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Abstract
An �-slash distribution built upon a random variable X is a heavy tailed distribution 
corresponding to Y = X∕U1∕� , where U is standard uniform random variable, inde-
pendent of X. We point out and explore a connection between �-slash distributions, 
which are gaining popularity in statistical practice, and generalized convolutions, 
which come up in the probability theory as generalizations of the standard concept 
of the convolution of probability measures and allow for the operation between the 
measures to be random itself. The stochastic interpretation of Kendall convolution 
discussed in this work brings this theoretical concept closer to statistical practice, 
and leads to new results for �-slash distributions connected with extremes. In par-
ticular, we show that the maximum of independent random variables with �-slash 
distributions is also a random variable with an �-slash distribution. Our theoretical 
results are illustrated by several examples involving standard and novel probability 
distributions and extremes.
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1 � Introduction and notation

The concept of slash distributions, going back to the classical works on robustness 
(see Andrews et al., 1972; Rogers and Tukey, 1972), has experienced a rapid revival 
in recent years. The standard (also known as canonical or uniform) slash distribution 
(with � = 1 in the formula below) arises as the distribution of the ratio

of a standard normal random variable X and an independent standard uniform ran-
dom variable U (Andrews et al., 1972; Johnson et al., 1994, p. 63). Its more gen-
eral version with � ∈ (0, 1) in (1) was studied by Rogers and Tukey (1972). Since 
then, this concept has been generalized in various ways, leading to a multitude of 
generalized probability distributions which are useful across many areas of appli-
cation. In particular, multivariate slash distributions (see, e.g., Abanto-Valle et al., 
2012; Arslan, 2008, 2009; Arslan and Genç, 2009; Cabral et  al., 2012), obtained 
when the X in (1) is (either symmetric or skew) multivariate normal, proved use-
ful in the linear modeling framework (Lachos, 2008; Lachos et al., 2010a, b; Lange 
and Sinsheimer, 1993; Liu, 1996; Wang and Genton, 2006). Here, alternative strate-
gies based on slash distributions or similar scale mixtures of Gaussian distributions 
(or normal/independent distributions in the terminology of Lange and Sinsheimer, 
1993) provide robustness against the underlying assumptions of normality in the 
classical framework. Further generalizations, where X in (1) is not necessarily nor-
mally distributed, abound in recent statistics literature, including an extension to dis-
crete distributions (Jones, 2020) as well as one involving matrix-variate distributions 
(Bulut and Arslan, 2015).

The objective of this work is to point out and explore an unexpected connection 
between the concept of slash distribution in statistics and a branch of probability the-
ory concerned with generalizations of the standard concept of convolution of prob-
ability measures. The latter, known as generalized convolutions, are commutative 
and associative binary operations on probability measures on ℝ+ that have proper-
ties analogous to the standard operation of addition of independent random elements 
(see, e.g., Bingham, 1971; Kucharczak and Urbanik, 1974; Urbanik, 1964). The 
theory of generalized convolutions provides a unifying framework bringing together 
different limit schemes in probability theory, including the standard addition scheme 
as well as the extreme value theory, among others. In particular, the notion of the 
characteristic function is also extended in the theory of generalized convolutions to 
that of a generalized characteristic function, which has the same properties for its 
generalized convolution as the standard characteristic function has for the summa-
tion of random variables. An interesting property of the generalized convolutions is 
that they allow randomness in the operation between the probability measures (or 
random variables) itself (see Sect. 2, Proposition 4).

A comprehensive theory, with the focus on Lévy and additive processes in the 
context of generalized convolutions, has been recently developed in Borowiecka-
Olszewska et  al. 2015 (see also Jasiulis-Gołdyn et  al. 2020a), where one can find 

(1)Y
d
=

X

U1∕�
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numerous examples of this concept. It should be noted that, although there exist 
some results connected to applications (see, e.g., Jasiulis-Gołdyn et al., 2020b; Pan-
orska, 1996, 1999), the great majority of the works on generalized convolutions are 
in the realm of theoretical probability, and the definitions of the convolutions are 
via probability measures, with little or no interpretation in terms of operation on 
random variables. This is the reason why the generalized convolutions are not very 
well known in applications. In this context we provide a new interpretation of two 
major generalized convolutions: the Kendall convolution (see, e.g., Arendarczyk 
et  al., 2019; Borowiecka-Olszewska et  al., 2015; Jasiulis-Gołdyn et  al., 2020a, b; 
Jasiulis-Gołdyn and Misiewicz, 2011) and Kucharczak–Urbanik convolution (see, 
e.g., Borowiecka-Olszewska et  al., 2015; Kucharczak and Urbanik, 1974), which 
involves the slash operation.

In short, the connection between the slash of X given by Y in (1) and Kendall 
convolution is that the cumulative distribution function (CDF) of Y is related to the 
generalized characteristic function corresponding to the Kendall convolution. More 
formally, this connection is provided by the fact that the CDF of the Y in (1) evalu-
ated at t ∈ ℝ+ , with the distribution of X in (1) supported on ℝ+ , is given by the 
expectation �[h(X∕t)] , where h(⋅) can serve as the kernel in the integral representa-
tion of the generalized characteristic function (see Appendix A). This connection 
with the slash transformation (1) leads to a very natural interpretation of the Kend-
all convolution in terms of slash operation, which aids in the understanding of this 
abstract mathematical construction and may lead to applications. In turn, through 
the theory of generalized convolutions, one can establish certain new fundamental 
properties of the slash transformation related to extremes, presented in the subse-
quent sections. The main results connecting generalized convolutions with the slash 
transformation are given in Theorem 1 and Remark 4 for the Kendall convolution. In 
Sect. 4 we discuss possible generalization of these results.

In this context, note that since all slash distributions are heavy tailed (Jones, 
2020), they provide an array of models for power law data. Such data have been 
commonly observed in finance, climate science, environmental science, hydrology, 
social studies, health care, demographics, and Internet traffic, among others (see., 
e.g., Embrechts et al., 1997 and Sornette, 2004, and the references therein). Due to 
the connection between slash laws and generalized convolutions, our results should 
bring generalized convolutions closer to the statistical practice and applications.

In this work, we restrict attention to distributions of nonnegative random vari-
ables, as the classical generalized convolutions have the same restriction. Following 
Jones (2020), a random variable Y given by the right-hand side in (1) will be said to 
have an �-slash distribution (derived from that of X). The main results of this paper 
are presented in Sect. 2, where we also provide more background information on the 
slash transformation (1). In particular, we prove that the maximum of independent 
random variables with �-slash distributions is also a random variable with an �-slash 
distribution, and provide the exact structure of the latter. In the process, we discuss 
the concept of “inverting” an �-slash distribution, leading to the recovery of the dis-
tribution of X in (1) from that of Y. Our results are illustrated by several examples of 
�-slash families from the literature presented in Sect. 3. Here, we also briefly men-
tion an approximation method of Kendall generalized sums with a large number of 
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IID components. Since the background material on generalized convolutions is quite 
technical, we include it in an appendix (Appendix A), while the proofs of the main 
results are collected in Appendix B.

