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Abstract
This paper is about the one-step ahead prediction of the future of observations drawn 
from an infinite-order autoregressive AR(∞ ) process. It aims to design penalties 
(fully data driven) ensuring that the selected model verifies the efficiency property 
but in the non-asymptotic framework. We show that the excess risk of the selected 
estimator enjoys the best bias-variance trade-off over the considered collection. To 
achieve these results, we needed to overcome the dependence difficulties by follow-
ing a classical approach which consists in restricting to a set where the empirical 
covariance matrix is equivalent to the theoretical one. We show that this event hap-
pens with probability larger than 1 − c

0
∕n2 with c

0
> 0 . The proposed data-driven 

criteria are based on the minimization of the penalized criterion akin to the Mal-
lows’s Cp.

Keywords  Model selection · Oracle inequality · Efficiency · Autoregressive 
process · Data driven

1  Introduction

Consider observations (X1,X2,… ,Xn) arising from a trajectory of the process

where (�t)t∈ℤ is a sequence of zero-mean independent identically distributed random 
variables (i.i.d.r.v) satisfying �(|𝜉0|4) < ∞ and f ∗ ∶ ℝ

ℕ
→ ℝ is a measurable func-

tion and 𝜎 > 0 an unknown constant.

(1)Xt = f ∗
(
(Xt−i)i∈ℕ∗

)
+ � �t for any t ∈ ℤ,
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The problem is to estimate the function f ∗ using these observations. Process (1) 
is a particular case of the general class of affine causal process studied in Doukhan 
and Wintenberger (2008) and Bardet and Wintenberger (2009).

The study of this type of process more often requires the classical regularity con-
dition on the function f ∗ , which are not restrictive at all and remain valid in various 
time series models. This condition can be stated as follows:

provided that that f ∗ admits partial derivatives on ℝℕ . Under (2) and if the noise 
�0 admits r-order moments, Doukhan and Wintenberger (2008) showed that there 
exists a stationary, mixing and ergodic solution to (1) admitting r-order moments.

Moreover, Bardet and Wintenberger (2009) studied the consistency and the 
asymptotic normality of the Quasi-maximum log-likelihood estimator (QMLE) of 
�∗ = (�∗

i
)i∈ℕ in the case f ∗ = f�∗ .  

In this paper, we will focus only on processes with a linear regression function 
( f�∗ ) with respect to the past and depending on some parameter �∗ ∈ ℝ

ℕ ; that is

For such processes, condition (2) is rewritten as

Even if this condition reduces the set of parameters a bit, the class of AR(∞ ) pro-
cesses checking the condition A1 is rich and of practical importance because it con-
tains all invertible causal ARMA(p, q) processes and it is very useful for prediction 
given the past. Moreover, contrary to the autocovariance of ARMA(p, q) processes 
which decays exponentially fast, AR(∞ ) are able to model more complex behavior 
such as slower decay of the covariance structure.

Henceforth, let observations (X1,X2,… ,Xn) be a trajectory of the solution 
X ∶= (Xt)t∈ℤ of (1) verifying A1 . The goal of this paper is to predict the next value 
Xn+1 . In fact, if �∗ were known, a simple prediction of Xn+1 could be f�∗ (Xn,Xn−1,…) 
setting Xt = 0 for all t ≤ 0 . However, �∗ is generally unknown and it is impossible to 
provide a direct estimator since its coordinates are infinite. It is classical to identify a 
‘good’ finite-dimensional model based on the data which can be done by sieve esti-
mation where only a finite number of {�∗

i
}K
i=1

 is estimated and letting K grows as the 
sample size increases. A usual approach to this is model selection and the goal is to 
provide a model with the prediction error as small as the oracle’s one.

This question has already been addressed in the literature. Shibata (1980) was the 
first to tackle this issue. He proved that Akaike criterion is asymptotically efficient in 
the sense that the selected model achieves a smaller one-step mean squared error of 
prediction when it is fitted to predict an independent realization of the same process. 

(2)
∞∑

k=1

(
sup
x∈ℝ∞

|||
𝜕

𝜕xk
f ∗(x)

|||

)
< 1,

(3)f ∗(Xt−1,Xt−2,…) = f�∗ (Xt−1,Xt−2,…) =

∞∑

i=1

�∗
i
Xt−i.

A1 ∶

∞∑

i=1

|𝜃∗
i
| < 1.
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Following Shibata’s asymptotically setting, Ing and Wei (2003) and Ing and Wei 
(2005) extended this result for same realization predictions. Indeed, they argued that 
the Shibata’s idea to fit the model to another independent realization is unrealistic 
since in practice we only have one data at hand. The common feature of these works 
is their asymptotic framework.

Meanwhile, there were several authors which study this question in non-asymp-
totic regime. Goldenshluger and Zeevi (2001) in the nonparametric framework, 
studied how well a Gaussian process admitting an AR(∞ ) representation can be 
approximated by a finite-order AR model.

In Baraud et al. (2001a) and (b), they analyzed similar question, but a little bit dif-
ferent as observations arise from an auto-regressive model of order k. They proved 
an oracle inequality under several conditions, for instance the compactly supported 
base of the regression function. Moreover, they assume that the process is �-mix-
ing, which is usually admitted, but quite hard to verify in practice. For linear pro-
cesses, the �-mixing is more suitable since its coefficients can be easily computed 
(see Comte et al., 2008) and be bounded by a function of the model parameter �∗ 
(see Doukhan and Wintenberger, 2008). In this work, we do not assume any mixing 
property of the process since the condition A1 implies the �-mixing property (see 
Doukhan and Wintenberger, 2008) and we will see that the decreasing rate of �-mix-
ing coefficients is bounded by the decreasing rate of the coefficients �∗ = (�∗

i
)i∈ℕ.

