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Abstract
In this study, we propose a model averaging approach to estimating the conditional 
quantiles based on a set of semiparametric varying coefficient models. Different 
from existing literature on the subject, we consider a particular form for all can-
didates, where there is only one varying coefficient in each sub-model, and all the 
candidates under investigation may be misspecified. We propose a weight choice 
criterion based on a leave-more-out cross-validation objective function. Moreover, 
the resulting averaging estimator is more robust against model misspecification due 
to the weighted coefficients that adjust the relative importance of the varying and 
constant coefficients for the same predictors. We prove out statistical properties for 
each sub-model and asymptotic optimality of the weight selection method. Simula-
tion studies show that the proposed procedure has satisfactory prediction accuracy. 
An analysis of a skin cutaneous melanoma data further supports the merits of the 
proposed approach.
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1  Introduction

Quantile regression (Koenker and Bassett 1978) has attracted considerable interest 
in the literature not only because it provides a more complete view of the condi-
tional distribution of a response variable than the conditional mean, but also because 
it is more robust to outliers compared to the method of least squares. It has been 
extensively applied in economics, biology, medicine, finance and many other disci-
plines (Fitzenberger et al. 2002; Wheelock and Wilson 2008; Li et al. 2010).

In many practical applications, however, the linear parametric quantile regres-
sion may not be flexible enough to capture the relationship between response and 
its covariates. For example, in genetic analysis, many studies have shown that the 
genetic influences on disease risk are modified by environmental factors and this 
phenomenon is coined as gene-environment ( G × E ) interaction (Liu et  al. 2013; 
Sharafeldin et  al. 2015; Wu et  al. 2017). However, most of existing interaction 
analysis methods assume a linear relationship between a disease response and the 
genetic, and environmental factors as well as their interactions, which cannot assess 
the varying (or dynamic) patterns of genetic effects responsive to environmental 
changes (Ma et al. 2011). For example, a preliminary analysis of the skin cutaneous 
melanoma (SKCM) data (For more details of this dataset, see Section 4) from The 
Cancer Genome Atlas (TCGA) provides strong evidence of nonlinear G × E inter-
actions, in the sense that the effects of genes CCNB1 and POU5F1B on the quan-
tiles of Breslow’s thickness fluctuate according to patients’ age. It means that the 
assumption of linear G × E interaction does not hold for this dataset.

In recent years, there has been a rapidly growing literature on the extension of 
linear quantile regression to overcome the limitation of parametric assumptions, 
including both nonparametric and semiparametric quantile regression. Among them, 
the semiparametric varying coefficient model is the most frequently used approach, 
due to its appeal that it inherits the simple structure of the linear model and retains 
the flexibility of the varying coefficient model. Some important works along the 
line of semiparametric quantile regression models include Kai et al. (2011), Cai and 
Xiao (2012), Lian (2015), Shen and Liang (2017), Cai et al. (2018). In applications, 
however, it is difficult to decide which coefficients are really varying and which are 
not, and incorrect identification of nonparametric and parametric coefficients may 
result in substantial biases and poor predictions.

One possible approach to dealing with this uncertainty of models is to use model 
averaging, which fits a number of candidate models and combines them according to 
some criterion (Yang 2001; Hjort and Claeskens 2003; Hansen 2007). If we consider 
all candidate models with various combinations of parametric and nonparametric 
components, it will be quite computationally demanding even for only a few covari-
ates. In this study, we consider model averaging for quantile regression with sem-
iparametric candidate models. This is motivated by appealing properties of quantile 
regression and desirable flexibility of semiparametric varying coefficient models. 
We note that this research is more than a direct application of model averaging. 
In particular, we take a set of semiparametric varying coefficients quantile regres-
sion models as the candidates, where each sub-model involves only one varying 
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coefficient and treats the others as constant coefficients. These candidate models are 
more flexible to describe the nonlinear interactions than the linear parametric can-
didate models (Lu and Su 2015). And the semiparametric one-varying-coefficient 
models show preferable prediction performance to the univariate sub-models of Li 
et al. (2015a). Although averaging similar candidate models has been studied in the 
framework of mean regression (Li et al. 2018a), weight choice of quantile regres-
sion model averaging is significantly more complicated than that of the least squares 
estimation, because we do not have the usual bias-variance decomposition for the 
MSE-based evaluation criterion, and it is difficult to define a Mallows-type crite-
rion as in Hansen (2007). Accordingly, new and more challenging technical devel-
opments are needed for selecting weights optimally. We propose a leave-more-out 
cross-validation weight choice criterion by minimizing the quantile prediction error 
(QPE), which is quite different from Li et al. (2018a). Indeed, the distinct natures of 
QPE-based criterion from MSE-based criterion present a non-trivial work to calcu-
late the optimal weight and derive asymptotic properties for our quantile regression 
model averaging. Numerical studies show that our work provides a practically use-
ful new model averaging approach for quantile regression with improved prediction 
accuracy and computational efficiency.

The remainder of the paper is organized as follows. Section 2 introduces the basic 
setup of model averaging for semiparametric varying coefficient quantile regression 
models and proposes weight choice methods. Theoretical properties are also inves-
tigated. Sections 3 and 4 present the numerical results in simulation and real data 
examples, respectively. Section  5 contains concluding remarks. The proofs of the 
theorems are in Appendix. Additional simulation results can be found in supplemen-
tary materials.

2 � Methodology

In this work, we assume that variable selection has been done and focus on the uncer-
tainty of coefficients. Let Y be the response variable of interest, X = (X1, ...,Xp)

⊤ be a 
p-vector of covariates and U is univariate. Here, we assume that X1 = 1 . For a given 
𝜏 (0 < 𝜏 < 1) , we are interested in estimating the conditional quantile function of 
Y given covariates X = x,U = u , Q�(x, u) = argmina E

{
��(Y − a)|X = x,U = u

}
, 

where ��(�) = �(� − I(� ≤ 0)) is the check loss function at � ∈ (0, 1) . For the vary-
ing coefficient quantile regression model, the expression is as follows:

where �j(⋅) is the varying coefficient for the jth covariate, and we may write the 
parameter without � for simplicity.

It is possible that some covariates have constant coefficients, and in this case, it 
is unwise to estimate the constant coefficient by treating it as a function. If we could 

Q�(x, u) =

p∑
j=1

�j(u)xj,
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identify the constant coefficients, say the last p − q covariates, we would consider 
the semiparametric varying coefficient model:

However, it is not easy to identify which coefficients are really varying and which 
are not. One possible approach to dealing with this problem is to use model selec-
tion tools. Nevertheless, it can be highly unstable in the sense that a small change to 
the data may sometimes lead to drastically different outcomes (Nan and Yang 2014). 
This motivates us to use the idea of model averaging to reduce the loss of misspeci-
fication of models and avoid the additional uncertainty induced by model selection.

2.1 � Candidate models and estimation

Without any constraints, there are a vast number of candidate models with vari-
ous combinations of parametric and nonparametric components, and it is compu-
tationally infeasible to implement model averaging with all combinations of can-
didates. Considering the superiority of semiparametric varying coefficient model, 
we propose to approximate the conditional quantile function with the following 
sub-models:

Note that each sub-model involves one varying coefficient and p − 1 constant coef-
ficients, which is preferable to the parametric candidates (Lu and Su 2015) for 
addressing the nonlinear interactions. This study shares the same motivation of 
improving flexibility and prediction accuracy via incorporating one-dimensional 
marginal regression functions as some existing studies in other contexts (Stock and 
Watson 2004; Li et al. 2015a). Different from these studies, we use the semiparamet-
ric one-varying-coefficient models, not the univariate sub-models, to better account 
for the potentially confounding effects among predictors.

Suppose that we have a random sample Dn = {Yi,Xi,Ui}
n
i=1

 , where 
Xi = (Xi1, ...,Xip)

⊤ . Then we can estimate �j(⋅) and �jk by minimizing the quantile 
loss function

Assume that �j(⋅) is twice continuously differentiable so that it can be approximated 
locally by �j(u) ≈ aj + bj(u − u0) , with u in the neighborhood of a given point u0 . 
Write �(j) = (𝛽j1, ..., 𝛽j(j−1), 𝛽j(j+1), ..., 𝛽jp)

⊤ , then the local quantile regression estima-
tor for �(j) = (aj, bj, �

⊤
(j)
)⊤ is obtained by minimizing

Q�(x, u) =

q∑
j=1

�j(u)xj +

p∑
k=q+1

�kxk.

