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Abstract
In recent years, many methodologies for distributed data have been developed. How-
ever, there are two problems. First, most of these methods require the data to be 
randomly and uniformly distributed across different machines. Second, the meth-
ods are mainly not robust. To solve these problems, we propose a distributed pilot 
modal regression estimator, which achieves robustness and can adapt when the 
data are stored nonrandomly. First, we collect a random pilot sample from different 
machines; then, we approximate the global MR objective function by a communica-
tion-efficient surrogate that can be efficiently evaluated by the pilot sample and the 
local gradients. The final estimator is obtained by minimizing the surrogate func-
tion in the master machine, while the other machines only need to calculate their 
gradients. Theoretical results show the new estimator is asymptotically efficient as 
the global MR estimator. Simulation studies illustrate the utility of the proposed 
approach.
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1 Introduction

With the rapid development of science and technology, the research and appli-
cation of massive data have attracted attention from various fields, such as 
astronomy, economics, and industry (Gopal and Yang, 2013; Battey et al., 2018). 
Massive data have the characteristics of large volume, high dimensionality, and 
complex structure. Since it is difficult to process such a large data set on a single 
machine, the data collection must be distributed on multiple connected machines 
for processing; one machine is used as the master machine, and the other comput-
ers are used as worker machines (Duchi et al., 2014).

In the last few years, a considerable amount of work has been done to develop 
methodologies for distributed data, and the common methods can be divided 
into two categories: the “one-shot” approach and the iterative method. The first 
approach conducts an estimation on each worker machine and transfers the local 
estimates to the central machine to obtain the final estimator by averaging (Zhang 
et al., 2013; Lee et al., 2017; Battey et al., 2018; Fan et al., 2019). This method is 
easy to operate and is highly effective since it requires only one round of “master-
and-worker” communication. However, this method requires higher accuracy for 
the estimates on each working machine, and it might perform poorly when the 
statistic is nonlinear (Shamir et al., 2014; Jordan et al., 2019; Wang et al., 2022a). 
Unlike the “one-shot” approach, the iterative method requires multiple rounds 
of communication between the master and working machines. Through multiple 
iterations, this method can achieve the same statistical accuracy and convergence 
speed as the global estimator (Wang et al., 2017; Jordan et al., 2019; Fan et al., 
2021).

All these methods have been proven practically useful; however, there are two 
noteworthy issues. First, most of the existing methods must satisfy the assump-
tion of homogeneity, i.e., the data are randomly and uniformly distributed across 
different machines. In practice, however, this assumption is not common since 
the data might be recorded by time or location, so the distribution of data is dif-
ferent across machines. Second, most of the aforementioned methods are not 
robust since they are based on either least square or likelihood, i.e., they may be 
adversely influenced by heavy-tails or outliers. In distributed settings, there are 
often outliers due to a system breakdown of worker machines, which can lead to 
a completely wrong final estimates. Thus, robust estimation has recently become 
an important topic in distributed learning research. Traditional robust methods 
include Huber’s estimation (Huber, 1981) and quantile regression (Koenker and 
Bassett, 1978). However, these methods lose efficiency when the error distribu-
tion is normal or there are no outliers. Yao et al. (2012) proposed a modal regres-
sion-based estimator, which can achieve both efficiency and robustness via a tun-
ing parameter.

Recently, there has been a growing research interest in these two issues. For 
nonrandomly distributed data, Wang et  al. (2020) developed a pseudo-New-
ton–Raphson algorithm to efficiently estimate generalized linear models; Zhu 
et al. (2021) developed a distributed least squares approximation algorithm; Wang 
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et al. (2022b) proposed a communication-efficient estimator for nonrandomly dis-
tributed data. In the area of robust estimations for distributed data, Chen et  al. 
(2019) studied the inference problem in quantile regression; Wang and Li (2021) 
proposed a distributed modal regression method; Tu et  al. (2021) proposed a 
variance reduced median-of-means estimator, based on which they developed a 
robust distributed inference algorithm. However, to the best of our knowledge, 
there has been no research considering both issues simultaneously.

