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Abstract
In this paper, we propose tests for the existence of random effects and interactions 
for two-way models with dependent errors. We prove that the proposed tests are 
asymptotically distribution-free which have asymptotically size � and are consistent. 
We elucidate the nontrivial power under the local alternative when a sample size 
tends to infinity and the number of groups is fixed. A simulation study is performed 
to investigate the finite-sample performance of the proposed tests. In the real data 
analysis, we apply our tests to the daily log-returns of 24 stock prices from six coun-
tries and four sectors. We find that there is no strong evidence to support the exist-
ence of substantial differences in the log-return across countries, nor to the existence 
of interactions between countries and sectors. However, there exists random effect 
differences in the daily log-return series across different sectors.

Keywords  Interaction effects · Multivariate time series · Random effects · Spectral 
density · Two-way layout

1  Introduction

The importance of incorporating random effects and interactions in modeling has 
been recognized, especially in the fields of longitudinal data and panel data analysis. 
A one-way model is one of the most fundamental models to capture group effects 
for i.i.d. data, see e.g. Searle et al. (1992). The dynamic panel data model pioneered 
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by Lillard and Willis (1978), which is a type of one-way models with group (indi-
vidual) and time effects as well as time-dependent disturbances, has since been pop-
ular and extensively developed in theoretical and implementation fields, see Baltagi 
(2005). Gonçalves (2011) derived the asymptotic distribution of regression coeffi-
cients for panel data models with individual effects under cross-sectional depend-
ence. You and Zhou (2013) considered semiparametric panel data partially linear 
additive models. Besides the individual effects, in many real-world problems, it is 
common to find the interactive effect as a generalization of additive individual and 
time effects. Bai and Li (2014) extended the panel data models taking into account 
the interactive effects. See also Li et al. (2016) and Ke et al. (2016) for more ref-
erence of interactive effects study, which are the cases that regression coefficients 
have structural breaks. Two-way models for i.i.d. data are well-developed as well, 
e.g., Clarke (2008, Sect. 5) and Akritas and Arnold (2000). Recently, González et al. 
(2021) proposed two-way models for spatial point processes. In contrast, few studies 
on two-way models for time series have examined. As an exception, two-way mod-
els with seasonal multiplicative ARIMA errors are studied by Sutradhar and Mac-
Neill (1989).

Although several models with group (individual) effects have been investigated, 
little research has been done on testing problems for the existence of group effects 
and interactions. Nagahata and Taniguchi (2018) elaborated a test for the existence 
of the fixed effects in the one-way models in the framework of independent groups. 
Then Goto et al. (2022a) relaxed the restriction of independence among groups and 
proposed tests for the existence of fixed or random effects in the one-way models. 
As a related topic, Akharif et  al. (2020) and Fihri et  al. (2020) proposed optimal 
tests for the existence of random coefficients based on the locally asymptotic nor-
mality for the random coefficient regression models.

In this paper, we propose tests for the existence of random effects and interactions 
for two-way models with dependent errors. We allow the groups to be correlated, 
which makes the classical test based on the sum of squares statistic not asymptoti-
cally distribution-free (see Goto et al. 2022a, Sect. 7). Therefore, we propose a sta-
tistic naturally extended the classical statistic, and the corresponding test is asymp-
totically distribution-free for correlated groups. We prove that the proposed tests 
have asymptotically size � under the null. Furthermore, we elucidate that the tests 
are also consistent under the alternative, and the nontrivial power is derived under 
the local alternative. It is worthy to mention that our tests are flexible which can be 
applied to models with fixed and mixed effects. A simulation study reveals that the 
proposed tests deliver good performance in size control under the null and have rea-
sonable power under the alternative. We apply our tests to the daily log-return pro-
cess of 24 stock prices which are from four sectors in six countries. We found that 
there is no evidence to support that substantial differences in the log-return among 
different countries exist, while the tests show that there does exist significant ran-
dom effect differences in the log-return across various sectors.

The rest of this paper is organized as follows. In Sect. 3, we introduce the two-
way models without interaction but with dependent errors, and present the pro-
posed test for the existence of random effects. In Sect. 4, we define two-way models 
with both interactions and dependent errors and advocate a test for the existence of 
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interactions. Sect. 5 investigates the finite-sample performance of the proposed test 
with simulation study. Sect. 6 conducts the tests to the log-return of stock prices in 
six countries and four sectors. In Sect. 7, we discuss the sum of square statistics and 
disturbances with a parametric spectral density matrix. The details of proofs of our 
theorems and additional simulation results are provided in supplementary material 
to this article.

2 � Preliminary

2.1 � Spectra density

The L2-based spectral density has been considered as a pivotal index to describe 
time-dependence structures of stationary time series in the frequency domain. 
In this section, we recall the definition of the spectral density (matrix). Let 
Yt = (Yt1,… , Ytp)

⊤ denote a p-dimensional stationary process with zero mean and 
the autocovariance function at lag h, denoted by �

Y
(h) = E(YtY

⊤

t+h
) , satisfying

where ||�
Y
(h)|| is the square root of the largest eigenvalue of �

Y
(h)�

Y
(h)⊤ . Then, the 

p × p spectral density matrix f
Y
(�) for Yt is given based on the Fourier transform 

(Fourier series) of �
Y
(h) as

for frequencies � ∈ [−�,�] . In specific, each entry fYjk (�) of f
Y
(�) for j, k = 1,… , p 

is given by

Note that

Hence, it is obvious that the autospectrum fYjj(�) measures the linear serial depend-
ency in the frequency domain of component Ytj , with the information of the spec-
trum fYjj(�) equivalent to that of autocovariance functions E(YtjYt+h,j) for all lags h. 
The cross-spectrum fYjk (�) represents the linear dependency at all lags and leads 
between Ytj and Ytk.

A typical example is the spectral density for Gaussian ARMA models of orders 
(p, q) defined by

∞∑
h=−∞

||�
Y
(h)|| < ∞,

f
Y
(�) =

1

2�

∞∑
h=−∞

�
Y
(h)e−ih�,

fYjk (�) =
1

2�

∞∑
h=−∞

E(YtjYt+h,k)e
−ih�.