Notation  Before concluding the introduction, we introduce the notation that shall be 
used throughout this paper. For a random variable X, the function FX(⋅) denotes the 
CDF of X, while FX(⋅) = 1 − FX(⋅) denotes its survival function (SF). The expres-
sion G(�)

X
(⋅) shall denote the CDF of the right-hand side in (1), that is the CDF of 

the �-slash transformation of X. Further, a ∨ b = max{a, b} , a ∧ b = min{a, b} , and 
(x)+ ∶= x ∨ 0 = max{x, 0} . Similarly, 

⋁n

i=1
ai denotes the maximum of the {ai} , 

i = 1,… , n , while 
⋀n

i=1
ai denotes their minimum. Finally, the notation “ d= ” indi-

cates equality in distribution.

The following notation is related to the generalized convolution theory (see 
Appendix A). We use P+ to denote the family of all probability measures on the 
Borel �-algebra B(ℝ+) with ℝ+ ∶= [0,∞) . The quantity �x denotes the prob-
ability measure concentrated at the point x ≥ 0 . If � ∈ P+ is the distribution of a 
random variable X and a ∈ ℝ+ , then Ta� denotes the distribution of aX, so that 
(Ta�)(A) ∶= �(A∕a) where A∕x = {ax−1 ∶ a ∈ A} for any A ∈ B(ℝ+) . Similarly, for 
a function f ∶ ℝ+ → ℝ and a > 0 we define the transformation Ta by Taf (t) ∶= f (at) . 
We use “ ⟹ ” to denote weak convergence of probability measures. The Kendall 
convolution of measures �1, �2 ∈ P+ (see Definition 5 in Appendix A) is denoted by 
�1 ∗� �2 , whereas �1 ∗�,n �2 denotes its extension known as the Kucharczak–Urbanik 
convolution (see Definition 4 in Appendix A). If X and Y are independent random 
variables with distributions �1, �2 ∈ P+ , respectively, then X ⊕ Y  shall denote a ran-
dom variable with distribution �1 ∗� �2 . Analogously, if X1,X2,… ,Xn are independ-
ent random variables with distributions �1, �2,… , �n , respectively, then 

⨁n

i=1
Xi 

denotes a random variable with distribution �1 ∗� �2 ∗� ⋯ ∗
�
�n . We use Φ(�,n)

�
 to 

denote the ∗
�,n-generalized characteristic function (ChF) of the measure � in the 

(P+, ∗�,n) algebra. Analogously, for a random variable X with distribution � we use 
the notation Φ(�,n)

X
 for the generalized ChF of X. In the special case when n = 1 (cor-

responding to Kendall convolution) the index n in the ChF shall be omitted.

2 � Main results

To set the stage, let us start with a formal definition of an �-slash transformation.

Definition 1  We say that a nonnegative random variable Y has an �-slash distribu-
tion if there exists another nonnegative random variable X and an independent of X 
random variable U with a uniform distribution on [0, 1], such that Y

d
=X∕U

1

� for some 
𝛼 > 0.
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While the concept of a slash distribution (or slash transformation) in Definition 1 
extends to the distributions on the entire real line or on ℝd , we restrict our attention 
to the case of positive random variables, following the classical generalized convo-
lution theory.

Remark 1  It should be noted that the effect of dividing by U1∕� in (1) is the same 
as that of multiplying by 1 + R , that is Y

d
=(1 + R)X where R = 1∕U1∕� − 1 has the 

standard Pareto Type II (Lomax) distribution, given by the SF

This gives an interpretation in terms of a growth rate, where R = (Y − X)∕X is a 
relative change from X to Y. In financial applications, X is the present value, R is the 
(stochastic) growth rate (interest rate), and Y is the accumulated value.

We now provide a key result that links the slash transformation (1) with general-
ized convolutions. Indeed, we show below that the CDF of an �-slash distribution 
obtained in (1) is directly related to the generalized characteristic function (24) cor-
responding to Kendall convolution ∗

�
 (see Appendix A, Definition 5).

Proposition 1  For any random variable X with distribution � supported on ℝ+ and 
t ≥ 0, 𝛼 > 0 , we have

where G(�)

X
(⋅) is the CDF of Y in (1) and Φ(�)

X
(⋅) is given by (24) in Appendix A.

Proof  By Definition 1 of the �-slash distribution, we have

where the last equality follows from (24) with t replaced by 1/t. This completes the 
proof. 	�  ◻

An important question related to the slash transformation concerns “inverting” an 
�-slash distribution, that is finding the distribution of the underlying random vari-
able X in (1) given that of the random variable Y. The result below shows that this is 
rather straightforward.

Lemma 1  Let FX(⋅) and G(�)

X
(⋅) be the CDFs of the random variables X and Y in (1), 

respectively, where the distribution of X is supported on ℝ+ . Then,

ℙ(R > r) =
(

1

1 + r

)𝛼

, r ∈ ℝ+.

G
(�)

X
(t) = Φ

(�)

X

(
1

t

)
,

G
(�)

X
(t) = ℙ

(
X

U
1

�

≤ t

)
= ℙ

(
U ≥ (

X

t

)�

)
= �

t

0

(
1 −

(
x

t

)
�
)
dFX(x)

= Φ
(�)

X

(
1

t

)
,
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for each t > 0 at which G(�)

X
(t) is differentiable.

Proof  For any t > 0 , integration by parts leads to

The proof is completed by differentiating both sides of the above equation with 
respect to t. 	�  ◻

Remark 2  It should be noted that in the case of the classical slash distribution based 
on normally distributed X in (1), the relation (2) appeared in Rogers and Tukey 
(1972). For an absolutely continuous distribution, it can also be found in Jones 
(2020). See also Jasiulis-Gołdyn et al. (2020b, Lemma 3), for an analogous result in 
the context of the generalized convolution theory.

Remark 3  It may be also of interest to know whether the distribution of a general 
random variable Y is an �-slash distribution for some 𝛼 > 0 , that is whether the rela-
tion (1) holds with some X. This can be done by checking whether the quantity on 
the right-hand side of (2) with G(�)

X
(⋅) replaced by the CDF of Y is a genuine CDF 

for some 𝛼 > 0 . Generally this problem of “inverting” a distribution under the slash 
transformation may not have a solution, as a necessary condition for this to happen 
is that Y have infinite moments of order � and above (see Jones, 2020). For example, 
the exponential distribution does not have an inverse under the slash transformation, 
as its moments of positive order are all finite.

Following on from the previous remark we now establish our main result, which 
shows that the maximum of independent random variables Yi with the �-slash distri-
butions has an �-slash distribution as well, so that it always admits an inverse under 
the slash transformation. Moreover, that inverse is distributed as a generalized con-
volution of the distributions of Xi , where the {Xi} are the inverses of the {Yi} under 
the slash transformation.

