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Abstract
Over the last four decades, the cluster regression analysis in a finite population (FP) 
setup for an exponential family such as linear or binary data was done by using a 
two-stage cluster sample chosen from the FP but by treating the sample as though 
it is a single-stage cluster sample from a super-population (SP) which contains the 
FP as a hypothetical sample. Because the responses within a cluster in the FP are 
correlated, the aforementioned sample mis-specification makes the sample-based 
so-called GLS (generalized least square) estimators design biased and inconsistent. 
In this paper, we demonstrate for the exponential family data how to avoid the sam-
pling mis-specification and accommodate the cluster correlations to obtain unbiased 
and consistent estimates for the FP parameters. The asymptotic normality of the 
regression estimators is also given for the construction of confidence intervals when 
needed.

Keywords Clusters under a finite population · Clusters selected in first stage · 
Individuals selected in second stage from a selected cluster · Invalid inferences 
for regression effects using GLS estimates · Doubly weighted estimation · 
Unbiasedness · Consistency and asymptotic normality

1 Introduction

The inferences for regression parameters in a FP setup using two-stage cluster sam-
ple have been an important research topic over the last four decades. This type of 
regression analysis is encountered mainly by the national or provincial statistical 
agencies such as Statistics Canada, U.S. Bureau of Census, and similar organizations 
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in other countries.  For example, suppose that all hospitals in a country and the 
nurses working in these hospitals form a FP, and it is of interest to know the effects 
of certain covariates such as gender, age and education level, on the binary response, 
say job satisfaction status of the nurses in the country. Here, the regression effects/
parameters for this country would be a FP regression parameter, whereas an infinite 
population regression parameter would refer to the effects of the covariates on the 
binary response of any nurse from any countries, for example. Thus, a FP regres-
sion parameter may be treated as an estimate of the infinite population-based regres-
sion parameter (e.g. Binder 1983; Godambe and Thompson 1986; Ghosh 1991, Sec-
tion 14.2, p. 203), but in a FP study using two-stage cluster sample selected from 
this FP, we are interested to estimate the FP regression parameters. Furthermore, 
because there is also an invisible/random common cluster/hospital effect which 
is shared by all elements/nurses within the cluster, this would make the responses 
within a cluster correlated. Thus, it would be necessary to define a FP-based clus-
ter correlation parameter and its estimation, which is, however, not yet addressed or 
addressed inadequately in the literature.

Over the last four decades, (a) some studies (e.g., Binder 1983) in a FP setup 
involving stratas, defined the FP regression parameters implicitly as the solution of 
a suitable such as the generalized linear model-based likelihood estimating equa-
tion constructed using the hypothetical responses of the finite population. Here, 
FP responses are hypothetical as they are not observed, until a sample is taken to 
observe a part of the FP. The FP regression parameters are estimated using a sample 
chosen from the FP. The possible cluster correlations are not accommodated in this 
approach in the estimating equations for the regression parameters. This approach 
may provide biased and hence inconsistent regression estimates, specially when the 
mean function of the responses involve the cluster variance/correlation parameters 
(e.g., Sutradhar 2020). (b) Some other studies suggested to sample the data from 
the finite population using the two-stage cluster sampling but estimated the regres-
sion parameters by using a generalized linear mixed model based (involving cluster 
correlations) such as generalized least square type estimating equation constructed 
by treating the second-stage data as a sample arising from an infinite population for 
the exponential family data [e.g., Valliant (1985) in a binary response setup, and 
Prasad and Rao (1990) in a linear data setup] . This second approach became popu-
lar but unfortunately as we show in this paper, it produces biased and hence incon-
sistent estimates for the regression parameters when these parameters are defined 
correctly under the finite population using the first (a) approach. Moreover, this sec-
ond approach appears to be misleading as in a FP setup, it does not make sense to 
estimate the infinite population parameters using the sample from the FP. This paper 
provides a theoretical foundation, first, defines the regression parameters under the 
finite population but in the presence of cluster variance/correlation parameter. We 
then provide two-stage cluster sample-based estimation both for regression and clus-
ter correlation parameters.

In notations, consider a finite population (FP:F  ) consisting of K independ-
ent clusters with their sizes N1,… ,Nc,… ,NK , Nc being the size of the c-th cluster 
which is large but fixed. Suppose that K → ∞. Here, N = limitK→∞

∑K

c=1
Nc → ∞ is 

the size of the FP. Let yci denotes a hypothetical response from the i-th (i = 1,… ,Nc) 
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individual of the c-th cluster under the finite population. It is hypothetical as it 
is unknown at the finite population level. Further let xci be a p-dimensional fixed 
covariate vector, and � = (�1,… , �u,… , �p)

� be the regression effect of xci on yci, 
for all c = 1,… ,K; i = 1,… ,Nc. Notice that in this cluster setup, there is likely to 
be a cluster effect on the responses belonging to the same cluster. Let �c denote the 
random cluster effect of the c-th cluster which is shared by the responses belong-
ing to this cluster. Thus, on top of �, there is an influence of �c on the responses 
({yci, i = 1,… ,Nc}) belonging to the c-th cluster. To accommodate the influences of 
xci and �c on the response yci, or its mean, suppose that F  follows an infinite/super-
population (SP:S)-based conditional mean model given by

Suppose that �c
iid
∼N(0, �2

�
), where �2

�
 may be referred to as the cluster variance 

or correlation parameter. After some straightforward algebras, one may then obtain 
the unconditional means, variances, and pairwise covariances for the responses 
{yci, i = 1,… ,Nc;c = 1,… ,K} ∈ F. More specifically, for the linear case, by 
writing

one obtains the basic first- and second-order moment properties, as

Next, consider yc = (yc1,… , yci,… , ycNc
)� as the Nc × 1 hypothetical response 

vector under c-th cluster, and Xc as the Nc × p covariates matrix for Nc individuals 
in the c-th cluster. Suppose that �(c,Nc)

(�) is the Nc × Nc model-based covariance 
matrix for yc, which by (3), has the form given by

with INc
 and UNc

 as the Nc × Nc identity and unit matrices, respectively, and R(c,Nc)
(�) 

represents the correlation matrix.
Now, by treating the fixed FP (F) as though it is available and arose ran-

domly from the SP (S) (F ⊂ S), one could consistently and efficiently estimate 
� by solving the well-known GLS (generalized least square), more specifically 

(1)

E
�
Yci�𝛾c

�
= 𝜇∗

ci
(�, 𝛾c)

≡
⎧
⎪⎨⎪⎩

m̃ci(�, 𝛾c) = x⊤
ci
� + 𝛾c for linear data

m∗
ci
(�, 𝛾c) = exp(x⊤

ci
� + 𝛾c) for count data

p∗
ci
(�, 𝛾c) = exp(x⊤

ci
� + 𝛾c)∕

�
1 + exp(x⊤

ci
� + 𝛾c)

�
for binary data .

