
Supplement to “Tests for the existence of group effects and
interactions for two-way models with dependent errors”

Yuichi Goto∗ † Kotone Suzuki‡ § Xiaofei Xu¶ ‖ Masanobu Taniguchi∗∗††

This is a supplementary material of the article “Tests for the existence of group effects and interactions
for two-way models with dependent errors”. In this supplementary material, we provide proofs of our
theorems and additional simulation results.

A Proof Section
This section provides all proofs of Theorems in the main manuscript.

The following lemma is the essential tool to show our theorems (Rao and Mitra, 1971, Theorem 9.2.3,
p.173).

Lemma A.1. If Z follows 𝑁 (𝔪,V), then it holds that Z⊤V−Z follows the noncentral chi-square dis-
tribution with rank(V) degrees of freedom and noncentrality parameter 𝔪⊤V−𝔪, where V− denotes the
Moore–Penrose inverse of V.

A.1 Proof of Theorem 21
First, we shall show, under 𝐻𝜶 that

√
𝑛
(
𝒚1..

⊤ − 𝒚...
⊤ . . . 𝒚𝑎..

⊤ − 𝒚...
⊤)⊤ converges in distribution to 𝑎𝑝-

dimensional centered normal distribution with the variance 𝑽𝜶. For any 𝑖 ∈ {1, . . . , 𝑎}, it holds that√
𝑛E(𝒚𝑖.. − 𝒚...) = 0. We observe that, for any 𝑖1, 𝑖2 ∈ {1, . . . , 𝑎},

𝑛Cov(𝒚𝑖1.. − 𝒚..., 𝒚𝑖2.. − 𝒚...) = 𝑛Cov(𝒆𝑖1.. − 𝒆..., 𝒆𝑖2.. − 𝒆...) = 𝑛,𝜶𝑽𝑖1𝑖2 ,

where

𝑛,𝜶𝑽𝑖1𝑖2 :=
1
𝑛𝑏2

𝑏∑
𝑗1, 𝑗2=1

1
𝜌𝑖1 𝑗1𝜌𝑖2 𝑗2

𝑛𝑖1 𝑗1∑
𝑡1=1

𝑛𝑖2 𝑗2∑
𝑡2=1

𝚪𝑖1𝑖2𝑗1 𝑗2 (𝑡1 − 𝑡2)

− 1
𝑛𝑎𝑏2

𝑎∑
𝑠=1

𝑏∑
𝑗1, 𝑗2=1

(𝑛𝑠 𝑗1∑
𝑡1=1

𝑛𝑖2 𝑗2∑
𝑡2=1

1
𝜌𝑠 𝑗1𝜌𝑖2 𝑗2

𝚪𝑠𝑖2𝑗1 𝑗2 (𝑡1 − 𝑡2) +
𝑛𝑖1 𝑗1∑
𝑡1=1

𝑛𝑠 𝑗2∑
𝑡2=1

1
𝜌𝑖1 𝑗1𝜌𝑠 𝑗2

𝚪𝑖1𝑠𝑗1 𝑗2 (𝑡1 − 𝑡2)
)
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+ 1
𝑛𝑎2𝑏2

𝑎∑
𝑠1,𝑠2=1

𝑏∑
𝑗1, 𝑗2=1

1
𝜌𝑠1 𝑗1𝜌𝑠2 𝑗2

𝑛𝑠1 𝑗1∑
𝑡1=1

𝑛𝑠2 𝑗2∑
𝑡2=1

𝚪𝑠1𝑠2𝑗1 𝑗2
(𝑡1 − 𝑡2)

with 𝚪𝑖1,𝑖2𝑗1 𝑗2
(ℎ) := E(𝒆𝑖1 𝑗1𝑡+ℎ𝒆⊤𝑖2 𝑗2𝑡). From (A1), we can see that 𝑛,𝜶𝑽𝑖1𝑖2 converges to 𝜶𝑽𝑖1𝑖2 as min 𝑖=1,...,𝑎

𝑗=1,...,𝑏
𝑛𝑖 𝑗 →

∞. For any ℓ ≥ 3, (𝑖1, . . . , 𝑖ℓ) ∈ {1, . . . , 𝑎}ℓ, ( 𝑗1, . . . , 𝑗ℓ) ∈ {1, . . . , 𝑏}ℓ, and (𝑑1, . . . , 𝑑ℓ) ∈ {1, . . . , 𝑝}ℓ, we
found, by (A1), that