Theorem  1  Let 𝛼 > 0, n ∈ ℕ , and let X1,X2,… ,Xn be independent, nonnega-
tive random variables with distributions �1, �2,… , �n ∈ P+ , respectively. Fur-
ther, let U1,U2,… ,Un be independent standard uniform random variables, inde-
pendent of the {Xi} . Then, there exists a random variable X with distribution 
� = �1 ∗� �2 ∗� ⋯ ∗

�
�n and a standard uniform random variable U, independent 

of X, such that

(2)FX(t) = G
(�)

X
(t) +

t

�

d

dt
G

(�)

X
(t)

G
(�)

X
(t) = ∫

t

0

(
1 −

(
x

t

)
�
)
dFX(x) = �t−� ∫

t

0

s�−1FX(s)ds.

n⋁
i=1

Xi

(Ui)
1

�

d
=

X

U
1

�

.
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Remark 4  Let us emphasize that the distribution of X in Theorem  1 is the Kend-
all convolution �1 ∗� �2 ∗� ⋯ ∗

�
�n of the distributions �1, �2,… , �n of the random 

variables X1,X2,… ,Xn . To account for the connection between the random vari-
ables X1,X2,… ,Xn and X, we shall use the notation

This result provides a new stochastic interpretation of the Kendall convolution (3), 
whose definition is rather abstract. The slash transformation plays a key role in this 
interpretation. Namely, the Kendall convolution of the distributions of random vari-
ables {Xi} can be described as follows: (i) First, apply the slash transformation (1) 
to each random variable Xi with distribution �i to obtain its �-slash version, Yi ; (ii) 
Next, assuming independence of the {Yi} , determine the probability distribution of 
their maximum, Y = max{Y1,… , Yn} ; (iii) Finally, invert the distribution of Y under 
the slash transformation (1) using Lemma 1, leading to the distribution of X in (1). 
The resulting distribution of X is precisely that of (3).

The following result provides the CDF of 
⨁n

i=1
Xi in a convenient form.

Theorem 2  Let X1,X2,… ,Xn be independent nonnegative random variables. Then,

for each t ∈ ℝ+ at which the G(�)

Xi
(t) are differentiable.

We also provide an alternative form of the CDF of 
⨁n

i=1
Xi , which is more 

directly related to the generalized convolution theory, particularly the representation 
(20). While both of these results utilize Lemma 1 in their proofs, the latter differs in 
the way it handles the product of G(�)

Xi
(t) and its derivative, as can be seen in the 

proofs provided in Sects. 2 and 3, respectively.

Proposition 2  Let X1,X2,… ,Xn be independent random variables with distributions 
�1, �2,… , �n ∈ P+ , respectively. Then,

where

(3)X ∶=

n⨁
i=1

Xi.

(4)F⨁n

i=1
Xi
(t) =

⎧⎪⎨⎪⎩
1 +

t

�

n�
j=1

d

dt
G

(�)

Xj
(t)

G
(�)

Xj
(t)

⎫⎪⎬⎪⎭

n�
i=1

G
(�)

Xi
(t),

(5)F⨁n

i=1
Xi
(t) = ∫

∞

0 ∫
∞

0

…∫
∞

0

F⨁n

i=1
xi
(t) �1(dx1)�2(dx2)⋯ �n(dxn),

(6)F⨁n

i=1
xi
(t) =

�
1 +

n−1�
i=1

(−1)ii

∑
U∈U

(n)

i+1

∏
j∈U xj

t(i+1)�

�
111

�
t ≥

n�
i=1

xi

�
, xi ∈ ℝ+,
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with U(n)

i
 denoting the family of all subsets of {1, 2,… , n} with exactly i elements.

For n = 2 , the formula (5) reduces to the expression below, which is well-
known in the theory of generalized convolutions (see, e.g., Jasiulis-Gołdyn et  al., 
2020b, Section 3.2):

Note that, unless x = y , the distribution of X ⊕ Y  in (7) is of mixed type, neither 
continuous nor discrete. The same is true for the general case of Proposition 2.

Remark 5  Let us observe that Theorem 1 is based on the idea that

where X ⊕ Y  is a random variable with the distribution given by (7). Although this 
is a straightforward consequence of the properties of the ∗

�
-generalized characteris-

tic function in the generalized convolution theory, we believe that a direct proof of 
(8) would be of interest to readers. Thus, we include it in Appendix B (see Sect. 4).

We conclude this section with a stochastic representation of 
⨁n

i=1
Xi . We start 

with the case n = 2 , where the result below is a direct consequence of the represen-
tation of the Kendall convolution [see (25) in Appendix A].

Proposition 3  Let X1,X2 be independent, nonnegative random variables, and let 
U1,U2 be independent standard uniform random variables, independent of X1 and 
X2 . Then

A generalization with n ≥ 2 provided below can be established by induction. A 
special case of this result with identically distributed {Xi} , formulated in terms of a 
Markov process, can be found in Arendarczyk et al. (2019), Proposition 2.7 (see also 
Jasiulis-Gołdyn et al., 2020b).

Proposition 4  Let Xi, i ∈ ℕ , be independent, nonnegative random variables and let 
U1,i,U2,i , i ∈ ℕ , be IID standard uniform random variables, independent of the {Xi} . 
Then

(7)FX⊕Y (t) = �
∞

0 �
∞

0

(
1 −

(xy)𝛼

t2𝛼

)
111(t ≥ x ∨ y)𝜆1(dx)𝜆2(dy).

(8)G
(𝛼)

X
(t)G

(𝛼)

Y
(t) = G

(𝛼)

X⊕Y
(t),

X1 ⊕ X2

d
=(X1 ∨ X2)

[
1

(U1)
1

2𝛼

111

(
U2 ≤

(
X1 ∧ X2

X1 ∨ X2

)
𝛼
)

+111

(
U2 >

(
X1 ∧ X2

X1 ∨ X2

)
𝛼
)]

.
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where

As shown by the above results, when Kendall convolution is seen through the 
lens of random variables {Xi} , the relevant operation involves an element of random-
ness (in this case connected with the uniform random variables) in addition to the 
{Xi} . Such a random effect in the operation on random variables goes back to the 
work of Kingman (1963), which sparked the subsequent research in this area and led 
to a mathematical development of the theory of generalized convolutions.

3 � Examples

As noted by Jones (2020), the random variable Y obtained via the slash transforma-
tion in (1) can only have finite moments �(Yr) of order r < 𝛼 . Thus, this transforma-
tion is a convenient way to generate a multitude of heavy tailed probability distribu-
tions that may be useful in applications. In this section we present several examples 
involving slash distributions and extremes, illustrating our main results.

3.1 � Fréchet distribution and its slash‑inverse

Let Y have a Fréchet distribution with shape parameter 𝛼 > 0 and scale parameter 
𝜎 > 0 , so that the CDF of Y is of the form

We shall denote this distribution by F(�, �) . This is a heavy tailed distribution with 
tail index � , so its moments of order � and above do not exist. Thus, Y may arise in a 
slash transformation (1) with some nonnegative random variable X. Straightforward 
algebra involving Lemma 1 shows that this is indeed the case, and the variable X in 
(1) has the CDF of the form

This distribution, which is also heavy tailed with tail index 2� , shall be 
denoted by ISF(�, �) ( Inverse Slash F réchet). In the context of these two 

n+1⨁
i=1

Xi =

(
n⨁
i=1

Xi ∨ Xn+1

)
W,

W =

⎧
⎪⎨⎪⎩

1

(U1,n+1)
1

2𝛼

111

�
U2,n+1 ≤

�⨁n

i=1
Xi ∧ Xn+1⨁n

i=1
Xi ∨ Xn+1

�
𝛼
�

+111

�
U2,n+1 >

�⨁n

i=1
Xi ∧ Xn+1⨁n

i=1
Xi ∨ Xn+1

�
𝛼
��

.