Q(j)
�
(x, u) = �j(u)xj +

p∑
k≠j

�jkxk, j = 1, ..., p.

1

n

n∑
i=1

��

(
Yi − �j(Ui)Xij −

p∑
k≠j

�jkXik

)
.
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where u is a given point, Khj
(⋅) = K(⋅∕hj)∕hj . Here K(⋅) is a kernel function and hj is 

a bandwidth.
It should be noted that we may use different bandwidths hj ( j = 1, ..., p ) for differ-

ent sub-models. But it can be quite time-consuming if we select optimal bandwidth 
for each sub-model, especially when p is large. In our numerical studies, we use a 
simple bandwidth selection method for ease of computation, and all models adopt a 
common bandwidth. Nonetheless, one can use cross-validation to select the optimal 
bandwidth hopt

j
 by minimizing the nonparametric version of the Akaike information 

criterion in the context of quantile regression (Cai and Xu 2008).
Let ��(j) = (�aj,�bj,

��
⊤

(j)
)⊤ be the estimator of �(j) obtained by minimizing (1) and 

�̂j(u) = âj , we can estimate the �th conditional quantile of Y given X = x and U = u 

by 
∑p

j=1
wjQ̂

(j)
� (x, u) , where Q̂(j)

� (x, u) = �̂j(u)xj +
∑p

k≠j �̂jkxk, and w = (w1, ...,wp)
⊤ is 

the weight vector, belonging to the set H =
�
w ∈ [0, 1]p ∶

∑p

j=1
wj = 1

�
 . Then, for 

a given w , the conditional quantile of Y can be approximated by

Remark 1  If we denote �̂j(u) = wj�̂j(u) +
∑p

k≠j wk�̂kj , a weighted version of coeffi-
cient by assigning different weights to a varying coefficient and p − 1 constant coef-
ficients, the estimated conditional quantile shares a similar form with varying coeffi-
cient model, i.e., 

∑p

j=1
�̂j(u)xj. But the unstructured varying coefficient model may 

overfit, especially when some varying coefficients should have been constant. In 
contrast, the model averaging estimator is more robust against model misspecifica-
tion due to the weighted coefficients that adjust the relative importance of the vary-
ing and constant coefficients for the same predictor. Moreover, our method does not 
require a rigid designation of an oracle model but instead integrates a number of 
possible sub-models. The plausibility of each sub-model is then reflected by its 
weight in the averaging step. The weight, to a certain extent, may help us to identify 
the model structure. Hence, this flexible approach avoids making a fixed parametric 
or nonparametric model assumption and its flexibility with relative simplicity yields 
good prediction results, as witnessed in our numerical studies.

Asymptotic theory for semiparametric varying coefficient quantile regression 
models has been well studied in Kai et al. (2011), but it cannot be applied here due 
to misspecification of sub-models. In this study, we adopt the idea of Angrist et al. 
(2006) to derive the asymptotic properties for �̂(j) when the corresponding sub-
model is potentially misspecified.

Suppose that the relationship between Y and {X,U} follows Y = Q�(X,U) + �� , 
where �� is random error with conditional �th quantile being zero. Let f (⋅|x, u) and 

(1)�j(�(j)) =
1

n

n∑
i=1

��
(
Yi − (aj + bj(Ui − u))Xij −

p∑
k≠j

�jkXik

)
Khj

(
Ui − u

)
,

Q̂�(x, u) =

p∑
j=1

wjQ̂
(j)
�
(x, u) =

p∑
j=1

(
wj�̂j(u) +

p∑
k≠j

wk�̂kj

)
xj.
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F(⋅|x, u) be the conditional density function and cumulative distribution function of 
�� , respectively. And the conditional density function of Y given {x, u} is denoted by 
fy(⋅|x, u). Besides, we denote by fU(⋅) the marginal density function of the covariate 
U. The kernel K(⋅) is chosen as a symmetric density function and we let

To proceed, for a given u, we define the pseudo-true parameter �∗
(j) = (a∗j , b

∗
j , �

∗⊤
(j) )

⊤

where X(j) = (Xj, (U − u)Xj,X1, ...,X(j−1),X(j+1), ...,Xp)
⊤ and �∗

(j)
= (�∗

j1
, ..., �∗

j(j−1)
,

𝛽∗
j(j−1)

, 𝛽∗
j(j+1)

...s, 𝛽∗
jp
)⊤ . Define

where r(j) = Q𝜏(X,U) − X
⊤
(j)
�∗
(j)

 indicates the approximation bias for the jth sub-

model, �X(j) = (Xj,X1, ...,X(j−1),X(j+1), ...,Xp)
⊤ and 𝜓𝜏(u) = 𝜏 − I(u < 0) . Let 

�∗
(−j)

= (a∗
j
, �∗⊤

(j)
)⊤ , ��(−j) = (�aj,

��
⊤

(j)
)⊤ , and make the following assumptions: 

	(A1)	 (Yi,Xi,Ui), i = 1, ..., n are i.i.d.
	(A2)	 The conditional density fy(⋅|x, u) exists a.s. and is bounded above by a finite 

constant Cf  and is continuous over its support a.s.;
	(A3)	 E‖X(j)‖ < ∞ , and �∗

(j)
∈ ℝ

p+1 is the unique solution to 

 where ‖ ⋅ ‖ is the L2 norm;
	(A4)	 The random variable U has a bounded support U and its density function fU(⋅) 

has a continuous second derivative in its support (The derivative is left/right 
continuous at the right/left endpoint of U);

	(A5)	 The varying coefficients �(⋅) have continuous second derivatives in u ∈ U;
	(A6)	 K(⋅) is a symmetric density with bounded support and satisfies a Lipschitz 

condition;
	(A7)	 f (⋅|x, u) is bounded away from zero and has a continuous and uniformly 

bounded derivative;
	(A8)	 For any u ∈ U , there exist constants C

A(j)
 , CA(j)

 , C
C(j)

 and CC(j)
 such that 

 and 

�k = ∫ ukK(u)du, vk = ∫ ukK2(u)du, k = 0, 1, 2,…

�∗
(j)
= argmin

�(j)

E
[
𝜌𝜏(Y − X

⊤
(j)
�(j))Khj

(U − u)
]
,

A(j)(u) = E
[
f (−r(j)|X,U)X(j)X

⊤
(j)
|U = u

]
, B(j)(u) = E

[
𝜓2
𝜏
(𝜀𝜏 + r(j))X(j)X

⊤
(j)
|U = u

]
,

C(j)(u) = E
[
f (−r(j)|X,U)�X(j)

�X
⊤

(j)
|U = u

]
, D(j)(u) = E

[
𝜓2
𝜏
(𝜀𝜏 + r(j))

�X(j)
�X
⊤

(j)
|U = u

]
,

(2)E
{[

𝜏 − I(Y ≤ X
⊤
(j)
�(j))

]
X(j)Khj

(U − u)
}
= 0,

0 < C
A(j)

≤ 𝜆min(A(j)(u)) ≤ 𝜆max(A(j)(u)) ≤ Cf𝜆max(E[X(j)X
⊤
(j)
]) ≤ CA(j)

< ∞,
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	(A9)	 For any u ∈ U , there exist constants C
B(j)

 , CB(j)
 , C

D(j)
 and CD(j)

 such that 

 and 

	(A10)	E(Q4
𝜏
(X,U)) < ∞ and max1≤j≤p E(X8

j
) ≤ CX for some CX < ∞.

Theorem  1  Suppose Assumptions (A1)-(A10) hold, for a given u and � , we have 
‖�̂(j) − �∗

(j)
‖ = op(1).

Theorem 1 shows that the estimation error for each candidate model is at a negli-
gible order. The proof can be found in Appendix. In Theorem 2, we give the asymp-
totic distribution of the estimators.

Theorem 2  Suppose Cj(u) is nonsingular for all 1 ≤ j ≤ p and u ∈ U , and Assump-
tions (A1)-(A10) hold, for a given u and � , if hj → 0 and nh2

j
 → ∞ as n → ∞ , then

Remark 2  As discussed in Li et al. (2018a), another theoretical issue of interest is 
approximation error, which is closely related to the approximation bias r(j) . Assump-
tions (A8) and (A9) imply that there is no candidate model for which the approxima-
tion error is zero. That is, all the candidate models are misspecified. But the approxi-
mation errors of all candidate models can be bounded according to Assumptions 
(A8) and (A9), which indicate that the difference between each candidate model and 
the true model cannot tend to infinity.

