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Abstract
In this paper, we estimate the high-dimensional precision matrix under the weak 
sparsity condition where many entries are nearly zero. We revisit the sparse col-
umn-wise inverse operator estimator and derive its general error bounds under the 
weak sparsity condition. A unified framework is established to deal with various 
cases including the heavy-tailed data, the non-paranormal data, and the matrix vari-
ate data. These new methods can achieve the same convergence rates as the existing 
methods and can be implemented efficiently.

Keywords  Gaussian graphical model · High-dimensional data · Lasso · Precision 
matrix · Weak sparsity

1  Introduction

In the high-dimensional data analysis, estimating the population covariance matrix 
� and the precision matrix � = �−1 are fundamental problems. The covariance 
matrix or the precision matrix characterizes the structure of the relation among 
covariates. Many statistical references can benefit from these structures if they can 
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be precisely estimated. We refer to Tong et  al. (2014); Fan et  al. (2016) and Cai 
(2017) for recent reviews.

In the high-dimensional regime where the data dimension is very large, estimat-
ing the covariance matrix or the precision matrix is challenging since the freedom 
of parameters are squared order of the data dimension. In literature, there have been 
a variety of methods which are proposed to estimate � or � . For the population 
covariance matrix � , Bickel and Levina (2008) and El Karoui (2008) constructed 
consistent estimation by thresholding the sample covariance matrix. This idea was 
further developed by Rothman et al. (2009) and Cai and Liu (2011). For the preci-
sion matrix estimation, there have been many methods based on penalization. Yuan 
and Lin (2007) considered a �1-penalized Gaussian maximum likelihood estimator 
and Friedman et al. (2008) designed an efficient block coordinate descent algorithm 
for this so-called graphical Lasso method. Noting that estimating each column of the 
precision matrix can be formulated as a linear regression problem, Cai et al. (2011) 
proposed a constrained �1 minimizatixon estimator (CLIME) based on Dantzig 
selector (Candes and Tao 2007) and a similar estimator was also introduced by Yuan 
(2010). Liu and Luo (2015) further proposed a sparse column-wise inverse operator 
estimator which was essentially a Lasso-type analog of their earlier CLIME method. 
Zhang and Zou (2014) considered a symmetric loss function which yielded a sym-
metric estimator directly, whereas other methods (e.g., Yuan 2010; Cai et al. 2011; 
Liu and Luo 2015) needed an additional symmetrization step. There have been a 
huge number of papers addressing the problem of the covariance matrix and the pre-
cision matrix estimation. For related methods and their connections, see the book by 
Wainwright (2019)(e.g., Chapters 6 and 11).

Under high-dimensional settings, to obtain a consistent estimator of the covari-
ance matrix or the precision matrix, a sparsity condition is often imposed on the true 
matrix. Namely, many entries of the matrix are exactly zero or nearly so. A target 
matrix � = (aij) ∈ ℝ

p×p is said to be (strong) sparse or �0 sparse, meaning that

That is, each column has at most s nonzero elements. The �0 sparsity condition 
requires that most entries of the matrix are exactly zero. A natural relaxation is to 
consider the weak sparsity or �q sparsity, that is

for some q ∈ [0, 1) and sq > 0 is a radius. Note that the �0 sparsity condition is a spe-
cial case of �q sparsity condition with q = 0 and sq = s . For estimating the covari-
ance matrix � , Bickel and Levina (2008) firstly provided the consistency result 
under the �q sparsity condition. Later, Rothman et al. (2009) and Cai and Liu (2011) 
also studied the estimator with the weak �q sparsity condition. These estimators have 
explicit forms based on thresholding the elements of the sample covariance matrix 
and the theoretical analysis is relatively straightforward. As far as the precision 

�0 sparse: max
j=1,…,p

p∑
i=1

|aij|0 ≤ s.

�q sparse: max
j=1,…,p

p∑
i=1

|aij|q ≤ sq,
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matrix, the theoretical analysis is more challenging since the estimator usually does 
not have an explicit form. Ravikumar et  al. (2011) firstly established convergence 
rates for the graphical Lasso. In details, under the strong sparse condition, they 
derived the bounds under the matrix element-wise infinity, the spectral and the 
Frobenius norm. The graphical Lasso, SCIO (Liu and Luo 2015), together with the 
D-trace method (Zhang and Zou 2014) are all based on a loss function with a �1 pen-
alty term. Technically, they all used the primal-dual witness technique (Wainwright, 
2009) or its extensions to prove the consistency under the �0 sparsity condition. Spe-
cially, in order to apply the primal-dual technique, an irrepresentability condition is 
necessary; see Assumption 1 of Ravikumar et al. (2011), Section 5.2 of Zhang and 
Zou (2014) and the formula (4) in Liu and Luo (2015). From the perspective of vari-
able selection or support recovery (Meinshausen and Bühlmann 2006), the strong 
sparsity condition is a reasonable and also important criteria to evaluate the estima-
tion. However, from the perspective of matrix estimation, this condition is too 
restricted. For example, the Toeplitz matrix � =

(
�|i−j|

)
p×p

 for some � ∈ (−1, 1) is 
an important matrix in statistics which does not satisfy the strong sparsity condition.

In this work, we focus on the �q sparse or weak sparse case. Theoretically, for the 
Dantzig-type methods, Yuan (2010); Cai et al. (2011) and Cai et al. (2016a) studied 
the convergence bounds for the weak sparse matrices. Specially, they derived the 
error bounds under the spectral norm, the matrix element-wise infinity norm and 
the Frobenius norm of the estimation. Under the weak sparse settings, there is few 
theoretical study on Lasso-type methods of the precision matrix estimation. Among 
them, Sun and Zhang (2013) and Ren et al. (2015) exploited the scaled lasso (Sun 
and Zhang 2012) to establish the optimal convergence rate for their precision matrix 
estimators under the normality assumption.

In high-dimensional data analysis, there are various specific situations where we 
need to estimate the precision matrix and many methods were proposed in the lit-
erature. Usually, these methods are based on the well-known procedure CLIME or 
the graphical Lasso. For example, to study the data with heavy-tailed distributions, 
Avella-Medina et  al. (2018) considered a robust approach to estimate the popula-
tion covariance matrix and also the precision matrix. In details, they used the robust 
covariance matrix as a pilot estimator and implemented the CLIME method. For 
non-Guassian data, Liu et al. (2009) introduced a non-paranormal graphical model 
to describe the correlation among covariates. Liu et  al. (2012) and Xue and Zou 
(2012) proposed a non-parametric rank-based estimator to estimate the covariance 
matrix and the precision matrix of the non-paranormal graphical model. In details, 
Liu et  al. (2012) proposed four precision matrix estimators by plugging the rank-
based estimate into the Dantzig-type method (Yuan 2010), the CLIME (Cai et  al. 
2011), the graphical Lasso (Yuan and Lin 2007; Friedman et  al. 2008) and the 
neighbourhood pursuit estimator(Meinshausen and Bühlmann 2006). For the matrix 
valued data where the covariance matrix and the precision matrix have certain struc-
tures such as Kronecker product, Leng and Tang (2012) and Zhou (2014) proposed 
feasible methods to estimate the precision matrix for matrix data. In particular, Leng 
and Tang (2012) used the graphical Lasso and Zhou (2014) considered both the 
graphical Lasso and CLIME. These methods are driven by CLIME or the graphical 
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Lasso. Computationally, it is well-known that the implementation of CLIME or 
the graphical Lasso is time-consuming. As our recent work Wang and Jiang (2020) 
showed, for p ≫ n , the computation complexities of SCIO and D-trace are O(np2) 
while the one of the graphical Lasso is O(p3) for general case (e.g., Witten et  al. 
2011, Sect. 3). For CLIME, each column is a Dantzig-selector regression and the 
state of the art algorithm is “flare” (Li et al. 2015) which is based on the linearized 
alternating direction method of multipliers proposed by Wang and Yuan (2012). For 
each column, the subprogram involves a Lasso problem whose computation is time-
consuming. A detailed comparison on the computation time of these methods can be 
found in Sect. 3. Motivated by the appealing computational efficiency, it is natural to 
ask whether we can establish comparable convergence rates for Lasso-type methods 
under the weak sparse case with mild conditions.

