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Abstract
In this paper, we consider possibly misspecified stochastic differential equation 
models driven by Lévy processes. Regardless of whether the driving noise is 
Gaussian or not, Gaussian quasi-likelihood estimator can estimate unknown 
parameters in the drift and scale coefficients. However, in the misspecified 
case, the asymptotic distribution of the estimator varies by the correction of the 
misspecification bias, and consistent estimators for the asymptotic variance proposed 
in the correctly specified case may lose theoretical validity. As one of its solutions, 
we propose a bootstrap method for approximating the asymptotic distribution. We 
show that our bootstrap method theoretically works in both correctly specified case 
and misspecified case without assuming the precise distribution of the driving noise.

Keywords  Misspecified model · Lévy driven stochastic differential equation · 
Bootstrap method

1  Introduction

We suppose that the data-generating structure is the following one-dimensional 
stochastic differential equation

defined on a stochastic basis (Ω,F, (Ft)t≥0,P) where

(1)dXt = A(Xt)dt + C(Xt−)dZt,
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•	 the driving noise Z can either be a standard Wiener process or a pure-jump Lévy 
process;

•	 Ft = �(X0) ∨ �(Zs;s ≤ t);
•	 The initial variable X0 is F0-measurable.

In this paper, we consider the situation where high-frequency samples � ∶= (Xtj
)n
j=0

 
from the solution path X are obtained in the so-called “rapidly increasing design”: 
tj = tn

j
∶= jhn , Tn ∶= nhn → ∞ , and nh2

n
→ 0 . To deal with the effect of model 

misspecification being inevitable in statistical modeling, we consider the following 
parametric model on (Ω,F, (Ft)t≥0,P):

Here, the functional forms of drift coefficient a ∶ ℝ × Θ� ↦ ℝ, and scale coefficient 
c ∶ ℝ × Θ� ↦ ℝ are supposed to be known except for the drift parameter � and 
scale parameter � . We also suppose that � and � belong to bounded convex domains 
Θ𝛼 ⊂ ℝ

p𝛼 and Θ𝛾 ⊂ ℝ
p𝛾 , respectively. We note that the coefficients are possibly 

misspecified, that is, the parametric family {(a(⋅, �), c(⋅, �));� ∈ Θ� , � ∈ Θ�} 
does not include the true coefficients (A(⋅),C(⋅)) . From now on, the terminologies 
“misspecification,” “misspecified,” and “correctly specified” will be used for 
the above meaning unless otherwise mentioned. In this framework, there are four 
possible cases: 

1.	 Correctly specified diffusion case: the driving noise Z is a standard Wiener 
process and the coefficients are correctly specified;

2.	 Misspecified diffusion case: the driving noise Z is a standard Wiener process and 
the coefficients are missspecified;

3.	 Correctly specified pure-jump Lévy driven case: the driving noise Z is a pure-
jump Lévy process and the coefficients are correctly specified;

4.	 Misspecified pure-jump Lévy driven case: the driving noise Z is a pure-jump Lévy 
process and the coefficients are missspecified.

For the estimation of � , we consider Gaussian quasi-likelihood estimation. It is a 
tractable and powerful tool for estimating mean and variance structure in the 
sense that we need not to assume the precise distribution of the error variable. For 
various statistical models including (2), its theoretical property has been analyzed. 
In particular, for correctly specified diffusion models, the asymptotic behavior of 
the Gaussian quasi-maximum likelihood estimator (GQMLE) is verified for example 
by Yoshida (1992); Genon-Catalot and Jacod (1993), and Kessler (1997). As for 
correctly specified non-Gaussian Lévy driven SDE models, Masuda (2013) clarified 
the theoretical property of the GQMLE. Although its convergence rate is slower 
than the correctly specified diffusion case, it still has the consistency and asymptotic 
normality. The papers Uchida and Yoshida (2011) and Uehara (2019) extended the 
results to the case where the drift and (or) scale coefficient are (is) misspecifed. 
In these papers, the misspecification bias is handled by the theory of (extended) 
Poisson equation, and inevitably the asymptotic distribution of the GQMLE contains 

(2)dXt = a(Xt, �)dt + c(Xt−, �)dZt.
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the solution. Hence, the estimators of the asymptotic variance which have been 
proposed for the correctly specified case does not work in the misspecified case. As 
a result, the confidence intervals and hypothesis testing based on the estimators no 
longer have theoretical validity in the misspecified case. This is a serious problem 
since in practice, we cannot avoid the risk of model misspecification. The primary 
object of this paper is to overcome this issue.

When it is tough to evaluate the asymptotic distribution of some statistic directly, 
bootstrap methods originally introduced by Efron (1979) often serve as a good 
prescription. As for high-frequently observed settings, bootstrap methods also do 
and indeed for various purposes such as estimating realized volatility distribution 
(Gonçalves and Meddahi 2009), making statistical inference in jump regressions (Li 
et al. 2017), executing jump tests (Dovonon et al. 2019), kinds of the methods have 
been proposed. In this paper, we follow this direction. We construct a block bootstrap 
Gaussian quasi-score function which can uniformly approximate the asymptotic 
distribution of the GQMLE both in the correctly specified and misspecified case. 
More specifically, we divide {1,… , n} (n denotes the sample size) into kn blocks, 
and for each block, we generate a bootstrap weight. Based on the weights, we 
construct the bootstrap score function and estimator. Furthermore, by introducing a 
adjustment term, our method can uniformly approximate the asymptotic distribution 
without specifying the distribution of the driving noise although the convergence 
rate of the scale parameter is different in the correctly specified diffusion case.

Here, we introduce some notations and conventions used throughout this paper. 
We largely abbreviate “n” from the notation like tj = tn

j
 and h = hn . For any vector 

variable x =
(
x(i)

)
 , �

�x(i)
 stands for the partial derivative with respect to the i-th 

component of x, and we write �x =
(

�

�x(i)

)
i
 . Id and O denote the d-dimensional 

identity matrix and zero matrix, respectively. ⊤ stands for the transpose operator, 
and v⊗2 ∶= vv⊤ for any matrix v. The convergences in probability and in distribution 
are denoted by p

�����→ and L

�������→
 , respectively. All limits appearing below are taken for 

n → ∞ unless otherwise mentioned. For two nonnegative real sequences (an) and 
(bn) , we write an ≲ bn if there exists a positive constant C and N ∈ ℕ such that 
an ≤ Cbn for any n ≥ N . For any process Y, ΔjY  denotes the j-th increment Ytj − Ytj−1 . 
For any matrix-valued function f on ℝ × Θ , we write fs(�) = f (Xs, �) . The Lévy 
measure of Z is written as �0(dz) , and the associated compensated Poisson random 
measure is represented by Ñ(ds, dz) . A and Ã stand for the infinitesimal generator 
and extended generator of X, respectively.

The rest of this paper is organized as follows. In Sect.  2, we provide a brief 
overview of the Gaussian quasi-likelihood estimation. We also introduce 
assumptions used throughout of this paper. Section 3 is the main body of this paper: 
First, we construct an adjustment term for uniformly dealing with the difference 
of the convergence rate of the scale parameter � , and after that we propose our 
bootstrap method, and show its theoretical property. Section  4 presents the finite 
sample performance of our method. All of their proofs are given in Sect. 5.



536	 Y. Uehara 

1 3

2 � Gaussian quasi‑likelihood estimation and assumptions

Since the explicit form of the transition probability of X cannot be obtained in 
general, the estimation based on the genuine likelihood function is impractical. In 
this section, we briefly explain the Gaussian quasi-likelihood estimation for our 
model, and introduce assumptions for its asymptotic results and our main results. 
Building on the discrete-time approximation of (2):

we consider the stepwise Gaussian quasi-likelihood (GQL) function defined as 
follows:

Based on this GQL function, we define Gaussian quasi maximum likelihood 
estimator (GQMLE) 𝜃̂n ∶= (𝛾̂n, 𝛼̂n) by

We define an optimal parameter 𝜃⋆ ∶= (𝛾⋆, 𝛼⋆) of � by

where ℍ1 ∶ Θ� ↦ ℝ and ℍ2 ∶ Θ� ↦ ℝ are defined as follows:

Now, we introduce the technical assumptions for our main results. Some comments 
on each assumption will be given after the all assumptions are mentioned. Recall 
that the parameter space Θ is supposed to be a bounded convex domain. We assume 
the following identifiability condition for ℍ1(�) and ℍ2(�):

Assumption 1  𝜃⋆ ∈ Θ , and there exist positive constants �� and �� such that for all 
(� , �) ∈ Θ,

Xtj
≈ Xtj−1

+ hnatj−1(�) + ctj−1(�)ΔjZ,

ℍ1,n(�) = −
1

2hn

n∑
j=1

{
hn log c

2
tj−1

(�) +
(ΔjX)

2

c2tj−1
(�)

}
,

ℍ2,n(�, �) = −
1

2hn

n∑
j=1

(ΔjX − hnatj−1(�))
2

c2tj−1
(�)

.