2.2 � Weight choice criterion

An important issue with model averaging is how to choose weights. Here, we pro-
pose a weight choice method based on leave-more-out cross-validation. The proce-
dure is as follows:

Fix � ∈ (0, 1) , let 1 ≤ n0 ≤ n − 1 be an integer (typically n0 is of the same order as 
or slightly larger than n − n0 ). 

Step 1:	 Randomly partition the data into two parts: D(1) = (Yi,X
⊤
i
,Ui)

n0

i=1
 for training 

and D(2) = (Yi,X
⊤
i
,Ui)

n

i=n0+1
 for testing.

0 < C
C(j)

≤ 𝜆min(C(j)(u)) ≤ 𝜆max(C(j)(u)) ≤ Cf𝜆max(E[
�X(j)

�X
⊤

(j)
]) ≤ CC(j)

< ∞;

0 < C
B(j)

≤ 𝜆min(B(j)(u)) ≤ 𝜆max(B(j)(u)) ≤ CB(j)
< ∞,

0 < C
D(j)

≤ 𝜆min(D(j)(u)) ≤ 𝜆max(D(j)(u)) ≤ CD(j)
< ∞;

√
nhj

(
�̂(−j) − �∗

(−j)

)
d
−→N

(
0,

v0

fU(u)
C

−1
j
(u)Dj(u)C

−1
j
(u)

)
.
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Step 2:	 Based on D(1) , obtain the estimate ��(j),n0
= (�aj,n0 ,

�bj,n0 ,
��
⊤

(j),n0
)⊤ by minimizing 

(1) for j = 1, ..., p.
Step 3:	 For D(2) , compute the predicted quantiles ̂Q(j)

�,n0
(Xi,Ui) = âj,n0Xij +

∑p

k≠j �̂jk,n0Xik 
for i = n0 + 1, ..., n.

Step 4:	 Compute the weights by minimizing the loss function 

 over the set H . And denote ŵ∗
= argminw∈H CVn0

(w).
Step 5:	 Repeat Steps (1)-(4) K-1 more times and average the weights over K random 

permutations. Denote the averaging weights as ŵ , and the final model averaging 
estimator of the � th conditional quantile of Y given X = x and U = u is given by 
Q̂�(x, u) =

∑p

j=1
ŵjQ̂

(j)
�,n0

(x, u).

Remark 3  Different from the adaptive quantile regression by mixing (AQRM) 
in Shan and Yang (2009), the proposed weights have no explicit expression. But 
AQRM is more time-consuming due to the selection of tuning parameter. Here, we 
can convert the constrained minimization problem (3) into a linear programming 
problem:

This linear programming can be implemented in standard software, for example, the 
linprog package in R and the algorithm linprog in MATLAB.

Remark 4  It is natural as done in Li et al. (2018a) to consider the MSE-based weight 
choice criterion in the least squares regression, since MSE balances the asymptotic 
bias and variance in a good way. But it may not be a suitable criterion choice for 
quantile regression as pointed out by Lu and Su (2015). In the framework of para-
metric quantile regression, Lu and Su (2015) proposed a jackknife model averaging 
estimator which selects the weights by minimizing a leave-one-out cross-validation 
criterion. As mentioned above, however, the linear parametric candidate models 
may not be rich enough to describe the nonlinear interactions, which motivates us to 
propose the cross-validation model averaging for semiparametric varying coefficient 
quantile regression model. When n0 = n − 1 , the proposed weight criterion reduces 

(3)CVn0
(w) =

1

n − n0

n∑
i=n0+1

��

(
Yi −

p∑
j=1

wjQ̂
(j)
�,n0

(Xi,Ui)

)
,

min
w,u,v

{
𝜏1⊤

n−n0
u + (1 − 𝜏)1⊤

n−n0
v
||||

p∑
j=1

wj
�Q(j)
𝜏,n0

(Xi,Ui) + ui − vi = yi,

i = n0 + 1, ..., n

}

subject to ∶ 0 ≤ ui, 0 ≤ vi, for i = n0 + 1, ..., n,

0 ≤ wj ≤ 1,

p∑
j=1

wj = 1, for j = 1, ..., p.
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to the jackknife weight, but numerical studies show that leave-more-out will help 
to boost the performance of prediction (See Zhan and Yang (2022) for some recent 
results on the choice of n0 in cross-validation).

Based on Theorem  1, by n0∕n = Op(1) , we have that ‖�̂(j),n0
− �∗

(j)
‖ = op(1) . 

Now we can establish the asymptotic behavior of the estimated weight ŵ . Let 
{Y ,X,U} be an independent copy of {Yi,Xi,Ui} , and define the quantile predic-
tion error (QPE) as

We suppress the subscript � in QPE�,n(w) when � is fixed. And we impose the fol-
lowing assumption: 

	(A11)	For any u ∈ U , there exist constants C
J
 and CJ such that 

 where J(u) = E
[
f (−r( w)|X,U)�X(j)

�X
⊤

(j)
|U = u

]
 and r( w) = Q𝜏 (X,U) −

∑p

j=1
wjX

⊤
(j)
�∗
(j)

.

Theorem 3  Suppose Assumptions (A1)-(A11) hold, as n → ∞ , for a given � , then ŵ 
is asymptotically optimal in the sense that

Theorem 4  Let T = [t, 1 − t] be a compact subset of (0, 1) with 0 < t ≤ 1∕2 . Sup-
pose Assumptions (A1)-(A11) hold, as n → ∞ , then ŵ is asymptotically optimal uni-
formly for � ∈ T  in the sense that

The proofs are presented in Appendix. The optimality property in Theorem  3 
indicates that the optimal weight ŵ is asymptotically equivalent to the best weight 
to minimize QPEn( w) over H for a single given � . Similar to Wang et al. (2021), 
Theorem 4 shows that the asymptotic optimality of ŵ is uniform in the set of quan-
tile indices.

3 � Finite sample analysis by simulations

In this section, we conduct simulation studies to evaluate the performances of the 
proposed method. We simulate data from the following semiparametric varying 
coefficient model

QPE�,n(w) = E

[
��

(
Y −

p∑
j=1

wjQ̂
(j)
�
(X,U)

)||||Dn

]
.

0 < C
J
≤ 𝜆min(J(u)) ≤ 𝜆max(J(u)) ≤ Cf𝜆max(E[

�X(j)
�X
⊤

(j)
]) ≤ CJ < ∞,

QPEn(ŵ)

infw∈H QPEn(w)
= 1 + op(1).

sup
�∈T

QPE�,n(ŵ)

infw∈H QPE�,n(w)
= 1 + op(1).
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where � = (𝛽5, ..., 𝛽10)
⊤ = (0.5, 1,−1.5, 2, 3,−2.5)⊤ , �1(u) = cos(2�u) , �2(u) =

2+u2

1+u2
 , 

�3(u) =
2 exp(−0.5u2)

exp(−0.5u2)+1
 and �4(u) = sin(6�u) . The covariate U is generated from the 

uniform distribution on [0, 1], X1 = 1 and the covariate vector (X2, ...,X10)
⊤ follows 

N(0,Σ) with Σ = (0.5|i−j|)9
i,j=1

 . We consider two settings for error distributions, 

� ∼ N(0, 1) in Setting I (homoscedastic case); � =
∑10

j=1
j−1Xj� in Setting II (hetero-

scedastic case), where � follows N(0, 1) and is independent of X.
In all sets of simulation studies, we generate 500 datasets, each with a train-

ing sample size of n = 100, 200, 300 . For each replication, we generate ntest = 500 
observations as the testing sample. And we use the local linear fitting method to 
estimate the varying coefficients for the competing methods. The Gaussian kernel is 
adopted here and the bandwidth we select is h = c�̂un

−1∕5, where c is a constant and 
�̂u is the standard deviation of the sample of observations U. In numerical studies, 
for simplicity, we use c = 1.06 , which is the optimal bandwidth choice based on the 
Silverman’s rule-of-thumb method (Silverman 1986). One may use cross-validation 
to select the optimal c for practical use, but it is time-consuming. We consider the 
quantiles � = 0.1, 0.2, 0.5, 0.8, 0.9.