FY (t) = e−(t∕�)
−�

, t ∈ ℝ+.

(9)FX(t) = [1 + (t∕�)−�]e−(t∕�)
−�

, t ∈ ℝ+.



602	 M. Arendarczyk et al.

1 3

distributions, let us illustrate Theorem 1. Suppose that X1,… ,Xn are independent 
with Xi ∼ ISF(�, �i) , i = 1,… , n . Then, according to the above discussion, it fol-

lows that Yi = Xi∕U
1∕�

i
∼ F(�, �i) , i = 1,… , n , where the {Ui} are standard uniform 

random variables, independent of the {Xi} . By the well-known stability property of 
the Fréchet distribution with respect to the operation of taking maxima, we have the 
equality of distribution

In turn, the variable Y in (10) is of the form (1) with X ∼ ISF(�, �) with � as in 
(10). Moreover, by Theorem 1, the distribution of this X is exactly the same as the 
Kendall convolution of the distributions of the {Xi} . Since the parameter � here is a 
scale factor, we have the following relation:

This shows that the ISF distribution given by the CDF (9) is stable with respect to 
the Kendall convolution (see also Example 3.4 in Arendarczyk et  al., 2019). The 
interpretation of this in terms of the slash transformation and its inverse is as fol-
lows. If we start with independent ISF variables with the same shape parameter � 
and convert them to their independent slash versions via (1), and subsequently cal-
culate their maximum, then when this maximum is inverted with respect to the slash 
transformation, the resulting variable has an ISF distribution with shape parameter 
� as well. This shows the stability of the ISF(�, �) distribution given in (9) with 
respect to the max-slash operation.

Remark 6  An important property of the ISF distribution, which can be useful in 
applications, is that it can serve as an approximation of the random variable 

⨁n

i=1
Xi 

for large enough n. Indeed, if {Xi} is a sequence of IID random variables such that 
Yi = Xi∕U

1∕�

i
 are in the maximum domain of attraction of the Fréchet distribution 

F(�, �) , then

for a suitable sequence of norming constants {an} (see, e.g., Embrechts et al., 1997). 
Note that, by Breiman’s theorem (see Breiman, 1965), if there exists an 𝜀 > 0 such 
that �(X𝜀+𝛼

1
) < ∞ then � = � . We can now conclude from the results of this sec-

tion that the ISF distribution with the CDF (9) can serve as an approximation of 
the distribution of 

⨁n

i=1
Xi for n large enough. Direct, formal proof of this observa-

tion can be obtained by application of a result by Bingham (see Arendarczyk et al., 

(10)
n⋁
i=1

Yi
d
=Y ∼ F(�, �), � =

(
n∑
i=1

�
�

i

)1∕�

.

n⨁
i=1

Xi

d
=
�

�1

X1 ∼ ISF(�, �), � =

(
n∑
i=1

�
�

i

)1∕�

.

lim
n→∞

ℙ

(
an

n⋁
i=1

Xi

(Ui)
1

�

≤ t

)
= e−t

−�

∼ F(�, 1)
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2019, Remark 4.4 and Proposition 4.5, and Bingham, 1971) on domains of attrac-
tion for generalized convolutions.

3.2 � Pareto distribution and its slash‑inverse

The example below concerns the Pareto distribution with tail parameter 𝛼 > 0 and 
scale parameter 𝜎 > 0 , given by the CDF

and denoted by P(�, �) . This distribution arises as the distribution of Y under the 
slash transformation (1) when X = � with probability 1. In other words, the inverse 
of the Pareto distribution (11) under the slash transformation (1) is �

�
 , the probabil-

ity measure concentrated at �.
Assume that Y1,… , Yn are independent random variables where Yi ∼ P(�, �i) , 

i = 1,… , n . Then each Yi has an absolutely continuous distribution with the CDF 
and the PDF given by

 respectively. Moreover, the CDF of the maximum Y =
⋁n

i=1
Yi is given by

Theorem 1 shows that this Y is a slash version of some nonnegative random variable 
X, where X and Y satisfy (1). By Theorem 2, the CDF of X is of the form (4) with

This leads to the formula

which, by Theorem 1, is the CDF of the Kendall convolution ∗
�
 of the {�

�i
} . In the 

special case n = 2 , the CDF of X simplifies to

(11)H(t) =
(
1 −

(
�

t

)
�
)
+
, t ∈ ℝ+,

FYi
(t) = 1 −

(
�i

t

)
�

, fYi(t) =
�

�i

(
�i

t

)
�+1

, t ≥ �i,

GY (t) =

n∏
i=1

(
1 −

(
�i

t

)
�
)
, t ≥

n⋁
i=1

�i.

G
(�)

Xi
(t) = FYi

(t) and
d

dt
G

(�)

Xi
(t) = fYi(t).

F⨁n

i=1
Xi
(t) =

⎧⎪⎨⎪⎩
1 +

n�
i=1

�
�i

t

�
�

1 −
�

�i

t

�
�

⎫⎪⎬⎪⎭

n�
i=1

�
1 −

�
�i

t

�
�
�
, t ≥

n�
i=1

�i,

(12)FX(t) = 1 −
(
�1

t

)
�
(
�2

t

)
�

, t ≥ �1 ∨ �2,
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and coincides with formula (7) where x = �1 and y = �2 . In summary, through an 
application of the slash transformation, we were able to identify the distribution of 
the Kendall convolution of the {�

�i
}.

Remark 7  As noted earlier, the distribution in (12) is neither continuous nor dis-
crete, unless �1 = �2 = � , in which case the distribution of X ∶= X1 ⊕ X2 is abso-
lutely continuous with X ∼ P(2�, �) . The case with general n ≥ 2 is similar, where 
the distribution of X ∶=

⨁n

i=1
Xi is absolutely continuous when �i = � , i = 1,… , n , 

although the latter is no longer Pareto if n > 2 . A closer look at this case reveals that 
for general n ≥ 2 and �i = � , i = 1,… , n , the CDF of X simplifies to

where H(⋅) is the Pareto CDF (11) and

The function Rn(⋅) in (13) is the CDF of the beta distribution B(a, b) with parameters 
a = n − 1 and b = 2 , and with the PDF rn(u) = n(n − 1)un−2(1 − u) , u ∈ [0, 1], n ≥ 2 . 
Thus, the random variable X admits the stochastic representation X

d
=H−1(T) , where 

H−1(⋅) is the quantile function of the Pareto distribution (11) and T ∼ B(n − 1, 2) , 
which shows that the distribution of X is a particular case of a beta-Pareto distribu-
tion (see Akinsete et al., 2008). The PDF of X is of the form

and turns into the PDF of the Pareto distribution P(2�, �) when n = 2 . The distribu-
tion of X can also be seen as that of the 2nd (upper) order statistic Xn−1∶n connected 
with a random sample of size n from the Pareto distribution P(�, �) , which is why 
for n = 2 the variable X is the minimum of two Pareto P(�, �) variables, and conse-
quently X ∼ P(2�, �) . This analysis leads to a useful interpretation of the Kendall 
convolution of n point masses at 𝜎 > 0 , connecting this with a Pareto distribution 
as seen above. Under the ordinary convolution (summation), the result in this case 
would of course still be a point measure (concentrated at n�).