𝑛ℓ/2Cum{𝑒𝑖1 𝑗1.𝑑1 , . . . , 𝑒𝑖ℓ 𝑗ℓ .𝑑ℓ }

=
𝑛−ℓ/2

𝜌𝑖1 𝑗1 . . . 𝜌𝑖ℓ 𝑗ℓ

𝑛𝑖1 𝑗1∑
𝑡1=1

· · ·
𝑛𝑖ℓ 𝑗ℓ∑
𝑡ℓ=1

|Cum{𝑒𝑖1 𝑗1𝑡1𝑑1 , . . . , 𝑒𝑖ℓ 𝑗ℓ 𝑡ℓ𝑑ℓ }|

=
𝑛−ℓ/2

𝜌𝑖1 𝑗1 . . . 𝜌𝑖ℓ 𝑗ℓ

𝑛𝑖1 𝑗1∑
𝑡1=1

𝑛𝑖2 𝑗2−𝑡1∑
𝑠2=1−𝑡1

· · ·
𝑛𝑖ℓ 𝑗ℓ

−𝑡1∑
𝑠ℓ=1−𝑡1

|𝜅 𝑗1··· 𝑗ℓ𝑖1···𝑖ℓ (𝑠2, . . . , 𝑠ℓ; 𝑑1, . . . , 𝑑ℓ) |

≤ 𝑛−ℓ/2

𝜌𝑖1 𝑗1 . . . 𝜌𝑖ℓ 𝑗ℓ

𝑛𝑖1 𝑗1∑
𝑡1=1

∞∑
𝑠2=−∞

· · ·
∞∑

𝑠ℓ=−∞
|𝜅 𝑗1··· 𝑗ℓ𝑖1···𝑖ℓ (𝑠2, . . . , 𝑠ℓ; 𝑑1, . . . , 𝑑ℓ) |

=
𝑛−ℓ/2+1

𝜌𝑖2 𝑗2 . . . 𝜌𝑖ℓ 𝑗ℓ

∞∑
𝑠2=−∞

· · ·
∞∑

𝑠ℓ=−∞
|𝜅 𝑗1··· 𝑗ℓ𝑖1···𝑖ℓ (𝑠2, . . . , 𝑠ℓ; 𝑑1, . . . , 𝑑ℓ) |

= 𝑂 (𝑛−ℓ/2+1), (A.1)

where 𝑒𝑖 𝑗 .𝑑 :=
∑𝑛𝑖 𝑗
𝑡=1 𝑒𝑖 𝑗 𝑡𝑑/𝑛𝑖 𝑗 for any (𝑖, 𝑗 , 𝑑) ∈ {1, . . . , 𝑎}×{1, . . . , 𝑏}×{1, . . . , 𝑝}. From these observations,

we conclude, under 𝐻𝜶, that
√
𝑛
(
𝒚1..

⊤ − 𝒚...
⊤ . . . 𝒚𝑎..

⊤ − 𝒚...
⊤)⊤ ⇒ 𝑁 (0,𝑽𝜶) as min

𝑖=1,...,𝑎
𝑗=1,...,𝑏

𝑛𝑖 𝑗 → ∞.

Koliha (2001, Corollary 1.8) and (A3) yield that 𝑽̂−
𝑛,𝜶 converges in probability to𝑽−

𝜶 as min 𝑖=1,...,𝑎
𝑗=1,...,𝑏

𝑛𝑖 𝑗 →
∞. The conclusion of the theorem then follows from Lemma A.1. ■

A.2 Proof of Theorem 22
Theorem 2.1 gives that

(
𝒆1..

⊤ − 𝒆...
⊤ . . . 𝒆𝑎..

⊤ − 𝒆...
⊤)⊤

= 𝑂𝑝 (1/
√
𝑛). It follows, under 𝐾𝜶, that, for any

𝑖1, 𝑖2 ∈ {1, . . . , 𝑎},

P(𝑇𝑛,𝜶 ≥ 𝜒2
𝑟𝑛,𝜶

[1 − 𝜏])
= P(𝑇𝑛,𝜶/𝑛 ≥ 𝜒2

𝑟𝜶 [1 − 𝜏]/𝑛) + 𝑜𝑝 (1)

→ P

( (
𝜶1

⊤ − 𝜶.
⊤ . . . 𝜶𝑎

⊤ − 𝜶.
⊤)

𝑽−
𝜶

(
𝜶1

⊤ − 𝜶.
⊤ . . . 𝜶𝑎

⊤ − 𝜶.
⊤)⊤ ≥ 0

)
as min

𝑖=1,...,𝑎
𝑗=1,...,𝑏

𝑛𝑖 𝑗 → ∞.

The most right hand side is equal to one since the Moore–Penrose inverse of any nonnegative definite matrix
is nonnegative definite (Wu, 1980, Theorem 1). Thus, we obtain the desired results. ■

A.3 Proof of Theorem 23
The proof will be completed by the continuous mapping theorem once we show, under 𝐾 (𝑛)

𝜶 , that
√
𝑛
(
𝒚1..

⊤ − 𝒚...
⊤ . . . 𝒚𝑎..