In this article, we revisit the SCIO method and generalize the theoretical proper-
ties of SCIO under the �q sparsity condition by a new analysis which is different 
from the proof of Liu and Luo (2015). In details, we exploit the oracle inequality of 
Lasso (Ye and Zhang 2010; Sun and Zhang 2012) and get the basic inequality for 
the SCIO method. Therefore, we can derive error bounds from the basic inequality 
directly and relax the common irrepresentability condition which is necessary for 
the primal-dual witness technique. Accordingly, we provide a unified framework for 
the SCIO method based on different types of covariance matrix estimation under 
various cases. These new SCIO-based methods can get the same consistence results 
as the ones based on CLIME and can be implemented more efficiently.

The SCIO estimation can be regarded as an example of the general M-estimation 
(Wainwright 2019, Chapter 9). Negahban et al. (2012) provided a unified framework 
of M-estimators with decomposable regularizes including �1 penalty. They obtained 
the error bounds under weak sparsity for several applications. However, the analysis 
of Negahban et al. (2012) is based on the restricted strong convexity (RSC) condi-
tion which holds for Gaussian or sub-Gaussian distributions. For other complicated 
cases such as the heavy-tailed or the non-paranormal assumption, it is challenging to 
verify the RSC condition. In contrast, our analysis is based on the basic inequality 
and also the structure of the precision matrix such as the symmetrization procedure 
(Cai et al. 2011). We can establish reliable convergence rates of the SCIO method 
under weak sparsity due to its neat structure and provide a unified framework which 
is applicable for various distribution cases including the heavy-tailed distribution 
and non-paranormal distribution.

The rest of the paper is organized as follows. In Sect.  2, we revisit the SCIO 
method and derive the non-asymptotic results under the �q sparsity condition. In 
Sect. 3, we consider four covariance matrix estimators: the common sample covari-
ance matrix for sub-Gaussian data, a Huber-type estimator for heavy-tailed data 
(Avella-Medina et al. 2018), the nonparametric correlation estimator for non-para-
normal data (Liu et al. 2009) and the estimator for matrix variate data (Zhou 2014). 
By plugging these estimators into the SCIO procedure, we can estimate the corre-
sponding precision matrix and derive the error bounds under the weak sparsity con-
dition. Moreover, we conduct simulations to illustrate the performance of these esti-
mators. Finally, we provide some brief comments in Sect. 4 and all technical proofs 
of our theorems, propositions and corollaries are relegated to Appendix.
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2 � Main results

We begin with some basic notations and definitions. For a vector 
� = (a1,… , ap)

⊤ ∈ ℝ
p , the vector norms are defined as follows

For a matrix � = (aij) ∈ ℝ
p×q , we define the matrix norms:

–	 The element-wise l∞ norm ‖�‖∞ = max1≤i≤p,1≤j≤q �aij�;
–	 The spectral norm ‖�‖2 = sup���2≤1 ����2;
–	 The matrix �1 norm ‖�‖L1 = max1≤j≤q

∑p

i=1
�aij�;

–	 the Frobenius norm ‖�‖F =
�∑p

i=1

∑q

j=1
a2
ij
;

–	 The element-wise �1 norm ‖�‖1 = ∑p

i=1

∑q

j=1
�aij�.

For index sets J ⊆ {1,… , p} and K ⊆ {1,… , q} , �J,⋅ and �
⋅,K denote the sub-

matrix of � with rows or columns whose indexes belong to J or K respectively. In 
particular, �i,⋅ and �

⋅,j are the ith row and jth column respectively. For a set J, |J| 
denotes the cardinality of J. For two real sequences {an} and {bn} , write an = O(bn) 
if there exists a constant C such that |an| ≤ C|bn| holds for large n and an = o(bn) if 
limn→∞ an∕bn = 0 . The constants C,C0,C1, ... may represent different values at each 
appearance.

2.1 � SCIO revisited

Suppose that �̂ be an arbitrary estimator of the population covariance matrix � . 
Taking �̂ as the common sample covariance matrix, Liu and Luo (2015) proposed 
the SCIO method which estimated the precision matrix column-wisely. Let ei 
be the ith column of a p × p identity matrix and write � = (�1,… , �p) . For each 
i = 1,… , p , we have

and SCIO estimates the vector � i via a �1 penalized form

where � ≥ 0 is a tuning parameter. By stacking the resulting �̂ i together, we can 
obtain the precision matrix estimator �̂ = (�̂1,… , �̂p) . Noting that �̂ may be 
asymmetric, a further symmetrization step is necessary. The final SCIO estimator 
�̃ = (𝜔̃ij)p×p is defined as

|�|∞ = max
1≤i≤p

|ai|, |�|1 =
p∑
i=1

|ai|, and |�|2 =
√√√√ p∑

i=1

a2
i
.

�� i = ei,

(1)�� i = argmin �∈ℝp

{
1

2
�⊤ ��� − e

⊤
i
� + 𝜆|�|1

}
,
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From the method’s perspective, SCIO is closely-related to other popular precision 
matrix estimation methods. For example, the dual problem of (1) is a Dantzig-type 
optimization problem

which is exactly the CLIME method (Cai et al. 2011). In a matrix form, (1) is equiv-
alent to

To deal with the problem that the objective function above is not symmetric about 
� , Zhang and Zou (2014) proposed the D-trace method which used the loss function

Computationally, SCIO and D-trace use quadratic loss functions which can be 
solved efficiently via standard optimization algorithms. More details can be found in 
our recent work (Wang and Jiang 2020).

From the theoretical perspective, SCIO (Liu and Luo 2015), together with the 
graphical Lasso (Ravikumar et al. 2011) and D-trace(Zhang and Zou 2014) are all 
based on a loss function combined with a �1 penalty term. To show the consistency 
of the estimation, they all used the primal-dual witness technique (Wainwright 2009) 
or its extensions under the �0 sparsity condition. To apply the primal-dual technique, 
an irrepresentability condition is also necessary; see Assumption 1 of Ravikumar 
et al. (2011), Section 5.2 of Zhang and Zou (2014) and the formula (4) in Liu and 
Luo (2015). In this work, we focus on exploring the theoretical property of the SCIO 
under the weak sparsity condition and relaxing the irrepresentability condition.

2.2 � SCIO for weak sparsity

Note that Ye and Zhang (2010) and Raskutti et al. (2011) considered the Lasso under 
the �q sparsity condition. Here we study SCIO under the weak �q sparsity condition.

Before presenting the error bounds, we define the sp-sparse matrices class:

where sp represents the sparsity for columns of the precision matrix, and Mp may 
grow with the data dimension p. This matrix class was defined by Cai et al. (2011) 
and see also Bickel and Levina (2008) for a similar definition about the population 
covariance matrix.

(2)𝜔̃ij = 𝜔̃ji =

{
𝛽ij if |𝛽ij| ≤ |𝛽ji|;
𝛽ji otherwise.

(3)min |�|1 subject to |�̂� − ei|∞ ≤ �,

�� = argmin �∈ℝp×p

�
1

2
tr
�
����⊤

�
− tr(�) + 𝜆‖�‖1

�
.

1

4
tr
(
����⊤

)
+

1

4
tr
(
�⊤ ���

)
− tr(�).

Uq(sp,Mp) =

�
� = (𝜔ij)p×p ∶ � ≻ 0, max

1≤j≤p

p�
i=1

���𝜔ij
���
q

≤ sp, ‖�‖L1 ≤ Mp

�
,
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The first theorem refers to a convergence bound for the optimization problem (1) 
in vector norms. This bound is established under the sp-sparse matrices class and 
stated from a non-asymptotic viewpoint.