Remark 8  The results of this paper can also be used to obtain an explicit form of 
the Kendall convolution of Pareto distributions, using the slash transformation of a 
Pareto variable (11) rather than the inverse slash transformation of Pareto, discussed 
above. Such a slashed version of Pareto (with � = 1 ) was considered by Felgueiras 
(2012), who termed the resulting distribution extended slash Pareto (ESP). Indeed, 
suppose that X1,… ,Xn are independent random variables with Pareto P(�, �i) distri-
butions, and let Yi = Xi∕Ui , where the {Ui} are standard uniform random variables, 
independent of the {Xi} . Straightforward calculations show that the CDF of the max-
imum Y =

⋁n

i=1
Yi is given by

FX(t) =
[
1 −

(
�

t

)
�
]n

+ n
[
1 −

(
�

t

)
�
]n−1(

�

t

)
�

= Rn(H(t)), t ≥ �,

(13)Rn(u) = un + nun−1(1 − u), u ∈ [0, 1], n ≥ 2.

fX(t) =
n(n − 1)�

�

(
�

t

)2�+1[
1 −

(
�

t

)
�
]n−2

, t ≥ �,
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Theorem 1 shows that this Y is a slash version of some nonnegative random variable 
X, where X and Y satisfy (1). By Theorem 2, the CDF of X is of the form (4), which 
upon simplification produces

By Theorem 1, this is the CDF of the Kendal convolution ∗
�
 of Pareto distributions 

P(�, �i) , i = 1,… , n . Unlike the case of ordinary convolution of Pareto distributions, 
where the relevant CDF is not known explicitly, for Kendall convolution the formula 
for the CDF is explicit.

3.3 � Exponential distribution and its slash version

Let X1,… ,Xn be independent random variables where each Xi is exponentially dis-
tributed with scale parameter 𝜎i > 0 , so that

Standard calculations involving the CDFs of Yi = Xi∕Ui , where the {Ui} are standard 
uniform random variables, independent of the {Xi} (cf. Jones, 2020), show that the 
CDF of Y ∶=

⋁n

i=1
Yi is of the form

Theorem  1 guarantees that this Y is a slash version of some nonnegative random 
variable X, where X and Y satisfy (1) with � = 1 . By Theorem 2, the CDF of this X is 
of the form (4), which upon simplification produces

By Theorem 1, this is the CDF of the Kendall convolution ∗1 of n heterogeneous 
exponential distributions with the CDFs given by (14). In contrast, under the ordi-
nary convolution connected with the usual operation of addition of independent 

FY (t) =

n∏
i=1

(
1 −

1 + � log(t∕�i)

(t∕�i)
�

)
, t ≥

n⋁
i=1

�i.

F⨁n

i=1
Xi
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⎧⎪⎨⎪⎩
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n�
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⎫⎪⎬⎪⎭

n�
i=1

�
1 −

1 + � log(t∕�i)
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�
, t ≥

n�
i=1

�i.

(14)FXi
(t) = 1 − e−t∕�i , t ∈ ℝ+.

FY (t) =

n∏
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[
1 −

�i

t

(
1 − e−t∕�i

)]
, t ∈ ℝ+.

F⨁n

i=1
Xi
(t) =

⎧
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1 +

1

�
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i=1

�i
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�
1 − e−t∕�i
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×
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1 − e−t∕�i

��
, t ∈ ℝ+.
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random variables, the sum of heterogeneous exponential variables follows the hypo-
exponential distribution, also known as the generalized Erlang distribution (see, e.g., 
Johnson et al., 1994, p. 552). If the {Xi} have the same exponential distribution with 
a common scale parameter � , then the CDF of their Kendall convolution 

⨁n

i=1
Xi 

simplifies to

while the usual convolution is a gamma distribution with shape parameter n (and 
scale �).

4 � Extensions

Theorem 1 is a special case of a general representation, where for some positive ran-
dom variable T we have the equality in distribution

Here, the {Xi} are arbitrary independent random variables with distributions 
�1, �2,… , �m ∈ P+ , respectively, independent of the {Ti} , which are IID copies of 
T, and X is a random variable with distribution � ∈ P+ , independent of T. By the 
results of Sect. 2 the random variable T

d
=U1∕� , with U being standard uniform and 

𝛼 > 0 , is a special case where (15) is true. As we show in the sequel, there exist 
other random variables T for which this representation is also true, as well as those 
for which this representation does not hold. As shown in the result below, one par-
ticular class of variables that satisfy this representation incorporates the distribu-
tions on ℝ+ with SFs h(t) that are quasi-stable (that is, h is a bounded, continuous 
function such that ∀a, b ∈ ℝ+ the function (Tah)(Tbh) belongs to the closed convex 
hull of the set {Txh ∶ x ∈ ℝ+} ) and such that h(t) = 1 − tqL(t) where q > 0 and L(⋅) 
is slowly varying at the origin (or, equivalently, 1/T is a regularly varying random 
variable).

Theorem  3  Let X1,X2,… ,Xm be independent and nonnegative random variables. 
Further, let T1, T2,… , Tm be IID random variables, independent of the 

{
Xi

}
 , with a 

common SF h(u) = ℙ(Ti > u) for i = 1, 2,… ,m . Assume that the function h(⋅) satis-
fies the following assumptions:

	(A1)	h(⋅) is quasi-stable,
	(A2)	There exists q > 0 such that h(u) = 1 − uqL(u) where L(⋅) is slowly varying at 

0.

F⨁n

i=1
Xi
(t) =

�
1 −

�

t
(1 − e−t∕�)

�n−1

×
�
1 − ne−t∕� + (n − 1)

�

t
(1 − e−t∕�)

�
, t ∈ ℝ+,

(15)
m⋁
i=1

Xi

Ti

d
=
X

T
.
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Then, there exists a random variable X and a random variable T with survival func-
tion h(⋅) and independent of X, such that (15) holds.