When evaluating the prediction performances of different methods, we consider 
several measures based on quantile prediction error (QPE) and absolute prediction 
error (APE), defined as

respectively. Analogous to Zhu et al. (2019), the measures used include normalized 
QPE, which is calculated by dividing the QPE of one estimator by the smallest QPE 
among the methods considered; Paired t-test, which is used to test the difference 
between two methods in QPE; optimality rate of QPE (or APE), which is defined 
as the proportion of times of each methods producing the smallest QPE (or APE) 
across 500 replications. Here, we present the results for n = 200 due to the space 
limitation, while the results with n = 100 and 300 are available in the supplementary 
material. In general, they exhibit patterns that are similar to those shown here and it 
is not surprising that all methods tend to perform better when sample size increases.

Y = �1(U)X1 +⋯ + �4(U)X4 + �5X5 +⋯ + �10X10 + �,

QPE =
1

ntest

ntest∑
i=1

��

(
Yi − Q̂�(Xi,Ui)

)
,

APE =
1

ntest

ntest∑
i=1

|||Q̂�(Xi,Ui) − Q�(Xi,Ui)
|||,
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Case 1 (Different weight choice criteria). In this case, we investigate the perfor-
mances of the following methods: 

(a)	 CV-MA: the proposed method with n0 = n∕2.
(b)	 AQRM: proposed in Shan and Yang (2009).
(c)	 J-MA: Jackknife model averaging which selects the weights by minimizing 

a leave-one-out cross-validation criterion, that is n0 = n − 1 in the proposed 
method.

(d)	 FVC: estimation based on the fully varying coefficient model without model 
selection.

(e)	 Oracle: estimation based on the true model.

Note that CV-MA, AQRM and J-MA are methods of model averaging with the same 
candidate models but different weight choice criteria, while FVC and Oracle are one 
model-based methods. The results of normalized QPE and t-test for the differences 
in QPE between CV-MA and alternatives are summarized in Table 1, where normal-
ized QPE and t-test of QPE are computed over 500 replications. A positive t-statistic 
indicates that the estimator in the numerator produces a larger QPE than the estima-
tor in the denominator. Besides, we plot the results of APE and optimality rate in 
Figure 1. The main conclusions are as follows:

(1) From the results of normalized QPE, we find that FVC method produces 
the largest QPE because of overfitting and the oracle method also performs worse 
than model averaging methods in QPE. Among the three model averaging meth-
ods, CV-MA and AQRM perform better than J-MA. The results of t statistics and 
p-values indicate that there are statistically significant differences in QPE between 
CV-MA and the alternatives for all quantiles. For almost all quantiles, CV-MA 
yields smaller QPE than AQRM, and the differences are significant, showing that 
CV-MA performs better than AQRM significantly.

(2) The box-plots of APE show that CV-MA enjoys advantages in prediction 
accuracy over other methods, since it produces the smallest APE in almost all situ-
ations. AQRM also has satisfactory performance in terms of APE, while slightly 
worse than CV-MA. J-MA still performs worst among three model averaging meth-
ods in APE. Remarkably, the oracle method is not always the victor in APE, and the 
smaller range of APE in the box-plots for model averaging methods indicates that 
the model averaging methods are more stable than the methods based on a single 
model, even the true one, which reconfirms the superiority of the approach of model 
averaging. Regarding the model averaging methods beating the oracle method, simi-
lar results can be found in Yang (2007) and Li et al. (2018a). Among all methods, 
FVC performs poorly and has the largest APE.

(3) The results of optimality rate of QPE show that CV-MA attains a propor-
tion over 30% for almost all situations, meaning that in more than one-third of the 
replications, CV-MA yields the smallest QPE among all competitors in Case 1. The 
Oracle method performs best in terms of the optimality rate of APE and there is lit-
tle chance for FVC to produce the smallest prediction error when n = 200 . Besides, 
the results with n = 100 provided in supplementary material show that the Oracle 
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Fig. 1   Simulation results for Case 1 with n = 200
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method is not the shoo-in in terms of the optimality rate of APE. This is due to the 
fact that when the sample size is small, it is difficult to capture the nonparametric 
coefficient function in the true model. As the sample size increases, we are then 
gradually able to precisely estimate the four varying coefficients.

Case 2 (Model misspecification). In this case, we assess the performances of 
methods (a)-(e) when the models are all misspecified. Specifically, we wrongly use 
X2 as the index variable for all candidate models, while U is mistaken for X. We 
denote the method (e) regarding misspecification with SVC. The results of normal-
ized QPE and t-test over 500 replications are presented in Table 2. A positive t-sta-
tistic indicates that the estimator in the numerator produces a larger QPE than the 
estimator in the denominator. Besides, Figure 2 shows the results of APE and opti-
mality rate.

Across all results for Case 2, CV-MA is observed to have superior or similar 
performance compared to the alternatives. Specifically, CV-MA yields the smallest 
normalized QPE, but the differences in QPE between CV-MA and AQRM are not 
always significant. And they substantially outperform J-MA. FVC, not surprisingly, 
has the poorest prediction performances. SVC also loses to model averaging meth-
ods because of the model misspecification, which indicates that averaging method is 
more robust against model misspecification. The results of optimality rate show that 
CV-MA has a clear advantage over other methods because it has the largest optimal-
ity rate of APE for almost all scenarios.

Case 3 (Different candidate models). In this case, we examine the performances 
of the following candidate models: 
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Fig. 1   (continued)
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(a)	 Candidate A: the proposed semiparametric one-varying-coefficient candidate 
models.

(b)	 Candidate B: the nested-varying-coefficient candidate models containing true 
model (Hansen 2007), i.e., the j-th candidate model is given by 
Q

(j)
� (x, u) =

∑j

l=1
�jl(u)xl +

∑p

k=j+1
�jkxk, j = 1, ..., p.

(c)	 Candidate C: the marginal candidate models (Li et  al. 2015a), 
Q

(j)
� (x, u) = �j(u)xj, j = 1, ..., p.

Table 1   Simulation results for Case 1 with n = 200

Setting � Oracle CV-MA AQRM J-MA FVC

Normalized QPE
Setting I 0.1 1.131 1.014 1.017 1.032 1.253

0.2 1.056 1.010 1.013 1.024 1.127
0.3 1.024 1.011 1.015 1.023 1.063
0.4 1.034 1.015 1.018 1.029 1.095
0.5 1.067 1.016 1.020 1.040 1.176

Setting II 0.1 1.109 1.011 1.017 1.032 1.224
0.2 1.046 1.010 1.013 1.026 1.120
0.3 1.021 1.011 1.015 1.021 1.068
0.4 1.034 1.013 1.017 1.024 1.102
0.5 1.070 1.013 1.020 1.036 1.168

Setting � FVC

CV-MA

Oracle

CV-MA

J-MA

CV-MA

AQRM

CV-MA

Paired t-test
Setting I 0.1 t 35.508 25.564 14.098 5.219

p-value 0.000 0.000 0.000 0.000
0.2 t 31.181 18.058 15.574 6.656

p-value 0.000 0.000 0.000 0.000
0.3 t 23.88 8.869 17.496 9.519

p-value 0.000 0.000 0.000 0.000
0.4 t 24.786 9.117 15.687 7.273

p-value 0.000 0.000 0.000 0.000
0.5 t 28.204 15.532 16.538 7.891

p-value 0.000 0.000 0.000 0.000
Setting II 0.1 t 32.063 21.912 17.221 6.600

p-value 0.000 0.000 0.000 0.000
0.2 t 27.582 15.229 18.339 8.193

p-value 0.000 0.000 0.000 0.000
0.3 t 25.638 7.483 15.113 8.431

p-value 0.000 0.000 0.000 0.000
0.4 t 26.871 11.181 12.533 5.228

p-value 0.000 0.000 0.000 0.000
0.5 t 27.473 17.445 18.089 8.423

p-value 0.000 0.000 0.000 0.000
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Fig. 2   Simulation results for Case 2 with n = 200
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Here, we adopt the same weight choice criterion with CV-MA for Candidate A, B 
and C. The results of normalized QPE and t-test for heteroscedastic case over 500 
replications are presented in Table 3. A positive t-statistic indicates that the estima-
tor in the numerator produces a larger QPE than the estimator in the denominator. 
Also, the results of APE and optimality rate are shown in Figure 3. We can draw the 
following conclusions from the results:

CV-MA with Candidate A always yields the smallest normalized QPE among all 
candidates, and Candidate B performs slightly better than Candidate A in terms of 
APE across 500 replications, and yet, somewhat worse considering the optimality 
rate. The optimality rates of QPE demonstrate that Candidate A is the favorite of 
all candidates, because it most likely yields the smallest prediction error among the 
three methods. Candidate C has the poorest performance due to ignoring the poten-
tially confounding effects among predictors. In summary, the performance of one-
varying-coefficient candidate models (all misspecified) indicates better-performing 
deals over other model sets even for the true-model-involved nested-varying-coeffi-
cient models in terms of QPE. Although Candidate A performs slightly worse than 
Candidate B in terms of APE, in practice, it is difficult to determine the order of the 
variables when applying the nested candidate models. Thus, Candidate A is more 
desirable than other candidates because it is relatively easy to implement and has a 
satisfactory prediction accuracy.