Theorem  1  Suppose � ∈ Uq(sp,Mp) for some 0 ≤ q < 1 . Assume that 
� ≥ 3‖�‖L1‖�̂ −�‖∞ and ‖�‖−q

L1
�1−qsp ≤

1

2
 hold. Then

The technical proof of Theorem  1 is based on a basic inequality analogous to 
the one proposed by Sun and Zhang (2012). We actually only take the special case 
where w = �∗ in Sun and Zhang (2012) into consideration. Ren et al. (2015) used a 
similar trick and defined another weak sparsity based on a capped-�1 measure. Their 
analysis depends on the Gaussian assumption and each element estimation 𝜔̂ij needs 
to solve a scaled Lasso problem while SCIO can be solved efficiently and yields the 
precision matrix estimation directly (Wang and Jiang 2020).

Remark 1  In Sun and Zhang (2013) and Ren et al. (2015), they used an alternative 
definition of the weak sparsity, i.e., the capped �1 measure which is defined as 
st(�) = maxj

∑p

i=1
min{1, ��∗

ij
�∕t} for a threshold parameter t. See also the exposi-

tory paper by Cai et  al. (2016b). For every column j, by taking the index set 
J = {j | |𝛽ij| > t} , we have

A slight modification of the proof in Theorem 1 yields

with t = �‖�‖L1 . Thus we can extend our theoretical result to the capped �1 meas-
ure. Moreover, by the discussion in Ren et al. (2015), our result can also be extended 
to the weak �q ball sparsity condition.

Given the non-asymptotic bounds of �̂ − �∗ , we remark that the symmetrization 
step (2) is also crucial for the precision matrix estimation. Yuan (2010) conducted 
another symmetrization procedure which was based on an optimization problem. In 
the next theorem, we present a non-asymptotic bound between the symmetric SCIO 
estimator �̃ and the true precision matrix � under the matrix norms.

Theorem  2  Suppose � ∈ Uq(sp,Mp) for some 0 ≤ q < 1 . Assume that 
� ≥ 3‖�‖L1‖�̂ −�‖∞ and ‖�‖−q

L1
�1−qsp ≤

1

2
 hold. Then

��̂ − �∗�1 ≤ 16‖�‖1−q
L1

sp�
1−q,

��̂ − �∗�∞ ≤ 4‖�‖L1�.

p∑
i=1

min{1, |�∗
ij
|∕t} = |J| + |�∗

Jc
|∕t.

��̂ − �∗�1 ≤ max{12��∗
Jc
�1, 16��J�‖�‖L1} ≤ 16tst(�)
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and

In Theorem  2, we develop a unified framework for establishing convergence 
rates for the SCIO method. For any covariance matrix estimator �̂ with the bound 
‖�̂ −�‖∞ = op(1) , the error bounds for the SCIO estimator under the matrix 
�∞ norm and the matrix �1 norm are provided. Some specific examples with dif-
ferent choices of �̂ will be discussed in the next section. It is noted that we can 
further refine the error bound in Theorem  2 by considering the tuning parameter 
� ≥ 3‖�̂� − �‖∞ . However, for some covariance matrix estimators �̂ , it is not 
trivial to derive the bound ‖�̂� − �‖∞ . For the conciseness and uniformity of our 
result statement, we consider � ≥ 3‖�‖L1‖�̂ −�‖∞ here and will provide some 
comments about achieving the optimal bound for detailed applications later. Moreo-
ver, the �∞ norm (4) and the matrix �1 norm (5) are very useful and can yield other 
matrix bounds directly. For example, by the Gershgorin circle theorem, we can 
obtain the bound for the spectral norm

and for the Frobenius norm, we have

The matrix �1 norm (5) also plays an important role in many statistical inference. 
For example, an appropriate matrix �1 bound can help to establish the asymptotic 
distribution of the test statistics in Cai et al. (2014) or lead to the consistency of the 
thresholding estimation in Wang et al. (2019).

3 � Applications of the unified framework

To illustrate the non-asymptotic bounds of Theorem 2, we apply the SCIO method 
to several covariance matrix estimations. In details, for each plug-in covariance esti-
mator �̂ , we derive the bound ‖�̂ −�‖∞ under high probability and apply Theo-
rem 2 to show the consistency of the final precision matrix estimators �̃.

3.1 � Sample covariance matrix

As a motivating application, we study the sample covariance matrix

(4)‖�̃ −�‖∞ ≤ 4‖�‖L1𝜆,

(5)‖�̃ −�‖L1 ≤ 66(𝜆‖�‖L1)1−qsp.

‖�̃ −�‖2 ≤ ‖�̃ −�‖L1 ≤ 66(𝜆‖�‖L1 )1−qsp,

1

p
‖�̃ −�‖2

F
≤ ‖�̃ −�‖L1‖�̃ −�‖∞
≤ 264𝜆2−q‖�‖1−q

L1
sp.
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where �k ∈ ℝ
p , k = 1,… , n are independent and identically distributed (i.i.d.) sam-

ples and �̄ = n−1
∑n

k=1
�k is the sample mean. Liu and Luo (2015) analyzed the 

sample covariance matrix and derived the consistency of SCIO under the �0 sparsity 
condition and also a related irrepresentable condition. With the aim at more general 
�q sparsity setting, we state the technical conditions as the following: 

	(A1).	 (Sparsity restriction) Suppose that � ∈ Uq(sp,Mp) for a given q ∈ [0, 1) , 
where sp and Mp satisfy the following assumption: 

	(A2).	 (Exponential-type tails) Suppose that log p = o(n) . There exist positive num-
bers 𝜂 > 0 and K > 0 such that 

for all 1 ≤ i ≤ p.
	(A3).	 (Polynomial-type tails) Suppose that p ≤ cn� for some 𝛾 , c > 0 and 

 for some 𝛿 > 0 and all 1 ≤ i ≤ p.
The condition (A1) is an analogue of the formula (3) in Liu and Luo (2015) which 
is for the special case q = 0 . The conditions (A2) and (A3) are regular conditions 
which are used to control the tail probability of the variables. See also the assump-
tions of Cai et al. (2011). Under the conditions (A2) and (A3), Liu and Luo (2015) 
proved the following proposition:

Proposition 1  (Lemma 1, Liu and Luo 2015) For a given 𝜏 > 0 and a sufficiently 
large constant C, we have

under the assumption (A2) or

under the assumption (A3).

��1 =
1

n

n∑
k=1

(
�k − �̄

)(
�k − �̄

)⊤

spM
1−2q
p

= o

(
n

log p

) 1

2
−

q

2

.

� exp
(
�
(
Xi − �i

)2)
≤ K,

�|Xi − �i|4�+4+� ≤ K,

�

�
‖�̂1 −�‖∞ ≥ C

�
log p

n

�
≤ O(p−�),

�

�
‖�̂1 −�‖∞ ≥ C

�
log p

n

�
≤ O

�
p−� + n

−
�

8

�
,
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With these results, for the estimator �̃1 obtained by plugging �̂1 into SCIO, we 
are ready to state our main results under the �q sparsity setting.

Corollary 1  Let � = C0

√
log p∕n with C0 being a sufficiently large number. For 

� ∈ Uq(sp,Mp) , under assumptions (A1) and (A2) or (A3), we have

with probability greater than 1 − O(p�) or 1 − O
(
p−� + n

−
�

8

)
 . Here C1,C2 are suffi-

ciently large constants which only depend on q, sp,Mp,C0, �,K, �.

By plugging the sample covariance matrix into SCIO, the estimation (1) is simi-
lar to the classical Lasso regression problem and the error bounds considered here 
are analogous to prediction error bounds of Lasso regression problem (Wainwright 
2019,  Theorem  7.20). We adopt a different analysis from the primal-dual witness 
technique considered in Liu and Luo (2015) and remove the irrepresentability condi-
tion to obtain the error bounds under the �q sparsity setting. Correspondingly, there 
is no variable selection consistency results since the notion of variable selection is 
ambiguous for the �q sparsity. Moreover, we have the following remarks.

Remark 2  Comparing to the CLIME method (Cai et  al., 2011), we derive the 
same convergence rates under the same conditions. This verifies the dual relation 
between Lasso and the Dantzig selector. Bickel et al. (2009) showed this point for 
the regression model and the results here demonstrate that the Lasso-type method 
and the Dantzig-type method for the precision matrix estimation also exhibit similar 
behaviors.