Remark 9  Let us note that, by the results of Kucharczak and Urbanik (1974), a SF 
h(⋅) that satisfies the conditions (A1) and (A2) of Theorem 3 can serve as a kernel 
of the generalized ChF (21) corresponding to some generalized convolution algebra 
(P+, ∗) . In turn, if the kernel h(⋅) of the generalized ChF (21) is a genuine SF of 
some random variable T, then, according to Theorem 3, the property (15) holds with 
that T. In addition to the case where h(⋅) is the SF of U1∕� with U standard uniform 
and arbitrary 𝛼 > 0 , there are many other known examples of such an h(⋅) . These 
include the SF of G1∕� with arbitrary 𝛼 > 0 , where G has standard gamma distri-
bution with shape parameter less than or equal to 1, corresponding to the Kucha-
rczak generalized convolution (see, e.g., Jasiulis-Gołdyn et al., 2021) or the SF of 
B1∕� with arbitrary 𝛼 > 0 , where B has the beta distribution B(1, �) with � = n ∈ ℕ , 
corresponding to the Kucharczak–Urbanik generalized convolution (see Kucharc-
zak and Urbanik, 1974), discussed below. We also note that if the parameter � of 
B ∼ B(1, �) is not an integer, then the SF of B is not quasi-stable (see Corollary 2 in 
Kucharczak and Urbanik, 1974), in which case Theorem 3 is not applicable. Some 
other examples can be found in Jasiulis-Gołdyn et al. (2021).

Remark 10  By taking the reciprocals of the random variables in (15), we can state 
this relation equivalently in terms of the minimum,

In particular, (16) holds with exponentially distributed {Ti} , since the SF of the 
standard exponential distribution, h(t) = e−t , satisfies both conditions (A1) and (A2) 
of Theorem 3. Indeed, this h(⋅) is the kernel of the generalized ChF of standard con-
volution (which is the Laplace transform), and the variables in the denominators in 
(16) satisfy the distributional equality X

d
=X1 +⋯ + Xm . Thus, we recover the well-

known property stating that the distribution of the minimum of independent ran-
dom variables whose distributions are scale mixtures of exponential distributions 
is also a mixture of exponential distributions (see, e.g., Part 2 of Theorem 1 in Hes-
selager et al., 1998). More generally, the alternative formulation of Theorem 3 via 
(16) makes a direct connection with the concept of scale mixtures (of exponential 
or other distributions, depending on the nature of the random variables {Ti} ). Scale 
mixtures are important stochastic models in a variety of fields, including actuarial 
and financial applications, where exponential mixtures with their key property of 
infinite divisibility are particularly popular (see, e.g., Choy and Chan, 2003; Hesse-
lager et al., 1998; Jewell, 1982; Klugmann et al., 2012). In financial applications, the 
extremes of {Ti∕Xi} can be related to the extreme risk of financial portfolios.

Remark 11  The class of all distributions of T that satisfy (15) is unknown, and the 
characterization of this class is an open problem. In particular, it is not known if the 
converse of Theorem  3 holds. An example of T having a continuous distribution 

(16)
m⋀
i=1

Ti

Xi

d
=
T

X
.
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for which (15) does not generally hold is one where T has the standard Fréchet 
distribution with shape parameter � = 1 , T ∼ F(1, 1) , so that 1/T is standard expo-
nential. Indeed, if we set m = 2 and let X1 and X2 be IID random variables taking 
on the value of 1 with probability 1, then the CDF of the left-hand side in (15) is 
of the form FL(t) = (1 − e−t)2 = 1 − 2e−t + e−2t , t ≥ 0 . Thus, if the relation (15) 
was true for some nonnegative random variable X then we would necessarily have 
ℙ(X = 0) = 0 , and the CDF of the right-hand side in (15) would be of the form 
FR(t) = 1 − �(t) , t ≥ 0 , where �(⋅) is the Laplace transform (LT) of the random 
variable 1/X, as can be seen by straightforward calculation involving standard con-
ditioning arguments. Consequently, (15) would imply that FL(t) = FR(t) , t ≥ 0 , lead-
ing to �(t) = 2e−t − e−2t , t ≥ 0 . While this function is strictly decreasing in t with 
�(0) = 1 , it is not completely monotone (since its second derivative is negative 
for t close to zero), and thus this function is not a legitimate LT (see, e.g., Feller, 
1981, Section XIII.4). We conclude that the relation (15) does not generally hold 
with T ∼ F(1, 1) . Another interesting open problem relates to the case of discrete T 
in (15): are there any non-trivial discrete random variables T for which the represen-
tation holds? In connection with the latter, we note that this representation does not 
hold if the distribution of T is supported on a finite set of points in ℝ+ . Indeed, sup-
pose that the random variable T takes on two values, 1/a and 1/b, with probabilities 
p and 1 − p , respectively, for some 0 < a < b and p ∈ (0, 1) (if T takes on more than 
two values, the arguments are similar). Further, set m = 2 and let X1 and X2 be IID 
random variables taking on the value of 1/c with probability 1 for some c > b . It is 
easy to see that the random variable on the left-hand side in (15) takes on the values 
of a/c and b/c with probabilities p2 and 1 − p2 , respectively. Thus, in order for (15) 
to be true for some X, this X must take on the value of 1/c with probability 1. How-
ever, for this X the random variable X/T takes on the values of a/c and b/c with prob-
abilities p and 1 − p , respectively. Hence, the relation (15) fails to hold with such X1 , 
X2 , and T.

As discussed in Remark 9, the survival function h(t) = (1 − t�)n , t ∈ [0, 1] , of the 
random variable B1∕� with arbitrary 𝛼 > 0 , where B has the beta distribution B(1, n) 
with n ∈ ℕ , is the kernel in the generalized ChF of the Kucharczak–Urbanik distri-
bution, given by (23). This immediately leads to the following result, which general-
izes Proposition 1.

Corollary 1  Let X be a random variable with distribution � ∈ P+ and let Y
d
=X∕B1∕� , 

where 𝛼 > 0 and B is an independent of X beta B(1, n) random variable with n ∈ ℕ . 
Then the CDF of Y can be written as

where Φ(�,n)

�
(⋅) is the ChF (23) corresponding to Kucharczak–Urbanik convolution.

We now provide an extension of Theorem 1, which reduces to the latter for n = 1.

ℙ(Y ≤ t) = Φ
(�,n)

�

(
1

t

)
, t ∈ ℝ+,
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Theorem 4  Let 𝛼 > 0 , m, n ∈ ℕ , and let X1,X2 … ,Xm be independent random vari-
ables with distributions �1, �2,… , �m ∈ P+ , respectively. Further, let B1,B2,… ,Bm 
be IID beta B(1, n) random variables, independent of the {Xi} . Then, there exists a 
random variable X with distribution � = �1 ∗�,n �2 ∗�,n ⋯ ∗

�,n �m and a beta B(1, n) 
random variable B, independent of X, such that

We conclude this section with an equivalent version of Theorem  4 written in 
terms of uniform random variables. Note that B ∼ B(1, n) admits the stochastic 
representation

where the {Ui} are IID standard uniform random variables. Consequently,

In view of the above we have the following alternative version of Theorem 4.

Corollary 2  Let X1,… ,Xm be independent random variables with distributions 
�1,… , �m ∈ P+ , respectively and let Ui,j , i = 1,… ,m, j = 1,… , n , be IID standard 
uniform random variables, independent of the {Xi} . Then, there exists a random var-
iable X with distribution �1 ∗�,n ⋯ ∗

�,n �m and IID standard uniform random vari-
ables U1,… ,Un , independent of X, such that

Acknowledgements  The authors thank the two anonymous referees for their comments which helped 
us improve this paper, and for information regarding reference Jasiulis-Gołdyn et al. (2021), which the 
authors were unaware of when submitting the paper.