�
Y
(h) = ∫

�

−�

f
Y
(�)(�)eih� with E(YtjYt+h,k) = ∫

�

−�

fYjk (�)e
ih�.
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where � , �1,… ,�p , and �1,… , �q are parameters, respectively. See e.g. Dette and 
Paparoditis (2009) and Fiecas and von Sachs (2014) for more examples and imple-
mentations of spectral density (matrix). We refer to Von Sachs (2020) and Tanigu-
chi and Kakizawa (2000) for a comprehensive review and fundamental theorems of 
spectral density (matrix).

3 � Two‑way models with dependent errors

In this section, we introduce two-way random effects models and propose tests for 
the existence of random effects. Noted that our theory is also applicable to fixed 
effects models and mixed effects models (see Remarks 33 – 34).

3.1 � Settings

Two-way random effects models with dependent errors are defined as follows:

where yijt ∶= (yijt1,… , yijtp)
⊤ is a t-th p-dimensional observation in the (i, j)-th cell, 

� ∶= (𝜇1,… ,𝜇p)
⊤ is a grand mean, �i ∶= (𝛼i1,… , 𝛼ip)

⊤ and � j ∶= (𝛽j1,… , 𝛽jp)
⊤ are 

random effects of the i-th level of factor A and the j-th level of factor B, respectively, 
and eijt ∶= (eijt1,… , eijtp)

⊤ is a centered stationary sequence. We assume that a finite 

realization {yijt;i = 1,… , a;j = 1,… , b;t = 1,… , nij} is available, there exists some 

constant �ij ∈ (0, 1) such that nij = �ijn with n =
∑a

i=1

∑b

j=1
nij,(

e⊤
11t
, e⊤

21t
,… , e⊤

a1t
, e⊤

12t
,… , e⊤

a2t
,… , e⊤

1bt
,… , e⊤

abt

)
⊤ has an abp-by-abp spectral 

density matrix f (�) ∶= {f j1j2 (�)}j1,j2=1,…,b with

f j1j2 (�) ∶= {f
i1i2
j1j2

(�)}i1,i2=1,…,a and

f
i1i2
j1j2

(𝜆) ∶=
∑

k∈ℤ 𝔼(ei1j1t+ke
⊤

i2j2t
)eik𝜆∕(2𝜋) , any two of {�i} , {� j} , and {eijt} are 

independent,
(�⊤

1
,… ,�⊤

a
)⊤ and (�⊤

1
,… , �⊤

b
)⊤ follow ap- and bp-dimensional centered normal 

distributions with variances �� ∶= (��i1i2
)i1,i2=1,…,a and �� ∶= (��j1j2

)j1,j2=1,…,b , 
respectively, where ��i1i2

∶= �(�i1
�⊤

i2
) and ��j1j2

∶= �(� j1
�⊤

j2
) . Note that this setting 

allows to deal with correlated cells. The case of disturbances with parametric spec-
tral densities is stated in Sect. 7.2. The Gaussian assumption on the random effects 
is not essential (see Remark 35).

In this paper, we use the following notation: yij. ∶=
∑nij

t=1
yijt∕nij , 

y.j. ∶=
∑a

i=1

∑nij

t=1
yijt∕(anij) , yi.. ∶=

∑b

j=1

∑nij

t=1
yijt∕(bnij) , and

y... ∶=
∑a

i=1

∑b

j=1

∑nij

t=1
yijt∕(abnij).

fARMA(�) =
�
2

2�

�1 +∑q

j=1
�je

−ij��2
�1 +∑p

j=1
�je

−ij��2 ,

(1)yijt = � + �i + � j + eijt, i = 1,… , a; j = 1,… , b; t = 1,… , nij,
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Remark 31  The model defined in (1) seems only applicable to the data which have a 
single observation in each cell, but also the model can be applicable to the data with 
multiple observations in each cell as follows: Set p as pq, where q is the number of 
observations in each cell,

yijt ∶= (yijt11,… yijt1q, yijt21,… , yijtp1,… , yijtpq)
⊤,

� ∶= (𝜇11
⊤

q
,… ,𝜇p1

⊤

q
)⊤ , �i ∶= (𝛼i11

⊤

q
,… , 𝛼ip1

⊤

q
)⊤,

� j ∶= (𝛽j11
⊤

q
,… , 𝛽jp1

⊤

q
)⊤ , and

eijt ∶= (eijt11,… , eijt1q, eijt21 … , eijtp1,… , , eijtpq)
⊤ , where 1⊤

q
 is a

q-dimensional vector with all elements equal to one. Furthermore, p and q can 
depend on i.

3.2 � Test for the existence of random effects

In this subsection, we develop testing theory for the existence of random effects 
of the model (1). We consider the following hypothesis:

where Oap is an ap-by-ap matrix all of whose entries are zero. From the symmetry 
of the model with respect to factors A and B, we can construct a test and establish 
theoretical justification for the hypothesis

in the same way.
Let ̂f n(𝜆) ∶= (̂f j1j2 (𝜆))j1,j2=1,…,b be the nonparametric spectral density matrix 

estimator defined as ̂f j1j2 (𝜆) ∶= {̂f
i1i2

j1j2
(𝜆)}i1,i2=1,…,a , where, for � ∈ [−�,�],

�(x) = ∫ ∞

−∞
W(t)eixt dt , the function W(⋅) satisfies (A2) in Assumption 31 below, Mn 

is a positive sequence such that Mn → ∞ and Mn∕n → 0 as min
i=1,…,a

j=1,…,b

nij → ∞ , and 

̂�
i1i2

j1j2
(h) is defined, for h ∈ {0,… , min{ni1j1 , ni2j2} − 1} , as

and, for h ∈ {−min{ni1j1 , ni2j2} + 1,… , 0} , as

(2)H� ∶ �
� = Oap vs K� ∶ �

� ≠ Oap,

(3)H� ∶ �
� = Obp vs K� ∶ �

� ≠ Obp

̂f
i1i2

j1j2
(𝜆) ∶=

1

2𝜋

∑
{h∈ℤ;|h|≤min{ni1 j1

,ni2 j2
}−1}

𝜔

(
h

Mn

)
̂�
i1i2

j1j2
(h)e−ih𝜆,

1

min{ni1j1 , ni2j2} − |h|
min{ni1 j1

,ni2 j2
}−|h|∑

t=1

(yi1j1t+h − yi1j1.)(yi2j2t − yi2j2.)
⊤,

1

min{ni1j1 , ni2j2} − |h|
min{ni1 j1

,ni2 j2
}∑

t=−h+1

(yi1j1t+h − yi1j1.)(yi2j2t − yi2j2.)
⊤.
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For notational simplicity, we define the quantities:

A proposed test statistic for (2) is defined as

where V̂
−

n,𝜶
 is the Moore–Penrose inverse matrix of V̂n,𝜶 ∶= (𝜶V̂i1i2

)i1,i2=1,…,a,

and a subscript dot denotes taking the average with respect to the corresponding ele-
ment, for example, ̂�

i1i2

..
∶=

∑b

j1,j2=1
̂�
i1i2

j1j2
∕b2,

̂�
i1.