Case 4 (Time cost). In this case, we compare the computing time of 
CV-MA and AQRM. For AQRM, the tuning parameter is taken from 
� = min{�, 1 − �} × {0, 0.5, 1, 3, 6, 10} . We select the optimal � as the one that pro-
duces the smallest Weighted Integrated Coverage Error (WICE) defined in Shan 
and Yang (2009) by cross-validation. Furthermore, to approximate the integrals in 
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Fig. 2   (continued)
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WICE, we need to calculate coverage error under a number of discrete � values. In 
this study, we choose � ∈ {0.1, 0.2, ..., 0.9} . All these reasons force AQRM to spend 
more time in estimation than CV-MA. For the sake of fairness, we record the time 
that the two methods use in Case 1 in a laptop with 2.4 GHz Intel Core i5 and 8GB 
of RAM. The results are shown in Table  4 with different sample sizes or dimen-
sions. The results strengthen the evidence that AQRM is more time-consuming due 
to the selection of tuning parameter.

Table 2   Simulation results for Case 2 with n = 200

Setting � SVC CV-MA AQRM J-MA FVC

Normalized QPE
Setting I 0.1 1.309 1.014 1.015 1.046 1.782

0.2 1.176 1.011 1.012 1.031 1.505
0.3 1.109 1.008 1.009 1.021 1.348
0.4 1.181 1.012 1.013 1.034 1.543
0.5 1.329 1.019 1.021 1.050 1.870

Setting II 0.1 1.372 1.016 1.018 1.054 1.867
0.2 1.230 1.013 1.014 1.041 1.592
0.3 1.138 1.008 1.009 1.027 1.407
0.4 1.220 1.013 1.014 1.034 1.597
0.5 1.374 1.021 1.023 1.055 1.917

Setting � FVC

CV-MA

SVC

CV-MA

J-MA

CV-MA

AQRM

CV-MA

Paired t-test
Setting I 0.1 t 28.138 16.587 7.800 2.246

p-value 0.000 0.000 0.000 0.025
0.2 t 26.684 15.689 7.076 3.283

p-value 0.000 0.000 0.000 0.001
0.3 t 27.946 16.351 8.541 2.270

p-value 0.000 0.000 0.000 0.024
0.4 t 26.351 15.895 9.342 1.786

p-value 0.000 0.000 0.000 0.075
0.5 t 24.915 18.547 8.753 0.949

p-value 0.000 0.000 0.000 0.343
Setting II 0.1 t 27.471 15.851 6.293 4.785

p-value 0.000 0.000 0.000 0.000
0.2 t 25.529 15.329 5.010 3.134

p-value 0.000 0.000 0.000 0.002
0.3 t 23.105 16.021 6.050 1.959

p-value 0.000 0.000 0.000 0.051
0.4 t 21.511 15.122 8.173 3.878

p-value 0.000 0.000 0.000 0.000
0.5 t 20.605 17.229 6.302 2.805

p-value 0.000 0.000 0.000 0.005
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4 � Analysis of SKCM data

In this example, we illustrate the proposed methods by analyzing the cutaneous mel-
anoma data from The Cancer Genome Atlas (TCGA). This dataset is available at 
https://​cance​rgeno​me.​nih.​gov/, provisional using R package cgdsr. TCGA data have 
a high quality and all-around omics measurements, enabling more accurate disease 
diagnosis and prognosis. The SKCM data contains information of 345 patients suf-
fering from the skin cutaneous melanoma. For each patient, the value of Breslow’s 
thickness (BRESLOW) is collected, which is a continuous variable and has been 
widely used as a prognostic indicator for melanoma. Besides, mRNA gene expres-
sions that have been normalized (measurements on 18934 Z-scores), quantifying the 
relative expressions of tumor samples with respect to normal, as well as some envi-
ronmental measurements such as Age, Gender, tumor pathological stage are also 
available for analysis. We take the continuous variable Age as the index variable U 
to capture the gene-environment interactions. Besides, we carry out a logarithmic 
transformation to scale Breslow feature, a min–max normalization to Age feature 
and a standardized transformation to other features treated as predictors.

There have been several papers devoted to analyzing the SKCM data. Usually, the 
goal of the analysis is to identify the genetic factors affecting the Breslow’s thick-
ness. Considering the number of cancer-related genes is not expected to be large, 
we only include genes that may shed light on the molecular mechanisms. To deal 
with ultrahigh dimensionality, we could first adopt a marginal screening procedure 

Table 3   Simulation results for Case 3 with n = 200

� Candidate A Candidate B Candidate C

Normalized QPE
 0.1 1.005 1.063 2.528
 0.2 1.008 1.024 2.816
 0.3 1.007 1.009 2.624
 0.4 1.009 1.013 2.950
 0.5 1.009 1.029 2.792

� Candidate B

Candidate A

Candidate C

Candidate A

Paired t-test
 0.1 t 17.204 147.678

p-value 0.000 0.000
 0.2 t 9.340 205.204

p-value 0.000 0.000
 0.3 t 2.379 281.049

p-value 0.000 0.018
 0.4 t 3.641 256.827

p-value 0.000 0.000
 0.5 t 9.700 182.983

p-value 0.000 0.000

https://cancergenome.nih.gov/
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Fig. 3   Simulation results for Case 3 with n = 200

Table 4   The time cost (min) of 
CV-MA and AQRM

n = 50 n = 100 n = 200

CV-MA 0.371 1.013 3.728
AQRM 6.432 17.070 59.948

p = 5 p = 10 p = 15

CV-MA 0.432 1.014 1.565
AQRM 7.681 17.066 28.152
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or model selection methods to screen out irrelevant genes. However, the important 
variables selected by different selection methods are quite different. Here, we just 
turn to sparsity oriented importance learning (SOIL) proposed in Ye et al. (2018) 
for help. In this study, we exclude the genes with missing values and use the genetic 
measurements selected by the methods proposed in Winnepenninckx et al. (2006), 
Li et al. (2015b), Wu et al. (2017), Chai et al. (2017), Li et al. (2018b), Xu et al. 
(2018) and as the candidate covariates X and adopt SOIL importance to narrow 
down the set of covariates for reaching a final model with sound considerations. 
Consequently, according to the variable importance measures, there are p = 20 vari-
ables with top 20 SOIL scores involved in our model averaging.

We compare the proposed methods with the fully varying coefficient model 
(FVC) that takes the coefficients of X as functions of variable U, as well as the 
method of the semiparametric varying coefficient model (SVC), where the coef-
ficients are determined roughly as follows: we first estimate the coefficients using 
a fully varying coefficient model, then treat genes with obviously nonlinear coef-
ficients as covariates of nonparametric components and others as parametric com-
ponents. The estimates of varying coefficients for the fully varying coefficients 
model visually suggest that the coefficients of genes BUB1, CENPF, CEP295, 
D2HGDH, IFI44 and PTMA could be taken as linear functions. Finally, these genes 
are included in the semiparametric varying coefficient model in the form of constant 

Table 5   Results for SKCM data
� SVC CV-MA AQRM J-MA FVC

Normalized QPE
0.1 2.303 1.008 1.013 1.067 2.972
0.2 1.956 1.007 1.004 1.138 2.302
0.3 1.757 1.002 1.008 1.125 2.010
0.4 1.578 1.006 1.005 1.067 1.867
0.5 1.528 1.004 1.007 1.047 1.832
0.6 1.546 1.004 1.002 1.043 1.862
0.7 1.564 1.003 1.006 1.043 1.873
0.8 1.580 1.007 1.005 1.044 1.834
0.9 1.841 1.028 1.023 1.076 2.085
Violation rate
0.1 0.352 0.247 0.247 0.262 0.378
0.2 0.382 0.303 0.304 0.311 0.405
0.3 0.424 0.358 0.358 0.366 0.431
0.4 0.461 0.414 0.416 0.420 0.471
0.5 0.509 0.483 0.483 0.486 0.514
0.6 0.550 0.564 0.564 0.566 0.557
0.7 0.579 0.622 0.622 0.624 0.588
0.8 0.620 0.678 0.679 0.663 0.630
0.9 0.647 0.729 0.732 0.707 0.648
MVR 0.137 0.083 0.083 0.090 0.142
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coefficients and the rest are in the form of functions. In addition, AQRM, J-MA are 
also considered to analyze the dataset for comparison.