Based on the above and following a model selection approach, our purpose in this 
work is to design adaptive penalties in such a way that the selected model mimics 
the oracle when observations arise from AR(∞ ) under mild conditions, including 
the existence of the all order moments of the noise, the decreasing rate of the coeffi-
cients of (�∗

i
)i∈ℕ so that thanks to a result by Doukhan and Wintenberger (2008), the 

generating process has nice properties such as stationarity, �-mixing.
The main contribution of this paper is to prove that the excess risk of the selected 

estimator enjoys the best bias-variance trade-off over the considered collection.
The paper is organized as follows. The model selection approach along with pre-

liminary results is described in Sect. 2. The main results are presented in Sect. 3. 
Finally, Sect. 4 contains the proofs.

2 �  Model selection approach and preliminary results

Before entering properly into the description of our approach, let us introduce some 
notations.

2.1 � Notations

We will use the following norms:

•	 < ., . > is the usual scalar product and if x, y ∈ ℝ
n , < ., . >n=

1

n

∑n

i=1
xiyi;

•	 The usual Euclidean norm on ℝ� , with � ≥ 1 , is denoted by ‖.‖ and its normalized 
version by ‖.‖n ;
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•	 ‖A‖op is the operator norm of A as the square root of the largest eigenvalue of 
A⊤A . If A is symmetric, then ‖A‖op is the largest (in absolute value) eigenvalue of 
A.

•	 If X is a ℝ�-random variable and r ≥ 1 , we set ‖X‖r =
�
�
�
‖X‖r

��1∕r
∈ [0,∞] , 

where �[Y] denotes the expected value of the random variable Y.

2.2 � Model selection approach

Let Sm (shortly m) a model for f ∗ be the set of linear function f from ℝDm to ℝ such 
that

with � = (�1,… , �Dm
) ∈ Θm and Θm a compact set of ℝ

Dm satisfying 
sup
𝜃∈Θm

∑Dm

i=1
�𝜃i� < 1.

Sm can be viewed as an AR(Dm ) model.
Given a predictor f� ∈ Sm , its quality is measured by the quadratic loss

where f n
�
= f�(Xn−1,… ,Xn−Dm

) . According to Bardet and Wintenberger (2009), the 
Bayes predictor which minimizes R(�) over the set of all predictors is the inacces-
sible function f�∗ . Let then introduce the excess loss of the predictor f� (with respect 
to f�∗)

Given a model m, we define its best predictor f�∗
m
 by

Its empirical version minimizing the least-squares contrast is

In this work, we will consider that the excess loss is measured on the design points, 
that is to say

where F𝜃 ∶= (f 1
𝜃
,… , f n

𝜃
)⊤ and ‖x‖2

n
=

1

n

∑n

t=1
x2
t
.

Given that all the models which can be considered must have finite dimensions 
for fixed n, making all Sm wrong models, it is classical to let the dimension of 

(4)f (x1, x2,… , xDm
) = f�(x1, x2,… , xDm

) =

Dm∑

i=1

�i xi,

R(�) = �
[
(Xn+1 − f n+1

�
)2
]

�(�, �∗) ∶= R(�) − R(�∗) = �
[
(f n+1
�∗

− f n+1
�

)2
] ≥ 0.

�∗
m
= argmin

�∈Θm

R(�).

(5)�̂m = argmin
�∈Θm

�n(�) where �n(�) =
1

n

n∑

t=1

(Xt − f t
�
)2.

(6)�(�̂, �∗) = �

[
‖‖F�̂ − F�∗

‖‖
2

n

]
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competitive models grow with the number of observations. This will help reduce the 
excess loss and provide a better approximation of f�∗.

Let Mn a countable collection of hierarchical model Sm and Kn is the dimen-
sion of the largest model in Mn satisfying |Mn| ≤ Kn < n . We follow the classical 
approach of model selection which consists in minimizing the penalized LSE.

Let pen: Mn → ℝ
+ be a penalty function, possibly data-dependent, and define

The function pen can be a linear function of the model dimension (see for instance 
Birgé and Massart, (2001, 2007) among others) or a non linear one (see Lebarbier 
and Mary-Huard, 2004).

The best possible choice over Mn is m∗ the so-called oracle defined as

The oracle m∗ is unachievable since it depends on �∗ and the distribution P(X1,…,Xn)
 

that are unknowns. However, we hope to select a model m̂ so that �(�̂m̂, �∗) is closest 
to �(�̂m∗ , �∗).

The goal of this paper is to propose a data-driven penalty in order to obtain an 
oracle inequality

with the leading constant C1 close to one and C2 > 0 . This goal could rather be to 
show that the excess risk of the selected estimator �̂m̂ realizes the best bias-variance 
trade-off, which would make our penalty an ideal choice in terms of excess risk.

with the leading constant C�
1
= 1 + � with 𝛿 > 0 (and close to 0) and C′

2
> 0.

That is to say that the selected model m̂ will be large enough to reduce its bias, 
but not too large to avoid high variance.

2.3 � Preliminary results and assumptions

As we are in dependence setting, we are going to leverage the �-mixing property 
of (Xt)t∈ℤ in order to obtain some exponential inequalities. The �-mixing coeffi-
cients are a measure of the dependence of the process and has been introduced by 
Dedecker and Prieur (2005). This will help us build ‘independents’ random vectors 
and apply classical exponential inequalities. Let then introduce some notations.

Let (Ω, C,ℙ) be a probability space, M a �-subalgebra of C and Z a random vari-
able with values in a Banach space 

�
E, ‖.‖E

�
 . Assume that �|Z| < ∞ and define

(7)m̂ = argmin
m∈Mn

{C(m)} with C(m) ∶= �n
(
�̂m

)
+ pen(Sm).

(8)m∗ ∈ arg inf
m∈Mn

�(�̂m, �
∗).