..
∶=

∑a

s=1

∑b

j1,j2=1
̂�
i1,s

j1j2
∕(ab2) , and so on. Since(

y1..
⊤

− y...
⊤

,… , ya..
⊤

− y...
⊤

)
⊤

 converges to a centered normal distribution with 
variance V� , defined in Theorem 31 and V� is the function of f (0) , the spectral 
density plays an important role in this paper. Using the Moore–Penrose inverse is 
essential since V� , defined in Theorem 31, is a non-singular matrix. Actually, it 
can be seen from the fact 

∑a

i1=1

�
Vi1i2

= Op.

To describe the assumptions, we define, for a random variables {Yt} , the cumu-
lant of order � of (Y1,… , Y�) as

where the summation 
∑

(�1,…,�p)
 extends over all partitions (�1,… , �p) of {1, 2,… ,�} 

(see Brillinger 1981, p.19).
We make the following assumptions to construct the test for the hypothesis 

defined in (2).

Assumption 31  (A1) For all � ∈ ℕ , (i1,… , i�) ∈ {1,… , a}� , (j1,… , j�) ∈
{1,… , b}�  , and (d1,… , d�) ∈ {1,… , p}� it holds that

where � i1⋯i𝓁
j1⋯j𝓁

(s2,… , s𝓁;d1,… , d𝓁) = cum{ei1j10d1 , ei2j2s2d2 ,… , ei𝓁 j𝓁s𝓁d𝓁}.

�
i1i2
j1j2

∶ =
2𝜋min{𝜌i1j1 , 𝜌i2j2}

𝜌i1j1
𝜌i2j2

f
i1i2
j1j2

(0), and

̂�
i1i2

j1j2
∶ =

2𝜋min{𝜌i1j1 , 𝜌i2j2}

𝜌i1j1
𝜌i2j2

̂f
i1i2

j1j2
(0).

(4)
Tn,𝜶 ∶=
(
y1..

⊤

− y...
⊤

… ya..
⊤

− y...
⊤
)
V̂

−

n,𝜶

(
y1..

⊤

− y...
⊤

… ya..
⊤

− y...
⊤
)⊤

,

𝜶V̂i1i2
∶= ̂𝜻

i1i2

..
− ̂𝜻

i1.

..
− ̂𝜻

.i2

..
+ ̂𝜻

..

..
,

cum(Y1,… , Y�) ∶=
�

(�1,…,�p)

(−1)p−1(p − 1)!

�
E
�
j∈�1

Y
�1

�
…

⎛⎜⎜⎝
E
�
j∈�p

Y
�p

⎞⎟⎟⎠
,

∞∑
s2,…,s𝓁=−∞

{(
1 +

𝓁∑
k=2

|sk|
)
|||𝜅

i1⋯i𝓁
j1⋯j𝓁

(s2,… , s𝓁;d1,… , d𝓁)
|||
}

< ∞,
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(A2) The function W(⋅) is a real, bounded, nonnegative and even such that 
∫ ∞

−∞
W(t) dt = 1 and ∫ ∞

−∞
W2(t)dt < ∞ with a bounded derivative.

(A3) It holds that rank(V̂n,𝜶) converges in probability to rank(V�) as 
min

i=1,…,a

j=1,…,b

nij → ∞.

Remark 32  (A1) is a natural assumption in the context of time series analysis (see 
Brillinger (1981, p.26)). The asymptotic normality of(

y1..
⊤

− y...
⊤

… ya..
⊤

− y...
⊤
)⊤ can be shown by (A1), which can be relaxed by 

Theorem 2.1 of Hosoya and Taniguchi (1982). In conjunction with (A2), it can be 
seen that ̂f n(𝜆) is a consistent estimator of f (�) (see Brillinger (1981, Corollaries 
5.6.1 and 5.6.2 and Theorem 5.9.1)). (A3) is a technical assumption: from Koliha 
(2001, Corollary 1.8), we found that V̂n,𝜶

−
 converges in probability to V−

�
 , which is 

defined by replacing ̂f n(𝜆) with f (�) in V̂n,𝜶

−
 , as min

i=1,…,a

j=1,…,b

nij → ∞.

We can derive the asymptotic null distribution of Tn,� by employing Rao and Mitra 
(1971, Theorem 9.2.3, p.173) (see Lemma A.1 in Supplementary Material).

Theorem  31  Suppose Assumption  31. Under H� , Tn,� converges in distribution to 
chi-square distribution with r� degrees of freedom as min

i=1,…,a

j=1,…,b

nij → ∞ , where 

r� ∶= rank(V�) and V� ∶= (�Vi1i2
)i1,i2=1,…,a with

Here a subscript dot denotes taking the average with respect to the corresponding 
element.

Let � is a nominal level. From Theorem 31, we can construct an asymptotically size 
� test if we reject H� when Tn,� ≥ 𝜒

2
r̂n,�

[1 − 𝜏] , where r̂n,𝜶 ∶= rank(V̂n,𝜶) and 
𝜒
2
r̂n,�

[1 − 𝜏] denotes the upper �-percentiles of the chi-square distribution with r̂n,� 
degrees of freedom. The next theorem ensures the test has a fundamental property with 
respect to power.

Theorem 32  Suppose Assumption 31. Then, the proposed test based on Tn,� is con-
sistent, i.e., under K� , the power of the test converges to one as

min
i=1,…,a

j=1,…,b

nij → ∞.