(2)
yci = x⊤

ci
� + 𝛾c + 𝜖ci, c = 1,… ,K → ∞; i = 1,… ,Nc,

𝛾c
iid
∼(0, 𝜎2

𝛾
) 𝜖ci

iid
∼(0, 𝜎2

𝜖
) 𝛾c and 𝜖ci are independent;

(3)

E
[
Yci

]
= x⊤

ci
� = 𝜇ci(�)

var
[
Yci

]
= 𝜎c,ii = (𝜎2

𝛾
+ 𝜎2

𝜖
) = 𝜎2, for all c, and i

cov
[
Yci, Ycj

]
= 𝜎c,ij = 𝜎2

𝛾
⇒ corr

[
Yci, Ycj

]
= 𝜌 =

[
𝜎2
𝛾
∕𝜎2

]
, for all i ≠ j.

(4)cov
[
Yc
]
= �(c,Nc)

(�) = �2
[
(1 − �)INc

+ �UNc

]
= �2R(c,Nc)

(�),
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the FP-based GLS (FPGLS) [equivalently HGLS (hypothetical GLS)] estimating 
equation

where �(c,Nc)
(�) = �2R(c,Nc)

(�) is the covariance matrix from (4). Suppose that the 
solution of (5) is denoted by �N,GLS.

Notice that as in practice (F) is unobserved, �N,GLS from the hypothetical GLS 
equation (5) is referred to as the FP-based regression parameter [Godambe and 
Thompson (1986) [see also Ghosh (1991, Section 14.2, p. 203), Binder (1983)]. 
More specifically, as indicated above, under approach (a), in a complex survey 
such as stratified sampling setup, by treating the responses as independent, Binder 
(1983, Eqn. (2.4)) has defined the regression parameters implicitly, as the solu-
tion of a suitable such as the generalized linear model (GLM)-based likelihood 
estimating equation (Nelder and Wedderburn 1972) constructed using the hypo-
thetical/unknown responses of the finite population. We remark that Godambe 
and Thompson (1986) [see also Ghosh (1991, Section 14.2, p. 203)] referred to 
the solution of the aforementioned hypothetical estimating equation, as the 
N-dependent FP parameters, N being the size of the FP. Thus, the S-based regres-
sion parameter �, satisfying a F -based estimating equation, becomes a FP param-
eter, say �N . Under the general exponential family data setup, the proposed F -
based estimating equation for � is developed in Sect.  4.1 [see (33) under 
Lemma 3]. We further remark that unlike Binder (1983), in a cluster setup, the 
responses within a cluster under the F, are correlated as they are supposed to 
share a common random cluster effect. Hence, similar to the definition for �N , we 
will also define a N-dependent cluster variance/correlation parameter, say �2

� ,N
, 

corresponding to �2
�
 in (1), for the general exponential family data. This will be 

given in Sect. 4.2 [see (51) under Lemma 6].
Clearly, for the estimation of � ≡ �N , as well as �2

�
≡ �2

� ,N
 (or � ≡ �N ), a suita-

ble sample is needed, which would be a two-stage cluster sample in the present 
setup. This sample may be constructed [see e.g., Särndal et al. (1992, Section 4.2, 
p. 134)] as follows.

First stage A sample of, say k clusters s∗
1
≡ {(yci, xci), i = 1,… ,Nc; c = 1,… , k} is 

drawn from (F) ≡ {
(yci, xci), i = 1,… ,Nc; c = 1,… ,K

}
, according to a suitable 

design p1(⋅). For simplicity, we will consider p1(⋅) as an equal probability-based 
SRS (simple random sampling) without replacement.

Second stage For every cluster/family c ∈ s∗
1
, a sample of, say s∗

2c
, with nc elements/

individuals, is drawn from its parental cluster consisting of Nc elements/individuals, 
according to a suitable design p2c(⋅). Once again, for simplicity, we will consider 

(5)

Ty∈F(�) =

K∑
c=1

X⊤

c
�
−1
(c,Nc)

(𝜌)(yc − Xc�)

=
1

𝜎2

K∑
c=1

X⊤

c
R−1
(c,Nc)

(𝜌)(yc − Xc�) = 0,
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every p2c(⋅) as an equal probability-based SRS (simple random sampling) without 
replacement.

We denote the resulting sample of individuals along with their responses and 
covariates, by s∗, which may be expressed as

Next, based on the approach (b) indicated above, many authors estimated �, by treat-
ing s∗ as taken from the S directly, even though it is chosen from the F. For exam-
ple, Burdick and Sielken (1979), and Christensen (1984, 1987) have used the well-
known OLS (ordinary least square) and Scott and Holt (1982), Valliant (1985, Eqn. 
(2); 1987), Prasad and Rao (1990, Eqn. (3.2)), Lehtonen and Veijanen (1998), and 
Fuller (2009, Section 2.6, Eqns. (2.6.6) and (2.6.13)) have used the well-known GLS 
(generalized least square) estimation approaches, where the OLS and GLS equations 
were written using s∗ assuming it is taken from the S directly. Thus, in this approach 
(2), F  has nothing to do for inferences, which is a major mistake, as s∗ is truly cho-
sen from F  under the present two-stage cluster sampling setup. In this paper, we 
remove this error and provide a foundation for inferences using s∗, which has arisen 
from the F, shown in (6).

In notations, using the s∗ from (6) and utilizing the sample-based response vec-
tor yc∈s∗ =

(
yc1,… , yci,… , ycnc

)⊤
∶ nc × 1, and its corresponding covariate matrix 

x⊤
c
=
[
xc1,… , xci,… , xcnc

]
∶ p × nc, the aforementioned studies have constructed 

and solved the SS (survey sample)-based GLS (SSGLS) estimating equation

which, with �(c,nc)
(�) = �2R(c,nc)

(�) = �2[(1 − �)Inc + �Unc
], is quite similar to that 

of the FP-based GLS equation Ty∈F(�) = 0, defined  in (5). Here similar to (4), Inc 
and Unc

 represent the nc × nc identity and unit matrix, respectively. Notice that even 
though the SSGLS estimating equation T∗

y∈s∗
(�) = 0 in (7) apparently uses the s∗-

based data, unfortunately its construction fails, as mentioned above, to accommo-
date the fact that s* is chosen from the FP ( F ≡ {

(yci, xci), i = 1,… ,Nc; c = 1,… ,K
}
 ). 

More clearly, under the present two-stage cluster setup, the SSGLS estimating equa-
tion T∗

y∈s∗
(�) = 0 would have been valid provided the SSGLS estimating function 

T∗
y∈s∗

(�) in (7), were sampling design (Ds∗ ) unbiased for the HGLS estimation func-
tion Ty∈F(�) in (5), i.e., if EDs∗

[
T∗
y∈s∗

(�)
]
= Ty∈F(�), which is, as shown in Sect. 2, 

however, not the case in the present setup. Thus, the existing SSGLS estimates 

(6)
s∗ =

⋃
c∈s∗

1

s∗
2c
≡ {

(yci, xci), i = 1,… , nc; c = 1,… , k
}

⊂ F ≡ {
(yci, xci), i = 1,… ,Nc; c = 1,… ,K

}
.