(9)�(�̂m̂, �
∗) ≤ C1 inf

m∈Mn

{
�(�̂m, �

∗)
}
+

C2

n

(10)�(�̂m̂, �
∗) ≤ C�

1
inf

m∈Mn

{
�(�∗

m
, �∗) + pen(Sm)

}
+

C�
2

n
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 where Λ(E) is the set of 1-Lipschitz function, i.e., the functions f from 
�
E, ‖.‖E

�
 to ℝ 

such that �f (x) − f (y)� ≤ ‖x − y‖E.
Using definition of � , we will measure the dependence of the strictly stationary 

sequence (Zt)t∈ℤ thanks to the coefficients defined as follows. For any s ≥ 0 , let intro-
duce the norm ‖x − y‖

ℝk = (�x1 − y1� +⋯ + �xk − yk�) and setting Mi = �(Zt, t ≤ i) 
and if �(|Z1|) < ∞ , let

Finally, the time series (Zt)t∈ℤ is � (p)
Z,∞

-weakly dependent when its coefficients � (p)
Z,∞

 
tend to 0 as s tends to infinity.

Proposition 3 that is a consequence of Theorem 3.1 in Doukhan and Wintenberger 
(2008) gives a link between the �-mixing coefficients of the process (Xt)t∈ℤ and the 
coefficients �∗

i
 of model (3).

As we are going to need independence for block of random variables, let denote for 
t = 1,… , n the random vector �t ∶= (Xt−1,… ,Xt−Kn

)⊤ One can see that the process 
(�t)t∈ℤ is also mixing with � (1)

�,∞
 upper bounded by Kn �

(1)

X,∞
 (see Lemma 1).

Now, we construct random variables approximating �t ’s enjoying the independence 
by block property. Let sn, qn two integers such that n = 2 sn qn . We are going to build 
2 sn blocks of length qn so that the even index blocks are independent and so the odd 
index blocks.

For k = 0,… , sn − 1 let denote by

Proposition 4 recalls a result from Lerasle (2011) that is a consequence of the cou-
pling in Dedecker and Prieur (2005). It allows to have the block independence 
property.

To prove the oracle inequality, we will assume some constraints on the observations.
A2    Xt is sub-Gaussian with variance proxy 𝜎2

0
> 0 i.e.,

Condition A2 implies that the vector Zm
t
= (Xt−1,… ,Xt−Dm

)⊤ which will be promi-
nent in the proofs, is sub-Gaussian with variance proxy Dm �2

0
 . Indeed for any 

v ∈ ℝ
Dm such that ‖v‖ = 1 ,

� (p)(M, Z) =
‖‖‖ sup
f∈Λ(E)

{|||∫ f (x)ℙZ|M(dx) − ∫ f (x)ℙZ(dx)
|||
}‖‖‖p

𝜏
(p)

Z,∞
(s) = sup

l>0

{
max
1≤k≤l

1

k
sup

{
𝜏 (p)

(
Mi, (Zi1 ,… , Zik )

)
, i + s ≤ i1 < ⋯ < ik

}}
.

Ak =
(
�2kqn+1

,… ,�(2k+1)qn

)
and Bk =

(
�(2k+1)qn+1

,… ,�(2k+2)qn

)
.

�[e𝜆Xt ] ≤ e𝜆
2 𝜎2

0
∕2 for any 𝜆 > 0.
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where the Inequality follows from Hölder’s Inequality.
The following assumption provides a sufficient condition to ensure the invert-

ibility of both �Σm ∶= �
⊤
m
�m and Σm ∶= �

[
Σ̂m

]
 where �m =

[
Xi−1,… ,Xi−Dm

]n
i=1

.
A3: For any f� ∈ Sm , < 𝛼, 𝜕𝜃f𝜃 >= 0 a.s. ⟹ 𝛼 = 0

This condition means that the columns of the matrix �m are linearly 
independents.

We will also need to bound eigenvalues of the matrices Σm for any m ∈ Mn . 
To do that, we will leverage the relation between the spectral density of 
the process and these eigenvalues. Let us denote by r, the covariance func-
tion r(h) ∶= �[Xt Xt+h] for any integer h. Let also introduce the function 
g ∶ [−�,�[⟶ ℂ such that for any �,

which exists under A1 with |�∗
t
| = O(t−� ) where � ≥ 1 . Therefore, r is the inverse 

transform of g and r(h) = ∫ �

−�
eih� g(�)d� for any h ∈ ℤ . We will assume that

A4: There exists a constant a > 0 such that inf
−𝜋≤𝜆<𝜋g(𝜆) ≥ a.

This is a very weak assumption, and we are going to give the value of a for 
AR(p) process with p ∈ ℕ and p ≥ 1 . Let denote �∗(z) = 1 −

∑p

j=1
�∗
j
zj , it is well 

known for such process that

For instance for p equal to one, and Xt = �∗
1
Xt−1 + � �t with |𝜃∗

1
| < 1 , it follows

and then it is simple to see that

�

[
exp

(
𝜆 v⊤Zm

t

)]
= �

[ Dm∏

i=1

exp
(
𝜆 viXt−i

)]

&le

Dm∏

i=1

‖‖‖ exp
(
𝜆 viXt−i

)‖‖‖Dm

≤
Dm∏

i=1

exp
(
𝜆2 Dm 𝜎2

0
v2
i
∕2

)

≤ e
𝜆2

2
Dm 𝜎2

0 ,

g(�) =
1

2�

∑

h∈ℤ

r(h) e−ih�,

g(�) =
�2

2�||�∗(e−i�)||
2
.

g(�) =
�2

2� ||1 − �∗
1
e−i�||

2

=
�2

2�
(
1 − 2 �∗

1
cos(�) + (�∗

1
)2
) ,
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For p ≥ 1 and Xt =
∑p

j=1
�∗
j
Xt−j + � �t satisfying 

∑p

j=1
𝜃∗
j
< 1 and �∗

j
≥ 0 , we have

Thus, using || cos(x)|| ≤ 1 for any real x, it follows for every � that

For such AR(p) process, one can take the constant a in A4 to be equal to

We can now state an important intermediate result which provides uniform lower 
and upper bound on the spectral norm of the matrices Σm.