The nontrivial power of the test can be derived by considering the local 
alternative K(n)

�  defined, for any ap-by-ap symmetric, positive definite matrix 
�H = (�Hi1i2

)i1,i2=1…,a with a p-by-p matrix �Hi1i2
 , as

�Vi1i2
∶= � i1i2

..
− � i1.

..
− � .i2

..
+ � ..

..
.

K(n)
�

�
� ∶=

�H

n
.



518	 Y. Goto et al.

1 3

Theorem  33  Suppose Assumption  31. Then, the nontrivial power of the proposed 
test based on Tn,� under K(n)

�  is given by

where Z� follows an ap-dimensional centered normal distribution with variance 
� ̃H + V� with � ̃H =

(
� ̃Hi1i2

)
i1,i2=1…,a

 defined as

Remark 33  For fixed effects models, {�i} and {� j} are defined as fixed constants 
such that 

∑a

i=1
�i = 0 and 

∑b

j=1
� j = 0 and the hypothesis of a test for the existence 

of fixed effects is defined as

The restriction is not essential: in the case of 
∑a

i=1
�i ≠ 0 , we reparameterize as 

�� ∶= � +
∑a

i=1
�i and ��

i
∶= �i −

∑a

i=1
�i . The test statistic Tn,� can be applied. 

The asymptotic null distribution is equivalent to Theorem 31. The consistency of the 
test can be shown in the same manner as Theorem 32. The difference between fixed 
and random effects models appears in the nontrivial power under the local alter-
native. For fixed effects models, the local alternative is defined, for perturbations 
{�hi;i = 1,… , a} such that 

∑a

i=1
�hi = 0 , as

Rao and Mitra (1971, Theorem 9.2.3, p.173) yields that, under K(n)

�,f ix
 , Tn,� converges 

in distribution to the noncentral chi-square distribution with r� degrees of freedom 
and the noncentrality parameter

𝛿
𝛼
∶= (�h⊤

1
,… , �h⊤

a
)V−

�
(�h⊤

1
,… , �h⊤

a
)⊤ as min

i=1,…,a

j=1,…,b

nij → ∞ . Therefore, the non-

trivial power of the test is given by 1 − Ψr� ,��
(�2

r�
[1 − �]) , where Ψr� ,��

 is the cumu-
lative distribution function of the noncentral chi-square distribution with r� degrees 
of freedom and the noncentrality parameter �

�
.

Remark 34  Since Tn,� is independent of {� j} as well as Tn,� , which is a statistic for 
the test for the existence of random effects of factor B, is independent of {�i} , these 
tests for fixed and random effects models can be applied to mixed effects models.

Remark 35  The Gaussian assumption on �i is not essential. Let
(�⊤

1
,… ,�⊤

a
)⊤ follows an ap-dimensional centered random vector. The null and 

alternative hypotheses can be described as

ℙ

(
Tn,� ≥ 𝜒

2

r̂n,,�
[1 − 𝜏]

)
→ ℙ

(
Z�V

−
�
Z� ≥ 𝜒

2

r�
[1 − 𝜏]

)
as min

i=1,…,a

j=1,…,b

nij → ∞,

� ̃Hi1i2
= �Hi1i2

−
1

a

a∑
s=1

(�Hi1s
+ �Hsi2

) +
1

a2

a∑
s1,s2=1

�Hs1s2
.

H�,f ix ∶ �i = 0 for all i ∈ {1,… , a}

vs K�,f ix ∶ �i ≠ 0 for some i ∈ {1,… , a}.

K
(n)

�,f ix
�i ∶=

�hi√
n
.
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and

We can show that the asymptotic size of our test is � and the consistency of the test. 
Under the local alternative K� , defined as

where (�⊤

1
,… ,�⊤

a
)⊤ follows an ap-dimensional centered random vector such that 

ℙ(�i = 0 for all i ∈ {1,… , a}) = 0 , it holds that, for �. ∶=
∑a

i=1
�i∕a , Tn,� converges 

in distribution to ((�⊤
1 − �.

⊤
,… ,�⊤

a − �.
⊤
) +�⊤

�)V
−
�((�

⊤
1 − �.

⊤
,… ,�⊤

a − �.
⊤
)⊤

+��) as min
i=1,…,a

j=1,…,b

nij → ∞ , where �� follows an ap-dimensional centered normal dis-

tribution with variance V�.

4 � Two‑way models with interaction and dependent errors

In the previous section, we proposed the tests for the existence of random effects for 
the factor A and the factor B. Next, we scrutinize interactions between factors A and 
B. In this section, we introduce two-way random effects models with interactions 
and dependent errors, and propose a test for the existence of interactions between 
factors A and B.

4.1 � Settings

Two-way random effects models with interactions and dependent errors are defined 
as

where �ij ∶= (𝛾ij1,… , 𝛾ijp)
⊤ is an interaction between the i-th level of factor A and 

the j-th level of factor B. The difference between the models (1) and (5) is the term 
{�ij} . We impose the same assumptions as the model (1) on {�i} , {� j} , and {eijt} . 
Besides, suppose that

(�⊤
11
, �⊤

21
,… , �⊤

a1
, �⊤

12
,… , �⊤

a2
,… , �⊤

1b
,… , �⊤

ab
)⊤ follows an abp-dimensional cen-

tered normal distribution with variance �� ∶= (��j1j2
)j1,j2=1,…,b , where 

��j1j2
∶= (��

i1i2
j1j2

)i1,i2=1,…,a and ��i1i2
j1j2

∶= �(�i1j1�
⊤

i2j2
) , and {�ij} is independent of {�i} , 

{� j} , and {eijt}.

H�, non−Gaussian ∶ ℙ(�1 = ⋯ = �a) = 1

K�, non−Gaussian ∶ ℙ(�1 = ⋯ = �a) = 0.