Remark 3  If we impose stronger conditions on the tail distribution of �Xi , i.e., con-
ditions (C2) and (C2*) in Liu and Luo (2015), we can get

or

where �∗
i
 is the i-th column of the true precision matrix � . Then with some addi-

tional efforts, the error bounds

‖�̃1 −�‖∞ ≤ C1M
2
p

�
log p

n
,

‖�̃1 −�‖L1 ≤ C2spM
2−2q
p

�
log p

n

� 1

2
(1−q)

,

�

(
max
1≤i≤p

|�̂1�
∗
i
− ei|∞ ≥ C

√
log p

n

)
= O(p−� ),

�

(
max
1≤i≤p

|�̂1�
∗
i
− ei|∞ ≥ C

√
log p

n

)
= O(p−� + n

−
�

8 ),
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hold with probability greater than 1 − O(p−�) or 1 − O
(
p−� + n

−
�

8

)
 . These conver-

gence rates actually achieve the minimax rate for estimating the true precision 
matrix � ∈ Uq(sp,Mp) . See Cai et al. (2016a) for more details.

The main motivation to study the SCIO for weak sparsity is that it is computa-
tionally more efficient than other methods such as CLIME or the graphical Lasso ( 
e.g., Wang and Jiang (2020), Table 1 of). Here, we further conduct several simula-
tions to compare the computation time of these methods. In details, we include the 
scaled Lasso method(SLasso) which is implemented with the R package “scalreg” 
provided by Sun and Zhang (2013), the CLIME method which is implemented with 
the R package “flare” developed by Li et al. (2015), the graphical Lasso (gLasso) 
which is implemented with the R packages “gLasso”, “BigQuic” or ADMM algo-
rithm (Boyd et al. 2011, Section 6.5), the D-trace and the SCIO which are imple-
mented with the R package “EQUAL” developed by Wang and Jiang (2020). The 
SLasso uses the default setting and for all other methods, the computation time is 
recorded in seconds and averaged over 5 replications on a solution path with 50 � 
values ranging from �max to �max

√
log p∕n . Here �max is the maximum absolute off-

diagonal elements of the sample covariance matrix. All methods are evaluated on an 
Intel Core i7 3.3GHz and under R version 4.2.1 with an optimized BLAS implemen-
tation for Mac hardware. Table 1 summarizes the computation time. Although the 
stopping criteria is different for each method, we can see from Table 1 the superior 
efficiency of the SCIO method.

To further investigate the numerical performance of the SCIO estimation, we 
compare it with SLasso, gLasso, CLIME and D-trace. While the SLasso is tun-
ing-free, we implement a five folds cross-validation procedure to select the tuning 
parameter � for all other methods. The tuning parameter � is selected from 50 differ-
ent values by minimizing the quadratic loss

where � is computed based on the training sample and �̂ is the sample covariance 
matrix of the test sample. To alleviate the bias of �1 penalty, we also include the 
relaxed version (Meinshausen and Bühlmann 2006; Hastie et al. 2020) of the esti-
mator where a two-stage refitted estimator is obtained based on the support of the 
original estimator. These estimators are denoted by SLasso-R, gLasso-R, CLIME-
R, D-trace-R and SCIO-R. Table  2 presents the estimation error for dimensions 
p = 100, 200, 400 based on 100 replications. From the simulation results of Table 1 
and Table 2, we can conclude that SCIO enjoys comparable statistical convergence 
rates with superior computational efficiency in comparison to existing methods.

‖�̃1 −�‖∞ ≤ C1Mp

�
log p

n
,

‖�̃1 −�‖L1 ≤ C2spM
1−q
p

�
log p

n

� 1

2
(1−q)

,

Loss(�) =
1

2
tr
(
����⊤

)
− tr(�)
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Next we conduct some simulations to illustrate the developed theoretical results. 
Firstly, in order to show that the irrepresentable condition is not necessary, we revisit 
the diamond graph example in Ravikumar et al. (2011) and consider a block preci-
sion matrix:

where

and � ∈
�
−1∕

√
2, 1∕

√
2
�
 which ensures the positive definiteness of the covariance 

matrix. The irrepresentable condition of the graphical Lasso (Ravikumar et  al., 
2011) holds for �𝜌� < (

√
2 − 1)∕2 and the irrepresentable conditions in Liu and Luo 

(2015) and Meinshausen and Bühlmann (2006) require that |𝜌| < 1∕2.
Figure  1 shows the performance of the SCIO estimation for � ∈ [−0.65, 0.65] . 

The sample is generated by the multivariate Gaussian distribution Np(0,�
−1) where 

p = 100 and n = 200 . We plot the spectral norm, the matrix �1 norm and the scaled 
Frobenius norm of � − �̂ . For the brevity, the tuning parameter � is chosen by min-
imizing the matrix norms. From these figures, we can observe that all the errors 
vary smoothly when � is changing. Particularly, these errors do not drop drastically 

� = (diag(�,⋯ ,�))−1,

� =

⎛
⎜⎜⎜⎝

1 � � 2�2

� 1 0 �

� 0 1 �

2�2 � � 1

⎞
⎟⎟⎟⎠
∈ ℝ

4×4,

Table 1   The average computation time (standard deviation) of the precision matrix estimation with 
n = 200

p = 50 p = 100 p = 200 p = 400 p = 800 p = 1600

Case 1: � =
(
0.5

|i−j|)
p×p

SLasso(scalreg) 0.91 (0.08) 4.96 (0.14) 95.56 (0.45) 191.35 (1.96) 0.00 (0.00) 0.00 (0.00)
CLIME (flare) 0.67 (0.22) 3.01 (0.08) 65.58 (0.70) 186.90 (0.10) 0.00 (0.00) 0.00 (0.00)
gLasso (gLasso) 0.04 (0.00) 0.25 (0.00) 1.78 (0.02) 10.60 (0.40) 64.81 (0.41) 737.06 (2.21)
gLasso (BigQuic) 0.36 (0.03) 0.76 (0.02) 2.19 (0.03) 6.25 (0.01) 21.14 (0.06) 92.73 (0.36)
gLasso (ADMM) 0.10 (0.00) 0.39 (0.03) 1.23 (0.02) 4.25 (0.04) 14.10 (0.75) 92.01 (3.51)
D-trace (EQUAL) 0.03 (0.00) 0.11 (0.01) 0.32 (0.00) 0.60 (0.01) 2.00 (0.03) 8.64 (0.46)
SCIO (EQUAL) 0.02 (0.00) 0.06 (0.00) 0.18 (0.00) 0.41 (0.00) 1.65 (0.03) 7.95 (0.07)

Case 2: �−1 =
(
0.5

|i−j|)
p×p

SLasso(scalreg) 0.84 (0.15) 5.42 (0.26) 117.17 (3.41) 183.69 (7.32) 0.00 (0.00) 0.00 (0.00)
CLIME (flare) 1.05 (0.08) 6.28 (0.07) 81.29 (0.10) 323.12 (2.13) 0.00 (0.00) 0.00 (0.00)
gLasso (gLasso) 0.05 (0.00) 0.24 (0.00) 1.48 (0.05) 9.66 (0.28) 79.82 (2.82) 762.80 (7.78)
gLasso (BigQuic) 0.40 (0.01) 1.00 (0.05) 2.71 (0.02) 8.71 (0.07) 39.17 (0.54) 212.43 (5.25)
gLasso (ADMM) 0.15 (0.01) 0.42 (0.01) 1.13 (0.04) 3.53 (0.06) 13.98 (1.37) 103.14 (4.44)
D-trace (EQUAL) 0.04 (0.00) 0.14 (0.00) 0.39 (0.00) 1.01 (0.03) 3.52 (0.04) 22.48 (1.84)
SCIO (EQUAL) 0.02 (0.00) 0.07 (0.00) 0.22 (0.01) 0.68 (0.00) 2.81 (0.02) 20.38 (1.47)
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around the critical boundary value |�| = 0.5 . This phenomenon indicates that even 
though the validity of irrepresentable condition fails when |�| ≥ 0.5 , the perfor-
mance of the SCIO estimation does not become worse drastically. Therefore, it is 
reasonable to relax the extra irrepresentable condition for SCIO.