Proposition 1  Under A1 with |�∗
t
| = O(t−� ) where � ≥ 2 , we have for any m ∈ Mn

Moreover and under A3-A4, it holds

Let us introduce extra important notations. Let denote by � the law of the vec-
tor �t and

where ‖F�‖2� ∶=
1

n
�

�∑n

t=1
(f t
�
)2
�
= ∫ (f 1

�
)2d� . It is common to consider the set Ωn 

which makes a link between the empirical norm ‖.‖n and the to �2 norm (see for 
instance Baraud et al., 2001b; Hsu et al., 2011; Van de Geer, 2002, Comte & Genon-
Catalot, 2020 among others). We will see that in our framework, Ωn holds with large 
probability.

In all of this work, we assume that qn was chosen to verify

a ∶=
�2

2� (1 + |�∗
1
|)2

≤ g(�) ≤ �2

2� (1 − |�∗
1
|)2

.

g(�) =
�2

2� ��1 −
∑p

j=1
�∗
j
e−ij���

2

= �2 (2�)−1
�
1 +

p�

j=1

(�∗
j
)2 − 2

p�

j=1

�∗
j
cos(j�) + 2

p−1�

k=1

�∗
k

� p�

j=k+1

�∗
j
cos

�
(j − k)�

���−1

.

�2 (2�)−1
(
1 +

p∑

j=1

(�∗
j
)2 + 2

p∑

j=1

�∗
j
+ 2

p−1∑

k=1

�∗
k

{ p∑

j=k+1

�∗
j

})−1

≤ g(�).

a = �2 (2�)−1
(
1 +

p∑

j=1

(�∗
j
)2 + 2

p∑

j=1

�∗
j
+ 2

p−1∑

k=1

�∗
k

{ p∑

j=k+1

�∗
j

})−1

.

(11)‖‖Σm
‖‖op ≤ 𝜋−1

∞∑

i=0

||�[X0 Xi]
|| < ∞.

(12)‖‖Σ
−1
m
‖‖op ≤ 1∕a.

Ωn =

�
� ∶

�����

‖F�‖2n
‖F�‖2�

− 1
�����
≤ 1

2
, ∀F� ∈

�

m,m�∈Mn

(Sm + Sm� )

�
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for some constant A and 𝛾 > 1 . Also we choose the integer sn such that

This means that sn is of the form sn = C log n where C ≥ 6 max
{(

27 �2
0
Kn

)2
, 28 �2

0
Kn

}
.

Proposition 2  Under assumptions A1 , A6 and if |�∗
t
| = O(t−� ) with � ≥ 8 , there 

exists a constant C such that

3 � Bias‑variance result

We are now able to state the main result of the paper.

Theorem 1  Let consider observations (X1,… ,Xn) arising from a solution of process 
(1) satisfying A1 with |�∗

t
| = O(t−� ) where � ≥ 8 and also verifying A2 and A4. Let 

Mn be some countable family of AR models satisfying A3 and A5-A6. For any con-
stant x > 2 , let a penalty function pen: Mn → ℝ

+ such that

Then, the LSE �̂m̂ with m̂ given in (7), satisfies

where C1(x) =
(

x+2

x−2

)2

> 1 and C2 > 0.

As we can see, this result is almost similar to that of Baraud et al. (2001b) obtained 
in nonparametric framework. However, their result is only valid if we want to esti-
mate the function F�∗ on some compact set. This restriction is lifted in our parametric 
framework.

(13)A5 ∶
( log qn

qn

)�−1 ≤ A

n
,

(14)A6 ∶
sn

2
min

{(
1

27 �2
0
Kn

)2

,
1

28 �2
0
Kn

}
≥ 3 log n.

(15)ℙ(Ωc
n
) ≤ C

n3
.

(16)pen(Sm) ≥ 8 x3�2
Dm

n
.

(17)

�

[
‖‖F�̂m̂

− F�∗
‖‖
2

n
I1Ωn

] ≤ C1(x) inf
m∈Mn

{
�

[
‖‖F�∗ − F�∗

m

‖‖
2

n

]
+ 2 pen(Sm)

}
+

x(x + 2)

x − 2

C2

n
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4 � Proofs

4.1 � Proof of Theorem 1

Proof  We follow the scheme of the proof of Baraud et al. (2001b). Let fix m ∈ Mn.
From definition (7), we have

Since,

(18) yields to

The difficult part of this proof is to handle the inner product 2
n

∑n

t=1
� �t(f

t

�̂m̂
− f t

�∗
m

) , 
which can be rewritten as

since 2 a b ≤ x−1 a2 + x b2 for any x > 0 and where

Moreover, on the set Ωn , it holds

for some y > 0 . As a result,

(18)�n
(
�̂m̂

)
+ pen(Sm̂) ≤ �n

(
�̂m

)
+ pen(Sm) ≤ �n(�

∗
m
) + pen(Sm).

�n
(
�̂m

)
=

1

n

n∑

t=1

(Xt − f t
�̂m
)2 =

1

n

n∑

t=1

(f t
�∗
− f t

�̂m
)2 +

�2

n

n∑

t=1

�2
t
−

2 �

n

n∑

t=1

�t(f
t

�̂m
− f t

�∗
),

(19)

‖‖F�̂m̂
− F�∗

‖‖
2

n
≤ ‖‖F�∗
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2

n

n∑

t=1
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B(m�,�) =
�
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Therefore, from (19), it holds on Ωn

where D(Sm̂) = dim(Sm + Sm̂) ≤ Dm + Dm̂ . Hence, using the condition on penalty 
(16),

with

where �n(g�) ∶= n−1
∑n

t=1
�t g

t
�
.