(7)

T∗
y∈s∗

(�) =

k∑
c=1

x⊤
c
�
−1
(c,nc)

(𝜌)
(
yc∈s∗ − xc�

)

=
1

𝜎2

k∑
c=1

x⊤
c
R−1
(c,nc)

(𝜌)(yc∈s∗ − xc�) = 0,
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become biased and inconsistent, and subsequently provide invalid inferences, which 
must be remedied.

For the purpose, we turn back to the general exponential family-based response 
model indicated by (1) which includes the linear, count and binary responses as spe-
cial cases. In Sect. 3, we provide the necessary moments including the unconditional 
means, variances and correlations for the F -based exponential responses. In Sect. 4, 
we develop the F -based HGQL (hypothetical GQL) estimating functions for both � 
and �2

�
. The corresponding SS (s∗)-based doubly weighted (SSDW) estimating equa-

tions are developed in Sect. 5. In Sect. 6, we show that the proposed estimators are 
consistent for the respective parameters. In the same section, the asymptotic normal-
ity property for the estimators of the main regression effects is also given for the 
convenience of confidence interval construction when needed.

2  Sampling mis‑specification effects on regression parameters 
estimation using GLM‑based GLS approach

Even though s∗ ≡ {(yci, xci), i = 1,… , nc; c = 1,… , k} in (6) is a two-stage sample 
collected from the FP F ≡ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K}, the GLS estimating 
equation T∗

y∈s∗
(�) =

∑k

c=1
x⊤
c
�
−1
(c,nc)

(𝜌)
�
yc∈s∗ − xc�

�
= 0 for � in (7) used by the exist-

ing studies [e.g., Valliant 1985, Eqn. (2) for binary data, and Prasad and Rao [1990, 
Eqn. (3.2)] and Fuller (2009, Section 2.6, Eqns. (2.6.6) and (2.6.13)) for linear data] 
ignores the fact that yc∈s∗ is sampled from yc∈F of size Nc. More clearly, 
T∗
y∈s∗

(�) =
∑k

c=1
x⊤
c
�
−1
(c,nc)

(𝜌)(yc∈s∗ − xc�) is constructed by pretending that k clusters, 
are chosen from an infinite population ( S ) consisting of a large number of independent 
clusters. Suppose that the c-th selected cluster has size nc. Thus, the existing studies 
used s∗ ≡ {

(y1, x1),… , (yc, xc),… , (yk, xk)
}
 as a single-stage cluster sample from the 

S. Here yc has the same dimension nc × 1, as for the c-th selected cluster. Notice that 
this s∗ chosen from the S, appears to be the same as the s∗ in (6). But they are com-
pletely different. This anomaly would naturally make the SSGLS estimating function 
T∗
y∈s∗

(�) =
∑k

c=1
x⊤
c
�
−1
(c,nc)

(𝜌)(yc∈s∗ − xc�) biased for the F-based GLS estimating 
function Ty∈F(�) =

1

𝜎2

∑K

c=1
X⊤

c
R−1
(c,Nc)

(𝜌)(yc − Xc�), defined in (5). This sample selec-
tion bias would subsequently produce an invalid estimate for �.

We now examine the bias performance of the SSGLS estimating function T∗
y∈s∗

(�) 
as follows. For the purpose, we need to compute the design expectation of the SSGLS 
estimating function, T∗

y∈s∗
(�), under the true two-stage cluster sampling scheme (6). 

That is, we compute

where, as explained in Sect.  1 [see (6)], p1 is a suitable sampling design for the 
selection of the first-stage sample s∗

1
, and p2c is the sampling design for the selection 

of the second stage sample s∗
2c
. For simplicity, we consider them as equal probability 

based without replacement designs so that

(8)EDs∗
[T∗

y∈s∗
(�)] = Ep1

[
Ep2c

(
T∗
y∈s∗

(�)
)||||p1

]
,
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or, equivalently, (i) Pr
[
(c-th cluster) ∈ s∗

1

]
= k∕K, and

(ii) Pr
[
(i-th individual from the c-th selected cluster ) ∈ s∗

2c

]
= nc∕Nc, 

respectively.
Notice from (7) that �(c,nc)

(�) = �2R(c,nc)
(�) = �2

[
(1 − �)Inc + �Unc

]
, yielding 

�
−1
(c,nc)

(�) =
1

�2
R−1
(c,nc)

(�), where

(e.g., Seber 1984, p. 520), with a(nc, �) and b(nc, �) defined as

respectively. Using the inversion formula from (10), after an algebra, one may re-
express the SSGLS estimating function as

where the weighted covariate vector x∗
w,ci

(nc, �) is given by

Next, by applying (8)–(9), we can compute the two-stage sampling-based 
design expectation of the SSGLS function in (11) as

which is, however, not equal to the F -based GLS estimating function 
Ty∈F(�) =

1

𝜎2

∑K

c=1
X⊤

c
R−1
(c,Nc)

(𝜌)(yc − Xc�), defined in (5). This is because, by similar 
calculations as in (10), one obtains

(9)Pr(s∗
1
) = 1∕

(
K

k

)
, and Pr(s∗

2c
) = 1∕

(
Nc

nc

)
,

(10)R−1
(c,nc)

(�) =
[
((a(nc, �) − b(nc, �))Inc + b(nc, �)Unc

)
]

a(nc, �) =
1 + (nc − 2)�

(1 − �){1 + (nc − 1)�}
and b(nc, �) =

−�

(1 − �){1 + (nc − 1)�}
,

(11)

T∗
y∈s∗

(�) =

k∑
c=1

x⊤
c
�
−1
(c,nc)

(𝜌)(yc∈s∗ − xc�)

=
1

𝜎2

k∑
c=1

nc∑
i=1

x∗
w,ci

(nc, 𝜌)
(
yci − x�

ci
𝛽
)
,

(12)x∗
w,ci

(nc, �) = a(nc, �)xci + b(nc, �)

nc∑
j≠i,j∈s∗

xcj.

(13)

EDs∗

[
T∗
y∈s∗

(�)
]
= Ep1

[
k∑

c=1

Ep2c

{
1

�2

nc∑
i=1

x∗
w,ci

(nc, �)
(
yci − x�

ci
�
)}|p1

]

=
1

�2
Ep1

[
k∑

c=1

nc

Nc

Nc∑
i=1

x∗
w,ci

(nc, �)
(
yci − x�

ci
�
)]

=
1

�2

k

K

K∑
c=1

nc

Nc

[
Nc∑
i=1

x∗
w,ci

(nc, �)
(
yci − x�

ci
�
)]

,
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with

yielding

where

Clearly, the F -based population total function in (15) is quite different than the F
-based population total function in the right hand side of (13). Hence, the SSGLS 
estimating function in (7) is a design biased estimating function for the F -based 
GLS or HGLS estimating function in (5), implying that SSGLS estimate would be 
biased and inconsistent for �.