K
(n)

�, non−Gaussian
�i ∶=

�i√
n
,

(5)yijt = � + �i + � j + �ij + eijt, i = 1,… , a; j = 1,… , b; t = 1,… , nij,
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4.2 � Test for the existence of interaction effects

A test for the existence of interaction effect can be formulate as follows:

A proposed test statistic for the hypothesis (6) is defined as

where ̂V
−

n,�
 is the Moore–Penrose inverse matrix of ̂Vn,� ∶= (� ̂Vj1j2

)j1,j2=1,…,b , 
� ̂Vj1j2

∶= (� ̂V
i1i2

j1j2
)i1,i2=1,…,a , � ̂V

i1i2

j1j2
∶=

∑4

v=1
̂�v , ̂�0 ∶=

̂�
i1i2

j1j2
 , �̂1: = −�̂ .i2j1j2 − �̂ i1.j1j2

− �̂ i1i2.j2
− �̂ i1i2j1.

 , ̂�2 ∶= ̂�
..

j1j2
+ ̂�

.i2

.j2
+ ̂�

.i2

j1.
+ ̂�

i1.

.j2
+ ̂�

i1.

j1.
+ ̂�

i1i2

..
 , �̂3: = −�̂ i1... − �̂ .i2.. − �̂ ..j1. − �̂ ...j2  , 

̂�4 ∶=
̂�
..

..
 , a subscript dot denotes taking the average with respect to the correspond-

ing element. As with Tn,� , V� is a singular matrix since 
∑a

i1=1

∑b

j1=1
�V

i1i2
j1j2

= Op , and, 
thus, the Moor–Prose inverse is necessary.

Assumption 41  In addition to (A1) and (A2) in Assumption  31, it holds that 
rank(V̂n,𝜸) converges in probability to rank(V�) as min

i = 1,… , a

j = 1,… , b

nij → ∞.

Theorem  41  Suppose Assumption 41. Under H� , Tn,� converges in distribution to 
chi-square distribution with r� degrees of freedom as min

i=1,…,a

j=1,…,b

nij → ∞ , where 

r� ∶= rank(V�) and V� is defined by replacing ̂f
i1i2

j1j2
(0) with f i1i2

j1j2
(0) in ̂Vn,�.

Therefore, we can construct an asymptotically size � test if we reject H� when 
Tn,� ≥ 𝜒

2
r̂n,�

[1 − 𝜏] , where r̂n,𝜸 ∶= rank(V̂n,𝜸) . In the same manner as Theorem 32, the 
consistency of the test is shown.

Theorem 42  Suppose Assumption 41. Then, the proposed test based on Tn,� is con-
sistent, i.e., under K� , the power of the test converges to one as

min
i=1,…,a

j=1,…,b

nij → ∞.

To evaluate the nontrivial power, we consider the following local alternative:

(6)H� ∶
�
� = Oabp vs K� ∶

�
� ≠ Oabp.

(7)Tn,� ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11. − y1.. − y.1.+y...
y21. − y2.. − y.1.+y...

⋮

ya1. − ya.. − y.1.+y...
y12. − y1.. − y.2.+y...

⋮

ya2. − ya.. − y.2.+y...
⋮

y1b. − y1.. − y.b.+y...
⋮

yab. − ya.. − y.b.+y...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊤

̂V
−

n,�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11. − y1.. − y.1.+y...
y21. − y2.. − y.1.+y...

⋮

ya1. − ya.. − y.1.+y...
y12. − y1.. − y.2.+y...

⋮

ya2. − ya.. − y.2.+y...
⋮

y1b. − y1.. − y.b.+y...
⋮

yab. − ya.. − y.b.+y...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where abp-by-abp symmetric, positive definite matrix �H =
(
�Hj1j2

)
j1,j2=1…,b

 with a 
ap-by-ap matrix �Hj1j2

∶= (�H
i1i2
j1j2

)i1,i2=1,…,a.

Theorem  43  Suppose Assumption 41. Then, the nontrivial power of the proposed 
test based on Tn,� under K(n)

�  is given by

where Z� follows an abp-dimensional centered normal distribution with variance 
� ̃H + V� , and � ̃H = (� ̃Hi1i2

)i1,i2=1…,a is defined by replacing ̂�
i1i2

j1j2
 with �Hi1i2

j1j2
 in ̂Vn,�.

Remark 41  When the interaction {�ij} is a non-random constant such that ∑a

i=1

∑b

j=1
�ij = 0 , and a hypothesis for a test for the existence of interactions is 

defined as

The restriction 
∑a

i=1

∑b

j=1
�ij = 0 is not essential: in the case of∑a

i=1

∑b

j=1
�ij ≠ 0 , we reparameterize as �� ∶= � +

∑a

i=1

∑b

j=1
�ij and 

��
ij
∶= �ij −

∑a

i=1

∑b

j=1
�ij . We can utilize the test statistic Tn,� . The asymptotic null 

distribution is equivalent to Theorem 41. The consistency of the test can be shown 
in the same manner as Theorem 42. The difference between fixed and random inter-
actions appears in the nontrivial power under the local alternative. For fixed interac-
tions, the local alternative is defined, for perturbations {�hij;i = 1,… , a, j = 1,… , b} 
such that 

∑a

i=1

∑b

j=1
�hij = 0 as

Rao and Mitra (1971, Theorem 9.2.3, p.173) yields that, under K(n)

�,f ix
 , Tn,� converges 

in distribution to the noncentral chi-square distribution with r� degrees of freedom 
and the noncentrality parameter

K(n)
�

∶=
�H

n
,

ℙ

(
Tn,� ≥ 𝜒

2

r̂n,�
[1 − 𝜏]

)
→ ℙ

(
Z�V

−
�
Z� ≥ 𝜒

2

r�
[1 − 𝜏]

)
as min

i=1,…,a

j=1,…,b

nij → ∞,

H�,f ix ∶ �ij = 0 for all (i, j) ∈ {1,… , a} × {1,… , b}

vs K�,f ix ∶ �ij ≠ 0 for some (i, j).

K
(n)

�,f ix
�ij ∶=

�hij√
n
.
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where �h.j ∶=
∑a

i=1
�hij∕a and �hi. ∶=

∑b

j=1
�hij∕b as min

i=1,…,a

j=1,…,b

nij → ∞ . Therefore, the 

nontrivial power of the test is given by 1 − Ψr� ,��
(�2

r�
[1 − �]) , where Ψr� ,��

 is the 
cumulative distribution function of the noncentral chi-square distribution with r� 
degrees of freedom and the noncentrality parameter ��.