The proof will be established after controlling the expectation of Vm̂ which 
involves the supremum of an empirical process.

Now we leverage the mixing property in order to apply Talagrand’s Inequality 
(Theorem 2) to tackle �[Vm̂].

We have

where

2

n
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� �t(f
t
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m
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‖

F�̂m̂
− F�∗

‖
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‖

‖
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‖

‖
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n
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‖
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‖

2
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+ 8 x3�2 Dm + Dm̂
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+ x �2
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[

(
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∑
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�t gt�
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]

+
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(
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x

)
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2

n
≤ (

1 + 2
(1 + y−1)
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+
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[
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g�∈B(m̂,�)

(
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]

+

and �∗
n
(g�) =

1

n
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�t g�(�
∗
t
).
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1/ Control of �
[

sup
g�∈B(m̂,�)

(
�n(g�) − �∗

n
(g�)

)2]
 . Let m� ∈ Mn and g� ∈ B(m�,�) . Since 

the parameter set are compacts and � ↦ g� is continuous, there exists �0 ∈ Θm ∪ Θm� 
such that

As �t and Ft are independents, it follows that

since �[�2
0
] = 1 . In addition,

using Cauchy-Schwarz Inequality. It then follows as 
∑D(Sm� )

i=1
�𝜃0,i� < 1

where the last inequality follows from Proposition 3. Thus,

using Assumption A5 and since Kn ≤ n.
2/ Control of �[V∗

m̂
].

First, let us rewrite �∗
n
(g�) for g� ∈ B(m�,�) . Setting �t = (X∗

t−1
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)⊤ , 
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with

where

Now let remark that �∗
n,1
(g�) and �∗

n,2
(g�) are both sum of sn independent random 

variables by virtue of Proposition 4. Hence,

As a consequence it is sufficient to study �∗
1
∶= �

(
sup

g∈B(m̂,�)

4
(
�∗
n,1
(g�)

)2
− 4 x2 n−1 D(Sm̂)

)

+

 

and the bound for �
(
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g�∈B(m̂,�)

4
(
�∗
n,2
(g�)

)2
− 4 x2 n−1 D(Sm̂)

)

+
 will follow by using 

analogous arguments.
Bounding �∗

1

Since the noise (�t) is not bounded, the process �∗
n,1

 is not bounded either. Let’s 
use the technique used in Comte and Genon-Catalot (2020) to overcome this diffi-
culty. Therefore, we decompose �t as

where kn is a deterministic sequence or a constant to be chosen later. We then have
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n
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∗
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=
1

2 snqn
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1

2 qn
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∗
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4
(
�∗
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− 4 x2 n−1 D(Sm̂)
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+
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4
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+
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(g�) = �∗
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�∗
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1

sn
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�2kqn+i g�(�
∗
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) and
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Thus,

We start by bounding the term in (22). Let m� ∈ Mn . In order to apply Theorem 2, 
one has to find M, H and v such that

 ∙ Since the noise is bounded here and from the assumption A1, the process (Xt) is 
also bounded. Indeed, under A1, there exists (�∗

i
) such that

Therefore, |Xt| ≤ Φ0 kn with Φ0 ∶=
∑∞

i=0
��∗

i
� . Moreover, for any g� ∈ B(m�,�) , we 

have

As a result, we have

∙ Next, since the parameter set are compacts, there exists �0 ∈ Θm ∪ Θm� such that

Moreover,

�∗
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1
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[
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2
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.
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since D(Sm� ) ≥ 1.
∙  Lastly, as Var [X] ≤ E[X2] , it follows from the previous series of equations

As a consequence from Theorem 2 and taking 𝛼 =
1

2
(

x2

2Φ2
0
k2
n

− 1) > 0 , we have

Hence, there exists a constant K′ such that

∙  Now, let us upper bound the term in (23). For any m� ∈ Mn and any 
g� ∈ B(m�,�) , we have

Therefore,

so that
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Let us notice that (Y∗
k
)k is a family of independent random variables as (�∗

n,1,k
(g))k . 

Thus, it follows

Moreover,

where 𝜇2 = �[X2
t
] < ∞ . It follows

Inequality (24) along with (27) yields to

We conclude that there exists K > 0

Returning to (20), and taking expectation on both sides, it then follows

For y = x−2
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> 0 , so that 1 + y =
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with C(x) = (x+2)2

(x−2)2
> 1. 	�  ◻

4.2 � Proof of Proposition 2

Since the collection Mn is hierarchical, we have

where

Let m ∈ Mn . We have

Moreover,
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�
) = n−1

∑n

t=1

�
(f t
�
)2 − �
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(f 1
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��
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)⊤, �Σm,t = Zm

t
(Zm

t
)⊤ with Zm

t
= (Xt−1,… ,Xt−Dm

)⊤ . So that with 

Σm = �
[
Σ̂m,t

]
 , it follows

�

[
‖‖f

t

�̂m̂
− f t

�∗
‖‖
2

n

] ≤ C(x)

(
�

[
‖‖f

t
�∗
− f t

�∗
m

‖‖
2

n

]
+ 2 pen(Sm)

)
+

x(x + 2)

x − 2

K

n

ℙ(Ωc
n
) ≤ �

m∈Mn

ℙ

�
∃F𝜃 ∈ Sm ∶

�����

‖f𝜃‖2n
‖f𝜃‖2𝜇

− 1
�����
>

1

2

�

≤ �

m∈Mn

ℙ(Ωc
m
)

Ωm =

������

‖F�‖2n
‖F�‖2�

− 1
�����
≤ 1

2
∀F� ∈ Sm

�
.