We randomly split the data into two parts, a training dataset of size n = 200 and a 
testing sample of size ntest = 145 . We fix the kernel function to be the Gaussian ker-
nel for all local linear fitting and choose the bandwidth as h = 1.06�̂un

−1∕5 for sim-
plicity. For quantiles � = 0.1, 0.2, ..., 0.9 , we calculate QPE for all methods. With 
real data, since it is difficult to objectively evaluate the performance with APE, 
instead, we calculate the out-of-sample violation rate (Kuester et  al. 2006): 
�p𝜏 =

1

ntest

∑ntest
i=1

1

�
Yi < �Q𝜏(Xi,Ui)

�
, which should be close to � if Q̂�(Xi,Ui) cor-

rectly estimate the conditional quantile of Yi . And we also calculate the mean viola-
tion rate MVR =

1

9

∑9

i=1
�p̂�i − �i� to evaluate the overall performances. The results 

are presented in Table 5.
From the results, we find that among model averaging methods, the performance 

of CV-MA is analogous to that of AQRM and outperforms J-MA in terms of both 
normalized QPE and MVR. FVC produces the largest normalized QPE and MVR 
as expected. And SVC gives similar violation rate with FVC and is less close to � 
than that of model averaging methods, which again supports that model averaging of 
semiparametric varying coefficients model can improve the prediction accuracy in 
the analysis of SKCM data. Overall, the proposed approach has a prominent superi-
ority in prediction accuracy.

5 � Concluding remarks

In this paper, we propose a new model averaging estimation for conditional quan-
tile based on a set of semiparametric varying coefficient models. Each candidate 
model involves only one nonparametric component and thus can be easily fitted 
using univariate smoothing. Although all candidate models may be wrong, the aver-
aging of all sub-models can improve the prediction accuracy. Moreover, the model 
averaging estimator shares a form like a fully varying coefficient model but is more 
robust against model misspecification due to the weighted coefficients that adjust 
the relative importance of the varying and constant coefficients for the same predic-
tor. Based on leave-more-out cross-validation, we provide a weight choice criterion, 
which is shown to be asymptotically optimal in the sense of minimizing the quantile 
prediction error. Numerical studies show that the proposed method works very well 
compared to several alternatives.

Because there is no closed-form solution for quantile regression, and all the sub-
models under investigation may be incorrectly specified, it is more difficult to estab-
lish the asymptotic optimality of the averaging estimator. In this work, for the theo-
retical properties, we considered the fixed dimensional case. But the problems with 
diverging p deserve further studies. In supplementary materials, we conduct simula-
tion studies to investigate the asymptotic distribution of the CV-MA estimator and 
find out that the distribution of the final estimator is approaching a normal distribu-
tion. However, more effort is needed to formally examine the asymptotic distribu-
tion of the final estimator Q̂�(x, u) . In addition, the current paper considers only the 
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semiparametric varying coefficient model with simple random samples, and exten-
sions to missing data or survival data (Lin et al. 2016) remain for future research.

Appendix

A.1. Proof of Theorem 1

We first introduce the following lemma, which is a direct result of Mack and Silver-
man (1982) and will be used in our proofs.

Lemma 1  Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random vectors, where Y1, ..., Yn are sca-

lar random variables. Assume that E|Y|r < ∞ and supx ∫ |y|rf (x, y)dy < ∞ , where 

f denotes the joint density of (X,Y) . Let K be a bounded positive function with 
bounded support, satisfying a Lipschitz condition. Then,

provided that n2�−1h → ∞ for some 𝜂 < 1 − r−1.

Now, we prove the results of Theorem  1. First, we introduce Knight’s identity 
(Knight 1988), which will be used in the following proof,

For given u, � , and j, define ��,i = Yi − Q� (Xi,Ui), ri(j) = Q𝜏 (Xi,Ui) − X
⊤
i(j)
�∗
(j)

 . 

Recall that �∗
(j)
= (a∗

j
, b∗

j
, �∗⊤

(j)
)⊤ . To simplify the notation, we use a shorthand �i and 

� for ��,i and �� , respectively. For �(j) ∈ ℝ
p+1 , we define

We will show that for any s > 0 , there is a constant M > 0 such that for all n suf-
ficiently large, we have

where �s
(j)
= �∗

(j)
+ �sv(j) , v(j) = (v1, ..., vp+1)

⊤ , and �s = o(1) . By the Knight’s iden-
tity, we obtain

sup
x∈D

�����
1

n

n�
i=1

Kh

�
Xi − x

�
Yi − E

�
Kh

�
Xi − x

�
Yi
������
= Op

�
log1∕2(1∕h)√

nh

�
,

(4)��(u + v) − ��(u) = v��(u) + �
−v

0

[I(u ≤ z) − I(u ≤ 0)]dz.

Gj(𝜏,�(j)) =

n∑
i=1

[
𝜌𝜏(Yi − X

⊤
i(j)
�(j))Khj

(Ui − u)
]
.

(5)P

�
inf‖v(j)‖=MGj(𝜏,�

s
(j)
) > Gj(𝜏,�

∗
(j)
)

�
≥ 1 − s,
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where

By equation (2), we have E
[
Gj,1

(
v(j)

)]
= 0 . By Assumptions (A6) and (A9),

where CK is a finite positive constant. Hence Gj,1

�
v(j)

�
= Op

�
C
1∕2

B(j)
�s
√
n
�
‖v(j))‖ . By 

Taylor expansion, we have

Analogous to Gj,1

(
v(j)

)
 , by Assumption (A8), we obtain that 

Gj,3

�
v(j)

�
= Op(C

1∕2

A(j)
�s
√
n)‖v(j)‖ . Thus we get (5), which implies that with probability 

approaching to 1, there exists a local minimum �̂(j) in the ball 
BM,�s

=
�
�∗
(j)
+ �sv(j) ∶ ‖v(j)‖ ≤ M

�
 such that ‖�̂(j) − �∗

(j)
‖ = Op(�s) = op(1) . By the 

Gj(𝜏,�
s
(j)
) − Gj(𝜏,�

∗
(j)
)

=

n∑
i=1

[
𝜌𝜏(Yi − X

⊤
i(j)
�s
(j)
)Khj

(Ui − u)
]
−

n∑
i=1

[
𝜌𝜏(Yi − X

⊤
i(j)
�∗
(j)
)Khj

(Ui − u)
]

= −𝛿s

n∑
i=1

Khj
(Ui − u)𝜓𝜏(𝜀i + ri(j))X

⊤
i(j)
v(j)

+

n∑
i=1

Khj
(Ui − u)�

𝛿sX
⊤
i(j)
v(j)

0

[I(𝜀i ≤ −ri(j) + z) − I(𝜀i ≤ −ri(j))]dz

≡ Gj,1

(
v(j)

)
+ Gj,2

(
v(j)

)
+ Gj,3

(
v(j)

)
,

Gj,1

(
v(j)

)
= −𝛿s

n∑
i=1

Khj
(Ui − u)𝜓𝜏

(
𝜀i + ri(j)

)
X

⊤
i(j)
v(j),

Gj,2

(
v(j)

)
=

n∑
i=1

E

[
Khj

(Ui − u)�
𝛿sX

⊤
i(j)
v(j)

0

[I(𝜀i ≤ −ri(j) + z) − I(𝜀i ≤ −ri(j))]dz
|||Xi,Ui

]
,

Gj,3

(
v(j)

)
=

n∑
i=1

Khj
(Ui − u)�

𝛿sX
⊤
i(j)
v(j)

0

[I(𝜀i ≤ −ri(j) + z) − I(𝜀i ≤ −ri(j))]dz

−

n∑
i=1

E

[
Khj

(Ui − u)�
𝛿sX

⊤
i(j)
v(j)

0

[I(𝜀i ≤ −ri(j) + z) − I(𝜀i ≤ −ri(j))]dz
|||Xi,Ui

]
.