In this article, we propose a distributed pilot modal regression (DPMR) estimator, 
which is robust and can overcome the nonrandom distribution of the data. Actually, 
the data can be split and stored across the worker machines in any way. Specifically, 
we start by randomly collecting a total of n data as a pilot sample from each machine 
and store it in the master machine; then, we approximate the global MR objective 
function by a surrogate one, which can be efficiently evaluated by using the pilot 
sample and local gradients from worker machines. We obtain the final estimator 
by optimizing the surrogate MR objective function on the master machine, while 
worker machines only need to calculate and transmit the local gradients. Moreover, 
the communication cost is substantially reduced since only gradient vectors need 
to be transmitted, instead of Hessian matrices. The asymptotic properties are estab-
lished under mild conditions, and they confirm that the final estimator is as efficient 
as the oracle obtained on the full data set as long as n2∕N → ∞ , where N is the 
global sample size.

The materials in the article are organized as follows. Section 2 introduces the new 
method, the related algorithm and the asymptotic properties. Section 3 reports the 
simulation studies and the real data example. Proofs of the theorem are presented in 
Appendix.

2  Distributed pilot modal regression

2.1  Problem setup

Let Z = (X, Y) , where Y ∈ R is a response and X = (X1,… ,Xp)
T ∈ Rp is the covari-

ate vector. Suppose that 
{
Zi = (Xi, Yi)

}N

i=1
 are N independent and identically distrib-

uted (i.i.d.) random samples from

where � = (�1,… , �p)
T is the parameter with true value �0 = (�01,… , �0p)

T , the �i s 
are i.i.d. and independent of X with E[�i|Xi] = 0.

In the distributed system, suppose that the observations {Zi}
N
i=1

 are stored on 
K worker machines. Let S = {1,… ,N} and denote Sk as the set of sample indices 
stored on the k-th worker machine. Suppose Sk1 ∩ Sk2 = � for k1 ≠ k2 and S = ∪K

k=1
Sk . 

Let Nk = |Sk| , then, N =
∑K

k=1
Nk.

To obtain a robust estimator of �0 , we propose the modal regression-based esti-
mator (Yao et al., 2012; Yao and Li, 2014) as follows:

Yi = X
T
i
� + �i,



496 S. Li et al.

1 3

where Qh
N
(�) =

1

N

∑N

i=1
�h

�
Yi − X

T
i
�
�
 , �h(⋅) = h−1�(⋅∕h) , �(⋅) is a kernel density 

function and h > 0 is the bandwidth, which can determine the efficiency and degree 
of robustness and will be selected by a data adaptive procedure.

Remark 1 The model studied in Yao and Li (2014) is Mode(Y|x) = xT� , and they 
need the bandwidth h in Qh

N
(�) to converge to zero to ensure the mode of kernel 

density function converges to the mode of the distribution of Y. For more studies on 
modal regression, we refer to Chen et al. (2016) and Feng et al. (2020). As a con-
trast, the model in our study is E[Y|x] = xT� , and we use the similar loss function as 
modal regression to gain the robustness. If the error distribution is symmetric about 
zero, the coefficient in modal linear regression will be the same as the coefficients 
obtained by conventional mean linear regression (Yao and Li, 2014). The idea of 
using modal regression-based loss is motivated by Yao et al. (2012), and the h in 
our study plays the same role as h2 in Yao et al. (2012). So the h in our study is fixed 
and is selected by (5). The modal regression-based loss is commonly used in robust 
estimation, such as Zhao et al. (2014) and Wang et al. (2019).

In the distributed system, it is infeasible to solve (1). To realize fast computation, 
there are two commonly used strategies, i.e., the “one-shot” strategy and iterative algo-
rithms. However, they are built upon the basis that the data are randomly stored across 
different machines; otherwise, these methods are not suitable. Specifically, define the 
local MR objective functions as Qh

k
(�) =

1

Nk

∑
i∈Sk

�h

�
Yi − X

T
i
�
�
 , k = 1,… ,K . The 

“one-shot” methods first obtain local estimators �̂k by maximizing Qh
k
(�), k = 1,… ,K ; 

then, the resulting estimator �̂OS is obtained by simply averaging the local estimators, 
i.e., �̂OS