To illustrate the consistent results for weak sparse cases, we further conduct 
numerical studies where � = (�ij)p×p = (�|i−j|)p×p for some � ∈ (0, 1) . For a fixed 
q ∈ (0, 1) , we know

Hence the parameter � measures the sparsity level of the true precision matrix. 
When � is small, the decay phenomenon is salient and the matrix tends to be more 
sparse. When � is large, the number of elements with small magnitude accounts for 
less proportion of all elements.

Figure  2 reports the performance of SCIO for three different sparsity levels 
� = 0.2 , � = 0.5 and � = 0.8 . We plot the errors for the solution path with a series 
of tuning parameters and three methods: SCIO, D-trace and CLIME. From Fig-
ure 2, we can see that these methods present similar patterns under all three norms. 
In other words, this demonstrates that SCIO performs similar as CLIME which has 
been proved to be consistent under the �q sparsity condition.

3.2 � Robust matrix estimation

The sub-Gaussian assumption is crucial in the analysis of the sample covariance 
matrix. To relax the assumption of exponential-type tails on the covariates, Avella-
Medina et  al. (2018) introduced a robust matrix estimator which only required a 
bounded fourth moment assumption. They constructed a Huber-type estimator for 
the population covariance matrix and got a robust estimator for the precision matrix 
by plugging the Huber-type estimator into the adaptively CLIME procedure (Cai 
et al. 2016a).

max
1≤j≤p

p∑
i=1

|||�ij
|||
q

≈ 1 + 2

∞∑
k=1

�kq =
1 + �q

1 − �q
∶= sp.
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Fig. 1   Plots of the estimation errors versus the parameter � under three norms. The dash vertical lines 
indicate the boundaries of the irrepresentable condition
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Given the i.i.d. samples �k ∈ ℝ
p , k = 1,… , n , Avella-Medina et al. (2018) pro-

posed to estimate the covariance and the population mean based on the Huber loss 
function. In details, Huber’s mean estimator 𝜇̃i satisfies the equation

and the covariance estimator 𝜎̃ij is defined by the equation

where �H(x) = min{H, max(−H, x)} denotes the Huber function. Accordingly, we 
construct a robust estimator �̃ = (𝜎̃ij)p×p and further project �̃ to a cone of positive 
definite matrix

n∑
k=1

𝜓H

(
�ki − 𝜇̃i

)
= 0,

n∑
k=1

𝜓H

(
�ki�kj − (𝜎̃ij + 𝜇̃i𝜇̃j)

)
= 0,
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Fig. 2   Plots of the estimation errors versus the penalty parameter � under three sparsity levels based on 
the sample covariance matrix
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where � is a small positive number. This projection step can be easily implemented 
by the ADMM algorithm and see Datta and Zou (2017) for more details.

Avella-Medina et al. (2018) proposed to use �̂2 as a pilot estimator and imple-
mented the adaptively CLIME procedure to estimate the precision matrix. Here we 
study the SCIO method based on the robust estimator �̂2 . Following Avella-Medina 
et al. (2018), a bounded fourth moment condition is needed:
(A4). Suppose that log p = o(n) , and there exists a positive number K > 0 such that

for all 1 ≤ i ≤ p.
Compared to the polynomial-type tails assumption (A3), the assumption (A4) 

here refines the moment order requirement from 4� + 4 + � to 4 and allows the result 
holds for a potentially larger p. The following proposition is from Avella-Medina 
et al. (2018).

Proposition 2  (Proposition 3, Avella-Medina et  al. 2018) Under the assumption 
(A4), for a sufficiently large constant C, we have

for some constant 𝜏 > 0.

Similar to Avella-Medina et al. (2018), we can get an estimator �̃2 by plugging 
�̂2 into SCIO and derive the convergence rates under different matrix norms.

Corollary 2  Let � = C0Mp

√
log p

n
 , where C0 is a sufficiently large constant and 

H = K(n∕ log p)1∕2 where K is a given constant. For � ∈ Uq(sp,Mp) , under assump-
tions (A1) and (A4), there exist sufficiently large constants C1,C2 satisfying that

with probability greater than 1 − O(p−�) , 𝜏 > 0.

Remark 4  Note that Avella-Medina et al. (2018) provided the optimal convergence 
rate with an additional technique assumption that the truncated population covari-
ance matrix �H = E

{
1(|XuXv|≤H)XuXv

}
 satisfies that ‖�H� − �‖∞ ≤ C

�
log p

n
 . 

��2 = argmin
�⪰𝜀�

‖� − �̃‖∞,

�
(
Xi − �i

)4
≤ K

�

�
‖�̂2 −�‖∞ ≥ C

�
log p

n

�
= O(p−� )

‖�̃2 −�‖∞ ≤ C1M
2
p

�
log p

n
,

‖�̃2 −�‖L1 ≤ C2spM
2−2q
p

�
log p

n

� 1

2
(1−q)

,
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Although the convergence rate provided in Corollary 2 is not optimal, the optimal 
rate can be readily obtained by imposing the same condition on the truncated popu-
lation covariance matrix in Avella-Medina et al. (2018).

To demonstrate these results numerically, we repeat the second scenario in 
Avella-Medina et al. (2018) where the data � is generated from a student t distribu-
tion with 3.5 degrees of freedom and infinite kurtosis. Here the sub-Gaussian 
assumption is void. We still consider the precision matrix � =

(
0.5|i−j|

)
p×p

 . The 
sample size n is set to 200 and the dimension p is 100. Figure 3 reports the numeric 
performances of SCIO, D-trace and CLIME based on the robust estimator �̂2 . All 
three methods perform comparably and align well for the heavy-tailed distribution.

Furthermore, we conduct a numerical simulation to illustrate the robustness of 
our SCIO estimator for the heavy-tailed distribution. In details, we plug the sample 
covariance matrix �̂1 and the Huber-type covariance matrix estimator �̂2 into the 
SCIO. We set the sample size as n = 100 and generate the data matrix � with a mul-
tivariate t distribution with 5 degrees of freedom, zero mean and a covariance matrix 
� = �−1 , where � =

(
�|i−j|

)
p×p

 and � = 0.2, 0.5 . Note that this distribution only has 
4-th order moment. Table 3 reports the spectral norm error for different dimensions 
p based on 50 replications. From Table 3, we can see that the Huber-type precision 
matrix estimator performs better than the one with the sample covariance matrix. 
This result is consistent with our theoretical improvement from the requirement of 
Assumption (A3) to a milder one (A4).
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Fig. 3   Plots of the estimation errors versus the penalty parameter � based on the Huber-type estimator

Table 3   Comparison of SCIO 
with the sample and the Huber-
type covariance matrices for the 
heavy-tailed data

p � = 0.2 � = 0.5

�̂
1

�̂
2

�̂
1

�̂
2

100 0.75 (0.02) 0.67 (0.05) 1.69 (0.02) 1.54 (0.01)
200 0.78 (0.01) 0.68 (0.01) 1.73 (0.10) 1.63 (0.02)
400 0.85 (0.02) 0.70 (0.07) 2.00 (0.15) 1.70 (0.04)
600 0.88 (0.05) 0.74 (0.05) 2.17 (0.11) 1.85 (0.07)
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3.3 � Non‑parametric rank‑based estimation

For Gaussian distributions, the precision matrix characterizes the conditional inde-
pendence among covariates. For non-Gaussian data, Liu et al. (2009) introduced a 
non-paranormal graphical model. Liu et al. (2012) and Xue and Zou (2012) studied 
the precision matrix estimation for this non-paranormal graphical model where the 
precision matrix: � = �−1 was defined by the transformed samples and � was the 
correlation matrix. In details, they proposed to estimate the correlation matrix by the 
non-parametric rank-based statistics such as Spearman’s rho and Kendall’s tau.