ℙ(Ωc
m
) ≤ ℙ

�
sup
F𝜃∈Sm

�����

‖F𝜃‖2n
‖F𝜃‖2𝜇

− 1
�����
>

1

2

�
.

sup
F𝜃∈Sm,‖F𝜃‖2𝜇=1

�����

‖F𝜃‖2n
‖F𝜃‖2𝜇

− 1
�����
>

1

2
⟺ sup

F𝜃∈Sm,‖F𝜃‖2𝜇=1

���𝜈n(F
2
𝜃
)
��� >

1

2

ℙ

�
sup
f∈Sm

�����

‖F𝜃‖2n
‖F𝜃‖2𝜇

− 1
�����
>

1

2

�
≤ℙ

�
sup
F𝜃∈Sm

��𝜈n(F
2
𝜃
)�� >

1

2

�
.

(
f𝜃(�t)

)2
=
( Dm∑

i=1

𝜃iXt−i

)2

=

Dm∑

i,j=1

𝜃i𝜃jXt−iXt−j = 𝜃⊤�Σm,t𝜃



584	 K. Kamila 

1 3

where Σ̂ = n−1
∑n

t=1 Σ̂t . As a result,

Indeed,

since −1 < 𝜃i < 1 ensures that ‖�‖2 ≤ ∑
��i� . Hence,

Using Lemma 3 with u = 1∕4 and by virtue of A6, it follows

Now let bound ℙ1 . We know that for a Dm × Dm matrix A

Thus, from Markov’s Inequality,

𝜈∗
n
(F2

𝜃
) =

1

n

n∑

t=1

𝜃⊤
(
�Σt − Σ

)
𝜃 = 𝜃⊤(�Σm − Σm)𝜃,

sup
F�∈Sm,‖F�‖2�=1

��∗
n
(F2

�
)� ≤ ��Σ̂m − Σm

��op.

sup
F𝜃∈Sm

�𝜈∗
n
(F2

𝜃
)� = sup

𝜃∶
∑

�𝜃i�<1
𝜃⊤(�Σm − Σm)𝜃 = sup

𝜃∶
∑

�𝜃i�<1
‖𝜃‖2

𝜃⊤(�Σm − Σm)𝜃

‖𝜃‖2

≤ sup
𝜃∶ ‖𝜃‖2≤1

𝜃⊤(�Σm − Σm)𝜃

‖𝜃‖2
= ���Σm − Σm

��op

ℙ

�
sup

F𝜃∈Sm,‖F𝜃‖2𝜇=1
�𝜈n(F2

𝜃
)� > 1

2

�
≤ℙ

�
���Σm − Σm

��op >
1

2

�

≤ℙ
�
���Σm − �Σ∗

m
��op >

1

4

�
+ ℙ

�
���Σ

∗
m
− Σm

��op >
1

4

�

=∶ℙ1 + ℙ2.

ℙ2 ≤2 exp
(
− 3 log n

)

≤ 2

n3
.

‖‖A‖‖op ≤‖‖A‖‖∞ ∶= max
1≤i≤Dm

Dm∑

j=1

|Aij|.
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Moreover, ||Xt−iXt−j − X∗
t−i
X∗
t−j
|| ≤ ||Xt−i

||||Xt−j − X∗
t−j
|| + ||X∗

t−j
||||Xt−i − X∗

t−i
|| so that with 

Cauchy–Schwarz’s Inequality,

Hence, using Proposition 3, it follows

Moreover, since � ≥ 8 and from assumption A5, one can find some constant A′ such 
that

As a result, with c0 ∶= 8 ‖‖X0
‖‖2 C� A

� , it holds

As a consequence,

	�  ◻

4.3 � Proof of Proposition 1

Proof  The proof of the will be based on the relation between the spectral density 
function and the maximum eigenvalues of the variance covariance matrix.

Denote by u ∈ ℝ
Dm the normalized eigenvector associated with the largest eigen-

value �max(Σm) . Hence,

ℙ1 ≤4𝔼
[
‖‖Σ̂m − Σ̂∗

m
‖‖op

]

≤4𝔼[ max
1≤i≤Dm

Dm∑

j=1

||
(
Σ̂m − Σ̂∗

m

)
i,j
||
]

≤4
Dm∑

j=1

𝔼
[||
(
Σ̂m − Σ̂∗

m

)
i0,j
||
]

≤4
Dm∑

j=1

𝔼
[||Xt−i0

Xt−j − X∗
t−i0

X∗
t−j
||
]
.

�
[||Xt−iXt−j − X∗

t−i
X∗
t−j
||
] ≤2 ‖‖X0

‖‖2 ‖‖Xt−1 − X∗
t−1

‖‖2
≤2 ‖‖X0

‖‖2 �
(2)(qn).

ℙ1 ≤8 ‖‖X0
‖‖2Dm � (2)(qn)

≤8 ‖‖X0
‖‖2Dm C�

( log qn
qn

)�−1

.

( log qn
qn

)�−1 ≤ A�

n4
.

ℙ1 ≤ c0

n3
.

ℙ(Ωc
n
) ≤ 2 + c0

n3
.
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since, using Parseval identity, ∫ �

−�

���
∑Dm

j=1
uj e

i j����
2

d� =
∑Dm

j=1
u2
j
= 1.