𝛾̂n ∈ argmax
𝛾∈Θ̄𝛾

ℍ1,n(𝛾), 𝛼̂n ∈ argmax
𝛼∈Θ̄𝛼

ℍ2,n(𝛼, 𝛾̂n).

𝛾⋆ ∈ argmax
𝛾∈Θ̄𝛾

ℍ1(𝛾), 𝛼⋆ ∈ argmax
𝛼∈Θ̄𝛼

ℍ2(𝛼),

(3)ℍ1(�) = −
1

2 ∫
ℝ

(
log c2(x, �) +

C2(x)

c2(x, �)

)
�0(dx),

(4)ℍ2(𝛼) = −
1

2 ∫
ℝ

c−2(x, 𝛾⋆)(A(x) − a(x, 𝛼))2𝜋0(dx).

(5)ℍ1(𝛾) − ℍ1(𝛾
⋆) ≤ −𝜒𝛾 |𝛾 − 𝛾⋆|2,
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In the rest of this paper, we sometimes omit the optimal value 𝜃⋆ , for instance, 
the abbreviated symbols fs and ftj−1 are used instead of fs(𝜃

⋆) , and ftj−1(𝜃
⋆) , 

respectively.

Assumption 2 

1.	 The coefficients A and C are Lipschitz continuous and twice differentiable, and 
their first and second derivatives are of at most polynomial growth.

2.	 The drift coefficient a(⋅, 𝛼⋆) and scale coefficient c(⋅, 𝛾⋆) are Lipschitz continuous, 
and c(x, �) ≠ 0 for every (x, �).

3.	 For each i ∈ {0, 1} and k ∈ {0,… , 5} , the following conditions hold:

•	 The coefficients a and c admit extension in C(ℝ × Θ̄) and have the partial 
derivatives (�i

x
�k
�
a, �i

x
�k
�
c) possessing extension in C(ℝ × Θ̄).

•	 There exists nonnegative constant C(i,k) satisfying 

Note that since we impose the extension condition in Assumption 2, 
ℍ(�) ∶= (ℍ1(�),ℍ2(�)) admit extension in C(Θ̄) as well.

For a function � ∶ ℝ → ℝ+ and a signed measure m on a one-dimensional Borel 
space, we define

Assumption 3 

1.	 There exists a probability measure �0 such that for every q > 0 , we can find 
constants a > 0 and Cq > 0 for which 

 for any x ∈ ℝ where hq(x) ∶= 1 + |x|q.
2.	 For any q > 0 , we have 

We introduce a p × p-matrix Γ ∶=
(
Γ� OΓ�� Γ�

)
 whose components are defined 

by:

(6)ℍ2(𝛼) − ℍ2(𝛼
⋆) ≤ −𝜒𝛼|𝛼 − 𝛼⋆|2.

(7)
sup

(x,𝛼,𝛾)∈ℝ×Θ̄𝛼×Θ̄𝛾

1

1 + |x|C(i,k)

{|𝜕i
x
𝜕k
𝛼
a(x, 𝛼)

| + |𝜕i
x
𝜕k
𝛾
c(x, 𝛾)| + |c−1(x, 𝛾)|

}
< ∞.

||m||� = sup{|m(�)| ∶ f isℝ − valued,m −measurable, and satisfies|f | ≤ �}.

(8)sup
t∈ℝ+

exp(at)||Pt(x, ⋅) − �0(⋅)||hq ≤ Cqhq(x),

(9)sup
t≥0

E[|Xt|q] < ∞.
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The matrix Γ is the probability limit of the Hessian matrix of the GQL function.

Assumption 4 −Γ� , −Γ� , and −Γ are positive definite.

Next, we introduce the assumption on the driving noise. The diffusion case 
corresponds with (1), and the pure-jump Lévy driven case does with (2).

Assumption 5  Either (1) or (2) is satisfied. 

1.	 Diffusion case: Z is a standard Wiener process (in this case, Z is often written as 
w). Furthermore, there exist the solutions of the following Poisson equations: 

 and the solutions f1 and f2 are differentiable, and they and their derivatives are 
of at most polynomial growth.

2.	 Pure-jump Lévy driven case: Z is a pure-jump Lévy process satisfying

•	 E[Z1] = 0 , Var[Z1] = 1 , and E[|Z1|q] < ∞ for all q > 0.
•	 The Blumenthal–Getoor index (BG-index) of Z is smaller than 2, that is, 

We make comments on our assumptions below.

•	 Under Assumption 2 and Assumption 5, the existence and uniqueness of the 
strong solution of (2) and its Markov and time-homogeneous property are 
guaranteed (cf. Applebaum 2009, Sect. 6).

•	 The Poisson equations (10) and (11) will play important role in dealing with the 
misspecification bias (cf. Uchida and Yoshida 2011). A sufficient condition for 

Γ𝛾 ∶= ∫
ℝ

𝜕⊗2
𝛾

c(x, 𝛾⋆)c(x, 𝛾⋆) − (𝜕𝛾c(x, 𝛾
⋆))⊗2

c4(x, 𝛾⋆)
(C2(x) − c2(x, 𝛾⋆))𝜋0(dx)

− 2∫
ℝ

(𝜕𝛾c(x, 𝛾
⋆))⊗2

c4(x, 𝛾⋆)
C2(x)𝜋0(dx),

Γ𝛼𝛾 ∶= ∫
ℝ

𝜕𝛼a(x, 𝛼
⋆)𝜕⊤

𝛾
c−2(x, 𝛾⋆)(a(x, 𝛼⋆) − A(x))𝜋0(dx),

Γ𝛼 ∶= −∫
ℝ

𝜕⊗2
𝛼

a(x, 𝛼⋆)

c2(x, 𝛾⋆)
(a(x, 𝛼⋆) − A(x))𝜋0(dx) − ∫

ℝ

(𝜕𝛼a(x, 𝛼
⋆))⊗2

c2(x, 𝛾⋆)
𝜋0(dx).

(10)Af1(x) =
𝜕𝛾c(x, 𝛾

⋆)

c3(x, 𝛾⋆)

(
C2(x) − c2(x, 𝛾⋆)

)
,

(11)Af2(x) =
𝜕𝛼a(x, 𝛼

⋆)

c2(x, 𝛾⋆)

(
A(x) − a(x, 𝛼⋆)

)
,

𝛽 ∶= inf
𝛾

{
𝛾 ≥ 0 ∶ �|z|≤1

|z|𝛾𝜈0(dz) < ∞

}
< 2.
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the existence and regularity of f1 and f2 is given for example in Pardoux and 
Veretennikov (2001). Moreover, in one-dimensional case, the explicit forms of f1 
and f2 are presented in (Uchida and Yoshida 2011, Remark 2.2).

•	 In the pure-jump Lévy driven case, a similar misspecification bias also exists. 
However, we cannot follow the same way as the diffusion case: the generator A 
of X is given by 

for a suitable function f. The integral with respect to �0 makes it difficult to 
ensure the existence and regularity of the solutions of equations like Af = g 
with some functions f and g. Here, g corresponds with the misspecification 
bias term. Alternatively, as in Uehara (2019), we invoke the theory of extended 
Poisson equations introduced by Kulik and Veretennikov (2011) to deal with the 
misspecification bias. Its definition is as follows:

Definition 6  (Kulik and Veretennikov 2011, Definition 2.1) We say that a measur-
able function f ∶ ℝ → ℝ belongs to the domain of the extended generator Ã of a 
càdlàg homogeneous Feller Markov process Y taking values in ℝ if there exists a 
measurable function g ∶ ℝ → ℝ such that the process

is well-defined and is a local martingale with respect to the natural filtration of Y 
and every measure Px(⋅)∶=P(⋅|Y0 = x), x ∈ ℝ . For such a pair (f,  g), we write 
f ∈ Dom (Ã) and Ãf

EPE
= g.

As for the Lévy driven SDE case, the Feller property holds under Assumption 
2 (cf. Masuda 2007, 3.1.1 (ii)), and we consider the following extended Poisson 
equations:

(Uehara 2019,  Proposition 3.5) shows the existence and uniqueness of g1 and g2 
under Assumption 2. Assumption 3 and Assumption 5-(2). Although the regularity 
of g1 and g2 is not obtained except for the limited case, its weighted Hölder continuity 
is also ensured under the same assumptions, and it is enough for our asymptotic 
result. For more details, see the discussion in (Uehara 2019, Sect. 3).

Building on these assumptions, we can derive the asymptotic normality of 𝜃̂n . For 
its technical details, we refer to the references presented in the next theorem.