=
1

K

∑K

k=1
�̂k . Notably, when the data are nonrandomly distributed across the 

worker machines, �̂k s can be severely biased, which can lead to inconsistent results. 
The iterative algorithms, unlike the “one-shot” strategy, use a local Hessian matrix 
∇2Qh

k
(�) =

�2Qh
k
(�)

����
 to replace the global Hessian matrix ∇2Qh

N
(�) =

�2Qh
N
(�)

����
 , which 

necessitates a critical assumption of homogeneity, i.e.,

where � is a parameter that characterizes the homogeneity. To satisfy the condi-
tion, the local data used to construct ∇2Qh

k
(�) should be identically distributed as 

the entire data. In the nonrandomly distributed setting, however, the homogeneity 
assumption does not hold. Therefore, we aim to solve the optimization problem (1) 
in a nonrandomly distributed manner. 

2.2  Pilot sample surrogate modal regression objective function

The key idea is to replace the global MR objective function Qh
N
(�) with a surrogate 

function that is communication-efficient and approximate to Qh
N
(�) even the data are 

(1)�̂N = argmax �∈Rp

{
Qh

N
(�)

}
,

‖‖‖∇
2Qh

k
(�) − ∇2Qh

N
(�)

‖‖‖ ⩽ �,
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nonrandomly distributed. First, we randomly select a pilot sample with size n from 
all machines and store it in the master machine. The size n may be much smaller 
than N, and we assume that n∕N → 0 with n → ∞ and N → ∞ . Denote Pk as the 
indices selected from Sk by random sampling without replacement, and |Pk| = nk . 
Denote the pilot sample as P =

⋃K

k=1
Pk , and �P� = n =

∑K

k=1
nk . Then, the pilot 

estimator could be obtained by

where Qh
P
(�) =

1

n

∑
i∈P �h

�
Yi − X

T
i
�
�
 . Since P is completely randomly selected 

from all data, �̂P is consistent regardless of how the data are distributed on each 
machine. However, the convergence rate of �̂P is 

√
n , which is much smaller than √

N , the optimal rate.
In the second step, we regard the pilot estimator �̂P as an initial estimator. By 

Taylor expansion around �̂P , Qh
N
(�) can be represented as

where

with �̇�h(⋅) being the first derivative of �h(⋅) , and ⟨⋅, ⋅⟩ denotes the inner product. In 
the distributed system, it requires one communication round to evaluate ∇Qh

N
(�̂P) 

and RN(�) in (3). However, unlike the p-dim gradient vector, RN(�) involves the cal-
culation of global higher-order derivatives which require communicating more than 
O(p2) bits from each machine. To reduce the communication cost, we replace RN(�) 
by a pilot sample version on the master machine,

Then, we omit the additive constant in Qh
N
(�) and define the pilot sample surrogate 

MR objective function as

Finally, we obtain the communication-efficient estimator by

Remark 2 The modal regression-based estimator is a widely used robust method, 
and we have applied this method to longitudinal data (Wang et al., 2019) and ran-
domly distributed data (Wang and Li, 2021) before. However, when the data are 
nonrandomly stored, the estimator proposed by Wang and Li (2021) will fail. To 
the best of our knowledge, this is the first to study the robust estimation for non-
randomly distributed data. In this study, to overcome the challenges imposed by 

(2)�̂P = argmin �∈Rp

{
Qh

P
(�)

}
,

(3)Qh
N
(�) = Qh

N
(�̂P) + ⟨∇Qh

N
(�̂P), � − �̂P⟩ + RN(�),

∇Qh
N
(�̂P) = −

1

N

∑K

k=1

∑
i∈Sk

Xi�̇�h

(
Yi − X

T
i
�̂P

)
=

1

N

∑K

k=1
Nk∇Q

h
k
(�̂P),

RP(�) = Qh
P
(�) − Qh

P
(�̂P) − ⟨∇Qh

P
(�̂P), � − �̂P⟩.

�Lh
N
(�) = Qh

P
(�) − ⟨∇Qh

P
(�̂P) − ∇Qh

N
(�̂P), �⟩.