Given the sample data matrix 
(
Xij

)
n×p

=
(
�

1
,… ,�n

)⊤ , we convert them to rank 

statistics denoted by (rij)n×p =
(
�
1
,… , �n

)⊤ where each column 
(
r
1j,… , rnj

)
 serves 

as the rank statistic of 
(
X
1j,… ,Xnj

)
 . Spearman’s rho correlation coefficient �̂ij is 

defined as the Pearson correlation between the columns �i and �j , that is,

Similarly, Kendall’s tau correlation coefficient is defined by

Based on Spearman’s rho and Kendall’s tau correlation coefficients, we are able to 
construct two non-parametric estimators �̃3𝜌 and �̃3𝜏 for the correlation matrix � , 
where

and

Moreover, we still need an additional projection step

to obtain the final positive definite estimator �̂3� or �̂3� . Note that if � satisfies the 
non-paranormal distribution, Liu et al. (2012) proved that �̃3𝜌 and �̃3𝜏 are consistent 
estimators of � under the element-wise �∞ norm. The following proposition is from 
Liu et al. (2012).

Proposition 3  (Theorem 4.1 and 4.2, Liu et  al. 2012) Assuming that � satisfies a 
non-paranormal distribution, there exists a sufficiently large constant C such that

Spearman’s rho: �𝜌ij =

∑n

k=1

�
rki − r̄i

��
rkj − r̄j

�
�∑n

k=1

�
rki − r̄i

�2
⋅
∑n

k=1

�
rkj − r̄j

�2 .

Kendall’s tau: �𝜏ij =
2

n(n − 1)

∑
1≤k<k�≤n

sign{
(
Xki − Xk�i

)(
Xkj − Xk�j

)
}.

(�̃3𝜌)ij =

{
2 sin

(
𝜋

6
�𝜌ij

)
, i ≠ j

1, i = j

(�̃3𝜏)ij =

{
sin

(
𝜋

2
�𝜏ij

)
, i ≠ j

1, i = j
.

��3 = argmin �⪰𝜀�‖� − �̃3‖∞
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To estimate the sparse precision matrix, Liu et al. (2012) proposed to plug �̂3� 
or �̂3� into the graphical Dantzig selector (Yuan 2010), CLIME (Cai et al. 2011), 
the graphical Lasso (Friedman et al. 2008), or the neighborhood pursuit estimator 
(Meinshausen and Bühlmann 2006). In this part, we consider the SCIO procedure 
with �̂3� or �̂3� . Denote �̃3 as the precision matrix estimator by plugging �̂3� or �̂3� 
into SCIO. The following corollary holds for both �̂3� and �̂3�.

Corollary 3  Let � = C0Mp

√
log p

n
 , where C0 is a sufficiently large constant. For 

� ∈ Uq(sp,Mp) , under assumptions (A1) and that � satisfies a non-paranormal dis-
tribution, there exist sufficiently large constants C1,C2 satisfying that

with probability greater than 1 − O(p−1).

To conduct numeric simulations, we assume that � follows a non-paranormal dis-
tribution f (�) ∼ N(0,�) . Following Definition 9 in Liu et al. (2009) and Definition 
5.1 in Liu et al. (2012), we choose the transformation function f as the Gaussian CDF 
transformation function with �g0

= 0.05 and �g0 = 0.4 . To mimic the weak sparse 
case, we consider � as the correlation matrix of �−1

0
 , where �0 = (0.5|i−j|)p×p . We 

set the sample size n = 200 and the dimension p = 100 again. Based on Spearman’s 
rho estimation �̂3� or Kendall’s tau estimation �̂3� , Figure  4 reports the numeric 
performances of the SCIO, D-trace and CLIME. Again, we can see that all three 
methods perform comparably.

As Avella-Medina et al. (2018) showed, Proposition 3 works for the elliptically 
distributed � , which includes the multivariate t distributed random variables. Here, 
we evaluate the robust performance of non-parametric rank-based SCIO estimation 
under the heavy-tailed circumstance. The setting is the same as the one of Table 3. 
Table 4 shows the spectral norm error of SCIO with Pearson’s correlation matrix �̂1 , 
Spearman’s rho correlation matrix �̂3� and Kendall’s tau correlation matrix �̂3� . We 
can see that SCIO with non-parametric correlation estimators outperform the one 
with the Pearson’s correlation matrix. Under our settings, Spearman’s estimation 
performs slightly better than Kendall’s estimation. The numerical results verify the 

�

�
‖�̂3� −�‖∞ ≥ C

�
log p

n

�
= O(p−1),

�

�
‖�̂3� −�‖∞ ≥ C

�
log p

n

�
= O(p−1).

‖�̃3 −�‖∞ ≤ C1M
2
p

�
log p

n
,

‖�̃3 −�‖L1 ≤ C2spM
2−2q
p

�
log p

n

� 1

2
(1−q)
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robustness of our non-parametric rank-based SCIO estimation for the heavy-tailed 
case.

3.4 � Matrix data estimation

The matrix variate data are frequently encountered in real applications where the 
covariance matrix has a Kronecker product structure � = �⊗ � . To study the matrix 
data, it is of great interest to estimate the graphical structures � = �−1 = (�⊗ �)−1 
(Leng and Tang 2012; Zhou 2014). For the brevity, we assume � and � are all cor-
relation matrices, which means the diagonal entries are ones.

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

����
�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

0.
8

1.
0

1.
2

1.
4

1.
6

lambda

Sc
al

ed
 F

ro
be

ni
us

 n
or

m

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
����

�
�

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

2.
0

2.
5

3.
0

3.
5

4.
0

lambda

O
pe

ra
to

r n
or

m

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

�����������������������������������
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

4
6

8
10

12

lambda

L1
 n

or
m

�����������������������������������
��

��
�

�

�
�

�

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

(a)Frobenius norm (b) Spectral norm (c)L1norm

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
���

�
�

�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

0.
8

1.
0

1.
2

1.
4

1.
6

lambda

Sc
al

ed
 F

ro
be

ni
us

 n
or

m

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�

�
�

�
�

�
�

����
�
�

�

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

2
3

4
5

lambda

O
pe

ra
to

r n
or

m

�����
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

����������������������������������
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.05 0.10 0.15 0.20 0.25 0.30

4
6

8
10

12
14

lambda

L1
 n

or
m

�����������������������������������
��

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

SCIO
D−trace
CLIME

(d) Frobenius norm (e) Spectral norm (f)L1norm

Fig. 4   Plots of the estimation errors versus the penalty parameter � based on Spearman’s rho and Kend-
all’s tau estimation. Here a–c are the results for Spearman estimation and d–f are the results for Kendall 
estimation

Table 4   Comparison of precision matrix estimation errors under the spectral norm for the non-paramet-
ric estimators over 50 replications

p � = 0.2 � = 0.5

�̂
1

�̂
3� �̂

3� �̂
1

�̂
3� �̂

3�

100 0.79 (0.08) 0.72 (0.01) 0.73 (0.01) 3.01 (0.58) 2.78 (0.06) 2.99 (0.14)
200 0.79 (0.04) 0.73 (0.01) 0.75 (0.01) 3.31 (0.41) 3.08 (0.07) 3.20 (0.11)
400 0.81 (0.03) 0.75 (0.01) 0.77 (0.02) 3.51 (0.13) 3.45 (0.11) 3.47 (0.13)
600 0.86 (0.04) 0.77 (0.02) 0.78 (0.02) 3.63 (0.10) 3.53 (0.12) 3.54 (0.12)
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Given the i.i.d. matrix samples �(t) ∈ ℝ
f×m, t = 1,… , n , Zhou (2014) developed 

the Gemini estimator for the precision matrix �−1 ⊗ �−1 . Writing the columns of 
�(t) as x(t)1,… , x(t)m ∈ ℝ

f  , Zhou (2014) proposed to estimate � by

and the estimator �̂4B for � is constructed similarly based on the rows of �(t) . The 
final estimation of � is obtained by implementing the graphical Lasso or CLIME 
with �̂4A and �̂4B . Zhou (2014) derived the convergence rate under �0 sparsity con-
dition for the graphical Lasso and introduced the CLIME procedure to refine their 
convergence rates. For the �q sparse matrix, Zhou (2014) did not provide the explicit 
theoretical results.