Appendix A: Basic facts on generalized convolutions

In this section we recall some basic facts on generalized convolutions and two cru-
cial examples of Kendall and Kucharczak–Urbanik convolutions that serve as the 
main tools for analyzing extremes of random variables with �-slash distributions. 
We refer to Urbanik (1964) for the background material on the theory of general-
ized convolutions and the corresponding characteristic functions as well as to more 
recent works such as Borowiecka-Olszewska et al. (2015) or Jasiulis-Gołdyn et al. 
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=
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=
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1∕�
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.
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(2020b, 2021) and the references therein for new interesting results and extensive 
examples.

We start with the definition of generalized convolution (see, e.g., Urbanik, 1964; 
Borowiecka-Olszewska et al., 2015, Section 2.1).

Definition 2  A commutative and associative operation ∗∶ P
2
+
→ P+ is called gener-

alized convolution if it satisfies the following conditions: 

(i)	 �0 ∗ � = � for all � ∈ P+;
(ii)	 (p� + (1 − p)�) ∗ � = p(� ∗ �) + (1 − p)(� ∗ �) for all p ∈ [0, 1],�, �, � ∈ P+;
(iii)	Tx� ∗ Tx� = Tx(� ∗ �) , for all x > 0,𝜇, 𝜈 ∈ P+;
(iv)	 If �n ⟹ � for �n,� ∈ P+ , then �n ∗ � ⟹ � ∗ � for all � ∈ P+;
(v)	 There exists a sequence {cn}∞n=1, cn > 0 and � ∈ P+,� ≠ �0 such that 

Tcn�
∗n
1

⟹ � , where �∗n
1

 denotes the convolution of n identical measures �1.

The pair (P+, ∗) is called the generalized convolution algebra.

Remark 12  It is well known (see, e.g., Borowiecka-Olszewska et  al., 2015,  Sec-
tion  2.1) that a generalized convolution ∗ is uniquely determined by the convolu-
tion of point-mass measures �x ∗ �y, x, y ≥ 0 . That is, for every �1, �2 ∈ P+ and 
A ∈ B(ℝ+) we have

The main technical tool in the study of generalized convolutions, which plays 
an analogous role to that of the Laplace transform for ordinary convolutions, is a 
generalized characteristic function (see, e.g, Urbanik, 1964, Section 4; Borowiecka-
Olszewska et al., 2015, Definition 2.2), defined below.

Definition 3  We say that the generalized convolution algebra (P+, ∗) admits a char-
acteristic function if there exists one-to-one correspondence between probability 
measures � ∈ P+ and functions Φ

�
(⋅) ∶ ℝ+ → ℝ such that 

	 (i)	 Φp�+(1−p)� = pΦ
�
+ (1 − p)Φ

�
 for all �, � ∈ P+, p ∈ [0, 1];

	 (ii)	 Φ
�∗� = Φ

�
Φ

�
 for all �, � ∈ P+;

	 (iii)	 ΦTx�
(t) = Φ

�
(xt) for all x, t ≥ 0,� ∈ P+;

	 (iv)	 The uniform convergence of Φ
�n

 on every bounded interval is equivalent to 
the weak convergence of �n.

The function Φ
�
(⋅) is termed the ∗-generalized characteristic function of measure 

� . Analogously, if a random variable X has distribution � , then ΦX(⋅) denotes the ∗
-generalized characteristic function of that �.

If (P+, ∗) admits a generalized characteristic function, then Φ
�
(t) is an integral 

transform of the form (see Urbanik, 1964, Theorem 6)

(20)(�1 ∗ �2)(A) = ∫
∞

0 ∫
∞

0

(
�x ∗ �y

)
(A) �1(dx)�2(dy).
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for some kernel h(⋅) . As shown in Kucharczak and Urbanik (1974), a function 
h ∶ ℝ+ → ℝ is a kernel of the characteristic function corresponding to a generalized 
convolution algebra if and only if it is quasi-stable (that is, h is a bounded, continu-
ous function such that ∀a, b ∈ ℝ+ the function (Tah)(Tbh) belongs to the closed con-
vex hull of the set {Txh ∶ x ∈ ℝ+} ) and, in addition, h(t) = 1 − tqL(t) for some q > 0 
and a slowly varying (at the origin) function L(⋅) . Further, there must exist a prob-
ability measure � ∈ P+ such that lim supt→∞ ∫ ∞

0
h(tx)𝜇(dx) < 1.

A particular example of a function h(⋅) that satisfies these conditions, which plays 
a central role in our work, is the function (see, for example function f6 in Kucharczak  
and Urbanik, 1974)

We refer to Kucharczak and Urbanik (1974) for other examples and general discussion 
on the connections between quasi-stable functions and generalized convolutions.

Generalized convolution corresponding to the characteristic function with kernel 
(22) and its special case with parameter n = 1 plays a crucial role in proving the 
results of Sect. 2.

Definition 4  Let 𝛼 > 0, n ∈ ℕ . A generalized convolution ∗
�,n with the characteristic 

function

that is with the kernel given by (22), is called Kucharczak–Urbanik convolution 
(see, e.g., Kucharczak and Urbanik, 1974,  p. 268; Borowiecka-Olszewska et  al., 
2015, Example 2.8).

Definition 5  Let 𝛼 > 0, n ∈ ℕ . A generalized convolution ∗
�
 with the characteristic 

function

is called Kendall convolution (see, e.g., Urbanik, 1988; Borowiecka-Olszewska 
et al., 2015, Example 2.4).

As discussed in Remark 12, the generalized convolution of measures �1, �2 ∈ P+ 
can be uniquely defined by the convolution of point mass measures, which in the 
case of Kendall convolution, has the following form (see, e.g., Example 2.4 in 
Borowiecka-Olszewska et al., 2015)

(21)Φ
�
(t) = ∫

∞

0

h(tx)�(dx)

(22)h(t) = (1 − t𝛼)n
+
, t ∈ [0, 1], 𝛼 > 0, n ∈ ℕ.

(23)Φ
(�,n)

�
(t) = ∫

∞

0

(1 − x�t�)n
+
�(dx),

(24)Φ
(�)

�
(t) = ∫

∞

0

(1 − x�t�)+�(dx)

(25)�x ∗� �y = Tx∨y

{(
x ∧ y

x ∨ y

)
�

�2� +

(
1 −

(
x ∧ y

x ∨ y

)
�
)
�1

}
.
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In the above expression, the quantity Tx∨y is the shift operator, �2� denotes the stand-
ard Pareto distribution (scale 1) with parameter 2� , and 0/0 is assumed to be 0.

Appendix B: Proofs

This section contains proofs of our main results.