⊤ − 𝒚...
⊤)⊤ ⇒ 𝑁 (0, 𝜶𝑯̃ + 𝑽𝜶) as min

𝑖=1,...,𝑎
𝑗=1,...,𝑏

𝑛𝑖 𝑗 → ∞.
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For any 𝑖 ∈ {1, . . . , 𝑎}, it holds that
√
𝑛E(𝒚𝑖.. − 𝒚...) = 0. It can be shown that, for any 𝑖1, 𝑖2 ∈ {1, . . . , 𝑎},

𝑛Cov(𝒚𝑖1.. − 𝒚..., 𝒚𝑖2.. − 𝒚...) = 𝑛Cov(𝜶𝑖1 − 𝜶.,𝜶𝑖2 − 𝜶.) + 𝑛Cov(𝒆𝑖1.. − 𝒆..., 𝒆𝑖2.. − 𝒆...)
= 𝜶𝑯̃𝑖1𝑖2 + 𝑛,𝜶𝑽𝑖1𝑖2 ,

where

𝜶𝑯̃𝑖1𝑖2 := 𝜶𝑯𝑖1𝑖2 −
1
𝑎

𝑎∑
𝑠=1

(𝜶𝑯𝑖1𝑠 + 𝜶𝑯𝑠𝑖2) +
1
𝑎2

𝑎∑
𝑠1,𝑠2=1

𝜶𝑯𝑠1𝑠2 .

Since {𝜶𝑖} is normally distributed, third and higher-order cumulants are zero. In conjunction with (A.1),
we conclude the theorem. ■

A.4 Proof of Theorem 31–33
The proofs of Theorem 31–33 can be shown along the lines with the proofs of Theorem 21–23. So the
proofs are omitted. ■

B Additional simulation results.
In this section, we provide additional simulation results for the tests. The settings of the simulation are
described in the main manuscript.

Figures 1 and 2 illustrate the empirical size and power for the test for existence of random effects defined
in (2.2). Similarly, Figures 3 and 4 show the empirical size and power for the test for existence of random
effects defined in (3.2). Note that the scale of vertical axes of Figures for 𝜎𝜶 = 0 and 𝜎𝜸 = 0 are differ from
other Figures. For the results for some parameters in the MA model, 𝑛 = 1000 provides better size control
than 𝑛 = 2000 under the null, e.g., (𝑐1, 𝑐2) = (−0.1, 0.4), (0,−0.4), (0.1,−0.1) with a normal distribution
in Figure 1. A similar tendency, though less pronounced, can be also seen in the results for some parameters
in the AR model. Overall, our tests have good size control under the null and reasonable power under the
alternative.
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Figure 1: Empirical size and power for the hypothesis defined in (2.2) for 𝜎𝜶 = 0, 0.1. The vertical
and horizontal axes correspond to the rejection probabilities over 1000 iterations and time series lengths,
respectively. The upper and lower figures correspond to the null (𝜎𝜶 = 0) and the alternative (𝜎𝜶 = 0.1),
respectively. The first and second columns correspond to results for AR(1) models whose disturbances
follow the normal distribution and the t-distribution with 5 degrees of freedom, respectively. The third and
four columns correspond to results for MA(1) models whose disturbances follow the normal distribution
and the t-distribution with 5 degrees of freedom, respectively.
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Figure 2: Empirical power for the hypothesis defined in (2.2) for 𝜎𝜶 = 0.2, 0.3. The vertical and horizontal
axes correspond to the rejection probabilities over 1000 iterations and time series lengths, respectively.
The upper and lower figures correspond to the alternative (𝜎𝜶 = 0.2, 0.3). The first and second columns
correspond to results for AR(1) models whose disturbances follow the normal distribution and the t-
distribution with 5 degrees of freedom, respectively. The third and four columns correspond to results for
MA(1) models whose disturbances follow the normal distribution and the t-distribution with 5 degrees of
freedom, respectively.
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Figure 3: Empirical size and power for the hypothesis defined in (3.2) for 𝜎𝜸 = 0, 0.1. The vertical
and horizontal axes correspond to the rejection probabilities over 1000 iterations and time series lengths,
respectively. The upper and lower figures correspond to the null (𝜎𝜸 = 0) and the alternative (𝜎𝜶 = 0.1),
respectively. The first and second columns correspond to results for AR(1) models whose disturbances
follow the normal distribution and the t-distribution with 5 degrees of freedom, respectively. The third and
four columns correspond to results for MA(1) models whose disturbances follow the normal distribution
and the t-distribution with 5 degrees of freedom, respectively.
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Figure 4: Empirical power for the hypothesis defined in (3.2) for 𝜎𝜸 = 0.2, 0.3. The vertical and horizontal
axes correspond to the rejection probabilities over 1000 iterations and time series lengths, respectively.
The upper and lower figures correspond to the alternative (𝜎𝜸 = 0.2, 0.3). The first and second columns
correspond to results for AR(1) models whose disturbances follow the normal distribution and the t-
distribution with 5 degrees of freedom, respectively. The third and four columns correspond to results for
MA(1) models whose disturbances follow the normal distribution and the t-distribution with 5 degrees of
freedom, respectively.
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