2
(�1 + �2 + �1 + �2) ,

�1 =
1

2
(�1 − �2) ,

�2 =
1

2
(�1 − �2) .
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The potential randomization system is a valid randomization system if z(i) is orthog-
onal to X1 , i.e., (z(i))TX1 = 0 , for all i = 1,… , k.

The case where R = N  , we refer to as full randomization. The next two examples 
are familiar in the sense that the orthogonal blocks are easily associated with addi-
tion factors or parameters in an orthogonal design. The third example may be less 
familiar.

4.1 � Factorial fractions

We consider a 23 factorial experiment for main effects. The standard X-matrix is 
already in contrast form:

In addition to a full randomization, represented by {1, 2, 3, 4, 5, 6, 7, 8} , there are two 
different randomization systems and we list the Rj partitions for each: 

1.	 {1, 4, 6, 7}, {2, 3, 5, 8} ;

2.	 {1, 8}, {2, 7}, {3, 6}, {4, 5} .

These two distinct randomizations of this example correspond to familiar decom-
position into blocks based on abelian groups (see e.g., Box et al., 1978). The first 
arrives from a 23−1 experiment with defining contrast subgroup in classical notation

The second corresponds to the 23−2 with subgroup

For those more familiar with the algebraic design of experiments, these solutions are 
the point ideal corresponding respectively to the solutions of

4.2 � Tables and Latin squares

Consider an I × I table with the usual additive model. A Latin square based on 
the table has the usual definition. If I = 3 there are two mutually orthogonal Latin 
squares; in traditional notation:

zi,j =

{
1, i ∈ Rj

0, i ∈ N ⧵ Rj

.

XT =

⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 − 1 − 1 − 1 − 1

1 1 − 1 − 1 1 1 − 1 − 1

1 − 1 1 − 1 1 − 1 1 − 1

⎤
⎥⎥⎥⎦
.

I = ABC.

I = AB = BC = AC.

(1) ∶ x1x2x3 = ±1, and (2) ∶ (x1x2, x2x3) = (±1,±1).
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Each square gives a different valid randomization based on the letters. Labeling 
the observations left-to-right and top-to-bottom the respective blocks are (ignoring 
commas)

We state the general result without proof and in the terminology of this example.

Lemma 3  For an I × I additive Analysis of Variance model a set of mutually orthog-
onal Latin squares provides a set of alternative valid randomizations.

4.3 � k‑out‑of‑2k choice experiments

Choice experiments are those in which subjects are asked to score a selection of 
attributes from a portfolio of attributes. Models are fitted to experimental data in an 
effort to discover subjects’ (hidden) preference order.

Suppose there are n = 4 attributes and each subject is offered k = 2 attributes, 
labeled 1, 2, 3, 4. There are six selection pairs

An additive preference model has (without replication) the six values Yi,j with the 
model

We are interested in contrast �i − �j , because their estimates would yield an esti-
mated preference order. In this case:

This gives a choice of X1:

A B C

C A B

B C A

a b c

b c a

c a b

{159}, {267}, {348}, {168}, {249}, {357}.

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

Yij = 𝛼i + 𝛼j + 𝜖i,j (i, j = 1, 2, 3, 4;i < j).

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

XT
1
=

⎡⎢⎢⎣

−1 0 0 0 0 1

0 − 1 0 0 1 0

0 0 − 1 1 0 0

⎤⎥⎥⎦
,
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and the randomization: {1, 6}, {2, 5}, {3, 4} , where the integers refer to selection 
pairs.

5 � Analysis

The informal approaches we have taken is that, for large samples randomization has 
approximately the effect of introducing a block parameter. Our condition of orthogo-
nality in the definition of valid randomization and as exemplified, has so far ignored 
the fact that in standard terminology blocks do not have to be orthogonal. Indeed, 
there is rich theory of balanced incomplete blocks (BIBD) both from combinatorial 
and from optimal design theory. We note here some basic facts about orthogonal 
versus non-orthogonal blocks. 