(4)�̃N = argmax �∈Rp{L̃hN(�)}.
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distribution nonrandomness, we adapt the pilot sampling which is also used in Wang 
et  al. (2020) and Pan et  al. (2021). In their studies, they first calculated an initial 
estimate by the pilot sample and then upgraded the estimate by a one-step Newton–
Raphson-type algorithm. Unlike them, the pilot sample in this study is used not only 
to provide an initial estimator, but also, more importantly, to update the Hessian 
matrix at each iteration. Therefore, our method does not require the transmission of 
the Hessian matrices and thus has a communication advantage.

2.3  Asymptotic properties and algorithm

The following regularity conditions are required for the theoretical development. 

 (A1) The parameter space H  is a compact subset of Rp and the true value �0 lies in 
the interior of H .

 (A2) There exists a positive definite matrix � such that 1
n

∑
i∈P XiX

T
i
→p � , as 

n → ∞ , and 1
N

∑N

i=1
XiX

T
i
→p � , as N → ∞ , where “ →p ” denotes convergence 

in probability.
 (A3) The random error satisfies that E[�̇�h(𝜖)|X] = 0.

Condition (A1) is elementary. Condition (A2) is a standard condition for proving 
estimation consistency and asymptotic normality. Condition (A3) ensures the con-
sistency of the estimator, which is also used in Yao et  al. (2012) and Zhao et  al. 
(2014).

Theorem 1 Suppose Conditions A1–A3 hold, we have 

(a) ‖��N − �̂N‖ = Op(n
−1∕2)‖�̂P − �̂N‖;

(b) if n∕
√
N → ∞ , then 

√
N(�̃N − �0) →d N(0, �(h)�

−1) , where 𝜉(h) = E(�̇�2
h
(𝜖))

[E(�̈�h(𝜖))]
2
 and 

“ →d ” denotes convergence in distribution.

Theorem 1 shows that if we use the pilot estimator �̂P as our initial estimator, the 
final estimator �̃N can significantly match the accuracy of the global estimator �̂N , 
and it can achieve the optimal rate of convergence.

We use the Newton–Raphson algorithm on the master machine to solve (4). The 
iterative procedure is summarized in Algorithm 1.

Input: Bandwidth h, initial value β(0) and the maximum number of iterations T ;
for t = 0, · · · , T − 1 do

Update β(t+1) via

β(t+1) = β(t) −
[
∇2L̃h

N (β(t))
]−1 [

∇L̃h
N (β(t))

]
;

end
Output: β(T )
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Next, we discuss how to select the bandwidth h. Based on Theorem 1, the optimal 
bandwidth is hopt = argminh �(h) . In practice, we replace �(h) by its estimator

where 𝜖i = Yi − X
T
i
�̂P . Then, the optimal bandwidth could be found by

This selection strategy is similar to those of Yao et al. (2012); Wang and Lin (2016). 
The detailed algorithm of the proposed distributed PMR estimator is given in 
Algorithm 2.

The first step

for i = 1, · · · , N do
Generate δi ∼ Bernoulli(1, n/N);
if δi = 1 then

add Zi to the pilot sample set P ;
end

end
Based on P, calculate the pilot estimator by (2).

The second step

Input: Initial value β(0) = β̂P and the number of rounds of communication T ;
for t = 0, · · · , T − 1 do

Broadcast the current value β(t) to worker machines;
Calculate ξ̂(h) at grid points, update h(t) via (5) and broadcast it to worker
machines;

Calculate gradient vectors ∇Qh(t)

k (β(t)), k = 1, · · · ,K on worker machines;

Transmit ∇Qh(t)

k (β(t))s to the master machine and calculate the current value

of ∇Qh(t)

P (β(t))−∇Qh(t)

N (β(t));
Update the pilot sample surrogate objective function

L̃
(t)
N (β) = Qh(t)

P (β)− 〈∇Qh(t)

P (β(t))−∇Qh(t)

N (β(t)),β〉;

Update β(t+1) = argminβ∈Rp{L̃(t)
N (β)} on the master machine by the

Algorithm 1;
end
Output: β(T ).