But, from Lemma 2 and since � ≥ 2 , it follows

Given that Σm is symmetric, it follows

which concludes the proof of (11).
Now we end by the proof of (12). Reasoning as above, and by virtue of A4, one 

can show that

which yields to

so that (12) is established.
	�  ◻

4.4 � Technical lemmas

Lemma 1  Assume A1 holds and (Xt) the mixing stationary solution of (1). Then, the 
process (�t) is mixing and

𝜆max(Σm) =u
⊤ Σm u =

Dm∑

j,k=1

uj r(j − k) uk = �
𝜋

−𝜋

g(𝜆)

Dm∑

j,k=1

uj e
i(j−k)𝜆 ukd𝜆

=�
𝜋

−𝜋

g(𝜆)
|||||

Dm∑

j=1

uj e
i j𝜆
|||||

2

d𝜆 ≤ sup
−𝜋≤𝜆<𝜋

g(𝜆) �
𝜋

−𝜋

|||||

Dm∑

j=1

uj e
i j𝜆
|||||

2

d𝜆

≤ sup
−𝜋≤𝜆<𝜋

g(𝜆),

||| sup
−𝜋≤𝜆<𝜋

g(𝜆)
||| ≤ 1

2𝜋

∑

h∈ℤ

|r(h)|

≤C

𝜋

+∞∑

h=0

1

(h + 1)𝛾
< ∞.

‖‖Σm
‖‖op = �max(Σm) ≤ C

�

+∞∑

h=0

1

(h + 1)�
,

𝜆min(Σm) ≥ inf
−𝜋≤𝜆<𝜋 g(𝜆) ≥ a

‖‖Σ
−1
m
‖‖op =

1

�min(Σm)
≤ 1

a
,

(30)�
(1)

�,∞
(r) ≤ Kn �

(1)

X,∞
(r − 1).
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Proof  Let set by Mi
�
= �(�t, t ≤ i) and Mi

X
= �(Xt, t ≤ i) for an integer i. One 

would like to bound � (1)
(
M

i
�
,
(
�j1

,… ,�jk

))
 for jk > … > j1 ≥ i + r.

Let assume that the universe Ω is rich enough so that, one can find 
�

∗
jl
=
(
X∗
jl−1

,… ,X∗
jl−Kn

)⊤ with l = 1,… , k verifying 

1.	
(
�

∗
j1
,… ,�∗

jk

)
 is distributed as 

(
�j1

,… ,�jk

)
 and independent of Mi

�
;

2.	
(
X∗
j1−1

,… ,X∗
jk−1

)⊤ is distributed as 
(
Xj1−1

,… ,Xjk−1

)⊤ and independent of Mi
X
.

As a result,

This fact along with the definition of � (1)
�,∞

(r) leads to (30).
	�  ◻

Lemma 2  Under A1 with |�∗
t
| = O(t−� ) where 𝛾 > 1 , we have

Proof  By virtue of A1 , the process (Xt)t is causal; that is there exists (�i)i∈ℕ such that 
Xt =

∑+∞

i=0
�i �t−i with 

∑+∞

i=0
�𝜙i� < ∞. The sequence (�i)i∈ℕ is given by the relation 

�(z) =
∑+∞

i=0
�i z

i =
1

�(z)
 with �(z) = 1 −

∑+∞

i=0
�∗
i
zi . Equating coefficients of 

zj, j = 0, 1,… , we find that �0 = 1 and for i ≥ 1

This fact allows us to deduce that the sequences (�i)i∈ℕ and (�∗
i
)i∈ℕ decay at the 

same rate. Therefore, since |�∗
t
| = O

(
(t + 1)−�

)
 , there exists h0 ∈ ℤ such that for any 

h ≥ h0 , it holds |�t| ≤ C (t + 1)−� for some constant C > 0 . Thus,

𝜏 (1)
�
M

i
�
,
�
�j1

,… ,�jk

�� ≤
k�

l=1

‖�jl
− �

∗
jl
‖1 =

k�

l=1

Kn�

t=1

�
�
�Xjl−t

− X∗
jl−t

�
�

≤Kn

k�

l=1

�
�
�Xjl−1

− X∗
jl−1

�
�

=Kn
���
�
Xj1−1

,… ,Xjk−1

�⊤
−
�
X∗
j1−1

,… ,X∗
jk−1

�⊤���1
=Kn 𝜏

(1)
�
M

i
X
,
�
Xj1−1

,… ,Xjk−1

��
.

r(h) = �[X0 Xh] = O
(
(h + 1)−�

)

�i =

i∑

j=1

�∗
j
�i−j.
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where the last inequality follows from the fact that � ≥ 2 and that established the 
Lemma. 	� ◻

Lemma 3  Under assumptions A2, it holds for any model m ∈ Mn , and for all u > 0

Proof  One can write for a matrix A

Therefore, one can find a vector v0 ∈ ℝ
Dm with ‖v0‖ = 1 such that

But,

with Yt = v⊤
0
Zm
t
=
∑Dm

i=1
vi
0
X∗
t−i

 . From A2, Yt is SG(Dm �2
0
 ). Therefore, Y2

t
 

is SE(256D2
m
�4
0
, 16Dm�

2
0
 ) (where SE stands for Sub-Gaussian and SE for 

Sub-Exponential).
Moreover, we can write

r(h) =

∞∑

j=0

�j �j+h

≤C2

∞∑

j=0

1

(j + 1)�
1

(j + h + 1)�

≤C2 (h + 1)−�
∞∑

j=0

1

(j + 1)�
≤ C2 �

2

6
(h + 1)−� ,

ℙ

(
‖‖Σ̂

∗
m
− Σm

‖‖op ≥ u
) ≤ 2 exp

{
−

sn

2
min

{(
u

16Dm �2
0

)2

,
u

32Dm �2
0

}}

��A��op = max
v∶ ‖v‖=1

��v
⊤ A v�� = ��v

⊤
0
A v0

��.