1.	 For orthogonal designs we set up a model in which every binary vector orthogonal 
to the X1 matrix is allocated a block parameter, then only under orthogonality is 
the usual Least Square Estimate (LSE) of the �-parameters the best and there is 
no bias of these estimates from the block effects.

2.	 In the non-orthogonal blocks design case, if we use the LSE of the �-parameters 
assuming that the block parameters are zero, when they are not, then the block 
parameters introduce bias.

3.	 In the non-orthogonal blocks case the “proper” LSE estimate of the �-parameters 
in the presence of the block parameters, will be unbiased but will have higher 
variances than in case (2) above. This can be expressed by the Loewner ordering: 
one covariance matrix is “smaller” than the other if the difference is non-negative 
definite.

Models with non-orthogonal blocks with a specified block effect, require some 
effort to model or at least interpret the block affect, for example the effect of day if 
the experiment is conducted over days. In such cases a bias model is required. But 
where bias is caused by hidden, unspecified, confounders, such a bias model seems 
somewhat artificial. The effects are too artificial to model but sufficiently present 
that we prefer orthogonality.

6 � Circuit basis for randomization

In this section, we introduce the notion of circuits of a matrix which allows a novel 
approach to the problem of randomization. The proposed analysis, based on tools 
from Algebraic Statistics, leads to the enumeration of all possible randomization 
schemes. In this setup a randomization is given by the decomposition of the vector 
� = (1,… , 1)T into binary vectors:

(2)� = �1 +⋯ + �k
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where each vector �h ∈ {0, 1}n satisfies �T
h
X1 = 0 , h = 1,… , k . Such binary vectors 

�h are called binary randomization vectors. Next, we introduce the circuits and their 
main properties. When all randomization vectors cannot be decomposed into binary 
vectors with smaller support we have a non-decomposable randomization.

Definition 5  Given a randomization of � into binary vectors as in Eq. (2), the vec-
tor �h is a non-decomposable randomization vector if there is no decomposition 
�h = �h,1 + �h,2 with �T

h,1
X1 = 0 and �T

h,2
X1 = 0 . If all the vectors �1,… , �k are non-

decomposable, Eq. (2) defines a non-decomposable randomization.

Let A be an integer-valued matrix with d rows and n columns. For our pur-
poses, we can assume that A = XT

1
 . Let u ∈ ℤn be an integer-valued vector, u+ be 

the positive part of u, namely u+
i
= max(ui, 0) , i = 1,… , n , and u− be the negative 

part of u, namely u−
i
= −min(ui, 0) , i = 1,… , n , so that u = u+ − u− . Moreover, 

denote with supp(u) the support of u, i.e.,

Definition 6  A circuit of A is an integer-valued vector u in ker(A) , i.e., Au = 0 , with 
the following minimality properties: 

1.	 u has minimal support, i.e., there is no other circuit v with supp(v) ⊂ supp(u).
2.	 u is irreducible: if v is an integer-valued vector in ker(A) with supp(v) = supp(u) , 

then v = ku for some k ∈ ℕ.

Definition 7  The set of all circuits of the matrix A is named the circuit basis of A 
and is denoted with C(A).

The circuit basis C(A) is always finite. The minimal support property gives rise 
to a number of interesting properties of C(A) . We recap in the following proposi-
tion the special features of the circuits we will use for describing randomization. 
For the proofs and further details the reader can refer to Sturmfels (1996).

Proposition 1  Let A be an integer-valued matrix with dimensions d × n and suppose 
that rank(A) = d . 

1.	 The circuit basis C(A) is subset compatible, i.e., for a sub-matrix A′ with n′ < n 
columns of A, the circuit basis of A′ is given by the circuits in C(A) whose support 
is contained in the n′ columns.