Af (x) = A(x)�xf (x) + ∫
ℝ

(
f (x + C(x)z) − f (x) − �xf (x)C(x)z

)
�0(dz),

f (Yt) − ∫
t

0

g(Ys)ds, t ∈ ℝ
+,

(12)Ãg1(x) = −
𝜕𝛾c(x, 𝛾

⋆)

c3(x, 𝛾⋆)

(
c2(x, 𝛾⋆) − C2(x)

)
,

(13)Ãg2(x) = −
𝜕𝛼a(x, 𝛼

⋆)

c2(x, 𝛾⋆)

(
A(x) − a(x, 𝛼⋆)

)
.
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Theorem 7  Under Assumptions 1–5, we can deduce the consistency and asymptotic 
normality of the GQMLE 𝜃̂n : 𝜃̂n

p
�����→ 𝜃⋆ , and

where An denotes the rate matrix of 𝜃̂n (cf. Table 1). In each case,

is explicitly given below:

•	 Correctly specified diffusion case (Kessler 1997; Uchida and Yoshida 2012): 

•	 Misspecified diffusion case ( Uchida and Yoshida 2011): 

•	 Correctly specified pure-jump Lévy driven case ( Masuda 2013; Masuda and 
Uehara 2017) 

An(𝜃̂n − 𝜃⋆)
L

�������→ N
(
0,Γ−1Σ(Γ−1)⊤

)
,

Σ ∶=

(
Σ𝛾 Σ𝛼𝛾

Σ⊤
𝛼𝛾

Σ𝛼

)

Σ =

⎛
⎜⎜⎝
2 ∫

ℝ

(𝜕𝛾c(x,𝛾
⋆))⊗2

c2(x,𝛾⋆)
𝜋0(dx) O

O ∫
ℝ

(𝜕𝛼a(x,𝛼
⋆))⊗2

c2(x,𝛾⋆)
𝜋0(dx)

⎞
⎟⎟⎠
.

Σ𝛾 = ∫
(
𝜕xf1(x)C(x))

⊗2𝜋0(dx
)
,

Σ𝛼𝛾 = ∫
(
𝜕𝛼a(x, 𝛼

⋆)

c2(x, 𝛾⋆)
− 𝜕xf2(x)

)
C2(x)(𝜕xf1(x))

⊤𝜋0(dx),

Σ𝛼 = ∫
[(

𝜕𝛼a(x, 𝛼
⋆)

c2(x, 𝛾⋆)
− 𝜕xf2(x)

)
C(x)

]⊗2

𝜋0(dx).

Table 1   GQL approach for ergodic diffusion models and ergodic Lévy driven SDE models

Model Rates of 
convergence

References

drift Scale

Correctly specified diffusion
√
T
n

√
n Kessler (1997), Uchida and Yoshida (2012)

Misspecified diffusion
√
T
n

√
T
n

Uchida and Yoshida (2011)
Correctly specified Lévy driven SDE

√
T
n

√
T
n

Masuda (2013), Masuda and Uehara (2017)
Cisspecified Lévy driven SDE

√
T
n

√
T
n

Uehara (2019)
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•	 Misspecified pure-jump Lévy driven case ( Uehara 2019) 

 where the functions g1 and g2 are the solution of (12) and (13).

Remark 8  In the case where either of the coefficients is correctly specified, we 
can also derive a similar asymptotic result to the above. It is worth noticing that 
when Z is a standard Wiener process and the drift coefficient is misspecified, the 
convergence rate of 𝛾̂n is still 

√
n as in the correctly specified case (cf. Uchida and 

Yoshida 2011) since the fluctuation of the drift part is dominated by the diffusion 
part in Lp-sense ( p ≥ 2 ). By using this estimate, we consider the stepwise estimation 
procedure.

Remark 9  From Assumption 1 and Assumption 2, we have

Hence, the off-diagonal part Γ�� of Γ becomes zero matrix for a scale coefficient 
c(x, �) being linear with respect to � , and it also does when the drift coefficient is 
correctly specified.

Remark 10  Regardless of whether the model is correctly specified or not, it is easy 
to construct a consistent estimator of Γ . The p × p matrix Γ̂n defined by

Σ𝛾 = ∫
ℝ

(
𝜕𝛾c(x, 𝛾

⋆)

c(x, 𝛾⋆)

)⊗2

𝜋0(dx)∫
ℝ

z4𝜈0(dz),

Σ𝛼𝛾 = −∫
ℝ

(
𝜕𝛾c(x, 𝛾

⋆)

c(x, 𝛾⋆)

)(
𝜕𝛼a(x, 𝛼

⋆)

c(x, 𝛾⋆)

)⊤

𝜋0(dx)∫
ℝ

z3𝜈0(dz),

Σ𝛼 = ∫
ℝ

(
𝜕𝛼a(x, 𝛼

⋆)

c(x, 𝛾⋆)

)⊗2

𝜋0(dx).

Σ𝛾 = ∫
ℝ
∫
ℝ

(
𝜕𝛾c(x, 𝛾

⋆)

c3(x, 𝛾⋆)
C2(x)z2 + g1(x + C(x)z) − g1(x)

)⊗2

𝜋0(dx)𝜈0(dz),

Σ𝛼𝛾 = −∫
ℝ
∫
ℝ

(
𝜕𝛾c(x, 𝛾

⋆)

c3(x, 𝛾⋆)
C2(x)z2 + g1(x + C(x)z) − g1(x)

)

(
𝜕𝛼a(x, 𝛼

⋆)

c2(x, 𝛾⋆)
C(x)z + g2(x + C(x)z) − g2(x)

)⊤

𝜋0(dx)𝜈0(dz),

Σ𝛼 = ∫
ℝ
∫
ℝ

(
𝜕𝛼a(x, 𝛼

⋆)

c2(x, 𝛾⋆)
C(x)z + g2(x + C(x)z) − g2(x)

)⊗2

𝜋0(dx)𝜈0(dz),

𝜕𝛼ℍ2(𝛼
⋆) = ∫

ℝ

𝜕𝛼a(x, 𝛼
⋆)c−2(x, 𝛾⋆)(A(x) − a(x, 𝛼))𝜋0(dx) = 0.



542	 Y. Uehara 

1 3

is one example and this matrix works both in the correctly specified and misspecified 
case. However, the solutions of the (extended) Poisson equations are hard to 
estimate to the best of the author’s knowledge, and thus we will rely on the bootstrap 
approach in the next section.

3 � Main results

3.1 � Adjustment of convergence rate

From Table  1, the difference of the convergence rate can be seen with respect 
to the scale estimator 𝛾̂n ; more specifically, its convergence rate is 

√
n in the 

correctly specified case, and otherwise it is 
√
Tn . However, since no one can 

distinguish whether the statistical model is correctly specified or not, as a matter 
of course, we cannot identify An in advance. Therefore, we need a constructible 
alternative of An for uniformly dealing with the all cases below. To satisfy the 
demand, we introduce the following adjustment term

where b1,n and b2,n are defined as

Obviously, it can be constructed only by the observed data. The next proposition 
provides the asymptotic behavior of bn.

Proposition 11  Suppose that Assumption 2, Assumption 3, and Assumption 5 hold. 
Then, the adjustment term bn behaves as follows:

•	 In the correctly specified diffusion case, 

Γ̂n =

(
1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n) O
1

nhn
𝜕𝛾𝜕𝛼ℍ2,n(𝛼̂n, 𝛾̂n)

1

nhn
𝜕⊗2
𝛼

ℍ2,n(𝛼̂n, 𝛾̂n)

)
,

bn ∶= b1,n + b2,n,

b1,n =

∑n

j=1
(ΔjX)

4

∑n

j=1
(ΔjX)

2
,

b2,n = exp

�
−

�������
1

n

n�
j=1

�
(ΔjX)

4

3h2
n

−
2(ΔjX)

2c2
tj−1

(𝛾̂n)

hn
+ c4

tj−1
(𝛾̂n)

�������

+

������
1

n

n�
j=1

�
(ΔjX)

4

3h2
n

−
2(ΔjX)

2c2
tj−1

(𝛾̂n)

hn
+ c4

tj−1
(𝛾̂n)

�������

−1��
.
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•	 In the misspecified diffusion case, 

•	 In the pure-jump Lévy driven case, 

Hereafter, we write b⋆ as the (scaled) limit of bn given in Proposition 11. The 
importance of Proposition 11 is that the convergence rate of bn is hn only in the 
correctly specified diffusion case, that is, the convergence rate of the scale estimator 
is equivalent to 

√
Tn

bn
 up to constant. Thus, the new matrix

is constructed by the observed data, and serves as a good alternative of An . Let

A simple application of Slutky’s lemma with the asymptotic normality of 𝜃̂n gives 
the following corollary.

Corollary 12  Under Assumptions 1–5, we have

3.2 � Bootstrap Gaussian quasi‑maximum likelihood estimator

From now on, we consider the approximation of the distribution of ÂnΓ̂n(𝜃̂n − 𝜃⋆) 
instead of AnΓ̂n(𝜃̂n − 𝜃⋆) since we can avoid checking whether the model is 
misspecified or not and the driving noise is Wiener or not.