ℙ

(
‖‖�Σ

∗
m
− Σm

‖‖op ≥ u
)
=ℙ

(
||v

⊤
0

(
�Σ∗
m
− Σm

)
v0
|| ≥ u

)
.

v⊤
0

(
�Σ∗
m
− Σm

)
v0 =

1

n

n∑

t=1

(
v⊤
0
�Σ∗
m,t
v0 − v⊤

0
Σmv0

)

=
1

n

n∑

t=1

(
v⊤
0
(Z∗m

t
) (Z∗m

t
)⊤v0 − v⊤

0
Σmv0

)

=
1

n

n∑

t=1

(
Y2
t
− �[Y2

t
]
)
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Therefore,

{Y1,k} and {Y2,k} are independent random vectors by virtue of Proposition 4. Now, 
let us show that Yi,k are sub-exponentials. For � such that |𝜆| < 1

16Dm𝜎
2
0

 , and denoting 

wi = Y2
2kqn+i

− �[Y2
1
] , we have

where we have used Hölder’s Inequality. Hence, Y1,k is SE(64D2
m
�4
0
,16Dm�

2
0
 ). As a 

result, using exponential inequalities for SE random variables, it follows

so that

v⊤0
(

Σ̂∗
m − Σm

)

v0 =
1
n

n
∑

t=1

(

Y2
t − �[Y2

t ]
)

= 1
sn

sn−1
∑

k=0

(

1
2qn

qn
∑

i=1

(

Y2
2kqn+i

− �[Y2
1 ]
)

)

+ 1
sn

sn−1
∑

k=0

(

1
2qn

qn
∑

i=1

(

Y2
(2k+1)qn+i

− �[Y2
1 ]
)

)

= Y1 + Y2.

Y1 =
1

sn

sn−1∑

k=0

Y1,k and Y2 =
1

sn

sn−1∑

k=0

Y2,k with

Y1,k =
1

2qn

qn∑

i=1

(
Y2
2kqn+i

− �[Y2
1
]
)

and Y2,k =
1

2qn

qn∑

i=1

(
Y2
(2k+1)qn+i

− �[Y2
1
]
)
.

�
[
e�Y1,k

]
= �

[
exp

(
1

2qn

qn∑

i=1

�wi

)]

= �

[
Π

qn
i=1

exp
(�wi

2qn

)]

= �

[
Π

qn
i=1

(
exp

(�wi

2

))1∕qn
]

≤ Π
qn
i=1

(
�

[
exp

(�wi

2

)])1∕qn

≤ e
�2

2
64D2

m
�4
0 ,

ℙ

(
Y1 ≥ u∕2

) ≤ exp

{
−

sn

2
min

{(
u

16Dm �2
0

)2

,
u

32Dm �2
0

}}

ℙ

(
||v

⊤
0

(
�Σ∗
m
− Σm

)
v0
|| ≥ u∕2

) ≤ 2 exp

{
−

sn

2
min

{(
u

16Dm 𝜎2
0

)2

,
u

32Dm 𝜎2
0

}}
.
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	�  ◻

Lemma 4  Assume A3 holds, then Σ̂m is a.e. invertible. Also, Σm is invertible.

Proof  We can write �Σm = �
⊤
m
�m with �m =

[
Xi−1,… ,Xi−Dm

]n
i=1

 . By virtue of A3 , 
�m is of full rank which implies the a.e. invertibility of Σ̂m.

Moreover, Σm = �
[
�Σm

]
= �

[
Zm
0
(Zm

0
)⊤
]
 with Zm

0
= (X−1,… ,X−Dm

)⊤ . Let u ∈ ℝ
Dm , 

it follows u⊤Σmu = �
[
((Zm

0
)⊤u)2

] ≥ 0 . Let show that whenever the equality holds 
( u⊤Σm = 0 ), u = 0.

Since ((Zm
0
)⊤u)2 ≥ 0 , its expectation vanishes if and only if (Zm

0
)⊤u = 0 a.e. which 

yields to u = 0 by A3 . Hence, Σm is positive definite and then invertible. 	�  ◻

5 � Theoretical tools

The following Proposition that is a consequence of Theorem 3.1 in Doukhan and 
Wintenberger (2008) gives a link between the �-mixing coefficients of the process 
(Xt)t∈ℤ and the coefficients �∗

i
 of model (3).

Proposition 3  Assume A1 holds and if |�∗
t
| = O(t−� ) with 𝛾 > 1 , there exists a �

-weakly dependent stationary solution of (1) and a constant C𝜏 > 0 such that for 
r > 0

Proof  With G(x, �0) = � �0 + f�∗ (x) for any x ∈ ℝ
∞ , it holds

Therefore, (31) is a straightforward application of Theorem  3.1 in Doukhan and 
Wintenberger (2008). 	�  ◻

The following proposition allows us to obtain the block independence property.

Proposition 4  Let (Xt)t∈ℤ be the stationary mixing process obtained in Proposition 
3. Let also sn, qn , Ak,Bk defined as above for k = 0,… , sn − 1 . There exist random 
vectors A∗

k
=
(
�

∗
2kqn+1

,… ,�∗
(2k+1)qn

)
 , B∗

k
=
(
�

∗
(2k+1)qn+1

,… ,�∗
(2k+2)qn

)
 such that: 

1.	 For k = 0,… , sn − 1 , A∗
k
 has the same law as Ak , also B∗

k
 and Bk.

2.	 The random vectors (A∗
k
)0≤k≤sn−1 are independent and so are the vectors 

(B∗
k
)0≤k≤sn−1.

(31)�
(2)

X,∞
(r) ≤ C�

( log r
r

)�−1

.

‖‖G(x, �0) − G(y, �0)
‖‖2 = ||f�∗ (x) − f�∗ (y)

|| ≤
∞∑

i=1

|�∗
i
| |xi − yi|.
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3.	

The next Theorem is a Talagrand’s Inequality given in Klein and Rio (2005).

Theorem 2  Let Y1,… , Yn be independent random variables and let F  be a count-
able class of uniformly bounded measurable functions. Then, for all 𝛼 > 0,

with �n(g) = n−1
∑n

t=1
(g(Yt) − �[g(Yt)]) for any g ∈ F ;

C(�) = (
√
1 + � − 1) ∧ 1 , K = 1∕6
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