2.	 The cardinality of the support of a circuit in C(A) is at most d + 1.
3.	 Each vector v of ker(A) can be written as rational non-negative linear combination 

of circuits, i.e., 

supp(u) = {i ∈ {1,… , n} ∶ ui ≠ 0} .
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and the uh are conformal with v.

The term “conformal” in Item (3) of Proposition  1 means that 
supp(u+

h
) ⊂ supp(v+) and supp(u−

h
) ⊂ supp(v−).

The first key observations for randomization follow directly from the fact that 
a circuit lies in ker(A).

Lemma 4  Any non-negative binary circuit of A = XT
1
 provides a randomization 

vector.

Proof  When a non-negative binary circuit �1 gives a valid randomization, then also 
�2 = � − �1 is a binary non-negative vector in ker(A) so that the decomposition 
� = �1 + �2 is a valid randomization. 	�  ◻

Note that the vector �2 in the proof may be a circuit itself (and in such a case 
we call � = �1 + �2 a non-decomposable randomization), or not. In the latter case, 
the vector �2 can be decomposed into the sum of non-negative circuits by virtue 
of Proposition 1, Item (3).

The decomposition of � in Eq.  (2) and the argument above show that valid 
randomizations generate a lattice, partially ordered by set inclusion, indeed: (1) 
circuits sit at the most refined level of the lattice and (2) less refined randomiza-
tion schemes are obtained by merging two lattice elements into their join. This 
connection with lattice (and matroids) is taken up again in the discussion sec-
tion. From Proposition 1, Item (3), and Lemma 4, we see that the circuit basis, 
and in particular the set of non-negative circuits, is the natural tool to find valid 
non-decomposable randomizations. In general, if the vector � can be written as 
the sum of binary non-negative circuits we have a valid randomization. The main 
problem posed in this paper is to provide conditions for when the converse holds, 
that is to provide classes of experimental designs for which every randomization 
vector �h is a circuit. In the next section we will describe an important class, here 
we have a useful sufficient condition.

Lemma 5  If �1 is a non-negative binary randomization vector with two nonzero ele-
ments ( #supp(�+

1
) = 2 ), then it is a circuit of XT

1
.

Proof  In view of Proposition 1, Item 3, it is enough to prove that there is no circuit 
�1 with exactly one nonzero element. By contradiction, suppose that such a vector 
�1 exists and, without loss of generality, suppose that �1 = (1, 0,… , 0) . Since �1 is 
in the kernel of XT

1
 , we have XT

1
�1 = 0 and this implies that the first column of XT

1
 

is a column of zeros. This is in contradiction with the fact that all rows of X1 are not 
zero. 	�  ◻

v =

n−d∑
h=1

qhuh , qh ∈ ℚ+
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Thus, for every �1-vector in example covered by Lemma 5, there are two rows of 
XT
1
 which have opposite signs. This is the case in Sect. 4.3 which yields the follow-

ing result.

Corollary 1  Any k-out-of-2k choice experiment is a valid randomization with blocks 
of size 2.

Proof  For a k-out-of-2k experiment we can construct an X matrix with rows corre-
sponding to k-tuples and the rows in lexicographic order. Then as for the example in 
Sect. 4.3 we pair them: the first with the last, second with the second to last and so 

on, assigning −1 and +1 respectively, to construct the X1 matrix. Let n =

(
2k

k

)
 , 

then the valid randomization blocks are the selection pairs:

which follows because X1 is of the type discussed in Lemma 5. 	�  ◻

This shows that a valid randomization with binary vectors each with two nonzero 
binary vectors can be found by inspecting the list of all circuits.