We further remark that even if we consider a sampling weight-based weighted 
SSGLS (SSWGLS) estimating function

we would have obtained

which is still quite different than the F -based population total function in (15) 
because of the significant difference between x∗

w,ci
(nc, �) in (17) and x̃w,ci(Nc, 𝜌) in 

(15). They become the same only when � = 0, which, however, does not hold for the 
clustered correlated data.

In the next section, we consider more general clustered exponential data and pro-
vide their correlation model. This correlation structure will be exploited in Sect. 4 to 
develop suitable HGQL estimating functions for both regression parameters � and 
cluster variance/correlation parameter �2

�
 (1). Note that as the HGQL estimation of 

�2
�
 would also require additional higher order moments up to order four (Sutradhar 

2004), these moments for the exponential data are provided first before constructing 

(14)R−1
(c,Nc)

(𝜌) =
[
((ã(Nc, 𝜌) − b̃(Nc, 𝜌))INc

+ b̃(Nc, 𝜌)UNc
)
]

ã(Nc, 𝜌) =
1 + (Nc − 2)𝜌

(1 − 𝜌){1 + (Nc − 1)𝜌}
and b̃(Nc, 𝜌) =

−𝜌

(1 − 𝜌){1 + (Nc − 1)𝜌}
,

(15)Ty∈F(�) =
1

𝜎2

K∑
c=1

Nc∑
i=1

x̃w,ci(Nc, 𝜌)
(
yci − x�

ci
𝛽
)
,

(16)x̃w,ci(Nc, 𝜌) =

[
ã(Nc, 𝜌)xci + b̃(Nc, 𝜌)

Nc∑
j≠i,j=1

xcj

]
∶ p × 1.

T̃y∈s∗ (�) =
K

k

k∑
c=1

Nc

nc
x⊤
c
�
−1
(c,nc)

(𝜌)(yc∈s∗ − xc�),

(17)

EDs∗

[
T̃y∈s∗ (�)

]
= Ep1

[
k∑

c=1

Ep2c

K

k

Nc

nc

{
1

𝜎2

nc∑
i=1

x∗
w,ci

(nc, 𝜌)
(
yci − x�

ci
𝛽
)}|p1

]

=
1

𝜎2

K∑
c=1

[
Nc∑
i=1

x∗
w,ci

(nc, 𝜌)
(
yci − x�

ci
𝛽
)]

,
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the HGQL estimating equation. The corresponding SS-based estimating functions 
for � and �2

�
 will then be developed in Sect. 5.

3  Cluster correlation model for exponential family data

In this section, as a summary of the models in (1), we follow the exponential family-
based S (super-population) model with its probability and moment properties up to 
order four as given in Lemma 1 below.

Lemma 1 [Exponential family-based S model for the F  in (6)] For the F  in 
(6), let rci = x⊤

ci
� + 𝛾c be a linear predictor, and for a known link function h∗(⋅), 

𝜃ci(�; xci, 𝛾c) = h∗(x⊤
ci
� + 𝛾c) = h∗(rci). Then, the exponential family density of the 

cluster response yci, conditional on �c, has the form

where � = 1 for Poisson and binary data, but, it is a scalar function or parameter 
for the linear/normal data in which case (18) becomes a two-parameters exponen-
tial density. Furthermore, b(⋅) and c∗(⋅) in (18), are known functional form for all 
normal, counts and binary data, yielding the conditional mean and variance of yci 
as

Proof The moments in (19) and (20) may be derived from the moment generating 
function of the exponential family distribution (18). For details, see for example, 
Sutradhar (2011, Exercise 4.6, Chapter 4) and Sutradhar and Rao (2001, Lemma 1, 
Section 3).   ◻

Notice that (19) ⇒(1), because for the normal/linear data: 
b(𝜃ci(⋅)|𝛾c) = 1

2
𝜃2
ci
(⋅), and h∗(rci) = rci, with rci = x⊤

ci
� + 𝛾c; for Poisson 

count data: � = 1, h∗(rci) = rci;b(�ci(⋅)|�c) = exp(�ci(⋅)); and for binary data: 
� = 1, h∗(rci) = rci;b(�ci(⋅)|�c) = log(1 + exp(�ci(⋅))). Further notice that condi-
tional on �c, the pairwise responses within the c-th cluster are independent. More 
specifically,

(18)
S ∶ g∗

ci
(yci|�c) = exp

[
{yci�ci(�; xci, �c) − b(�ci(�; xci, �c))}� + c∗(yci,�)

]
,

(19)E
[
Yci|�c

]
= �∗

ci
(�, �c) = b(1)(�ci(⋅)) =

�b(�ci(⋅))

��ci

(20)var
[
Yci|�c

]
= �∗

c,ii
(�, �c) =

1

�
b(2)(�ci(⋅)) =

1

�

�2b(�ci(⋅))

��2
ci

.

(21)
E[(YciYcj)|�c] = E[Yci|�c]E[Ycj|�c] = b(1)(�ci(⋅))b

(1)(�cj(⋅))

= �∗
ci
(�, �c)�

∗
cj
(�, �c) ⇒ cov [Yci, Ycj|�c] = 0.
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Now apply Lemma  1 and find the marginal mean model for the finite population 
(F) elements along with their pairwise correlation structure as in Lemma 2 below. 
These unconditional mean, variance and covariances of the first-order hypothetical/
imaginary responses will be applied in Sect. 4.1 in order to develop the so-called 
hypothetical GQL (HGQL) estimating equation for the regression parameter �. In 
the same Sect. 4, the second order hypothetical responses and their means, variances 
and pairwise covariances (involving fourth-order moments) will be exploited to 
develop a HGQL estimating equation for the cluster variance/correlation parameter 
�2
�
.

Lemma 2 (Unconditional mean, variance and pairwise covariances for 
{yci, i = 1,… ,Nc;c = 1,… ,K} ∈ F  ). Under the distributional assumption (1) for 
the random cluster effects {�c, c = 1,… ,K}, i.e., for �c

iid
∼N(0, �2

�
), or equivalently 

using �c = ���
∗
c
 so that �∗

c

iid
∼N(0, 1) with standard normal density fN(�∗c ), and using 

� = 1 for simpler linear case, the unconditional means, variances, and pairwise 
covariances for the responses in the cth cluster have the formulas:

respectively, where

Proof The proof follows from Lemma  1 using conditioning and unconditioning 
arguments. More specifically, the variances and covariances are computed using the 
formulas: var [Yci] = E�c