We divide the set {1,… , n} into kn-blocks (Bki
)
kn
i=1

 defined by:

(14)
bn

3hn

p
�����→

∫
ℝ
c4(x, 𝛾⋆)𝜋0(dx)

∫
ℝ
c2(x, 𝛾⋆)𝜋0(dx)

.

(15)

bn
p
�����→ exp

(
−

{
�
ℝ

(C2(x) − c2(x, 𝛾⋆))2𝜋0(dx)

+

[
�
ℝ

(C2(x) − c2(x, 𝛾⋆))2𝜋0(dx)

]−1})
≠ 0.

(16)bn
p
�����→

∫
ℝ
c4(x, 𝛾⋆)𝜋0(dx) ∫ℝ z4𝜈0(dz)

∫
ℝ
c2(x, 𝛾⋆)𝜋0(dx)

.

Ân ∶=

��
Tn

bn
Ip𝛾 O

O
√
TnIp𝛼

�
,

B⋆ =

�
1√
b⋆
Ip𝛾 O

O Ip𝛼

�
.

(17)ÂnΓ̂n(𝜃̂n − 𝜃⋆)
L

�������→ N
(
0,B⋆ΣB⋆

)
.
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where cn =
n

kn
 , and here kn and cn are supposed to be a positive integer for simplicity. 

With bootstrap weights {wi}
kn
i=1

 , we define the bootstrap Gaussian quasi-score 
function �B

n
(𝜃) ∶=

(
�

B

1,n
(𝛾),�B

2,n
(𝛼)

)⊤

 as:

We define our bootstrap estimator 𝜃̂B
n
∶= (𝛾̂B

n
, 𝛼̂B

n
) as the solution of

For the bootstrap weights and block size, we assume:

Assumption 13  There exists a positive � ∈
(

1

2
, 1
)
 such that kn = O

(
T�
n

)
 , and the 

bootstrap weights {wi}
kn
i=1

 are i.i.d. random variables and independent of X = (Xt)t≥0 
with E[wi] = 1 , E[w2

i
] = 1 , and E[|wi|2+𝛿� ] < ∞ , for some 𝛿′ > 0.

In the rest of this paper, PB stands for the probability of bootstrap random 
variables, conditional on F  . Analogously, EB represents the expectation with respect 
to PB . More specifically, for any bootstrap quantity Un(⋅,�) and measurable set A,

where � ∈ Ω . Regarding PB , rnB denotes a generic random vector fulfilling

for any M > 0 . Its explicit form depends on each context.

Remark 14  For such a weighted bootstrap procedure, several papers often assume 
the additional condition E[w3

i
] = 1 in order to fit the first three moments of the boot-

strap distribution. A popular candidate of the distribution of wi is proposed by Mam-
men (1993):

Bki
∶=

{
j ∈ {1,… , n} ∶ (i − 1)cn + 1 ≤ j ≤ icn

}
,

�
B

1,n
(𝛾) =

kn∑
i=1

wi

∑
j∈Bki

𝜕𝛾ctj−1(𝛾)

c3tj−1
(𝛾)

[
hnc

2
tj−1

(𝛾) − (ΔjX)
2
]
,

�
B

2,n
(𝛼) =

kn∑
i=1

wi

∑
j∈Bki

𝜕𝛼atj−1(𝛼)

c2tj−1
(𝛾̂n)

[
ΔjX − hnatj−1(𝛼)

]
.

|||�
B

1,n
(𝛾̂B

n
)
||| +

|||�
B

2,n
(𝛼̂B

n
)
||| = 0.

PB
(
Un ∈ A

)
= PB

(
Un(⋅,�) ∈ A|�)

,

PB(|rnB| > M) = op(1),

wi =

⎧⎪⎨⎪⎩

1−
√
5

2
with probability p =

√
5+1

2
√
5

1+
√
5

2
with probability 1 − p
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We have the following other choice: let wi

4
 be the beta distribution whose density 

function f wi
4

 is given by

where B denotes the beta function. Then the distribution of wi is continuous and 
satisfies Assumption 13 and E[w3

i
] = 1 . In our case, the latter one often gives 

numerically good results. This may be because kn is not so large and the limit 
distribution of the normalized bootstrap estimator is continuous.

Remark 15  Chatterjee and Bose (2005) deals with a similar bootstrap estimating 
equation for martingale difference arrays. In the paper, the block size is equivalent 
to the sample size n as well as i.i.d. case. In contrast, our block size is much smaller. 
This is for making the misspecification bias in the bootstrap distribution asymptoti-
cally negligible. More specifically, the bias can be written as

where f denotes a solution of the (extended) Poisson equations introduced in the 
previous section. Under our assumptions, the bias term is evaluated as Op(

√
kn∕

√
Tn) 

(cf. the proof of Theorem  17), and thus we need a stringent upper bound for the 
block size; 𝛿 < 1 in Assumption 13 is essential.

Example 16  Suppose that p� = p� = 1 and that the coefficients are written as 
a(x, �) = �a(x) and c(x, �) = �c(x) for some ℝ-valued smooth functions a(x) and c(x) 
with 𝛾 > 0 . Then, given � , the bootstrap estimator is calculated as

Let

For each j ∈ {1,… , n} , define the indicator function �j(s) by

f wi
4

(x) =

{
1

B(
1

2
,
3

2
)
x

1

2
−1(1 − x)

3

2
−1 0 ≤ x ≤ 1

0 otherwise

1√
Tn

kn�
i=1

(wi − 1)
�
j∈Bki

(ftj − ftj−1) =
1√
Tn

kn�
i=1

(wi − 1)(ficnhn − f[(i−1)cn+1]hn ),

𝛾̂B
n
=

√√√√√√√√√√√√

kn

kn∑
i=1

wi

∑
j∈Bki

(ΔjX)
2

c2tj−1

Tn

kn∑
i=1

wi

, 𝛼̂B

n
=

kn∑
i=1

wi

∑
j∈Bki

ΔjX

c2tj−1

atj−1

hn

kn∑
i=1

wi

∑
j∈Bki

a2
tj−1

c2tj−1

.

B̂n =

⎛⎜⎜⎝

1√
Tnbn

Ip𝛾 O

O
1√
Tn
Ip𝛼

⎞⎟⎟⎠
, Γ̄n =

�
1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n) O

O
1

Tn
𝜕⊗2
𝛼

ℍ2,n(𝛼̂n, 𝛾̂n)

�
.
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The following theorem ensures the existence of the bootstrap estimator and the 
bootstrap consistency of our method.

Theorem 17  Under Assumptions 1–5 and Assumption 13, we have

and 𝜃̂B
n
 admits the following stochastic expansion:

Furthermore, the first term of the right-hand-side of (19) can be expressed as:

•	 In the correctly specified diffusion case, 

•	 In the misspecified diffusion case, 

�j(s) =

{
1, s ∈ [tj−1, tj),

0, otherwise.

(18)PB
(
𝜃̂B
n
∈ Θ

)
= 1 − op(1),

(19)

ÂnΓ̄n(𝜃̂
B

n
− 𝜃̂n) = B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

+ rnB.

(20)

B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

= B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

∫
icnhn

(i−1)cnhn

⎛⎜⎜⎜⎜⎝

2
𝜕𝛾ctj−1

ctj−1

(ws − wtj−1
)

𝜕𝛼atj−1

ctj−1

⎞⎟⎟⎟⎟⎠
𝜒j(s)dws + rnB.

(21)

B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

= B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

∫
icnhn

(i−1)cnhn

⎛⎜⎜⎝

𝜕xf1(Xs)
𝜕𝛼as

c2
s

− 𝜕xf2(Xs)

⎞⎟⎟⎠
Cs𝜒j(s)dws + rnB.
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•	 In the pure-jump Lévy driven case, 

•	 In the misspecified pure-jump Lévy driven case, 

Moreover, we get the following convergence for all cases:

Remark 18  In order to obtain the bootstrap percentile and confidence intervals, we 
need to generate the bootstrap samples {ÂnΓ̄n(𝜃̂

B

n,l
− 𝜃̂n)}

L
l=1

 , for large L ∈ ℕ in prac-
tice. However, the calculation of each 𝜃̂B

n,l
 often entails some optimization method 

such as the quasi-Newton method, resulting in high computational complexity. For 
such a problem, the stochastic expansion (19) shown in Theorem 17 suggests that 
we can use the following quasi-score function based bootstrap quantity:

instead of ÂnΓ̄n(𝜃̂
B

n,l
− 𝜃̂n) . Importantly, once 𝜃̂n is obtained, we can generate {𝜂̂B

n,l
}L
l=1

 
without any optimization, and thus drastically relieving the computational load.

(22)

B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

= B̂n

kn�
i=1

(wi − 1)∫
icnhn

(i−1)cnhn
∫
ℝ

⎛
⎜⎜⎜⎝

𝜕𝛾cs−

cs−
z2

𝜕𝛼as

cs−
z

⎞⎟⎟⎟⎠
Ñ(ds, dz) + rnB.