6.1 � Computation of circuits

To find the randomization systems from the circuit basis, we start from the design 
matrix X, we write it in contrast form X̃ , and we extract the contrast matrix X1 as 
described above. The actual computation of the circuits of the matrix X1 can be done 
with the software package 4ti2, see 4ti2 team (2018). In 4ti2 there is a func-
tion called circuits to compute the circuits of an integer matrix. The algorithms 
to compute circuits in 4ti2 belong to the class of combinatorial algorithms, and 
thus there is a limitation on the size of the matrices for which the computation of 
the circuit is actually feasible. In our experiments, problems with a set of points 
up to 50 are easily processed, but the execution time increases fast with the num-
ber of points. However, all the contrast matrices illustrated in this paper have been 
processed by 4ti2 in less than 0.1 seconds. 4ti2 is now available also within the 
symbolic software Macaulay2, see Grayson and Stillman (2019), and there are R 
packages available which allow the communication between R and Macaulay2, 
leading to a flexible use of the symbolic computations into statistical analysis, see 
Kahle et al. (2020).

Example 3  Using the function circuits for the contrast matrix of the 3-out-of-6 
problem, we obtain three circuits as expected

{1, n}, {2, n − 1},… , {n∕2, n∕2 − 1},

⎡⎢⎢⎣

0 0 1 0 0 1

0 1 0 1 0 0

1 0 0 0 1 0

⎤⎥⎥⎦
.
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Example 4  Computing the circuits for the 23 design with contrasts on the main 
effects, we obtain the circuits described in the previous sections. The 4ti2 output 
consists of 20 circuits, 6 of which are non-negative:

This yields the two randomization schemes

already discussed. Here, there is only one valid randomization based on 2-ers and 
only one valid randomization based on 4-ers. (The term n-er is a colloquial term for 
an entity of size n.)

With the aid of the circuits we are able to analyze also more complex models 
where the number of randomization systems is relatively large.

Example 5  In the case of 24 design with contrasts on the main effects, the contrast 
matrix is:

and the situation becomes more complex. Although 0.02 seconds are enough to 
obtain the whole set of 456 circuits, the non-negative circuits are now 48 but there 
are also non-binary circuits with entries equal to 2. Selecting the binary circuits 
reduces to 32 circuits: 8 circuits with support on two points give a unique randomi-
zation based on 2-ers; with the remaining 24 circuits on 4 points we can construct 
30 valid randomizations. Each circuit on 4 points is used in 5 possible randomiza-
tions. For instance with the circuit

one can define 5 randomizations, reported in Fig. 1.

With a large choice of randomization schemes the problem arises as to which 
to choose. This is discussed briefly in Sect. 8.

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

0 1 1 0 1 0 0 1

1 0 0 0 0 0 0 1

1 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

{1, 4, 6, 7}, {2, 3, 5, 8} and {1, 8}, {2, 7}, {3, 6}, {4, 5}

XT
1
=

⎡
⎢⎢⎢⎣

1 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

1 1 1 1 − 1 − 1 − 1 − 1 1 1 1 1 − 1 − 1 − 1 − 1

1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1

1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1

⎤
⎥⎥⎥⎦
,

c =
[
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0

]
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7 � Totally unimodular X
1

Although the factorial design and Latin square examples can be considered well-
known, because of their orthogonality properties, example in Sect.  4.3 may be 
less so. So we may ask what is the property of XT

1
 for which the full valid rand-

omization system can be found as a set of circuits.

Definition 8  A totally unimodular matrix A is one for which all square sub-matrices 
(including itself if square) have determinant 0, 1, or −1.

Theorem 1  Let A = XT
1
 be the design/model matrix of regression model in contrast 

form and suppose A is totally unimodular. Then every valid randomization is based 
on circuits.

The proof is in two parts. First we need the following lemma, whose proof is 
based on some technical results from the algebraic theory of toric ideals and Grö-
bner bases. In order to maintain the focus on the problem of randomization, we 
do not recall here all the formal definitions of the objects needed in the proof, for 
which the reader can refer to, e.g., Sturmfels (1996).

Lemma 6  For a totally unimodular matrix A all non-negative circuit vectors are 
binary.