Remark 42  Since Tn,� does not depend on {� j} and {�i} , our results valid for fixed 
and mixed effects models with interactions.

Remark 43  The Gaussian assumption of interactions can be relaxed in the same 
manner as Remark 35.

5 � Numerical study

In this section, we study the finite-sample performance of proposed tests to the exist-
ence of random effects and interaction effects in the two-way models with dependent 
errors. In specific, we consider two scenarios: test the random effects to the two-way 
models without interaction, and test interaction in the two-way models with interac-
tion. We also investigate the tests’ empirical size and power performance under dif-
ferent type of dependent errors.

Firstly, we generate data from model (1) and consider that (a, b, p) = (3, 2, 1) , sam-
ple size n ∈ {250, 500, 1000, 2000} , the number of iterations R = 1000 , a significance 
level � ∶= 0.05 , and random effects (𝛼1, 𝛼2, 𝛼3)⊤ follow a normal distribution with 
mean 0 and variance �� of the form �� = �

2
�
I3 for �� ∈ {0, 0.1, 0.2, 0.3} . The case 

�� = 0 corresponds to the null. We set the innovation time series (dependent error) 
et ∶= (e11t, e21t, e31t, e12t, , e22t, e32t)

⊤ follows vector AR(1) models et ∶= Φet−1 + �t 
or MA(1) models et ∶= �t + Φ�t−1 , where �t ∶= (𝜖11t, 𝜖21t, 𝜖31t, 𝜖12t, 𝜖22t, 𝜖32t)

⊤ are 
i.i.d. white noise. Here we consider two distributions for noise �t : centered normal 

𝛿� ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�h11 −
�h1. −

�h.1
�h21 −

�h2. −
�h.1

⋮

�ha1 −
�ha. −

�h.1
�h12 −

�h1. −
�h.2

⋮

�ha2 −
�ha. −

�h.2
⋮

�h1b −
�h1. −

�h.b
⋮

�hab −
�ha. −

�h.b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊤

V−
�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�h11 −
�h1. −

�h.1
�h21 −

�h2. −
�h.1

⋮

�ha1 −
�ha. −

�h.1
�h12 −

�h1. −
�h.2

⋮

�ha2 −
�ha. −

�h.2
⋮

�h1b −
�h1. −

�h.b
⋮

�hab −
�ha. −

�h.b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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distribution with unit variance, and the centered t-distribution with 5 degrees of free-
dom and unit variance. For both cases, the coefficient matrix Φ is defined as

for c1, c2 ∈ {−0.4,−0.1, 0, 0.1, 0.4} . Since Tn,� does not depend on {� j} , so we need 
not consider {� j} . We use the Tukey–Hanning window function and a bandwidth 
Mn ∶= 3n1∕5 which minimizes the mean squared error (see Hannan 
(1970, p.285–286). The element c1 in Φ provides the inter-group correlation between 
the coordinate (1,1)-cell and the (3,2)-cell, and c2 gives within-group correlation 
with respect to the factor A between the (2,1)-cell and the (2,2)-cell. The empirical 
size and power are computed by 

∑R

i=1
I{T

(i)
n,� ≥ 𝜒

2
r̂n,�

[1 − 𝜏]}∕R , where T (i)
n,� denotes 

the value of our statistic in the i-th iteration and I is an indicator function.
Figure 1 displays the empirical size and power for the test of existence of random 

effects defined in (2). We can see from the top panel that, the test for model with 
AR(1)-type innovation approaches to nominal level 0.05 when n = 2000 , while test for 
the model with MA(1) error reaches the nominal level faster when n is as large as 1000 
and the performance is more stable than AR(1). Besides, regarding to the distributions 
of et , our test shows that there is little effect to the test performance on the distributions 
of disturbances under the null. On the other hand, under the alternative, our test shows 
that there is better power when et follows the normal distribution than that when et 
follows the t-distribution. As for �� , it can be seen from the plots in second to bottom 
panel that the power of our test becomes high when �� becomes larger. The results for 
other parameters are provided in Supplementary material for space limitation.

Next, we generate data from model (5) and take interactions term
(𝛾11, 𝛾21, 𝛾31, 𝛾12, 𝛾22, 𝛾32, 𝛾13, 𝛾23, 𝛾33)

⊤ to follow a normal distribution with mean 0 
and variance �� of the form �� = �

2
�
I6 for �

�
∈ {0, 0.1, 0.2, 0.3} . Other settings are the 

same as above. The case �� = 0 corresponds to the null. The empirical size and power 
are computed by 

∑R

i=1
I{T

(i)
n,� ≥ 𝜒

2
r̂n,�

[1 − 𝜏]}∕R , where T (i)
n,� denotes the value of our 

statistic in the i-th iteration.
Figure 2 shows the empirical size and power of the tests for �� . It can be seen that 

the results are similar to the cases above. It is interesting to observe that the size con-
trol of the test for interactions is better than that of the test for the existence of random 
effects, although the test statistic (7) is more complex than (4). The results for other 
parameters are deferred to Supplementary material for space limitation.

Φ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.7 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.3 0 0 0

0 0 0 0.3 0 0

0 c2 0 0 0.5 0

c1 0 0.2 0 0 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠
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6 � Real data analysis

In this section, we apply the proposed statistics to the daily log-return process of 24 
stock prices from January 3, 2017 to December 31, 2019, which belong to six coun-
tries (Australia, Canada, China, France, Germany, USA) and four sectors (Informa-
tion Technology, Industrial, Financial, Communication Service), respectively. Each 
stock price data covers 733 observations. The data are collected from the website 
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Fig. 1   Empirical size (the top panel) and power (the second to bottom panel) for the hypothesis defined 
in (2). The vertical and horizontal axes of each plot correspond to the average rejection probabili-
ties over 1000 iterations and different sample size, respectively. Each panel corresponds to results for 
�� = 0, 0.1, 0.2, 0.3 from top to bottom, respectively. The first panel refers to the null ( �� = 0 ), and the 
other panels correspond to the alternative ( 𝜎� > 0 ). The first and third columns correspond to results for 
AR(1) models whose disturbances follow the normal distribution and the t-distribution, respectively. The 
second and four columns correspond to results for MA(1) models whose disturbances follow the normal 
distribution and the t-distribution, respectively
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https://​www.​inves​ting.​com. The corresponding 24 company names for stock prices 
are reported in Table 1.