E[Y2
ci
|�c] − �2

ci

(
�, �2

�

)
, and 

cov
[
Yci, Ycj

]
= E�c

E[YciYcj|�c] − �ci

(
�, �2

�

)
�cj

(
�, �2

�

)
, involving conditional and 

unconditional expectations.   ◻

(22)�ci

(
�, �2

�

)
= E[Yci] = E�c

[b(1)(�ci(�c))] = ∫ [b(1)(�ci(���
∗
c
))]fN(�

∗
c
)d�∗

c
,

(23)�c,ii

(
�, �2

�

)
= var [Yci] = �c,ii

(
�, �2

�

)
− �2

ci

(
�, �2

�

)
,

(24)�c,ij

(
�, �2

�

)
= cov

[
Yci, Ycj

]
= �c,ij

(
�, �2

�

)
− �ci

(
�, �2

�

)
�cj

(
�, �2

�

)
,

(25)
�c,ii

(
�, �2

�

)
= ∫

[
b(2)(�ci(���

∗
c
)) + {b(1)(�ci(���

∗
c
))}2

]
fN(�

∗
c
)d�∗

c

= ∫ �∗
c,ii
(�∗

c
)fN(�

∗
c
)d�∗

c
,

(26)
�c,ij

(
�, �2

�

)
= ∫

[
b(1)(�ci(���

∗
c
))b(1)(�cj(���

∗
c
))
]
fN(�

∗
c
)d�∗

c

= ∫ �∗
c,ij
(�∗

c
)fN(�

∗
c
)d�∗

c
.
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We suggest solving the integrals in (22)–(26) under Lemma 2, using the well-
known binomial approximation to a standard normal integral [e.g., Ten Have and 
Morabia (1999), Sutradhar (2011, Section 5.1.1)]. More specifically, for a moder-
ately large V,  say V = 10, first write

and then approximate the integrals in (22)–(26), as

Notice that even though we have computed the mean, variance and correlation struc-
ture of the

as shown by (22)–(24), we can not, however, use the responses and covariates of 
this population to estimate the regression(�) and cluster correlation (�2

�
) parameters 

involved in the moments (22)–(24). This is because as explained in Sect. 1, in the 
FP setup, it is impractical to collect data from the entire which is a large popula-
tion. Hence, a TSCS (two-stage cluster sample)-based survey sample s∗(SS(s∗)) (6) 
is taken, consisting of k < K clusters chosen from K clusters at the first stage, and 
then at the second stage, nc < Nc individuals chosen from Nc individuals of the c-th 
(c = 1,… , k) selected cluster.

More clearly, the main objective of taking the sample s∗ (6) from the FP ( F  ) is to 
estimate the parameters 

(
�, �2

�

)
 those define the FP through its mean, variance and 

correlation structure given by (22)–(26). Thus, before we provide such an estimation 
approach using s∗ in Sect. 5, we first show in Sect. 4, how one could estimate these 
parameters if the FP ( F  ) was available. However, because F  is never available in 
practice, the estimating equations to be developed in Sect. 4 are preferably referred 
to as the hypothetical estimating equations (HEE), more specifically as the hypo-
thetical GQL (HGQL) estimating equations.

�∗c(v) =
v − V(1∕2)√
V(1∕2)(1∕2)

, for v = 0, 1, 2,… ,V;

(27)�ci

(
�, �2

�

)
≃

V∑
v=0

b(1)(�ci(���
∗
c
(v)))

(
V

v

)
(1∕2)v(1∕2)V−v,

(28)

�c,ii

(
�, �2

�

)
= E[Y2

ci
]

≃

V∑
v=0

[b(2)(�ci(���
∗
c
(v))) + b(1)(�ci(���

∗
c
(v)))]2

(
V

v

)
(1∕2)v(1∕2)V−v,

(29)

�c,ij

(
�, �2

�

)
= E[YciYcj]

≃

V∑
v=0

[
b(1)(�ci(���

∗
c
(v)))b(1)(�cj(���

∗
c
(v)))

]( V

v

)
(1∕2)v(1∕2)V−v.

FP (F) ∶ {yci|xci, i = 1,… ,Nc; c = 1,… ,K}
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4  FP‑based hypothetical GQL (HGQL) estimation

4.1  HGQL estimating function for β In population total form

From Lemma 2, we write the Nc-dimensional hypothetical response vector from 
the c-th (c = 1,… ,K) cluster, as yc∈F = (yc1,… , yci,… , ycNc

)⊤. Using its moment 
properties from (22)–(24), write the mean vector, variance and covariance matri-
ces as

where Rc,Nc

(
�, �2

�

)
 is the Nc × Nc correlation matrix. We denote this and its inverse 

matrix as

If the FP was available, following the well GLMM-based GQL approach (Sutradhar 
2004) one could solve the GQL estimating equation given in Lemma 3 below, in 
order to estimate the regression parameters � involved in the mean functions given 
by (22).

Lemma 3 Using the notations from (30) to (32), for 
yc∈F ∼

(
�c

(
�, �2

�

)
,�c,Nc

(
�, �2

�

))
, when �2

�
 is known, the GQL estimating equation 

for �, is given by

where the estimating function in the left hand side of (33) subsequently has the pop-
ulation total form given by

say, where, the p × 1 vector aci
(
�, �2

�

)
, has the formula

(30)
E[Yc∈F] = �c

(
�, 𝜎2

𝛾

)

= (𝜇c1

(
�, 𝜎2

𝛾

)
,… ,𝜇ci

(
�, 𝜎2

𝛾

)
,… ,𝜇cNc

(
�, 𝜎2

𝛾

)
)⊤

(31)Vc

(
�, �2

�

)
= diag

[
�c,ii

(
�, �2

�

)
,… , �c,ii

(
�, �2

�

)
,… , �c,ii

(
�, �2

�

)]

(32)cov [Yc∈F] = �c,Nc

(
�, �2

�

)
= V

1

2

c

(
�, �2

�

)
Rc,Nc

(
�, �2

�

)
V

1

2

c

(
�, �2

�

)
,

Rc,Nc

(
�, �2

�

)
= (�c,Nc,ij

) ∶ Nc × Nc, R
−1
c,Nc

(
�, �2

�

)
= (�

(−1)

c,Nc,ij
) ∶ Nc × Nc.

(33)𝜏y(�) =

K∑
c=1

𝜕�⊤
c

(
�, 𝜎2

𝛾

)

𝜕�
�
−1
c,Nc

(
�, 𝜎2

𝛾

)(
yc∈F − �c

(
�, 𝜎2

𝛾

))
= 0,

(34)�y(�) =

K∑
c=1

Nc∑
i=1

aci

(
�, �2

�

)(
yci − �ci

(
�, �2

�

)) ≡
K∑
c=1

Nc∑
i=1

zci

(
�, �2

�

)
,
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with

Proof First of all, for a given cluster c,  the GQL estimating Eq. (33) is a generalized 
form [Sutradhar (2003, Section 3; 2004, Eqn. (3.4))] of the independence assump-
tion-based QL estimating equation studied by Wedderburn (1974). Then, the sum-
mation over c = 1,… ,K, follows from the fact that all K clusters are independent in 
the FP.   ◻

Next, because it is given in (36) that 
𝜕�ci

(
�,𝜎2

𝛾

)

𝜕�
= xci�̄�c,ii, it then follows that

yielding aci
(
�, �2

�

)
 as in (35), because

(35)aci(⋅) =

Nc∑
u=1

�̄�c,uu

𝜎
1

2

c,uu𝜎
1

2

c,ii

r
(−1)

c,Nc,ui
xcu ∶ p × 1,

(36)

𝜕�ci

(
�, 𝜎2

𝛾

)

𝜕�
= ∫

𝜕[b(1)(𝜃ci(𝜎𝛾𝛾
∗
c
))]

𝜕�
fN(𝛾

∗
c
)d𝛾∗

c

= xci

V∑
v=0

b(2)(𝜃ci(𝜎𝛾𝛾
∗
c
(v)))

(
V

v

)
(1∕2)v(1∕2)V−v

= xci�̄�c,ii.