(23)

B̂n

kn�
i=1

(wi − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

= B̂n

kn�
i=1

(wi − 1)∫
icnhn

(i−1)cnhn
∫
ℝ

⎛⎜⎜⎜⎝

𝜕𝛾cs−

c3
s−

C2
s−
z2 + g1(Xs− + Cs−z) − g1(Xs−)

𝜕𝛼as

c2
s−

Cs−z + g2(Xs− + Cs−z) − g2(Xs−)

⎞⎟⎟⎟⎠
Ñ(ds, dz) + rnB.

(24)sup
x∈ℝp𝛼+p𝛾

|||P
B
(
ÂnΓ̄n

(
𝜃̂B
n
− 𝜃̂n

) ≤ x
)
− P

(
ÂnΓ̂n

(
𝜃̂n − 𝜃⋆

) ≤ x
)|||

p
�����→ 0.

𝜂̂B
n,l

∶= B̂n

kn�
i=1

(wi,l − 1)
�
j∈Bki

⎛
⎜⎜⎜⎜⎜⎝

𝜕𝛾ctj−1(𝛾̂n)

c3tj−1
(𝛾̂n)

�
hnc

2
tj−1

(𝛾̂n) − (ΔjX)
2
�

𝜕𝛼atj−1(𝛼̂n)

c2tj−1
(𝛾̂n)

�
ΔjX − hnatj−1(𝛼̂n)

�

⎞
⎟⎟⎟⎟⎟⎠

,
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4 � Numerical experiment

We consider the following data-generating model and statistical model:

As for the distribution of Z1 , we consider the two cases (i)L(Z1) = N(0, 1) and 
(ii)L(Z1) = bgamma(1,

√
2, 1,

√
2) , where bgamma(�1, �1, �2, �2) is defined as the 

law of �1 − �2 where for each i ∈ {1, 2} , �i stands for a gamma random variable 
whose Lévy density is

For two pairs of the sample size and Terminal time (n, Tn) = (5 × 104, 200), (105, 500) , 
we independently generate 1000 paths of (25) based on Euler–Maruyama scheme. 
Concerning the bootstrap weights, we choose the beta distribution based random 
variables given in Remark 14. We set kn as 25 and 50 for each pair. Then, we have 
log500 25 ≈ 0.518, log200 25 ≈ 0.608, log500 50 ≈ 0.629 and log200 50 ≈ 0.738 . 
Hence, in this setting, all of Assumptions 1–5 and Assumption 13 hold with the 
optimal value 𝛾⋆ =

√
2 (cf. Uchida and Yoshida 2011 and Uehara 2019). Table 2 

shows the actual coverage rate of all the 99% bootstrap interval constructed by 
1000 bootstrap replication. Each coverage rate is approaching as n and Tn increases. 
Compared with case (i), the coverage rate of case (ii) is slightly worse; this is 
probably because of the high kurtosis of the bilateral gamma distribution which 
makes the asymptotic variance of 𝛾̂n large.

5 � Proofs

Hereafter, R(x) denotes a generic function being of at most polynomial growth. 
Its form may vary depending on context.

(25)

dXt = −
1

2
Xtdt + dZt, X0 = 0,

dXt = −
1

2
Xtdt +

𝛾√
1 + X2

t

dZt, 𝛾 > 0.

f𝜏 i(z) =
𝛿i

z
e−𝛾iz, z > 0.

Table 2   Coverage rate of 99% 
bootstrap confidence interval

n T
n

k
n

Coverage rate (i) Coverage rate (ii)

105 500 25 0.962 0.952

105 500 50 0.969 0.944

5 × 104 200 25 0.935 0.924

5 × 104 200 50 0.939 0.907



549

1 3

Bootstrap method for misspecified SDE models

5.1 � Auxiliary results for blocked sums

We first prepare some lemmas repeatedly used in the proof of our main results. 
All of their proofs are presented in Supplementary material.

Lemma 19  Suppose that Assumptions 2–3 and Assumption 5 hold. Then, we have

Lemma 20  Suppose that Assumptions 2-3 hold. Then, under Assumption 5-(1), we 
have

and under Assumption 5-(2),

We will say that a matrix-valued function f on ℝ is centered if �0(f ) = 0 in the 
rest of this section.

Lemma 21  Suppose that a centered matrix-valued function f is differentiable, and 
that it and its derivative are of at most polynomial growth. Then, under Assumption 
2, Assumption 3, and Assumption 5, we have

The following lemma verifies the probability limit of the sum of squared 
Wiener integrals.

(26)
kn∑
i=1

||||||
∑
j∈Bki

Rtj−1 ∫
tj

tj−1

(As − Atj−1
)ds

||||||

2

= Op

(
n2h3

n

kn

)
,

(27)
kn∑
i=1

||||||
∑
j∈Bki

Rtj−1

(
∫

tj

tj−1

Asds

)2||||||

2

= Op

(
n2h4

n

kn

)
,

(28)
kn∑
i=1

||||||
∑
j∈Bki

Rtj−1 ∫
tj

tj−1

Cs−dZs

||||||

2

= Op(Tn).

(29)
kn�
i=1

�������

�
j∈Bki

Rtj−1

⎡⎢⎢⎣

�
∫

tj

tj−1

Csdws

�2

− hnC
2
tj−1

⎤⎥⎥⎦

�������

2

= Op

�
nh2

n

�
,

(30)
kn�
i=1

�������

�
j∈Bki

Rtj−1

⎡⎢⎢⎣

�
∫

tj

tj−1

Cs−dZs

�2

− hnC
2
tj−1

⎤⎥⎥⎦

�������

2

= Op

�
Tn
�
.

(31)
kn�
i=1

������
�
j∈Bki

ftj−1

������

2

= Op

�√
nkn

�
.
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Lemma 22  Suppose that Assumption 2, Assumption 3, and Assumption 5-(1) hold. 
We further assume that a differentiable function f on ℝ and its derivative are of at 
most polynomial growth. Then, we have

We next show a similar convergence result to Lemma 22 when the driving noise 
is a pure-jump Lévy process.

Lemma 23  Suppose that Assumptions 2–3 and Assumption 5-(2) hold. Moreover, for 
two functions f1 and f2 on ℝ , we assume the following conditions: 

1.	 f1 is differentiable, and it and its derivative is of at most polynomial growth.
2.	 There exists a positive constant K such that for any p ∈ (1,∞) and q =

p

p−1
 , 

Let f (x, z) = f1(x)z
� + f2(x + z) − f2(x) for a fixed � ≥ 1 . Then, we have

5.2 � Proof of Proposition 11

For simplicity, we write

and we divide the proof into the diffusion case and pure-jump Lévy driven case.

5.2.1 � Diffusion case

For any q ≥ 2 , from Burkholder’s inequality and Assumption 2, we have

(32)

1

nh2
n

kn∑
i=1

{
∫

icnhn

(i−1)cnhn

[
icn∑

j=(i−1)cn+1

ftj−1(ws − wtj−1
)�j(s)

]
dws

}2

p
�����→

1

2 ∫
ℝ

(f (x))2�0(dx),

(33)1

Tn

kn∑
i=1

(
∫

icnhn

(i−1)cnhn

icn∑
j=(i−1)cn+1

fs�j(s)dws

)2

p
�����→ ∫

ℝ

(f (x))2�0(dx).

sup
x,y∈ℝ,x≠y

||f2(x) − f2(y)
||

|x − y|1∕p(1 + |x|qK + |y|qK) < ∞.

1

Tn

kn∑
i=1

(
∫

icnhn

(i−1)cnhn
∫ f (Xs−, z)Ñ(ds, dz)

)2
p
�����→ ∫

ℝ
∫
ℝ

(f (x, z))2𝜋0(dx)𝜈0(dz).

�j = ΔjX − Ctj−1
ΔjZ = ∫

tj

tj−1

Asds + ∫
tj

tj−1

(Cs− − Ctj−1
)dZs,
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Combined with Hölder’s inequality and the ergodic theorem, it follows from 
(Genon-Catalot and Jacod 1993, Lemma 9) that

Hence, Slutsky’s theorem leads to

Next, we look at b2,n . By applying the Taylor’s expansion, we have

Let an be the convergence rate of 𝛾̂n . Since ��c2 and ��c4 are of at most polynomial 
growth and an(𝛾̂n − 𝛾⋆) = Op(1) , we can deduce that the second term of the right-
hand side is Op(

1

an
) . Hence, (34) and (35) lead to

In the misspecified case, we can similarly observe that the first term of the right-
hand side converges to

(34)E[
|||𝜉j
|||
q

] ≲ hq
n
,

(35)Ej−1[
|||𝜉j
|||
q

] ≲ hq
n
Rtj−1

.