Appendix B.1: Proof of Theorem 1

Let t ≥ 0 . Observe that, due to the independence of Xi,Ui, i = 1, 2,… , n , we have

By Proposition 1, we have

Due to Definition 5, combined with Property (ii) in Definition 3 (see Appendix A), 
applied to the Kendall convolution ∗

�
 , there exists a random variable X with distri-

bution �1 ∗� �2 ∗� ⋯ ∗
�
�n such that

Finally, due to Proposition 1, there exists a uniform random variable U, independent 
of X, such that

This completes the proof. 	�  ◻

Appendix B.2: Proof of Theorem 2

For i = 1,… , n , let Y1,… , Yn be independent �-slash versions of the {Xi} , with the 
CDFs

respectively. By the independence of the {Yi} , their maximum Y ∶=
⋁n

i=1
Yi has the 

CDF of the form

ℙ

(
n⋁
i=1

Xi

(Ui)
1

�

≤ t

)
=

n∏
i=1

ℙ

(
Xi

(Ui)
1

�

≤ t

)
=

n∏
i=1

G
(�)

Xi
(t).

n∏
i=1

G
(�)

Xi
(t) =

n∏
i=1

Φ
(�)

Xi

(
1

t

)
.

n∏
i=1

Φ
(�)

Xi

(
1

t

)
= Φ

(�)

X

(
1

t

)
.

Φ
(�)

X

(
1

t

)
= ℙ

(
X

U
1

�

≤ t

)
.

(26)FYi
(t) = G

(�)

Xi
(t),
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so that

Theorem 1 guarantees that Y is a slash version of some nonnegative random variable 
X, where X and Y satisfy (1). Finally, an application of Lemma 1 combined with (28) 
shows that the CDF of X =

⨁n

i=1
Xi is of the form

The proof is completed by substituting (27) and (26) in the above expression. 	�  ◻

Appendix B.3: Proof of Proposition 2

In view of (20), in order to prove Proposition 2 it is enough to prove (6). Upon 
applying Theorem 1 to deterministic {Xi} , i.e., Xi = xi , i = 1, 2,… , n , we obtain

Hence, by Lemma 1, we have

The proof is completed by replacing i − 1 with i in the above summation. 	�  ◻

Appendix B.4: Direct proof of property (8)

First, we show that for any x, y, t > 0 , we have G(𝛼)
x
(t)G(𝛼)

y
(t) = G

(𝛼)

x⊕y
(t) , that is

(27)FY (t) =

n∏
i=1

FYi
(t), t ∈ ℝ+,

(28)d

dt
FY (t) = FY (t)

n∑
i=1

d

dt
FYi

(t)

FYi
(t)

, t ∈ ℝ+.

FX(t) = FY (t) +
t

�

d

dt
FY (t) = FY (t)

{
1 +

t

�

n∑
i=1

d

dt
FYi

(t)

FYi
(t)

}
, t ∈ ℝ+.

G
(�)⨁n

i=1
xi
(t) =

n�
i=1

�
1 −

�xi
t

�
�
�
111(t ≥ xi).

F⨁n

i=1
xi
(t) =

n�
i=1

�
1 −

�xi
t

�
�
�
111(t ≥ xi) +

t

�

d

dt

n�
i=1

�
1 −

�xi
t

�
�
�
111(t ≥ xi)

=

�
1 +

n�
i=1

(−1)i

∑
U∈U

(n)

i

∏
j∈U xj

ti�
+

n�
i=1

(−1)i+1i

∑
U∈U

(n)

i

∏
j∈U xj

ti�

�

× 111

�
t ≥

n�
i=1

xi

�

=

�
1 +

n�
i=2

(−1)i+1(i − 1)

∑
U∈U

(n)

i

∏
j∈U xj

ti�

�
111

�
t ≥

n�
i=1

xi

�
.
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Upon integrating by parts, we find the right-hand side of the above equation to be

where we have

and

By combining (32) and (33) with (31), we obtain

producing (29). For general X with distribution �1 ∈ P+ and Y with distribution 
�2 ∈ P+ , integration by parts leads to

Due to (20), the last expression is equivalent to

which, by Fubini’s theorem, is equivalent to

(29)
(
1 −

(
x

t

)
𝛼
)
+

(
1 −

(y
t

)
𝛼
)
+
= ∫

t

0

(
1 −

(
s

t

)
𝛼
)
dFx⊕y(s).

(30)∫
t

0

(
1 −

(
s

t

)
𝛼
)
dFx⊕y(s) =

𝛼

t𝛼 ∫
t

0

s𝛼−1Fx⊕y(s)ds

(31)
=
�

t� �
t

0

s�−1
(
1 −

(xy)�

s2�

)
111(s ≥ x ∨ y)ds

=I1 − I2,

(32)I1 =
�

t� ∫
t

x∨y

s�−1ds = 1 −
(x ∨ y)�

t�

(33)I2 =
�(xy)�

t� ∫
t

x∨y

s−�−1ds = −
(xy)�

t2�
+

(x ∧ y)�

t�
.

∫
t

0

(
1 −

(
s

t

)
𝛼
)
dFx⊕y(s) = 1 −

(x ∨ y)𝛼

t𝛼
−

(x ∧ y)𝛼

t𝛼
+

(xy)𝛼

t2𝛼

=
(
1 −

(
x

t

)
𝛼
)
+

(
1 −

(y
t

)
𝛼
)
+
,

G
(𝛼)

X⊕Y
(t) = ∫

t

0

(
1 −

(
s

t

)
𝛼
)
dFX⊕Y (s) =

𝛼

t𝛼 ∫
t

0

s𝛼−1FX⊕Y (s)ds.

𝛼

t𝛼 ∫
t

0

s𝛼−1 ∫
∞

0 ∫
∞

0

Fx⊕y(s)dFX(x)dFY (y)ds,

(34)
∫

∞

0 ∫
∞

0

{
𝛼

t𝛼 ∫
t

0

s𝛼−1Fx⊕y(s)ds

}
dFX(x)dFY (y) =∫

∞

0 ∫
∞

0

G
(𝛼)

x⊕y
(t)dFX(x)dFY (y)
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where (34) is by (30) and (35) is by (29). This completes the proof. 	�  ◻

Appendix B.5: Proof of Theorem 3

We provide only a sketch of the proof of Theorem 3, as it is similar to the proof of 
Theorem  1. Let �1, �2,… , �n ∈ P+ be distributions of random variables 
X1,X2,… ,Xn , respectively. First, observe that for any probability measure � we have 
lim supx→∞ ∫ ∞

0
h(xt)𝜇(dx) < 1 . Thus, due to Theorem 2 in Kucharczak and Urbanik 

(1974), the function h(u) satisfies all the conditions for being a kernel of a general-
ized ChF for some generalized convolution ∗ . Hence, 
ΦXi

(
1

t

)
∶= ℙ

(
Xi

Ti
≤ t

)
= ∫ ∞

0
h
(

x

t

)
�i(dx) is a proper generalized characteristic 

function at 1
t
 for the generalized convolution ∗ . Then, there exists a random variable 

X with distribution �1 ∗ �2 ∗ … ∗ �n such that 
∏n

i=1
ΦXi

�
1

t

�
= ΦX

�
1

t

�
 . Thus, there 

exists a random variable T, independent of X and with survival function h(u), such 
that

This completes the proof. 	�  ◻
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