(37)

𝜕�⊤
c

�
�, 𝜎2

𝛾

�

𝜕�
=

⎡
⎢⎢⎢⎣

𝜕𝜇c1

�
�, 𝜎2

𝛾

�

𝜕�
,… ,

𝜕𝜇ci

�
�, 𝜎2

𝛾

�

𝜕�
,… ,

𝜕𝜇cNc

�
�, 𝜎2

𝛾

�

𝜕�

⎤
⎥⎥⎥⎦

= (xc1,… , xci,… , xcNc
) diag [�̄�c,11,… , �̄�c,ii,… , �̄�c,NcNc

]

= (xc1,… , xci,… , xcNc
)V̄c,Nc

�
�, 𝜎2

𝛾

�
, (say),

(38)

𝜕�⊤
c

(
�, 𝜎2

𝛾

)

𝜕�
�
−1
c,Nc

(
�, 𝜎2

𝛾

)

= (xc1,… , xci,… , xcNc
)V̄c,Nc

(
�, 𝜎2

𝛾

)
V

−
1

2

c

(
�, 𝜎2

𝛾

)
R−1
c,Nc

(
�, 𝜎2

𝛾

)
V

−
1

2

c

(
�, 𝜎2

𝛾

)

= (xc1,… , xci,… , xcNc
)V̄c

(
�, 𝜎2

𝛾

)
V

−
1

2

c

(
�, 𝜎2

𝛾

)
(r

(−1)

c,Nc,ij
)V

−
1

2

c

(
�, 𝜎2

𝛾

)

=
(
ac1

(
�, 𝜎2

𝛾

)
,… , aci

(
�, 𝜎2

𝛾

)
,… , acNc

(
�, 𝜎2

𝛾

))

= Ac,Nc

(
�, 𝜎2

𝛾

)
∶ p × Nc, (say).



438 B. C. Sutradhar 

1 3

4.2  HGQL estimating function for �2


 in population total form

Because �2
�
 is the cluster variance/correlation parameter, for its estimation in the 

GLMM setup, Jiang (1998), for example, has used the traditional MM (method of 
moments) approach, whether Sutradhar (2004) has exploited the so-called GQL 
approach which produces more efficient estimates than the MM approach. To 
develop such a GQL estimating equation in the present setup, we first provide 
the formulas for all possible fourth-order moments, in Lemma 4 below. The vari-
ances and covariances of the second-order responses are then constructed as in 
Lemma 5.

Lemma 4 

(a) The conditional fourth-order leading moments have the formulas

where

with �∗
c,ii
(�∗

c
) = E[Y2

ci
|�∗

c
] = [b(2)(�ci(���

∗
c
)) + {b(1)(�ci(���

∗
c
))}2] as in (25); 

yielding the unconditional fourth-order leading moments as

(b) The formulas for the unconditional fourth-order product moments are given by

(39)
�∗
c,iiii

(�∗
c
) = E[Y4

ci
|�∗

c
] = b(4)(�ci(���

∗
c
)) + 3[b(2)(�ci(���

∗
c
))]2 + 4�∗

c,iii
(�∗

c
)b(1)(�ci(���

∗
c
))

− 6b(2)(�ci(���
∗
c
))[b(1)(�ci(���

∗
c
))]2 − 3[b(2)(�ci(���

∗
c
))]4,

(40)
�∗
c,iii

(�∗
c
) = E[Y3

ci
|�∗

c
]

= b(3)(�ci(���
∗
c
)) + 3�∗

c,ii
(�∗

c
)b(1)(�ci(���

∗
c
)) − 2[b(1)(�ci(���

∗
c
))]3

(41)�c,iiii

(
�, �2

�

)
= ∫ �∗

c,iiii
(�∗

c
)fN(�

∗
c
)d�∗

c
.

(42)
𝜆c,iijj

(
�, 𝜎2

𝛾

)
= E[Y2

ci
Y2
cj
]

= ∫ [𝜆∗
c,ii
(𝛾∗

c
)𝜆∗

c,jj
(𝛾∗

c
)]fN(𝛾

∗
c
)d𝛾∗

c
, i < j = 2,… ,Nc;

(43)
𝜆c,iijj�

(
�, 𝜎2

𝛾

)
= E[Y2

ci
YcjYcj� ]

= � [𝜆∗
c,ii
(𝛾∗

c
)b(1)(𝜃cj(𝜎𝛾𝛾

∗
c
))b(1)(𝜃cj� (𝜎𝛾𝛾

∗
c
))]fN(𝛾

∗
c
)d𝛾∗

c
, i < j, i < j�;j ≠ j�;

(44)
𝜆c,ii�jj

(
�, 𝜎2

𝛾

)
= E[YciYci�Y

2
cj
]

= � [𝜆∗
c,jj
(𝛾∗

c
)b(1)(𝜃ci(𝜎𝛾𝛾

∗
c
))b(1)(𝜃ci� (𝜎𝛾𝛾

∗
c
))]fN(𝛾

∗
c
)d𝛾∗

c
, i < j, i� < j�;j = j�, i ≠ i�;
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where �∗
c,ii
(�∗

c
) is as in (40) [see also (25)], and 

�∗
c,ij
(�∗

c
) = E[(YciYcj)|�∗c ] = b(1)(�ci(���

∗
c
))b(1)(�cj(���

∗
c
)), for example, as in 

(26).

Proof The formulas under (b), given in from (42) to (45), are obvious. For example, 
to compute the fourth-order unconditional moment E[Y2

ci
YcjYcj� ] in (43), we observe 

that the exponential responses within the square brackets are independent condi-
tional on �∗

c
. Thus,

is obtained, as in (43). However, the formula for the conditional fourth-order 
leading moment derived under (a) in (39) requires a long but straightforward 
algebra. More specifically, following Sutradhar and Rao (2001,  Lemma  1), 
for example, we first derive the formulas for E

[
(Yci − b(1)(�ci(���

∗
c
)))3|�∗

c

]
 and 

E
[
(Yci − b(1)(�ci(���

∗
c
)))4|�∗

c

]
, and then unplug the formulas for �∗

c,iii
(�∗

c
) and 

�∗
c,iiii

(�∗
c
), from their respective equation.   ◻

Using Lemma 4, one may now compute the covariance matrices of the second-
order response vectors as in Lemma 5 below.