Figure 3 displays the time series plots of daily stock prices where each plot shows 
the raw data of price in four sectors for each country. It is noted that the original 
daily stock prices data are collected with different currencies, for example, the stock 
prices of American companies are shown in U.S. dollar, while that of a French com-
pany is shown in Euro. We apply our tests to the daily log-return series where the 
currency has no effect.
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Fig. 2   Empirical size (the top panel) and power (the second to bottom panel) for the hypothesis defined 
in (6). The vertical and horizontal axes of each plot correspond to the average rejection probabili-
ties over 1000 iterations and different sample size, respectively. Each panel corresponds to results for 
�� = 0, 0.1, 0.2, 0.3 from top to bottom, respectively. The first panel corresponds to the null ( �� = 0 ), and 
the other panels refer to the alternative ( 𝜎� > 0 ). The first and third columns correspond to results for 
AR(1) models whose disturbances follow the normal distribution and the t-distribution, respectively. The 
second and four columns correspond to results for MA(1) models whose disturbances follow the normal 
distribution and the t-distribution, respectively
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Table 1   company names

Sector \ Country Australia Canada

Information Technology Computershare CGI Inc
Industrial Brambles CNR
Financial National Australia Bank Bank of Montreal
Communication Service CNU BCE Inc
Sector \ Country China France
Information Technology Iflytek Co Ltd Capgemini
Industrial CK Hutchison Holdings Bouygues
Financial Industrial and Commercial Bank of 

China
BNP Paribas

Communication Service Tencent Holdings Vivendi
Sector \ Country Germany USA
Information Technology SAP SE Apple Inc
Industrial Deutsche Post 3M Company
Financial Deutsche Bank JPMorgan Chase & Co
Communication Service Deutsche Telekom Facebook, Inc
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Fig. 3   Time series plots of daily stock prices from January 3, 2017 to December 31, 2019 by country
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Tests for group effects and interactions for two-way models

We consider the log-returns of 4 sectors in each country, or the log-returns of 6 
countries that belong to same sector, as one group. Figure 4 displays the time series 
plots of the log-return by country. It shows that there are sharp fluctuations in the 
series for Australia, China, and Germany, while fluctuations for Canada France, and 
USA are blunt. Figure 5 shows the heatmap of correlation matrix for 24 daily log-
returns process. It shows that there exists within-group correlations in America and 
France. Meanwhile, there exhibits inter-group correlations between China and USA. 
There are small but negative correlations between log-returns in France and USA.

Our aim is to test the existence of random effects and interactions with respect to 
different countries or sectors. We denote by sijt the stock prices, where i, j, and t cor-
respond to sector, country, and time, respectively. We consider the daily log-return 
of stock prices defined as yijt ∶= log(sijt∕sij(t−1)).

We start from the simpler model without interaction and focus on the tests for the 
existence of random effects of country and sectors. Assume that yijt follows the two-
way model (1) with p = 1,

The random effects are measured {�i} and {�j} for sectors and countries, which cor-
respond to the hypotheses (2) and (3), respectively. We computed that Tn,� = 7.43 
and Tn,� = 4.47 . The corresponding p-values are 0.0592 and 0.484, respectively. 
Hence, we cannot reject the hypothesis (3) for {�j} , indicating that there is no 

yijt = � + �i + �j + eijt, i = 1,… , 4; j = 1,… , 6; t = 1,… , 733.
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Fig. 4   Time series plots of the daily log-returns from January 3, 2017 to December 31 by country
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significant random effects of country. On the other hand, it is reasonable to think 
there exists random effects {�i} of sectors.

Next we test the existence of interaction between sectors and countries of the log-
return series of the 24 companies. Assume that yijt follows the two-way model (5) 
with p = 1,

where the quantities �i and �j refer to random effects of sector and country, respec-
tively, and �ij represents interactions between sectors and countries. The testing of 
interaction effect corresponds to the hypothesis (6). We apply the proposed test to 

yijt = � + �i + �j + �ij + eijt, i = 1,… , 4; j = 1,… , 6; t = 1,… , 733,
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Fig. 5   Heatmap of correlation matrix of log-returns. Here, AU, CN, DE, CA, FR, and US are abbre-
viation for Australia, China, Germany, Canada, France, and USA, respectively. IT, Ind, Fin, and CS, are 
abbreviated for Information Technology, Industrial, Financial, and Communication Service, respectively. 
For example, “US, IT” denotes the American company for Information Technology, i.e., Apple Inc. Each 
square in the heatmap represents the correlation of the log-returns between the companies corresponding 
to the vertical and horizontal axes
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Tests for group effects and interactions for two-way models

log-return processes and obtain Tn,� = 16.5 with p-value 0.352. Therefore, we can-
not reject the null hypotheses (6) and, thus, there is no significant evidence for the 
existence of interactions between countries and sectors of these 24 companies.

In summary, there is no strong evidence to support that there exist substantial dif-
ferences in the 24 daily log-returns across countries, namely country specific factor 
does not affect corporate profits in each country significantly. In addition, there is 
also no convincing evidence for the existence of interactions between countries and 
sectors. However, we find that there does exist random effect differences in the daily 
log-return series across sectors, which refers that each sector may have its unique set 
of factors that influence corporate earnings.

7 � Discussion

7.1 � Sum of squares

In the context of analysis of variance (ANOVA), the sum of squares are commonly 
used, provided the independence of the cells. For example, we shall consider (5) 
with p = 1 . Suppose that, for any i and j, �i , �j , and �ij follow centered normal distri-
butions with variances �2

�
 , �2

�
 , and �2

�
 , respectively, Suppose that {eijt} be a stationary 

Gaussian process with a spectral density fe(�) , any two of {�i} , {�j} , {�ij} , and {eijt} 
are independent, �(�i1�i2 ) = 0 for any i1, i2(≠ i1) , �(�j1�j2) = 0 for any j1, j2(≠ j1) , 
�(�i1j1�i2j2 ) = 0 for any (i1, j1), (i2, j2)(≠ (i1, j1)) , {ei1j1t} and {ei2j2t} are of independent 
for any (i1, j1), (i2, j2)(≠ (i1, j1)) , and each group has a time series of equal length.