In this part, we study the SCIO method based on �̂4A and �̂4B . We first present an 
approximate sparsity condition for �−1 and �−1.
(A5). Suppose �−1 ∈ Uq(sm,Mm) and �−1 ∈ Uq

(
s̃f , M̃f

)
 for a given q ∈ [0, 1) . More-

over, the parameters sm, s̃f ,Mm, M̃f  satisfy

The following proposition is from Theorem 4.1 of Zhou (2014).

Proposition 4  (Theorem  4.1, Zhou 2014) For t = 1,… , n , suppose that 
vec(�(t)) ∼ Nf ,m(0,�⊗ �) . Under the assumption (A5) and the assumption (A2) in 
Zhou (2014), there exists a sufficiently large constant C such that

As an application of our Theorem 2, we can derive the theoretical result of the 
SCIO estimator for estimating � = �−1 ⊗ �−1.

Corollary 4  Suppose that vec(�(t)) ∼ Nf ,m(0,�m×m ⊗ �f×f ), t = 1,… , n . Let 

�A = CAMm
log

1
2 (m∨f )√
fn

 and 𝜆B = CBM̃f
log

1
2 (m∨f )√
mn

 , where CA and CB are sufficiently large 
constants. Under our assumption (A5) and the assumption (A2) in Zhou (2014), 
there exists a sufficiently large constant C such that

(��4A)ij =

∑n

t=1
(x(t)i)⊤

�
x(t)j

�
�∑n

t=1
(x(t)i)⊤

�
x(t)i

��∑n

t=1

�
x(t)j

�⊤�
x(t)j

�

smM
2−q
m

= o

� √
nf

log
1

2 (m ∨ f )

�
,

s̃f M̃
2−q

f
= o

� √
nm

log
1

2 (m ∨ f )

�
.

�

⎛⎜⎜⎝
‖�̂4A − �‖∞ ≥ C

�
log(m ∨ f )

nf

⎞
⎟⎟⎠
= O

�
(m ∨ f )−2

�
,

�

�
‖�̂4B − �‖∞ ≥ C

�
log(m ∨ f )

nm

�
= O

�
(m ∨ f )−2

�
.
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with probability greater than 1 − O((m ∨ f )−2).

Compared with Theorem 3.3 of Zhou (2014), Corollary 4 is derived under a gen-
eral �q sparsity condition. In particular, the special case q = 0 corresponds to Theo-
rem 3.3 of Zhou (2014) and these two results are consistent due to the dual proper-
ties between Lasso and the Dantzig selector. Moreover, our result can be generalized 
to the sub-Gaussian condition of the matrix data (Hornstein et al. 2019) and we omit 
the details.

To conduct the simulations, we generate the data from the matrix normal distri-
bution vec(�(t)) ∼ Nf ,m(0,�m×m ⊗ �f×f ) . To mimic the �q sparsity, we choose �ij 
as the correlation matrix of �−1 , where �ij = (0.2|i−j|)f×f  and �ij as the correlation 
matrix of �−1 , where � ij = (0.5|i−j|)m×m . We set the dimension of � as 80 and the 
dimension of � as 40. The sample size n is taken as 3. Figure 5 reports the perfor-
mance of the Gemini estimator under several matrix norms where the penalty level 
� of �−1 is varying and the penalty level of �−1 is set to 0.15 for simplicity. From 
Fig. 5, we can observe that the Gemini method based on SCIO performs similarly as 
the Gemini method based on CLIME, which means SCIO is also applicable to the 
matrix data.

4 � Discussion

This article revisits the SCIO method proposed by Liu and Luo (2015) and explores 
the theoretical and numerical properties of SCIO under the weak sparsity condition. 
Intuitively, the approach to obtain our matrix estimation error bound by plugging in 
the sample covariance matrix is similar to the process of obtaining the prediction 
bound in regression setting. For the classical Lasso problem, Ye and Zhang (2010) 
and Sun and Zhang (2012) have analyzed the Lasso method or its variants under 
general weak sparsity. Our technique essentially originates from the basic inequality 

‖�̃4 −�‖2 ≤ C

�
log(m ∨ f )

n

� 1−q

2
�
smM

2−2q
m

f (q−1)∕2 + s̃f M̃
2−2q

f
m(q−1)∕2

�
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matrix data
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derived from their theoretical analysis of Lasso. The main difference lies that Las-
so’s results rely on constant lower bounds of some quantities such as the cone invert-
ibility factor or the compatibility factor.

As for the precision matrix estimation, the error bounds under �q sparsity condi-
tion have been discussed for Dantzig-type methods such as the graphical Dantzig 
method (Yuan 2010) and the CLIME method (Cai et al. 2011), and minimax conver-
gence rates have been established by the ACLIME method (Cai et al. 2016a). The 
CLIME method and its variant ACLIME are frequently introduced to deal with the 
�q sparsity for the precision matrix estimation. Here, our work provides an alterna-
tive approach and shows that the Lasso-type method SCIO can obtain the theoretical 
guarantees of CLIME under the �q sparsity condition. Specially, we relax the irrep-
resentable condition, which is commonly used for Lasso-type precision matrix esti-
mation. In addition, the SCIO method can be efficiently implemented according to 
Wang and Jiang (2020) while the computation of Dantzig-type methods turns out to 
be slow. From this perspective, the SCIO method tends to be more appealing for the 
high dimensional precision matrix estimation.

Another closely related Lasso-type method is SLasso proposed by Sun and Zhang 
(2013). By inducing a noise level, the SLasso is tuning-free by iteratively estimat-
ing the noise level. For the normal distribution, Sun and Zhang (2013) derived the 
optimal error bounds under the alternative weak sparsity condition, i.e., the capped 
�1 measure. The key ideas of SLasso and SCIO are quite similar, e.g., the SLasso 
for fixed noise level � is the same as the SCIO by setting 𝛽jj = −1 . It would be inter-
esting to compare these two methods from both the computation complexity and 
the performance of the estimators. We implement the R package “scalreg” provided 
by Sun and Zhang (2013) and it is not very efficient which prevents us from con-
ducting the comparison experiment. From the original paper of Sun and Zhang 
(2013), SLasso has improvements over CLIME for most cases. This improvement is 
due to adaptive choice of the penalty level for each column of the precision matrix. 
Actually, we can also use different tuning parameters for each column in SCIO (or 
CLIME) and it is expected to obtain some improvements. Another interesting ques-
tion is how to exploit the noise level into complicated cases, e.g., the heavy-tailed 
data, the non-paranormal data, and the matrix variate data. We leave these questions 
as a future work.

For other Lasso-type methods such as the graphical Lasso and D-trace, they are 
not in a column-by-column form. Although they have been shown to be consistent 
under the �0 sparsity condition, the extension to the �q sparsity is not trivial and our 
current technique can not be implemented directly. It is still of interest whether opti-
mal rates can be established under the weak sparse case for the graphical Lasso and 
D-trace. Moreover, for other statistical problems such as the discriminant analysis 
problem, the misclassification rate measures the performance of the method and we 
can use our current technique to derive its error bounds under the general �q sparsity 
condition. Specifically, it is possible to show that some Lasso-type methods for the 
discriminant analysis such as Fan et al. (2012) or Mai et al. (2012) are still applica-
ble for the weak sparse case. We leave these problems for future works.
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Appendix

This section includes all the technical proofs of the main theorems and some neces-
sary lemmas.

Proof of Theorem 1

Let e be a column of the identity matrix � , then �∗ = �−1
e is the corresponding col-

umn of the target precision matrix � . For an arbitrary estimator of �̂ , we consider 
the SCIO estimation

By the KKT condition, we have

which ensures the basic inequality

Writing the difference vector as h = �∗ − �̂ , we have

Combined with the basic inequality (7), it reduces to

Since � ≥ 3‖�‖L1‖�̂ −�‖∞ , then by this assumption we obtain

and hence

For any index set J, we have

�� = argmin
�∈ℝp

{
1

2
�⊤ ��� − e

⊤� + 𝜆|�|1
}
.

(6)�̂�̂ − e + �sgn(�̂) = 0,

(7)(�� − �∗)⊤(���� − e) ≤ −𝜆|��|1 + 𝜆|�∗|1.