(36)
1

Tn

n�
j=1

(ΔjX)
2 =

1

Tn

n�
j=1

C2
tj−1

(ΔjZ)
2 + Op

�√
hn

�
p
�����→ ∫ C2(x)�0(dx),

(37)
1

nh2
n

n�
j=1

(ΔjX)
4 =

1

n

n�
j=1

(ΔjZ)
4

h2
n

C4
tj−1

+ Op

�√
hn

�
p
�����→ 3∫ C4(x)�0(dx).

b1,n

3hn

p
�����→

∫ C4(x)�0(dx)

∫ C2(x)�0(dx)
.

1

n

n∑
j=1

[
−2

(ΔjX)
2

hn
c2
tj−1

(𝛾̂n) + c4
tj−1

(𝛾̂n)

]

=
1

n

n∑
j=1

[
−2

(ΔjX)
2

hn
c2
tj−1

+ c4
tj−1

]

+
1

n ∫
1

0

n∑
j=1

[
−2

(ΔjX)
2

hn
𝜕𝛾c

2
tj−1

(𝛾̂n + u(𝛾⋆ − 𝛾̂n))

+𝜕𝛾c
4
tj−1

(𝛾̂n + u(𝛾⋆ − 𝛾̂n))
]
du[𝛾̂n − 𝛾⋆].

1

n

n�
j=1

�
(ΔjX)

4

3h2
n

− 2
(ΔjX)

2

hn
c2
tj−1

(𝛾̂n) + c4
tj−1

(𝛾̂n)

�

=
1

n

n�
j=1

�
(ΔjZ)

4

3h2
n

C4
tj−1

− 2
(ΔjZ)

2

hn
c2
tj−1

+ c4
tj−1

�
+ Op

�√
hn ∨

1

an

�
.
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in probability. Then, (15) follows from the continuous mapping theorem. In the 
correctly specified case, we obtain

(Genon-Catalot and Jacod 1993,  Lemma 9) yields that for a positive constant 
� ∈ (0, 1∕2) , we have

Since an =
√
n and 

√
hn ∨

1√
n
=
√
hn , we arrive at

and consequently,

and this concludes (14).

5.2.2 � Pure‑jump Lévy driven case

Since the route is quite similar to the diffusion case, we omit some details. For 
any q ≥ 2 , Burkholder’s inequality and Assumption 2 imply that

Hence by making use of (Genon-Catalot and Jacod 1993, Lemma 9), we get

∫ (C2(x) − c2(x))2�0(dx),

Ej−1

�
(ΔjZ)

4

3h2
n

C4
tj−1

− 2
(ΔjZ)

2

hn
c2
tj−1

+ c4
tj−1

�
= 0,

Ej−1
⎡
⎢⎢⎣

�
(ΔjZ)

4

3h2
n

C4
tj−1

− 2
(ΔjZ)

2

hn
c2
tj−1

+ c4
tj−1

�2⎤
⎥⎥⎦
≲ Rtj−1

.

1

n

n∑
j=1

[
(ΔjZ)

4

3h2
n

C4
tj−1

− 2
(ΔjZ)

2

hn
c2
tj−1

+ c4
tj−1

]
= op

(
n
−

1

2
+�
)
.

(38)

1

n

n∑
j=1

[
(ΔjX)

4

3h2
n

− 2
(ΔjX)

2

hn
c2
tj−1

(𝛾̂n) + c4
tj−1

(𝛾̂n)

]
= op

(
n
−

1

2
+𝛿 ∧ h

1

2
−𝛿

n

)
= op

(
h

1

2
−𝛿

n

)
,

b2,n

hn
≲

1

hn
exp

⎛⎜⎜⎝
−
h
−

1

2
+𝛿

n

�op(1)�
⎞⎟⎟⎠
= op(1),

(39)E[
|||𝜉j
|||
q

] ≲ h2
n
,

(40)Ej−1[
|||𝜉j
|||
q

] ≲ h2
n
Rtj−1

.
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and it is immediate from Slutsky’s theorem that

From (42) and a similar estimates to the diffusion case, we have

Since the function h(x) = exp[−(|x| + 1∕|x|)] tends to 0 as x → ∞ , we obtain (16).	
� ◻

5.3 � Proof of Theorem 17

The essence of this proof stems from Chatterjee and Bose (2005). For simplicity, 
we hereafter write

Since the matrix Γ̄n is block diagonal, we divide the proof of (19) into the scale part:

and drift part:

(41)
1

Tn

n�
j=1

(ΔjX)
2 =

1

Tn

n�
j=1

C2
tj−1

(ΔjZ)
2 + Op

�√
hn

�
p
�����→ ∫ C2(x)�0(dx),

(42)

1

nhn

n�
j=1

(ΔjX)
4 =

1

n

n�
j=1

C4
tj−1

(ΔjZ)
4

hn
+ Op

�√
hn

�
p
�����→ ∫ C4(x)�0(dx)∫ z4�0(dz),

b1,n
p
�����→

∫ C4(x)�0(dx) ∫ z4�0(dz)

∫ C2(x)�0(dx)
.

1

n

n∑
j=1

[
(ΔjX)

4

3h2
n

− 2
(ΔjX)

2

hn
c2
tj−1

(𝛾̂n) + c4
tj−1

(𝛾̂n)

]
→ ∞.

�j(�) =
��ctj−1(�)

c3tj−1
(�)

[
hnc

2
tj−1

(�) − (ΔjX)
2
]
,

�j(�, �) =
��atj−1(�)

c2tj−1
(�)

[
ΔjX − hnatj−1(�)

]
.

(43)

�
Tn

bn

1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)(𝛾̂
B

n
− 𝛾̂n) =

1√
Tnbn

kn�
i=1

(wi − 1)
�
j∈Bki

𝜁j(𝛾̂n) + rnB

(44)=
1√
Tnbn

kn�
i=1

(wi − 1)
�
j∈Bki

𝜁j(𝛾
⋆) + rnB,
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5.3.1 � Scale part

Define the function ℍB

n
 on ℝp� by

First, we show that

for any positive sequence (Kn) fulfilling Kn = op(
√
kn) . For instance, Kn = T

1∕4
n  

satisfies the above condition. Combined with Proposition 11 and the consistency of 
𝛾̂n , we have 

√
bn

Tn
Kn = op(1) and we may and do assume 𝛾̂n +

√
bn

Tn
t ∈ Θ𝛾 as long as 

|t| ≤ Kn . By applying Taylor’s formula twice, we obtain

where for notational simplicity, we write

From now on, we separately look at these three ingredients. Assumption 13 yields 
that

(45)
√
Tn

1

Tn
𝜕⊗2
𝛾

ℍ2,n(𝛼̂n)(𝛼̂
B

n
− 𝛼̂n) =

1√
Tn

kn�
i=1

(wi − 1)
�
j∈Bki

𝜂j(𝛼̂n, 𝛾
⋆) + rnB

(46)=
1√
Tn

kn�
i=1

(wi − 1)
�
j∈Bki

𝜂j(𝛼
⋆, 𝛾⋆) + rnB.

ℍ
B

n
(t) =

1√
Tnbn

kn�
i=1

wi

�
j∈Bj

�
𝜁j

�
𝛾̂n +

�
bn

Tn
t

�
− 𝜁j

�
𝛾̂n
��

−
1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)t.

(47)EB

[
sup
|t|≤Kn

|||ℍ
B

n
(t)
|||
2

]
= op(1),

ℍ
B

n
(t) = ℍ

B

1,n
(t) + ℍ

B

2,n
(t) + ℍ

B

3,n
(t),

ℍ
B

1,n
(t) =

1

Tn

kn∑
i=1

(wi − 1)
∑
j∈Bki

t⊤𝜕𝛾𝜁j(𝛾
⋆),

ℍ
B

2,n
(t) =

1

Tn

kn∑
i=1

(wi − 1)
∑
j∈Bki

∫
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds[t, 𝛾̂n − 𝛾⋆],

ℍ
B

3,n
(t) =

√
bn

T3
n

kn∑
i=1

wi

∑
j∈Bki

∫
1

0

𝜕⊗2
𝛾

𝜁j

(
𝛾̂n +

√
bn

Tn
ut

)
du[t, t].
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Decompose 𝜕𝛾𝜁j(𝛾⋆) as 𝜕𝛾𝜁(𝛾⋆) = 𝜁1,j + 𝜁2,j where

Jensen’s inequality and the ergodic theorem yield that

It follows from Lemma 19 and Lemma 20 that

From these estimates, we get

Assumption 13 leads to

From Assumption 2, there exists a positive constants M1 and M2 such that

Combined with Jensen’s inequality, Lemma 19, and Lemma 20, we obtain

EB

[
sup
|t|≤Kn

|||ℍ
B

1,n
(t)
|||
2

]
≤ K2

n

T2
n

kn∑
i=1

||||||
∑
j∈Bki

𝜕𝛾𝜁j(𝛾
⋆)

||||||

2

.