𝜉(h) =

[
1

n

∑

i∈P

�̈�h(𝜖i)

]−2[
1

n

∑
i∈P

[�̇�h(𝜖ki)]
2
]
,

(5)ĥopt = argmin
h

𝜉(h).
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3  Simulation studies and application

3.1  Simulation studies

In this section, we conduct several simulation studies to investigate the finite sample 
performance of the proposed method. We generate the data by

where Xi = (Xi1,Xi2,Xi3)
T , and each component Xij, (1 ⩽ i ⩽ N, j = 1, 2, 3) follows a 

uniform distribution U(0, 1). We set � = (�1, �2, �3)
T = (1, 2,−1)T . Three different 

error distributions are considered to study the robustness of the estimator.

Example 1 � ∼ N(0, 1).

Example 2 � ∼ t(3) , where t(3) denotes the t-distribution with three degrees of 
freedom.

Example 3 The error follows the Cauchy distribution.

We set the total sample size N = 50 × 104 , and split the data into 
K ∈ {5, 20, 50, 100, 250, 500} block. We consider three typical data storing strat-
egies for each example. The first strategy stores data randomly so that the sam-
ples on different machines are i.i.d. In contrast, the other two strategies store data 
nonrandomly.

Strategy 1. (Randomly Distributed). We distribute all the samples 
{(Yi,Xi), 1 ⩽ i ⩽ N} in a completely random manner.
Strategy 2. (Completely Nonrandomly Distributed). Let Di =

∑3

j=1
Xij , and D(i) 

be the i-th order statistic, i.e, D(1) ⩽ ⋯ ⩽ D(N) . Then, we store (X(i), Y(i)) on the 
([iK∕N] + 1)-th machine. Notably, all the samples are nonrandomly distributed in 
this strategy.
Strategy 3. (Partially Nonrandomly Distributed). Let X(i)1 be the i-th order statis-
tic of Xi1 and store (X(i)1,X(i)2,X(i)3, Y(i)) on the ([iK∕N] + 1)-th machine. Thus, 
the observations of X1 are stored nonrandomly and the observations of (X2,X3) 
are stored randomly.

We compare the proposed estimator (NEW) with the following: (a) the global modal 
regression estimator (GMR), (b) the global ordinary least squares estimator (GLO), 
(c) the pilot modal regression estimator (PMR), and (d) the average distributed 
modal regression estimator (ADMR). The experiment is repeated by 500 times. Let 
�̂�
(s)

i
 be the estimator of �i in the s-th replication, and define the average estimation 

error (AEE) as AEE(�̂�i) = 500−1
∑500

s=1
(�̂�

(s)

i
− 𝜃i)

2.
Comparison of estimation efficiency and robustness. Tables 1, 2 and 3 present the 

relative AEEs of the estimators (GLO, NEW, PMR, ADMR) to the GMR for Exam-
ples 1–3, respectively. The pilot sample percentage � = n∕N is set as 5% . From these 

Yi = XT
i
� + �i,
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tables, we draw the following conclusions. First, our new estimator is as accurate as 
the global estimator in all examples and storage strategies, because the correspond-
ing relative AEEs are always close to 1. Second, because the pilot modal regression 
estimator only uses the pilot sample, it always performs much worse than our new 
method, and the corresponding relative AEEs are always much higher than 1; in 
fact, the AEEs of the PMR are about 10 times those of the NEW. Third, the DC-
based method also performs worse than our method in all the settings, especially 
when the data are distributed nonrandomly, i.e., Strategies 2 and 3. Furthermore, 
regarding the robustness, when the error distribution is standard normal, our new 
method performs comparably to the GLO method. When the error distribution is 
t(3), the GLO performs worse than our method. GLO does not work at all when the 
error distribution is Cauchy, while our method works well in such situations.

Effect of pilot sample size. To illustrate the influence of pilot sample size n, dif-
ferent values of the pilot percentage are considered. We take � = 0.5% , 1% , 2% , 5% , 
10% , and 20% for illustration. Figures 1, 2 and 3 present the AEEs of different esti-
mators for the three examples. We can see our estimator always performs as well 
as the global estimator even with only 1% of the total sample being the pilot sam-
ple. The pilot estimator, however, is very sensitive to the pilot percentage. When 