Proof  In this statement, the circuits should be seen as represented by the so-called 
binomials, that is for each circuit u = u+ − u− we consider n “dummy” variables 
x1,… , xn and the binomial associated to u is defined as:

Fig. 1   The 5 randomizations 
for the 24 configuration in 
Example 5 containing the circuit 
c = (0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0)

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
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These binomials generate a toric ideal I(A). This ideal is very widely studied, for 
example in algebraic statistics it is the starting point for Markov Chain Monte Carlo 
simulation for testing hypotheses on multinomial contingency tables, see Diaconis 
and Sturmfels (1998).

Now, if A is totally unimodular then it is known that the initial ideal in(I(A)) is 
generated by square-free binomials for any given term-order (required to define a 
Gröbner basis), see Sturmfels (1996). The initial ideal in(I(A)) of the ideal I(A) is the 
ideal generated by the leading terms of the polynomials in I(A). Thus, all the bino-
mials in the Universal Gröbner basis U(I(A)) have square-free leading terms.

Finally, the non-negative circuits are elements of U(I(A)) , viewed as binomials of 
the form xu − 1 . The leading term is always xu , it is square-free, and therefore u is 
binary. 	�  ◻

To complete the proof of Theorem 1 we also need the following result.

Lemma 7  If the contrast matrix A = XT
1
 in a regression model is totally unimodular 

then every non-decomposable randomization vector � is a circuit.

Proof  This is by contradiction. Let �1 be a (non-negative binary) non-decomposable 
randomization vector and suppose it is not a circuit. Since �1 ∈ ker(A) , by Proposi-
tion 1, Item 3, �1has a representation as a non-negative linear combination of cir-
cuits u1 +⋯ + uk . Take one of such circuits uh . Its support is strictly contained in 
supp(�1) and note that #supp(𝜉1) − #supp(uh) > 1 , because �1 is not a circuit and 
there are no circuits with support on one point. Moreover, the circuit uh is binary by 
Lemma 6. So there is a refinement given by �1 = uh + (�1 − uh) , which contradicts �1 
being non-decomposable. 	� ◻

Proof  (of Theorem 1) Let

be a valid randomization. If it is non-decomposable, then the vectors �1,… , �k are 
circuits by Lemma 7. If the randomization is decomposable, each vector �h can be 
decomposed into the sum of non-negative circuits, by Proposition  1, Item 3. By 
Lemma 6 such circuits are binary and they form a non-decomposable randomiza-
tion. 	�  ◻

The best known example of a totally unimodular matrix is generated by a 
directed graph G(V,  E). The rows are indexed by vertices and the columns by 
directed edges with the following rule for entries: if the edge is e = (i → j) then 
entries Ai,e = 1,Aj,e = −1 and all other entries in column e are zero. For A to be an 
X1 matrix we need it to be (row) orthogonal to � = (1, 1,… , 1)T , this requires that 
for any vertex the number of in-arrows and the number of out-arrows must be the 
same.

xu
+

− xu
−

.

� = �1 +⋯ + �k ,
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Example 6  Let |V| = 5, |E| = 15 and the directed edges (leaving out commas):

In this example A = XT
1
 is

The graph for this example is pictured in Fig. 2. For the X1 matrix above, there 
are 33 non-negative circuits from a total of 198 circuits: 5 2-ers, 10 3-ers, 10 
4-ers, and 8 5-ers. The valid randomizations we obtained from those circuits are 
reported in the following table giving the cardinality of the subsets and number r 
of different choices, classified by the corresponding integer partition. 

Randomization r

5 + 5 + 5 1
5 + 5 + 3 + 2 5
5 + 3 + 3 + 2 + 2 5
5 + 2 + 2 + 2 + 2 + 2 1
4 + 4 + 3 + 2 + 2 10
4 + 3 + 2 + 2 + 2 + 2 5
3 + 3 + 3 + 2 + 2 + 2 5

By the properties of the circuits we know that no proper subset is possible in 
the previous randomization, so for instance we know that no randomization of the 
form 5 + 5 + 3 + 2 can share two 5-ers with the randomization 5 + 5 + 5 . How-
ever, the 5 + 5 + 5 shares a 5-ers with the randomization 5 + 2 + 2 + 2 + 2 + 2 , as 
shown in Fig. 3.