𝜁1,j = hn

ctj−1𝜕
⊗2
𝛾

ctj−1 − (𝜕𝛾ctj−1)
⊗2

c4tj−1

(
c2
tj−1

− C2
tj−1

)
+ 2hn

(𝜕𝛾ctj−1)
⊗2

c4tj−1

C2
tj−1

,

𝜁2,j =
ctj−1𝜕

⊗2
𝛾

ctj−1 − 3(𝜕𝛾ctj−1)
⊗2

c4tj−1

[
hnC

2
tj−1

− (ΔjX)
2
]
.

(48)1

T2
n

kn∑
i=1

||||||
∑
j∈Bki

�1,j

||||||

2

≤ 1

nkn

kn∑
i=1

∑
j∈Bki

�2
1,j

= Op

(
k−1
n

)
.

1

T2
n

kn∑
i=1

||||||
∑
j∈Bki

𝜁2,j

||||||

2

=

{
Op

(
n−1

)
, in the diffusion case,

Op

(
T−1
n

)
, in the pure-jump Lévy driven case.

(49)EB

[
sup
|t|≤Kn

|||ℍ
B

1,n
(t)
|||
2

]
= Op(K

2
n
k−1
n
) = op(1).

EB

[
sup
|t|≤Kn

|||ℍ
B

2,n
(t)
|||
2

]
≤ K2

n

T2
n

||𝛾̂n − 𝛾⋆||2
kn∑
i=1

||||||
∑
j∈Bki

�
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds

||||||

2

.

|||||∫
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds
|||||

≲

(
1 + |Xtj−1

|M1

){
hn(1 + |Xtj−1

|M2 ) +
[
(ΔjX)

2 − hnCtj−1

]}
.

(50)E

⎡⎢⎢⎣

������
�
j∈Bki

∫
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds

������

2⎤⎥⎥⎦
≲

T2
n

k2
n

.
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Hence, the tightness of 
√
Tn(𝛾̂n − 𝛾⋆) implies that

We rewrite ℍB

3,n
(t) as

Recall that bn = Op(1) . By utilizing Cauchy–Schwartz inequality and the estimates 
in (50), we have

Similarly, for any C > 0 , we have

so that

Putting (49), (51), and (52) together, we arrive at (47).
Next, we observe that

By using the estimates in Kessler (1997); Uchida and Yoshida (2011); Masuda 
(2013), and Uehara (2019), it is easy to observe that

(51)EB

[
sup
|t|≤Kn

|||ℍ
B

2,n
(t)
|||
2

]
= Op

(
K2
n
k−1
n
T−1
n

)
= op(1).

ℍ
B

3,n
(t) =

√
bn

T3
n

kn∑
i=1

(wi − 1)
∑
j∈Bki

∫
1

0

𝜕⊗2
𝛾

𝜁j

(
𝛾̂n +

√
bn

Tn
ut

)
du[t, t]

+

√
bn

T3
n

n∑
j=1

∫
1

0

𝜕⊗2
𝛾

𝜁j

(
𝛾̂n +

√
bn

Tn
ut

)
du[t, t].

EB

⎡
⎢⎢⎣
sup
�t�≤Kn

������

�
bn

T3
n

kn�
i=1

(wi − 1)
�
j∈Bki

�
1

0

𝜕⊗2
𝛾

𝜁j

�
𝛾̂n +

�
bn

Tn
ut

�
du[t, t]

������

2⎤⎥⎥⎦

≲
K2
n
bn

T3
n

kn�
i=1

sup
�t�≤Kn

������
�
j∈Bki

�
1

0

𝜕⊗2
𝛾

𝜁j

�
𝛾̂n +

�
bn

Tn
ut

�
du

������

2

= Op(K
2
n
k−1
n
T−1
n
).

sup
|t|≤Kn

||||||

√
bn

T3
n

n∑
j=1

�
1

0

𝜕⊗2
𝛾

𝜁j

(
𝛾̂n +

√
bn

Tn
ut

)
du[t, t]

||||||

2

= Op

(
K2
n
T−1
n

)
,

(52)EB

[
sup
|t|≤Kn

|||ℍ
B

3,n
(t)
|||
2

]
= Op

(
K2
n
T−1
n

)
= op(1).

(53)PB

⎛⎜⎜⎝
inf�t�=Kn

⎡⎢⎢⎣
−

1√
Tnbn

kn�
i=1

wi

�
j∈Bki

t⊤𝜁j

�
𝛾̂n +

�
bn

Tn
t

�⎤⎥⎥⎦
> 0

⎞⎟⎟⎠
= 1 − op(1).
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We hereafter write the smallest eigenvalue of −Γ� and 1
n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n) as �� and �� ,n , 
respectively. From (54), we may and do assume that for a fixed � ∈ (0, �� ) and 
enough large n, 1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n) is positive definite and |𝜆𝛾 − 𝜆𝛾 ,n| < 𝛿 without loss of 
generality. For such n, and the same sequence (Kn) as the estimates of ℍB

n
 , it follows 

that

For abbreviation, let

Then, Taylor’s expansion and Chebychev’s inequality gives

(54)
1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)
p
�����→ −Γ𝛾 > 0.

PB

⎛
⎜⎜⎝
inf�t�=Kn

⎡
⎢⎢⎣
−

1√
Tnbn

kn�
i=1

wi

�
j∈Bki

t⊤𝜁j

�
𝛾̂n +

�
bn

Tn
t

�⎤
⎥⎥⎦
> 0

⎞
⎟⎟⎠

≥ PB

⎛
⎜⎜⎜⎝
inf�t�=Kn

⎧
⎪⎨⎪⎩
−

1√
Tnbn

kn�
i=1

wi

�
j∈Bki

t⊤𝜁j
�
𝛾̂n
�
+ t⊤ℍB

n
(t) +

1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)[t, t]

⎫
⎪⎬⎪⎭
> 0

⎞
⎟⎟⎟⎠

≥ 22PB

⎛⎜⎜⎝
− sup

�t�=Kn

1√
Tnbn

kn�
i=1

wi

�
j∈Bki

t⊤𝜁j
�
𝛾̂n
�
− sup

�t�=Kn

���t
⊤
ℍ

B

n
(t)
��� >

− inf�t�=Kn

1

n
𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)[t, t]

�

≥ 1 − PB

⎛⎜⎜⎝

������
1√
Tnbn

kn�
i=1

wi

�
j∈Bki

𝜁j
�
𝛾̂n
�������

+ sup
�t�=Kn

���ℍ
B

n
(t)
��� ≥ (𝜆𝛾 − 𝛿)Kn

⎞⎟⎟⎠

≥ 1 − PB

⎛⎜⎜⎝

������
1√
Tnbn

kn�
i=1

wi

�
j∈Bki

𝜁j
�
𝛾̂n
�������

≥ (𝜆𝛾 − 𝛿)Kn

2

⎞⎟⎟⎠

− PB

�
sup
�t�=Kn

���ℍ
B

n
(t)
��� ≥

(𝜆𝛾 − 𝛿)Kn

2

�
.

Mn = M(Kn) =
(�� − �)Kn

2
.
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𝜁j(𝛾
⋆) can be decomposed as:

Notice that from Proposition 11, Tnbn = Op(nh
2
n
) in the correctly specified diffusion 

case, and Tnbn = Op(Tn) in the other cases, and that the function

is centered. Hence,

is straightforward from Lemma 19, Lemma 20, and Lemma 21. From Proposition 
11, we have

and the estimates of ℍB

1,n
 and ℍB

2,n
 imply that

Hence, we obtain (53).
Let t = tn be a root of the equation

E

⎡⎢⎢⎣
PB

⎛
⎜⎜⎝

������
1√
Tnbn

kn�
i=1

wi

�
j∈Bki

𝜁j
�
𝛾̂n
�������

≥ Mn

⎞
⎟⎟⎠

⎤
⎥⎥⎦

≤ 4

M2
n
Tnbn

kn�
i=1

������
�
j∈Bki

𝜁j
�
𝛾⋆

�������

2

+
4�𝛾̂n − 𝛾⋆�2
M2

n
Tnbn

kn�
i=1

������
�
j∈Bki

𝜕𝛾𝜁j
�
𝛾⋆

�������

2

+
4�𝛾̂n − 𝛾⋆�4
M2

n
Tnbn

kn�
i=1

������
�
j∈Bki

�
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds

������

2

.

𝜁j(𝛾
⋆) = hn

𝜕𝛾ctj−1

c3tj−1

(c2
tj−1

− C2
tj−1

) +
𝜕𝛾ctj−1

c3tj−1

[
hnC

2
tj−1

− (ΔjX)
2
]
.