E
�
Gj,1

�
v(j)

��2 ≤ C2
K
𝛿2
s

n�
i=1

v
⊤
(j)
B(j)(u)v(j) ≤ C2

K
CB(j)

n𝛿2
s
‖v(j)‖2,

Gj,2

�
v(j)

�
=
1

2
𝛿2
s
v
⊤
(j)

n�
i=1

Khj
(Ui − u)[f (−ri(j)�Xi,Ui) + o(1)]Xi(j)X

⊤
i(j)
v(j)

=
1

2
𝛿2
s
v
⊤
(j)
n
�
fU(u)A(j)(u) + o(1)

�
v(j)

≥n𝛿2
s
fU(u)

2
C
A(j)

‖v(j)‖2.
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convexity of Gj(�,�(j)) , �̂(j) is also the global minimum. Thus, Theorem 1 is proved.   	
� ◻

A.2. Proof of Theorem 2

For given � and j, recall that �i = Yi − Q�(Xi,Ui), ri(j) = Q𝜏 (Xi,Ui) − X
⊤
i(j)
�∗
(j)

 . Let 
��j =

√
nhj

�
�aj − a∗

j
, ��

⊤

(j)
− �∗⊤

(j)
, hj(

�bj − b∗
j
)
�⊤

 . It follows from Theorem 1 in Cai and 
Xu (2008) that

where

where X◦

i(j)
=
(
Xij,Xi1, ... ,Xi(j−1),Xi(j+1), ... ,Xip, (Ui − u)Xij∕hj

)⊤ . So we have

where W̃n,j(u) =
1√
nhj

∑n

i=1
Khj

(Ui − u)��(�i + ri(j))X̃i(j) , and 
�Xi(j) = (Xij,Xi1, ...,Xi(j−1),Xi(j+1), ...,Xip)

⊤ . Noting that E
(
W̃n,j(u)

)
= 0 by (2), and

Then for any 𝜖 > 0 , define �i(j) = 1∕
√
nhjKhj

(Ui − u)��(�i + ri(j))X̃i(j) , we have

Furthermore, by Assumptions (A6) and (A10),

�̂j = −f −1
U

(u)S−1
j
(u)Wn,j(u) + op(1),

Wn,j(u) =
1√
nhj

n�
i=1

Khj
(Ui − u)𝜓𝜏(𝜀i + ri(j))X

◦

i(j)
,

Sj(u) = E
�
f (−r(j)�X,U)X◦

(j)
X

◦⊤
(j)
�U = u

�
,

(6)
√

nhj

(
�̂(−j) − �∗

(−j)

)
= −f −1

U
(u)C−1

(j)
(u)W̃n,j(u) + op(1),

Var
(
�Wn,j(u)

)
=

1

nhj

n∑
i=1

E
[
K2
hj
(Ui − u)𝜓2

𝜏
(𝜀i + ri(j))

�Xi(j)
�X
⊤

i(j)

]

=
1

n

n∑
i=1

v0fU(u)E[𝜓
2
𝜏
(𝜀 + r(j))

�X(j)
�X
⊤

(j)
|U = u] + o(1)

= v0fU(u)D(j)(u).

n�
i=1

E
�‖�i(j)‖2I

�‖�i(j)‖ ≥ �
��

= nE
�‖�i(j)‖2I[‖�i(j)‖ ≥ �]

� ≤ n
�
E‖�i(j)‖4

�1∕2
{P(‖�i(j)‖ ≥ �)}1∕2

≤ n�−2E‖�i(j)‖4.
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Thus, 
∑n

i=1
E
�‖�i(j)‖2I

�‖�i(j)‖ ≥ �
��

= O
�
(nh2

j
)−1

�
= o(1). According to the Linde-

berg–Feller central limit theorem, we obtain

By the Slusky’s theorem, we have

Therefore, the proof of Theorem 2 is completed.   	�  ◻

A.3. Proof of Theorem 3

To show the results, it suffices to show that supw∈H
||||
CVn0

(w)−QPEn(w)

QPEn(w)

|||| = op(1). For nota-

tion simplicity, for a given � , let Q̂j,n0
(⋅) = Q̂

(j)
�,n0

(⋅) , Q̂j(⋅) = Q̂
(j)
� (⋅) . By the definition of 

CVn0
( w) and QPEn(w) , we have

Noting that E
��

Q�(X,U) −
∑p

j=1
wjQ̂j(X,U)

�
��(�)

����Dn

�
= 0 and

where EXi,Ui
 denote the expectation with respect to {Xi,Ui} . Together with the 

Knight’s identity, we get the following decomposition expression

where

E‖𝜂i(j)‖4 =(nhj)−2E
�
K4
hj
(Ui − u)

�
tr
�
𝜓2
𝜏
(𝜀i + ri(j))

�Xi(j)
�X
⊤

i(j)

��2�

≤(nhj)−2C4
K
E

��
tr
�
�Xi(j)

�X
⊤

i(j)

��2�

≤(nhj)−2C4
K
E
����Xi(j)

���
4

= O
�
(nhj)

−2
�
.

W̃n,j(u)
d
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(
0, v0fU(u)D(j)(u)

)
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√
nhj

(
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)
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CVn0
(w) − QPEn(w) =

1

n − n0
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i=n0+1
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��
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wjQ̂j,n0
(Xi,Ui)
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E��(�) − QPEn(w)
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1
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]
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E

�
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wjQ̂j(X,U)−Q� (X,U)
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[I(� ≤ z) − I(� ≤ 0)]dz
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= EXi,Ui

�
�

∑p
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wjQ̂j(Xi,Ui)−Q� (Xi,Ui)

0

[F(z�Xi,Ui) − F(0�Xi,Ui)]dz

�
,

CVn0
(w) − QPEn(w) = CV1( w) + CV2( w) + CV3( w) + CV4( w) + CV5,
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Next, we will show that

(i) minw∈H QPEn(w) ≥ E[��(�)] − op(1);

(ii) supw∈H |CV1(w)| = op(1);

(iii) supw∈H |CV2(w)| = op(1);

(iv) supw∈H |CV3(w)| = op(1);

(v) supw∈H |CV4(w)| = op(1);

(vi) CV5 = op(1).

(i). Using (4) again, define Q∗
j
(X,U) = �X

⊤

(j)
�∗
(−j)

 , we get
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where EX,U denote the expectation with respect to {X,U} . By Taylor’s expansion 
and Jensen’s inequality, we have that

the last inequality follows from Assumption (A11). Now it follows from Theorem 1 
that,

Using the fact that D(t) = E[��(� + t) − ��(�)] has a global minimum at t = 0 , we 
have min w∈H E

[
��(� + r( w))

] ≥ E[��(�)]. By combining (7), we get

(ii). Define Q∗
j
(Xi,Ui) =

�X
⊤
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 . By simple calculation, we have the following 
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It is easy to show that E(CV11( w)) = 0 and Var(CV11( w)) = O(1∕(n − n0)), which 

implies that CV11( w) = op(1) for each w ∈ H . To show the uniform convergence, 
we consider the function class F = {g(�i,Xi,Ui; w) ∶ w ∈ H}, where 
g(�i,Xi,Ui; w) =

�
Q� (Xi,Ui) −

∑p

j=1
wjQ

∗
j
(Xi,Ui)

�
�� (�i) . On H , we define the metric | ⋅ |1 

as � w − w̃�1 = ∑p

j=1
�wj − w̃j� , for any w = (w1, ...,wp) ∈ H and 

w̃ = (w̃1, ..., w̃p) ∈ H . Then, the �-covering number of H with respect to | ⋅ |1 is 
N(�,H, | ⋅ |1) = O(1∕�p−1) . Further,

where C� = pmax1≤j≤p ‖�∗
(−j)

‖ = O(p3∕2) and Emax1≤j≤p ‖�Xi(j)‖ < ∞ by Assump-
tion (A3). For a fix p, this yields that the �-bracketing number of F  with respect to 
the L1-norm is N[](�,F, L1(P)) ≤ C∕�p−1 for some constant C. By Theorem 2.4.1 of 
Van der Vaart and Wellner (1996), we conclude that F  is Glivenko–Cantelli. And 
it follows from Glivenko–Cantelli theorem that sup w∈H |CV11( w)| = op(1) . By the 
Cauchy–Schwarz inequality,

where ��(−j),n0
= (�aj,n0 ,

��
⊤

(j),n0
)⊤ , then by Theorem  1 and Assumption (A3), we get 

supw∈H |CV12(w)| = op(1).