Under this setup, our hypotheses reduce to H
�
∶ �

2
�
= 0 vs K

�
∶ �

2
�
≠ 0 

and H
�
∶ �

2
�
= 0 vs K

�
∶ �

2
�
≠ 0 . The sum of squares statistics are defined as 

S
𝛼
∶= nb

∑a

i=1
(ȳi.. − ȳ...)

2 and S
𝛾
∶= n

∑a

i=1

∑b

j=1
(ȳij. − ȳi.. − ȳ.j. + ȳ...)

2 . After 
lengthy calculations, we can see that S

�
= Y′P�Y and S

�
= Y′P�Y , where 

Y ∶= ( Y111 Y211 ⋯ Ya11 Y121 Y221 ⋯ Ya21 ⋯ Y1b1 ⋯ Yab1 Y112 ⋯ Yabn ) , P� 
and P� projection matrices defined as P� ∶= 1nb1

′

nb
⊗ (Ia −

1

a
1a1

′

a
)∕(nb) and 

P� ∶= 1n1
′

n
⊗ B′

b
Bb ⊗ B′

a
Ba∕n , respectively, and Bn is an (n − 1)-by-n matrix 

defined as

The derivation of the projection matrices can be seen in Clarke (2008, Section 5). 
From Theorems S2 and S3 (Searle et al.1992, p.467), we can see that

Bn ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

−
1√
2

0 … … 0

1√
6

1√
6

−
2√
6

0 … 0

⋮ ⋮ ⋮ ⋱ ⋱ ⋮

1√
(n−1)(n−2)

1√
(n−1)(n−2)

1√
(n−1)(n−2)

… −

�
n−2

n−1
0

1√
n(n−1)

1√
n(n−1)

1√
n(n−1)

…
1√

n(n−1)
−

�
n−1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.
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and S
�
 and S

�
 are independent, where �e(h) ∶= �(eijt+heijt) . Therefore, test statistics 

can be defined as T
�
∶= (b − 1)Sα∕Sγ , T𝛾 ∶= S

𝛾
∕(2𝜋 ̂fe(0)) , where ̂fe(0) is the kernel 

estimator of fe(0).
Under H

�
 , we have T

�
 follows Fa−1

(a−1)(b−1)
 . Then, we have a non-asymptotic size 

� test if we reject H
�
 whenever T

�
≥ Fa−1

(a−1)(b−1)
(�) . Under K

�
 , the non-asymptotic 

power of the test can be derived as

Note that the larger �2
�
 is, the closer the power of T

�
 is to one. If we consider two-

way random effects models without interactions, the term �2
�
 is vanished, and, thus, 

we can construct a chi-squared test.
Under H

�
 , it holds that T

�
⇒ �

2
(a−1)(b−1)

as n → ∞. Thus, we have an asymp-
totic size � test if we reject H

�
 whenever T

�
≥ �

2
(a−1)(b−1)

(�) . Moreover, we can 
easily show the consistency of the test under the alternative and the nontrivial 
power under the local alternative.

As mentioned above, the sum of squares statistics can be used under the inde-
pendence of the cells. Since tests based the sum of squares statistics are not 
asymptotically distribution-free for correlated cells, we need to apply, e.g., boot-
strap methods to calculate critical values.

7.2 � Parametric spectral density matrix

When we assume a parametric spectral density matrix for disturbances, the 
unknown parameters can be estimated by the minimum discrepancy principle. 
Let {f�(𝜆);� ∈ � ⊂ ℝ

q} be a parametric family of spectral density matrices and 
�0 is a true parameter. A minimum distance estimator is defined as

where � is an function. If we choose
�{�, ̂f n(𝜆), 𝜆} ∶= − log det(̂f n(𝜆)f�

−1(𝜆)) + tr(̂f n(𝜆)f�
−1(𝜆)) − q , this estimator 

reduces to the Whittle likelihood estimator. Under appropriate conditions, Tani-
guchi and Kakizawa (2000, Theorem 6.2.3) with Robinson (1991, Theorem 2.1) 

S
𝛼
∼

(
nb𝜎2

𝛼
+ n𝜎2

𝛾
+ Σ|h|<n

(
1 −

|h|
n

)
𝛾e(h)

)
𝜒
2

a−1
,

S
𝛾
∼

(
n𝜎2

𝛾
+ Σ|h|<n

(
1 −

|h|
n

)
𝛾e(h)

)
𝜒
2

(a−1)(b−1)
,

ℙ

�
T
𝛼
≥ Fa−1

(a−1)(b−1)
(𝜏)

�

= ℙ

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
1 +

b𝜎2

𝛼

𝜎
2
𝛾
+

1

n
Σ�h�<n

�
1 −

�h�
n

�
𝛾e(h)

⎞
⎟⎟⎟⎠
Fa−1
(a−1)(b−1)

≥ Fa−1
(a−1)(b−1)

(𝜏)

⎞
⎟⎟⎟⎠
.

̂�n ∶= arg min
�∈� ∫

𝜋

−𝜋

�{�, ̂f n(𝜆), 𝜆}d𝜆,
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yields that ̂�n converges in probability to �0 , and, therefore, we can show that 
f ̂�n

(𝜆) converges to f�0(�) . Consequently, our theory also can be applied in the 
case of disturbances with a parametric spectral density.

7.3 � Optimality

The optimality of hypothesis testing problems for asymptotic theory is often 
stated with the locally asymptotic normality (LAN). For the test for the existence 
of fixed effects, Hallin et al. (2022) proposed the locally asymptotically maximin 
test based on LAN by using the center-outward ranks for i.i.d. sequences. Thus, 
for the fixed effects model, the LAN approach is one direction to construct the 
optimal test. On the other hand, for the test for the existence of random effects, 
Goto et  al. (2022b) showed that likelihood ratio processes for one-way model 
do not have the LAN property for i.i.d. settings. Due to this, the construction of 
optimal tests for the random effects model is more challenging. Derivation of the 
optimality of our tests is highly desirable, but it is beyond the scope of this paper.
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