12, 13, 14, 23, 24, 25, 34, 35, 31, 45, 41, 42, 51, 52, 53.

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 − 1 0 − 1 0 − 1 0 0

−1 0 0 1 1 1 0 0 0 0 0 − 1 0 − 1 0

0 − 1 0 − 1 0 0 1 1 1 0 0 0 0 0 − 1

0 0 − 1 0 − 1 0 − 1 0 0 1 1 1 0 0 0

0 0 0 0 0 − 1 0 − 1 0 − 1 0 0 1 1 1

⎤⎥⎥⎥⎥⎦
.

Fig. 2   The directed graph on 5 
points in Example 6

1

2

5

3

4
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Example 7  Our final example exploits the existing structure of the design/model 
environment to make finding the circuits more straightforward, as we saw for facto-
rial designs. The full saturated X-matrix below is taken from a Haar wavelet model 
on [−1, 1] with depth three from the constant term:

Making use of the intrinsic orthogonality we use columns 2,3,4 for the X1 matrix 
leaving the last four columns to extract the circuits. Computing the circuit basis for 
X1 we obtain 16 circuits with 0-1 entries and with support on 4 points. Each vec-
tor has a complementary vector (interchanging the ones and zeros) which together 
form a randomization scheme with 2 randomized blocks, i.e., of the form 4 + 4 . This 
example is small enough that also a direct computation is possible. As an exercise, 
we find that the circuits can be computed by brute force solving the equations:

There are 18 solutions. Excluding the null vector and the vector with all entries 
equal to 1 (full randomization), we obtain the non-trivial solutions, i.e., 16 binary 
vectors (x1,… , xn) with 4 ones and 4 zeros, which correspond exactly with the 16 

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0 0 0

1 1 1 0 − 1 0 0 0

1 1 − 1 0 0 1 0 0

1 1 − 1 0 0 − 1 0 0

1 − 1 0 1 0 0 1 0

1 − 1 0 1 0 0 − 1 0

1 − 1 0 − 1 0 0 0 1

1 − 1 0 − 1 0 0 0 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

xi(1 − xi) = 0, i = 1,… , 8

x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 = 0

x1 + x2 − x3 − x4 = 0

x5 + x6 − x7 − x8 = 0

Fig. 3   Two randomizations for the directed graph on 5 points in Fig. 2: a 5 + 5 + 5 randomization (solid 
lines) and a 5 + 2 + 2 + 2 + 2 + 2 randomization sharing a 5-er (dashed lines)
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circuits computed by 4ti2. We give just one example of valid randomization for 
this example to save space. Two non-trivial solutions are

which are confirmed be orthogonal to the model columns 2,3,4. They correspond to 
the randomization

Finally, we briefly discuss the unimodularity assumption. Although unimodular-
ity seems to be a restrictive assumption, a number of models in important applica-
tions are defined by a unimodular matrix. For instance the independence model for 
two-way tables has an unimodular design matrix, the Kronecker product of two uni-
modular matrices is unimodular, providing a large class of models with unimodular 
design matrix. Other examples comes from optimization and graph theory, thus for 
statistical network models. The coefficient matrix of the constraints in the linear pro-
gramming formulation of the maximum flow problem is unimodular. An example 
from graph theory has been used in Example 6.

There are criteria to check whether a matrix is totally unimodular, but they are 
rather technical and a detailed analysis in that direction is outside the scope of the 
present paper. For further details and applications of unimodular matrices the reader 
can refer to, e.g., Schrijver (2003).

8 � Discussion

We can ask a skeptical general question: given the wealth of combinatorial theory 
to find orthogonal blocks what benefit does the circuit method have? An immedi-
ate answer is that it provides, in appropriate cases, the choice of a large, even very 
large, variety of valid randomizations schemes and under special conditions all valid 
randomizations.