Lemma 5 Let the squared and pairwise products of the hypothetical responses are 
stacked separately to form two vectors as

respectively. Their covariance matrices �c,Nc
(�, �2

�
) and �c,Nc

(�, �2
�
), say, have the 

formulas given by

and

(45)
𝜆c,ii�jj�

(
�, 𝜎2

𝛾

)
= E[YciYcjYci�Ycj� ]

= � 𝜆∗
c,ij
(𝛾∗

c
)𝜆∗

c,i�j�
(𝛾∗

c
)fN(𝛾

∗
c
)d𝛾∗

c
, i < j, i� < j�;i ≠ i�, j ≠ j�,

E[Y2
ci
YcjYcj� ] = E�∗

c

[
E(Y2

ci
|�∗

c
)E(Ycj|�∗c )E(Ycj� |�∗c )

]

= E�∗
c

[
�∗
c,ii
(�∗

c
)b(1)(�cj(���

∗
c
))b(1)(�cj� (���

∗
c
))
]

(46)
pc∈F = (y2

c1
,… , y2

ci
,… , y2

cNc
)� ∶ Nc × 1

qc∈F = (yc1yc2,… , yciycj,… , yc(Nc−1)
ycNc

)�;i < j ∶ Nc(Nc − 1)∕2 × 1,

(47)

cov [pc∈F] = �c,Nc
(�, �2

�
) ∶ Nc × Nc

=

{
var [Y2

ci
] = �c,ii(⋅) = �c,iiii − �2

c,ii
∀ i = 1,… ,Nc

cov [Y2
ci
, Y2

cj
] = �c,ij(⋅) = �c,iijj − �c,ii�c,jj ∀ i ≠ j;i, j = 1,… ,Nc,
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respectively.

Proof The unconditional higher order expectations derived in Lemma 4 imply the 
variances and covariances shown under Lemma 5. For example, in (47),

where the formula for �c,iiii is derived in (41), along with the formula for �c,ii from 
(25). Similarly, the covariances in (48) are computed. For example, in (48),

for all i ≠ j ≠ i′ ≠ j′, where the formula for �c,iji′j′ is derived in (45) under 
Lemma 4(b), along with the formula for �c,ij from (26).   ◻

Given that the covariance matrices of pc∈F and qc∈F are derived in (47) and (48), 
respectively, we use them and construct a GQL estimating equation for �2

�
, as in 

Lemma 6 below.

Lemma 6 Write

where �c,ii(⋅) is given in (25), and �c,ij(⋅) in (26). Use these mean moments and their 
covariances from (47)–(48) and write

Then, the HGQL estimating equation for �2
�
 is given by

(48)

cov [qc∈F] = �c,Nc
(�, 𝜎2

𝛾
) ∶ Nc(Nc − 1)∕2 × Nc(Nc − 1)∕2

=

⎧
⎪⎨⎪⎩

var [YciYcj] = 𝜔c,ij,ij(⋅) = 𝜆c,iijj − 𝜆2
c,ij

∀ i < j

cov [YciYcj, Yci�Ycj� ] = 𝜔c,ij,i�j� = 𝜆c,iji�j� − 𝜆c,ij𝜆c,i�j� ∀ i ≠ j ≠ i� ≠ j�

cov [YciYcj, YciYcj� ] = 𝜔c,ij,ij� = 𝜆c,iijj� − 𝜆c,ij𝜆c,ij� ∀ i = i� < j ≠ j�

cov [YciYcj, Yci�Ycj] = 𝜔c,ij,i�j = 𝜆c,ii�jj − 𝜆c,ij𝜆c,i�j ∀ j = j� > i ≠ i�,

var [Y2
ci
] = E[Y4

ci
] − [E[Y2

ci
]]2 = �c,iiii − �2

c,ii
,

cov [YciYcj, Yci�Ycj� ] = E[YciYcjYci�Ycj� ] − E[YciYcj]E[Yci�Ycj� ] = �c,iji�j� − �c,ij�c,i�j� ,

(49)E[pc∈F] = �c

(
�, �2

�

)
= (�c,11(⋅),… , �c,ii(⋅),… , �c,NcNc

)� ∶ Nc × 1,

(50)
E
[
qc∈F

]
= �̃c

(
�, 𝜎2

𝛾

)

= (𝜆c,12(⋅),… , 𝜆c,ij(⋅),… , 𝜆c,Nc−1,Nc
)� ∶ Nc(Nc − 1)∕2 × 1,

pc∈F ∼ (�c

(
�, 𝜎2

𝛾

)
,�c,Nc

(�, 𝜎2
𝛾
)), and qc∈F ∼ (�̃c

(
�, 𝜎2

𝛾

)
,�c,Nc

(�, 𝜎2
𝛾
)).
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Proof Similar to the GQL estimating equation for � given in (33), the GQL esti-
mating equation for �2

�
 in (51) follows from Sutradhar (2003, Section 3; 2004, Eqn. 

(3.4)). The derivatives involved in (51) are presented in Lemma 7 below.   ◻

Lemma 7 For �∗
c
(v) = [v − V(1∕2)]∕

√
V(1∕2)(1∕2) as used in (27), the derivatives 

involved in (51), more specifically the derivatives of �c,ii(�, �2
�
) [see (25)] and 

�c,ij

(
�, �2

�

)
 [see (26)] with respect to �2

�
, are given by

and

respectively, where �∗
c
(v) = [v − V(1∕2)]∕

√
V(1∕2)(1∕2), similar to (27), for 

example.

Proof Using the formulas for �c,ii
(
�, �2

�

)
 and �c,ij

(
�, �2

�

)
 from (25) and (26), 

respectively, we write

(51)

𝜏y(𝜎
2
𝛾
) = 𝜏y,1(𝜎

2
𝛾
) + 𝜏y,2(𝜎

2
𝛾
)

=

K∑
c=1

𝜕�⊤

c

(
�, 𝜎2

𝛾

)

𝜕𝜎2
𝛾

�
−1
c,Nc

(
�, 𝜎2

𝛾

)
(pc∈F − �c

(
�, 𝜎2

𝛾

)
)

+

K∑
c=1

𝜕�̃
⊤

c

(
�, 𝜎2

𝛾

)

𝜕𝜎2
𝛾

�
−1
c,Nc

(
�, 𝜎2

𝛾

)(
qc∈F − �̃c

(
�, 𝜎2

𝛾

))
= 0.