Table 1  Relative AEEs for normal distribution

K Strategy 1 Strategy 2 Strategy 3

GLO PMR ADMR NEW PMR ADMR NEW PMR ADMR NEW

�
1

5 1.02 9.48 1.08 1.06 11.35 1.19 1.18 9.42 3.03 1.06
20 0.96 10.45 1.04 1 11.16 1.26 1.02 11.69 6.11 1.07
50 1.01 9.79 1.06 1.06 8.71 1.35 1.01 9.97 7.18 0.99
100 0.96 8.16 1.01 0.99 9.09 1.22 0.98 8.71 12.93 1.09
250 0.94 10.04 1.04 1.01 9.45 1.29 1.06 10.87 16.38 1.06
500 1.02 9.95 1.06 1.07 10.36 1.36 1.04 11.21 14.66 1
�
2

5 0.98 9.99 1.07 1.04 9.45 1.12 1.11 10.82 1.28 1.13
20 1.02 11.7 1.08 1.07 12.43 1.39 1 11.09 1.19 1.14
50 0.99 8.86 1.03 1.02 8.66 1.23 1.05 10.13 1.21 1.09
100 0.92 9.98 1.01 1.03 9.57 1.33 1.02 10.35 1.17 1.08
250 0.97 12.38 1.05 1.02 11.18 1.27 1.03 11.59 1.3 1.09
500 1.02 8.95 1.04 0.94 9.03 1.38 1.03 9.88 1.17 1.1
�
3

5 0.88 11.04 0.96 0.96 12.16 1.05 1.03 11.22 1.13 1.04
20 0.93 10 1.03 1.05 11.27 1.21 1 10.55 1.23 1.06
50 0.98 9.44 1.05 1.03 10.84 1.24 1.04 10.84 1.18 1.08
100 1.05 10.69 1.11 1.11 10.11 1.43 1.16 11.07 1.37 1.08
250 0.98 11.81 1.07 1.08 9.31 1.38 1.03 11.73 1.32 0.99
500 0.99 11.23 1.15 1.06 10.92 1.35 1.07 10.13 1.27 1.08
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the pilot percentage is small, the AEEs of pilot estimator are much lager than ours. 
Even when 20% of the total sample are used as the pilot sample, the pilot estimator’s 
AEEs are still bigger than ours.

3.2  Real data analysis

In this section, we apply the proposed method to analyze the greenhouse gas (GHG) 
data. This data set is from the UCI machine learning repository, and consists of 
954, 840 observations. The response variable is the GHG concentration of synthetic 
observations, and the predictors are GHG concentrations of tracers emitted from a 
region outside of California and 14 distinct regions in California. Our goal is to pre-
dict the GHG concentrations of synthetic observations.

We compare our estimator with the global modal regression estimator (GMR) 
and the pilot modal regression estimator (PMR) by the prediction accuracy. We ran-
domly split the data set into two part: a training set and a testing set. The training set 
consists with 500, 00 observations and is evenly split into K = 100 subsets to mimic 
a distributed system. The coefficients are estimated using the training data set Dtrain 
and the average prediction error (APE) , the average of {(Ŷi − Yi)

2, i ∈ Dtest} , is cal-
culated based on the test data set Dtest.

Table 4 summarizes the APEs of the three estimators with six pilot percentages 
from 0.5 to 20% . We can see that the prediction errors of our estimator are similar to 

Fig. 1  AEEs for normal distribution
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the global estimator’s. When we only take 0.5% of the total sample as the pilot sam-
ple, our method still works well, while the PMR performs much worse.

4  Summary and discussions

In this article, we proposed a distributed pilot modal regression estimator for non-
randomly distributed data. This estimator has three advantages: (1) it can achieve 
both efficiency and robustness by introducing a tuning parameter that is automati-
cally selected by a data-driven approach; (2) it is communication-efficient and is 
statistically as efficient as the global estimator; (3) by using the pilot sample, it can 
adapt even though the data are stored nonrandomly. However, we did not consider 
the high-dimensional data, which are very common in the era of massive data. This 
will comprise our future research work.