𝜕𝛾c(x, 𝛾
⋆)

c3(x, 𝛾⋆)
(c2(x, 𝛾⋆) − C2(x))

(55)1

Tnbn

kn∑
i=1

||||||
∑
j∈Bki

𝜁j
(
𝛾⋆

)||||||

2

= Op(1),

√
Tn

bn
(𝛾̂n − 𝛾⋆) = Op(1),

4|𝛾̂n − 𝛾⋆|2
M2

n
Tnbn

kn∑
i=1

||||||
∑
j∈Bki

𝜕𝛾𝜁j
(
𝛾⋆

)||||||

2

+
4|𝛾̂n − 𝛾⋆|4
M2

n
Tnbn

kn∑
i=1

||||||
∑
j∈Bki

∫
1

0

𝜕⊗2
𝛾

𝜁j(𝛾̂n + s(𝛾⋆ − 𝛾̂n))ds

||||||

2

= op(1).

(56)�
B

1,n

(
𝛾̂n +

√
bn

Tn
t

)
= 0,
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if it exists, and otherwise, t be an arbitrary element of ℝp� . For such t, we define

On the set

the continuity of �(�) and (Ortega and Rheinboldt 1970, Theorem 6.3.4) ensure that 
a root t of (56) does exist within |t| ≤ Kn . Since 

√
bn∕TnKn = op(1) , (53) and the 

consistency of 𝛾̂n lead to

Finally, Chebyshev’s inequality, (47) and (53) yield that for any M > 0,

Combined with the estimates of ℍB

1,n
 and ℍB

2,n
 , we obtain (43) and (44).

𝛾̂B
n
= 𝛾̂n +

√
bn

Tn
t.

inf�t�=Kn

⎡
⎢⎢⎣
−

1√
Tnbn
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i=1

wi

�
j∈Bki

t⊤𝜁j

�
𝛾̂n +

�
bn

Tn
t

�⎤
⎥⎥⎦
> 0,

(57)PB(𝛾̂B
n
∈ Θ𝛾 ) = 1 − op(1).

(58)
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⎛
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������

�
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1
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𝜕⊗2
𝛾

ℍ1,n(𝛾̂n)(𝛾̂
B

n
− 𝛾̂n) −

1√
Tnbn
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i=1

(wi − 1)
�
j∈Bki

𝜁j(𝛾̂n)

������
> M

⎞⎟⎟⎠
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⎡⎢⎢⎣
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�
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�
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⎧⎪⎨⎪⎩
inf�t�=Kn
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−

1√
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�
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�
𝛾̂n +

�
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Tn
t
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⎫⎪⎬⎪⎭

∩

�
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�ℍB

n
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��
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�
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1

M2
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�
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�ℍB

n
(t)�2

�
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5.3.2 � Drift part

Since the route is a similar to (43) and (44), we sometimes omit the details below. 
Introduce the function �B

n
 on ℝp� by

and Taylor’s expansion gives

where

As can be seen in the proof of (43), it is sufficient for (45) to show that

where (Kn) denotes the same positive sequence as the previous part. We first show 
(59). Decompose �B

1,n
(t) as

Since 𝜕𝛼𝜂j(𝛼⋆, 𝛾⋆) can be rewritten as:

𝕌
B

n
(t) =

1√
Tn

kn�
i=1
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�
j∈Bj

�
𝜂j

�
𝛼̂n +

t√
Tn

, 𝛾̂n

�
− 𝜂j

�
𝛼̂n, 𝛾̂n

��
−

1

Tn
𝜕⊗2
𝛼

ℍ2,n(𝛼̂n)t,

�
B

n
(t) = �

B

1,n
(t) + �

B

2,n
(t) + �

B

3,n
(t),

�
B

1,n
(t) =

1

Tn

kn�
i=1

(wi − 1)
�
j∈Bki

t⊤𝜕𝛼𝜂j(𝛼
⋆, 𝛾̂n),

�
B

2,n
(t) =

1

Tn
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i=1

(wi − 1)
�
j∈Bki

∫
1

0

𝜕⊗2
𝛼

𝜂j(𝛼̂n + s(𝛼⋆ − 𝛼̂n), 𝛾̂n)ds[t, 𝛼̂n − 𝛼⋆],

�
B

3,n
(t) =

1

T
3∕2
n

kn�
i=1

wi

�
j∈Bki

∫
1

0

𝜕⊗2
𝛼

𝜂j

�
𝛼̂n +

1√
Tn

ut, 𝛾̂n

�
du[t, t].

(59)EB

[
sup
|t|≤Kn

|||�
B

n
(t)
|||
2

]
= op(1),

(60)1

Tn

kn∑
i=1

||||||
∑
j∈Bki

𝜂j
(
𝛼⋆, 𝛾̂n

)||||||

2

= Op(1),

�
B

1,n
(t) =

1

Tn
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i=1

(wi − 1)
∑
j∈Bki

t⊤𝜕𝛼𝜂j(𝛼
⋆, 𝛾⋆)

+
1

Tn

kn∑
i=1

(wi − 1)
∑
j∈Bki

∫
1

0

𝜕𝛾𝜕𝛼𝜂j(𝛼
⋆, 𝛾̂n + u(𝛾⋆ − 𝛾̂n))du[t, 𝛾̂n − 𝛾⋆].



561

1 3

Bootstrap method for misspecified SDE models

it follows from Jensen’s inequality and Lemma 19 that

Again applying Jensen’s inequality, we obtain

For any q > p𝛾 , Sobolev’s inequality (cf. Adams 1973) gives

Now, we focus on the first term of the right-hand side. 𝜕𝛾𝜕𝛼𝜂j(𝛼⋆, 𝛾) can be 
decomposed as:

Jensen’s inequality gives

𝜕𝛼𝜂j(𝛼
⋆, 𝛾⋆) =

𝜕⊗2
𝛼

atj−1

c2tj−1
∫

tj

tj−1

(As − atj−1)ds +
𝜕⊗2
𝛼

atj−1

c2tj−1
∫

tj

tj−1

Cs−dZs

+ hn

⎡
⎢⎢⎢⎣

𝜕⊗2
𝛼

atj−1

c2tj−1

atj−1 +
𝜕⊗2
𝛼

atj−1 −
�
𝜕𝛼atj−1

�⊗2

c2tj−1

⎤
⎥⎥⎥⎦
,

EB

⎡
⎢⎢⎣
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������
1

Tn

kn�
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�
j∈Bki
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������

2⎤
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2
n
k−1
n
) = op(1).
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�
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�
1
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≲
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n
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T2
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�
j∈Bki

�
1
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������

2

≤ K2
n
��𝛾̂n − 𝛾⋆��2
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𝜕𝛾𝜕𝛼𝜂j(𝛼
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������

2

.

E
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𝛾∈Θ

������
�
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𝜕𝛾𝜕𝛼𝜂j(𝛼
⋆, 𝛾) =𝜕𝛾c

−2
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(𝛾)𝜕⊗2
𝛼
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(
∫
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−2
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(𝛾)
(
𝜕𝛼atj−1

)⊗2

.
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Burkholder’s inequality leads to

so that for any q > p𝛾,

Analogously, we can evaluate sup𝛾∈Θ E
����
∑

j∈Bki

𝜕⊗2
𝛾

𝜕𝛼𝜂j(𝛼
⋆, 𝛾)

���
q�

 , and the tightness 
of 
√
Tn(𝛾̂n − 𝛾⋆) leads to

Hence, we obtain

By taking a similar route, it is easy to see

and in turn we get (59). We next show (60). Taylor’s formula leads to
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E

⎡
⎢⎢⎣

������
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and the first term of the right-hand side is Op(1) from an easy application of Lemma 
19. As for the second term of the right-hand side, it is Op(k

−1
n
) by making use of the 

same argument based on Sobolev’s inequality presented above. Hence, (60) follows, 
and by mimicking the proof of (53), we get

Again by using (Ortega and Rheinboldt 1970, Theorem 6.3.4), it turns out that the 
equation

has a root t within |t| ≤ Kn on the set

Hence, for 𝛼̂B

n
∶= 𝛼̂n + t∕

√
Tn , we get

Mimicking (58), we get (45). It remains to prove (46), but it automatically follows 
from the estimates of (61). Combined with (43) and (44), we obtain (19). Moreover, 
Taylor’s expansion and the calculation up to here lead to

Now, we move to the proof of (20), (21), (22), and (23). In the correctly specified 
case, by taking Lemma 19 and Lemma 20 into consideration, (20) and (22) are 
trivial from (63). Concerning the misspecified case, it is enough for (21) and (23) to 
show that for each l ∈ {1, 2},
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Since f1 and f2 is at most polynomial growth, it follows that for each l ∈ {1, 2} , there 
exist positive constants C1 and C2 satisfying

Hence, we have

and (64). Since g1 and g2 are also polynomial growth from their weighted Hölder 
continuity, (65) can be deduced in the same way.

It remains to prove (24). However, (24) follows from F -conditional Lindeberg-
Feller central limit theorem by making use Lemma 22 and Lemma 23. Hence, the 
proof is complete. 	�  ◻
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