(iii) To prove (iii), we rewrite CV2( w) = CV21( w) + CV22( w) , where

CV1(w) =
1

n − n0

n∑
i=n0+1

[
Q�(Xi,Ui) −

p∑
j=1

wjQ
∗
j
(Xi,Ui)

]
��(�i)

−
1

n − n0

n∑
i=n0+1

p∑
j=1

wj

[
Q̂j,n0

(Xi,Ui) − Q∗
j
(Xi,Ui)

]
��(�i)

= CV11(w) − CV12(w).

�g(𝜀i,Xi,Ui; w) − g(𝜀i,Xi,Ui; w̃)� =
������

p�
j=1

(wj − w̃j)Q
∗
j
(Xi,Ui)𝜓𝜏(𝜀i)

������
≤C𝜃� w − w̃�1 max

1≤j≤p ‖�Xi(j)‖,

sup
w∈H

�CV12(w)� ≜ sup
w∈H

������
1

n − n0

n�
i=n0+1

p�
j=1

wj

�
�Qj,n0

(Xi,Ui) − Q∗
j
(Xi,Ui)

�
𝜓𝜏(𝜀i)

������
≤ sup

w∈H

p�
j=1

wj

1

n − n0

n�
i=n0+1

����
�
�X
⊤

i(j)
(��(−j),n0

− �∗
(−j)

)
�
𝜓𝜏(𝜀i)

����

≤
p�
j=1

1

n − n0

n�
i=n0+1

����
�X
⊤

i(j)
(��(−j),n0

− �∗
(−j)

)
����

≤
p�
j=1

max
n0+1≤i≤n ‖

�Xi(j)‖‖��(−j),n0
− �∗

(−j)
‖,
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Noting that E[CV21( w)] = 0 , Var(CV21( w)) = O(1∕n − n0) . Analogous to the proof 
of CV11( w) , we can show that supw∈H |CV21( w)| = op(1) . On the other hand,

similar to CV12( w) , we have sup w∈H |CV12( w)| = op(1).

(iv) We also decompose CV3( w) = CV31( w) + CV32( w) with

Similar to the proof of sup w∈H |CV11( w)| = op(1), we can show that 
sup w∈H |CV31( w)| = op(1) , the details are omitted here.

Noting that

We can prove that sup w∈H |CV321( w)| = op(1) as shown in CV22( w) . Furthermore, 
by Cauchy–Schwarz inequality, we have

CV21( w) =
1

n − n0

n�
i=n0+1

�
∑p

j=1
wjQ

∗
j
(Xi ,Ui )−Q� (Xi ,Ui )

0

[I(�i ≤ z) − I(�i ≤ 0)

− F(z�Xi,Ui) + F(0�Xi,Ui)]dz,

CV22( w) =
1

n − n0

n�
i=n0+1

�
∑p

j=1
wjQ̂j,n0

(Xi ,Ui )−Q� (Xi ,Ui )

∑p

j=1
wjQ

∗
j
(Xi ,Ui )−Q� (Xi ,Ui )

[I(�i ≤ z) − I(�i ≤ 0)

− F(z�Xi,Ui) + F(0�Xi,Ui)]dz.

|CV22( w)| ≤ 2

n − n0

n∑
i=n0+1

p∑
j=1

||||wj

[
Q̂j,n0

(Xi,Ui) − Q∗
j
(Xi,Ui)

]||||,

CV31( w) =
1

n − n0

n�
i=n0+1

�
∫

∑p

j=1
wjQ

∗
j
(Xi ,Ui )−Q� (Xi ,Ui )

0

[F(z�Xi,Ui) − F(0�Xi,Ui)]dz

− E
Xi ,Ui

�
∫

∑p

j=1
wjQ

∗
j
(Xi ,Ui )−Q� (Xi ,Ui )

0

[F(z�Xi,Ui) − F(0�Xi,Ui)]dz

��
,

CV32( w) =
1

n − n0

n�
i=n0+1

�
∫

∑p

j=1
wjQ̂j,n0

(Xi ,Ui )−Q� (Xi ,Ui )
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wjQ
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.

|CV32( w)| ≤ 1
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wj
|||Q̂j,n0

(Xi,Ui) − Q∗
j
(Xi,Ui)
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+
1

n − n0
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p∑
j=1

wjEXi ,Ui
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(Xi,Ui) − Q∗
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|||
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By Assumption (A8) and Theorem 1, we have sup w∈H |CV322( w)| = op(1).

(v) To prove (v), we note that

following the proof of sup w∈H |CV322( w)| = op(1) , we obtain (v).
(vi) CV5 = op(1) follows from the weak law of large numbers.
Finally, we complete the proof of Theorem 3. 	�  ◻

A.4. Proof of Theorem 4

According to the proof of Theorem 1, we can further obtain that ‖�̂(j) − �∗
(j)
‖ = op(1) 

and ‖�̂(j),n0
− �∗

(j)
‖ = op(1) uniformly for all � ∈ T  . That is to say, we have 

sup�∈T ‖�̂(j) − �∗
(j)
‖ = op(1) and sup�∈T ‖�̂(j),n0

− �∗
(j)
‖ = op(1).

In the following, we prove that ŵ is asymptotically optimal uniformly for � ∈ T  . 
The proof is analogous to the proof of Theorem 3, but is more challenge due to the 
requirement of the asymptotic optimality of ŵ to hold uniformly in the set of quan-
tile indices. Specifically, we need to prove (i)-(vi) hold but with w ∈ H replaced by 
(w, �) ∈ H × T  in Theorem 3.

(a) According to the proof of (i) in Theorem 3, it is easy to obtain that

which is to say that inf
(w,�)∈H×T

QPE�,n(w) ≥ E[��(�)] − op(1).

(b) We have CV1(w) = CV11(w) − CV12(w) . To prove (b), it suffices to show that 

sup(w,�)∈H×T |CV11(w)| = op(1) and sup(w,�)∈H×T |CV12(w)| = op(1) . Similar to the 

proof of (ii) in Theorem 2, to show the uniform convergence, we consider the class 

of functions G = {g(�i,Xi,Ui;w, �) ∶ (w, �) ∈ H × T}, where 

g(�i,Xi,Ui; w, �) =
�
Q� (Xi,Ui) −

∑p

j=1
wjQ

∗
j
(Xi,Ui)

�
��(�i) . On H × T  , we define 

sup
w∈H

�CV322( w)�

≤ sup
w∈H

1

n − n0

n�
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�
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�1∕2

≤ max
n0+1≤i≤n max
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|CV4( w)| ≤ 1
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i=n0+1

E
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||||||

p∑
j=1
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(Xi,Ui) −
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j=1
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||||||
≤ 1
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wjEXi ,Ui
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min
w∈H

QPE�,n(w) ≥ min
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E[��(� + r( w))] − op(1) ≥ E[��(�)] − op(1), for all � ∈ T,



679

1 3

MA for semiparametric quantile varying coefficient models

the metric | ⋅ |t
1
 as �( w, t) − ( w̃, 1 − t)�t

1
=
∑p

j=1
�wj − w̃j� + 1 − 2t . Then, the �-cov-

ering number N(�,H × T, | ⋅ |t
1
) = O(1∕�p−1) . Further, the �-bracketing number 

N[](�,G, L1(P)) ≤ C∕�p−1 , and it follows from Glivenko–Cantelli theorem that 

sup(w,�)∈H×T |CV11(w)| = op(1).
We also have

Hence

Similarly, equations (iii), (iv), (v) and (vi) follow from the corresponding proof in 
Theorem  3 as well as the fact sup�∈T ‖�̂(j) − �∗

(j)
‖ = op(1) and 

sup�∈T ‖�̂(j),n0
− �∗

(j)
‖ = op(1) . Therefore, we complete the proof of Theorem 4. 	�  ◻
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