Table 2  Relative AEEs for t(3) distribution

K Strategy 1 Strategy 2 Strategy 3

GLO PMR ADMR NEW PMR ADMR NEW PMR ADMR NEW

�
1

5 1.42 9.58 1.05 1.03 9.5 1.07 1.05 10.03 2.49 1.03
20 1.68 10.63 1.02 1.03 10.34 1.2 1.08 11.69 6.83 1.13
50 1.56 10.22 1.16 1.12 11.09 1.33 1.07 10.39 9.65 1.03
100 1.57 11.08 1.11 1.09 11.8 1.32 1.03 10.91 14.59 1.13
250 1.26 9.31 1.12 1.08 10.49 1.18 1.08 8.74 15.72 1.01
500 1.34 10.59 1.06 1.05 10.04 1.31 1.04 10.22 13.3 1.07
�
2

5 1.37 9.06 1.05 1.04 9.11 1.1 1.08 9.71 1.12 1.04
20 1.36 10.39 1.04 1.06 9.96 1.17 1.14 10.83 1.23 1.07
50 1.36 10.15 1.06 1.05 10.23 1.24 1.03 11.46 1.22 1.1
100 1.42 10.52 1.15 1.10 10.51 1.28 1.04 10.69 1.19 1.07
250 1.46 9.91 1.08 1.08 9.94 1.31 1.1 9.84 1.22 1.07
500 1.48 10.25 1.09 1.04 10.6 1.43 1.04 10.15 1.34 1.14
�
3

5 1.47 11.09 1.03 1.02 10.99 1.1 1.07 11.43 1.17 1.08
20 1.48 9.78 1.02 1.04 11.31 1.16 1.07 10.71 1.01 1.1
50 1.44 11.7 1.07 1.05 10.53 1.29 1.05 10.4 1.29 1.1
100 1.68 11.86 1.11 1.02 12.66 1.5 1.19 11.65 1.36 1.11
250 1.34 9.82 1.16 1.12 10.34 1.39 1.11 9.85 1.2 1.04
500 1.27 9.33 1.09 1.09 10.17 1.27 1.07 10.45 1.28 1.03
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In addition to the modal regression-based estimator, there are many other 
robust methods, such as the Huber regression. We did not use it in this study for 
two reasons. First, the Huber regression would lose some efficiency when there 
are no outliers or the error distribution is normal, while the modal regression-
based estimator can achieve both robustness and efficiency by introducing a tun-
ing parameter. Second, the Huber loss function is not twice differentiable and 
thus not able to be applied in our algorithm. Thus, we studied the modal regres-
sion-based robust estimation for distributed data. Nonetheless, the algorithm for 
Huber regression in the nonrandomly distributed framework is an exciting study 
and is worth further exploration.
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Appendix
Proof of Theorem 1 First, we compute the order of ‖∇2Qh

N
(�0) − ∇2Qh

P
(�0)‖∞ . Let 

� = E(XXT ) , we have that

where X̃ = (X
1
,… ,X

N
)T and X̃P = (Xi, i ∈ P)T . It is easy to obtain

‖∇2Qh
N
(�0) − ∇2Qh

P
(�0)‖∞

= Op

�����
� −

1

N
X̃X̃

T����∞

�
+ Op

�����
1

n
X̃PX̃

T

P
− �

����∞

�
+ Op(N

−1∕2),

Fig. 2  AEEs for t(3) distribution
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where c1 is a constant that depends on � . By a union bound over all (j, k) pairs,

Thus, letting t = C

√
log p

N
 , we have Op(‖� −

1

N
X̃X̃

T
‖∞) = Op(N

−1∕2) . By a similar 

argument, Op(‖
1

n
X̃PX̃

T

P
− �‖∞) = Op(n

−1∕2) . Then, we can get that

By applying Lemma 6 in Zhang et  al. (2013) with F1 = L̃h
N
(�) in the notation 

therein, we can also obtain

P

(||||
1

N

∑N

i=1
XijXik − �jk

||||
> t

)
⩽ exp(−c1 min(t2, t)N),

P

(||||
1

N

∑N

i=1
�X�X

T
− �

||||
> t

)
⩽ exp(2 log p − c1 min(t2, t)N).

‖‖‖∇
2Qh

N
(�0) − ∇2Qh

P
(�0)

‖‖‖∞ = Op

(
n−1∕2

)
.

‖‖‖
��N − �̂N

‖‖‖ = Op

(‖‖‖∇
�Lh
N
(�̂N)

‖‖‖
)
.