Weighing designs give some intuition. Historically there are two types. Weighing 
a set of objects on a single pan weighing machine is very similar to the choice exper-
iments. A chemical balance experiment has two pans and compares sets of objects. 
In the chemical balance the observation itself is a difference, that is an empirical 
contrast, whereas in the single pan case we have to reparametrized creating X1 to 
obtain contrasts, as in the A/B experiment. Informally, we could say the contrast 
matrix X1 represents a two-pan experiment embedded in a one pan experiment.

It is important to emphasize that the nature of the lattice of circuits in a particular 
problem depends on the structure of the X1 matrix. Cost considerations and optimal-
ity of the experiment may point toward particular randomization schemes. In some 
cases choice of X1 may mean there is no randomization other that full randomization 
(over units) of the whole experiment. Conversely, the need to randomize because of 
perceived sources of bias will restrict the form of X1 as in simple A/B testing.

The blocks of a randomization scheme as defined here generalize the idea of a 
randomized blocked experiment and there is no requirement for equal block size, 

(1, 0, 0, 1, 1, 0, 0, 1), (0, 1, 1, 0, 0, 1, 1, 0)

{1, 4, 5, 8}, {2, 3, 6, 7} .
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unless imposed. Stratified sampling is covered if the contrast of interest are within 
strata. Valid randomizations form a lattice under refinement which we suggest is 
natural generalization of nested randomization. A single non-decomposable binary 
vector orthogonal to the X1 matrix is a minimal element. A non-decomposable valid 
randomization corresponds to partition of N = {1, 2,… , n} . There may be more 
than one non-decomposable valid scheme, as we saw in the 23 example in Sect. 4.1 
and in Example 7.

Also relevant is randomization cost. It may be that a cost function which is related 
to the structure of the randomization and which is order preserving with respect to 
the refinement in the lattice could lead to useful strategies in cases where, as we 
have seen, the choice of valid randomizations is very large. That is, we have in the 
background the idea that more refined randomization is cheaper. There is a consid-
erable literature on sequential randomization with a model, in the A/B case, that 
subjects (e.g., patients) are awarded treatments A or B on the equivalent of a toss 
of a fair coin (there is a considerable work on biased coin design which we do not 
cover). This is an example where the method in this paper should be a cheaper pro-
cedure administratively than randomizing over a fixed population in order to con-
duct a more complex randomized block experiment. Note that in the 22 experiment 
of Example 1 with two blocks of size 2, each block only supplies some of the infor-
mation. The same for the 4 blocks of size 2 in the 23 experiment, whereas for the 
two 1

2
 fractions of size 4 the parameters can be estimated from each block. In the 

2-out-of-4 choice experiments we compare similarly attributes (1, 2) v. (3, 4), (1, 3) 
v. (2, 4) and (1, 4) v. (2, 3). The two-pan metaphor is useful. The extension to the 
k-out-of-2k example is straightforward and the blocks arise from all ways of split-
ting 2k objects into disjoint set of size k. It is likely, in our view, that sequential and 
adaptive randomization will be increasingly important as costs are traded with effec-
tiveness. Their impressive use in CoViD-19 vaccination trials (e.g., Thorlund et al. 
2020; Knoll and Wonodi, 2021) is likely to have a lasting impact.

The paper could have been written concentrating on the link to matroid theory, 
indeed the term circuit is from matroid theory and the circuits presented here form a 
linear circuit, in the matroid sense. Another mathematical feature is that each block 
of randomization scheme defined here has an associated permutation group and the 
full randomization scheme generates a subgroup of the full permutation group Sn . 
All possible schemes for a particular example may lead to a complex lattice of sub-
groups under set partition refinement. The relation between matroids and permuta-
tion groups has been studied in Cameron and Fon-Der-Flaass (1995).
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