(8)

(�� − �∗)⊤(���� − e) = (�� − �∗)⊤(��(�� − �∗) + (�� −�)�∗)

≥ (�� − �∗)⊤(�� −�)�∗

≥ −�(�� −�)�∗�∞�h�1
≥ −‖�‖L1‖�� −�‖∞�h�1.

−���̂�1 + ���∗�1 ≥ −‖�‖L1‖�̂ −�‖∞�h�1.

3�(|�∗|1 − |�̂|1) ≥ −�|h|1,

3(|�∗|1 − |�̂|1) ≥ −|h|1.
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and by rearranging the inequality, we get an important relation

By the KKT condition (6), we have |�̂�̂ − e|∞ ≤ � and

Thus, we can get

and

Then, we conclude that

and

Next, we split the argument into two cases.
Case 1: If |hJc |1 ≥ 3|hJ|1 , by the inequality (9), we have |hJ|1 ≤ 3|�∗

Jc
|1 and then

where the first inequality uses the fact (9) again.
Case 2: Otherwise, we may assume |hJc |1 < 3|hJ|1 and then |h|1 ≤ 4|hJ|1 . By the 

bound (11),

If the relation �|J| ≤ 1

2
 holds, we conclude that

|hJc |1 ≤ |�∗
Jc
|1 + |�̂Jc |1 = |�∗

Jc
|1 + |�̂|1 − |�̂J|1

≤ |�∗
Jc
|1 + |�∗|1 + 1

3
|h|1 − |�̂J|1 = 2|�∗

Jc
|1 + |�∗

J
|1 + 1

3
|h|1 − |�̂J|1

≤ 2|�∗
Jc
|1 + |hJ|1 + 1

3
|h|1 = 2|�∗

Jc
|1 + 4

3
|hJ|1 + 1

3
|hJc |1,

(9)|hJc |1 ≤ 2|hJ|1 + 3|�∗
Jc
|1.

��̂�∗ − e�∞ ≤ ‖�̂ −�‖∞��∗�1 ≤ ‖�̂ −�‖∞‖�‖L1 ≤
1

3
�.

|�̂h|∞ ≤ |�̂�̂ − e|∞ + |�̂�∗ − e|∞ ≤
4

3
�,

��h�∞ ≤ �(�̂ −�)h�∞ + ��̂h�∞ ≤ ‖�̂ −�‖∞�h�1 + 4

3
�.

(10)
�h�∞ = ���h�∞ ≤ ‖�‖L1 ��h�∞ ≤ ‖�‖L1‖�̂ −�‖∞�h�1 + 4

3
‖�‖L1�

≤
1

3
��h�1 + 4

3
‖�‖L1�,

(11)�hJ�1 ≤ �J��h�∞ ≤
1

3
��J�(�h�1 + 4‖�‖L1 ).

(12)|h|1 = |hJc |1 + |hJ|1 ≤ 3|hJ|1 + 3|�∗
Jc
|1 ≤ 12|�∗

Jc
|1

�h�1 ≤ 4�hJ�1 ≤ 4

3
��J�(�h�1 + 4‖�‖L1).
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Now we begin to conduct the index set J that can control the bounds (12) and (13) 
simultaneously. To do so, we consider the index set

for some t > 0 . With this setting,

and for the cardinality of J, we have

Combining the bounds (12) and (13), we get

and setting t = �‖�‖L1 yields the conclusion

It remains to check �|J| ≤ 1

2
 . Let t = �‖�‖L1 and we have

which holds by the assumption.
Finally, invoking (10), we conclude

where we use the fact 𝜆1−q(‖�‖L1)−qsp < 1

2
 again. The proof is completed. 	�  ◻

Proof of Theorem 2

Note the result of Theorem 1 holds uniformly for all i = 1,… , p , that is

By the construction of �̃ , it is easy to show

(13)�h�1 ≤ 16��J�‖�‖L1 .

J = {j| |�∗
j
| > t},

(14)|�∗
Jc
|1 =

∑
j∈Jc

|�∗
j
| ≤ t1−q

∑
j∈Jc

|�∗
j
|q ≤ t1−qsp,

(15)|J| ≤ t−q
∑
j∈J

|||�
∗
j

|||
q

≤ t−qsp.

�h�1 ≤ max{12��∗
Jc
�1, 16��J�‖�‖L1} ≤ max{12t1−qsp, 16�t

−qsp‖�‖L1},

��∗ − �̂�1 ≤ 16‖�‖1−q
L1

�1−qsp.

𝜆�J� ≤ 𝜆(𝜆‖�‖L1)−qsp = 𝜆1−q(‖�‖L1)−qsp <
1

2
,

��∗ − �̂�∞ ≤
1

3
��h�1 + 4

3
‖�‖L1�

≤
16

3
��‖1−q

L1
�2−qsp +

4

3
‖�‖L1�

≤ 4‖�‖L1�,

max
i=1,⋯,p

��∗
i
− �̂ i�1 ≤ 16‖�‖1−q

L1
�1−qsp, and max

i=1,⋯,p
��∗

i
− �̂ i�∞ ≤ 4‖�‖L1�.
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Next we study the effect of the symmetrization step. For i ∈ {1,… , n} , we denote

Since |�̃|1 ≤ |��|1 by our construction, for the index set J, we have

which yields

Recall the index set J = {j� ��∗
j
� > 𝜆‖�‖L1} from Proof of Theorem 1, and also the 

bounds

Thus

and

Invoking the bound (16), we get

which ensures

Since the above bound holds uniformly for all i = 1,… , p , we conclude

The proof is completed. 	�  ◻

Proof of Corollaries

We only prove Corollary 1. The proof of other corollaries share a very similar proce-
dure as Corollary 1 and hence are omitted.

Proof of Corollary 1:

‖�̃ −�‖∞ ≤ max
i=1,⋯,p

��∗
i
− �� i�∞ ≤ 4‖�‖L1𝜆.

�̃ = �̃ i,
�� = �� i, �

∗ = �∗
i
.

|�̃Jc |1 = |�̃|1 − |�̃J|1 ≤ |��|1 − |�̃J|1 ≤ |(�� − �̃)J|1 + |��Jc |1,

(16)|�̃ − ��|1 ≤ |(�� − �̃)J|1 + |��Jc |1 + |�̃Jc |1 ≤ 2{|(�� − �̃)J|1 + |��Jc |1}.

��∗
Jc
�1 ≤ (�‖�‖L1 )1−qsp, and �J� ≤ (�‖�‖L1)−qsp.

�(�� − �̃)J�1 ≤ �J���� − �̃�∞ ≤ (𝜆‖�‖L1)−qsp ⋅ 8‖�‖L1𝜆 = 8(𝜆‖�‖L1 )1−qsp,

��̂Jc �1 ≤ �(�̂ − �∗)Jc �1 + ��∗
Jc
�1 ≤ ��̂ − �∗�1 + ��∗

Jc
�1 ≤ 17(�‖�‖L1 )1−qsp.

��̃ − ���1 ≤ 50(𝜆‖�‖L1)1−qsp,

��̃ − �∗�1 ≤ ��̃ − ���1 + ��� − �∗�1 ≤ 66(𝜆‖�‖L1 )1−qsp.

‖�̃ −�‖L1 ≤ max
i=1,⋯,p

��̃ − �∗�1 ≤ 66(𝜆‖�‖L1)1−qsp.
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By the assumption (A2) and Proposition 1, we have 

�

�
‖�̂1 −�‖∞ ≥ C

�
log p

n

�
= O(p−� ) . Similarly, by the assumption (A3) and 

Proposition 1, we have �
�
‖�̂1 −�‖∞ ≥ C

�
log p

n

�
= O

�
p−� + n

−
�

8

�
.

We take � = C0Mp

√
log p

n
 . Note that ‖�‖L1 ≤ Mp , then for a sufficiently large C0 , 

the condition � ≥ 3‖�‖L1‖�̂ −�‖∞ required in Theorem 2 holds. By the assump-
tion (A1), when n,  p are large enough, we can obtain that 
‖�‖−q

L1
�1−qsp ≤ spM

1−2q
p ≤

1

2
 . So by applying Theorem 2, the conclusion of Corol-

lary 1 holds. 	�  ◻
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