Table 3  Relative AEEs for Cauchy distribution

K Strategy 1 Strategy 2 Strategy 3

GLO PMR ADMR NEW PMR ADMR NEW PMR ADMR NEW

�
1

5 5621 11.39 1.03 1.05 11.87 1.04 1.1 11.35 3.16 1.18
20 10936 10.56 1.06 1.06 10.84 1.11 1.14 10.02 6.44 1.09
50 11105 8.53 1.04 1.02 8.73 1.15 1.15 9.99 9.23 0.99
100 3248 10.21 1.06 1.07 9.5 1.31 1.11 9.26 11.23 1.1
250 4016 12.55 1.14 1.11 11.04 1.23 1.21 10.52 15.77 1.11
500 29892 12.3 1.06 1.05 10.73 1.41 1.13 9.21 11.7 1.04
�
2

5 41754 10.82 1.09 1.06 10.83 1.3 1.15 10.74 1.19 1.18
20 8268 8.95 1.09 1.07 9.67 1.24 1.09 10.31 1.26 1.07
50 6844 11.49 1.10 1.10 11.71 1.42 1.18 11.92 1.33 1.08
100 4130 8.94 1.18 1.14 11.41 1.33 1.19 9.9 1.23 1.07
250 2589 11.57 1.16 1.10 12.1 1.46 1.26 12.55 1.28 1.07
500 25315 12.82 1.09 1.11 11.07 1.33 1.16 10.96 1.36 1.22
�
3

5 16563 12.06 1.07 1.11 11.91 1.21 1.2 11.86 1.22 1.16
20 11624 9.1 1.05 0.99 11.02 1.22 1.05 10.2 1.24 1.12
50 10049 8.15 1.13 1.03 9.54 1.24 1.06 9.14 1.25 1.07
100 6169 11.51 1.17 1.11 9.65 1.17 1.08 10.19 1.28 1.18
250 1944 12.99 1.16 1.12 11.56 1.22 1.18 12.15 1.36 1.13
500 23525 9.99 1.07 1.01 9.86 1.27 1.08 9.76 1.36 1.15
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A simple calculation yields

and note that ∇Qh
N
(�̂N) = 0 , we obtain

By the integral form of Taylor’s expansion, we have

where HP = ∫ 1

0
∇2Qh

P
(�̂P + t(�̂N − �̂P))dt and HN = ∫ 1

0
∇2Qh

N
(�̂P + t(�̂N − �̂P))dt 

satisfy ‖HP − ∇2Qh
P
(�0)‖ = Op(‖�̂N − �̂P‖ + ‖�̂N − �0‖) and ‖HN − ∇2Qh

N
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0
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Op(‖�̂N
− �̂P‖ + ‖�̂

N
− �

0
‖) , respectively. Thus, we have
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P
(�̂P) + ∇Qh

N
(�̂P),

∇�Lh
N
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(
∇Qh

P
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P
(�̂P)

)
−
(
∇Qh

N
(�̂N) − ∇Qh
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(�̂P)

)
.

∇Qh
P
(�̂N) − ∇Qh

P
(�̂P) = HP(�̂N − �̂P) and ∇Q

h
N
(�̂N) − ∇Qh

N
(�̂P) = HN(�̂N − �̂P),

Fig. 3  AEEs of three estimators for Cauchy distribution

Table 4  APE of the global 
estimator (GMR), pilot modal 
regression estimator (PMR) and 
the proposed estimator (NEW) 
for analysis of the greenhouse 
gas data set

0.5% 1% 2% 5% 10% 20%

NEW 16.173 16.168 16.142 16.132 16.131 16.131
PMR 16.844 16.737 16.620 16.617 16.421 16.309
GMR 16.130
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Now, we complete the proof of (a).
Together with

we can get that

Under the assumptions n∕
√
N → ∞ and ‖�̂N − �̂P‖ = Op(n

−1∕2) , we can obtain that √
N(

1

N
+ n−1∕2‖�̂P − �̂N‖) = op(1) . Thus, we have that

where 𝜉(h) = E(�̇�2
h
(𝜖))

[E(�̈�h(𝜖))]
2
 . The proof of (b) is completed.   ◻
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