(52)

��c,ii

(
�, �2

�

)

��2
�

=
1

2��

V∑
v=0

[{
b(3)(�ci(���

∗
c
(v))) + 2b(1)(�ci(���

∗
c
(v)))b(2)(�ci(���

∗
c
(v)))

}

× �∗
c
(v)

]( V

v

)
(1∕2)v(1∕2)V−v,

(53)

��c,ij

(
�, �2

�

)

��2
�

=
1

2��

V∑
v=0

[{
b(1)(�ci(���

∗
c
(v)))b(2)(�cj(���

∗
c
(v))) + b(2)(�ci(���

∗
c
(v)))

× b(1)(�cj(���
∗
c
(v)))

}
�∗
c
(v)

]( V

v

)
(1∕2)v(1∕2)V−v,

(54)
��c,ii

(
�, �2

�

)

��2
�

= ∫
[
�b(2)(�ci(���

∗
c
))

��2
�

+
�{b(1)(�ci(���

∗
c
))}2

��2
�

]
fN(�

∗
c
)d�∗

c
,

(55)
��c,ij

(
�, �2

�

)

��2
�

= ∫
�
[
b(1)(�ci(���

∗
c
))b(1)(�cj(���

∗
c
))
]

��2
�

fN(�
∗
c
)d�∗

c
.
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Now because the continuous function b(�
ci
(�; x

ci
, �

c
)) involved in the exponential 

density (18) is a function of

(see Lemma 2 for the scalar transformation), the derivatives in (54) and (55), reduce 
to

and

respectively. Finally, using the transformation �∗
c
(v) = [v − V(1∕2)]∕

√
V(1∕2)(1∕2), 

the integrations in (54) and (55) are replaced by the summations shown in (52) and 
(53), respectively.   ◻

Next, we apply Lemma 7 and re-express the HGQL estimating equation for �2
�
 

from (51) under Lemma 6, in the FP total form as in Lemma 8 below.

Lemma 8 Denote the inverse of the fourth-order covariance matrices in (47) and 
(48), by

respectively. Next use these inverse matrices and the derivatives from Lemma 7, and 
write

where �ci
�
�, �2

�

�
=
∑Nc

u=1

��c,uu

�
�,�2

�

�

��2
�

�
(−1)

c,Nc,ui
, and

𝜃ci(�; xci, 𝛾c) = [x⊤
ci
� + 𝛾c] = [x⊤

ci
� + 𝜎𝛾𝛾

∗
c
]

(56)

��c,ii

(
�, �2

�

)

��2
�

=
1

2�� ∫
[{
b(3)(�ci(���

∗
c
)) + 2b(1)(�ci(���

∗
c
))b(2)(�ci(���

∗
c
))
}

× �∗
c

]
fN(�

∗
c
)d�∗

c
,

(57)

��c,ij

(
�, �2

�

)

��2
�

=
1

2�� ∫
[{
b(1)(�ci(���

∗
c
))b(2)(�cj(���

∗
c
)) + b(2)(�ci(���

∗
c
))b(1)(�cj(���

∗
c
))
}

× �∗
c

]
fN(�

∗
c
)d�∗

c
,

(58)
�

−1
c,Nc

(
�, �2

�

) ≡ (
�

(−1)

c,Nc,ij

)
∶ Nc × Nc, and

�
−1
c,Nc

(
�, �2

�

) ≡ (
�
(−1)

c,Nc,ij,i
�j�

)
∶ Nc(Nc − 1)∕2 × Nc(Nc − 1)∕2,

(59)

𝜕�⊤

c

(
�, 𝜎2

𝛾

)

𝜕𝜎2
𝛾

(
𝜓

(−1)

c,Nc,ij

)

=
(
𝜉c1

(
𝛽, 𝜎2

𝛾

)
,… , 𝜉ci

(
𝛽, 𝜎2

𝛾

)
,… , 𝜉cNc

(
𝛽, 𝜎2

𝛾

))
, (say),
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where 𝜉c,ij
�
𝛽, 𝜎2

𝛾

�
=
∑Nc

u<�

𝜕𝜆c,u�

�
�,𝜎2

𝛾

�

𝜕𝜎2
𝛾

𝜔
(−1)

c,Nc,u�,ij
. The HGQL estimating function/equa-

tion in (51) then has the FP total form given by

Proof The result in (61) follows by combining (58), (59), and (60) through a matrix 
algebra.   ◻

5  Survey sample‑based doubly weighted (SSDW) GQL estimation

It is clear from the last section that if the (F) ≡ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K} 
was available, one would then have consistently and efficiently estimated � by solv-
ing the HGQL estimating equation for � given in (34) under Lemma  3, i.e., 
�y(�) =

∑K

c=1

∑Nc

i=1
aci

�
�, �2

�

��
yci − �ci

�
�, �2

�

��
= 0, and �2

�
 by solving the HGQL 

estimating equation �y(�2
�
) = 0 for �2

�
, derived in (61) under Lemma 8. Notice that 

because aci
(
�, �2

�

)
 in (34), and �ci

(
�, �2

�

)
 and 𝜉c,ij

(
𝛽, 𝜎2

𝛾

)
 in (61), are constructed 

based on the inverse correlation/covariance matrices, it is convenient to refer them 
as the correlation weights for the FP responses involved in the FP total function. 
However, as the (F) ≡ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K} is not available in prac-
tice, in this section, we utilize the two-stage sample 
SS (s∗) ≡ {(yci, xci), i = 1,… , nc; c = 1,… , k} defined in (6), to construct the SS-
based suitable estimating equations for both � and �2

�
.

For the purpose, it is essential that the s∗-based estimating functions are unbiased 
for the (F)-based estimating functions, namely for �y(�) (34) for � estimation, and 
for �y(�2

�
) in (61) for �2

�
 estimation. To develop such sample-based functions/equa-

tions, one needs to accommodate (i) the sampling weights for the selection of s∗ 
from F, and (ii) use the sample-based correlation weights, for example, aci

(
�, �2

�

)
 

for (c, i) ∈ s∗, for � estimation. Specific details for the development of SS-based esti-
mating function for � estimation and �2

�
 estimation are given in Sects. 5.1 and 5.2.

As far as the sampling weights are concerned, let wci∈s∗ denote such sampling 
design (Ds∗ ) weights for the selection of s∗ from F. Based on the first and the second-
stage sampling designs given in (9), we will use the sampling weights as

(60)

𝜕�̃
⊤

c

(
�, 𝜎2

𝛾

)

𝜕𝜎2
𝛾

(
𝜔
(−1)

c,Nc,ij,i
�j�

)

= (𝜉c1

(
𝛽, 𝜎2

𝛾

)
,… , 𝜉c,ij

(
𝛽, 𝜎2

𝛾

)
,… , 𝜉c,Nc−1,Nc

(
𝛽, 𝜎2

𝛾

)
), (say) ,

(61)

𝜏y(𝜎
2
𝛾
) = 𝜏y,1(𝜎

2
𝛾
) + 𝜏y,2(𝜎

2
𝛾
) =

K∑
c=1

Nc∑
i=1

𝜉ci

(
𝛽, 𝜎2

𝛾

)(
y2
ci
− 𝜆c,ii

(
�, 𝜎2

𝛾

))

+

K∑
c=1

Nc∑
i<j

𝜉c,ij

(
𝛽, 𝜎2

𝛾

)(
yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

))
= 0.
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which is also used by others such as Valliant (1987, Section 2), and Lee et al. (2016, 
Eqn. (2.1)), especially for the estimation of the FP total ( �y =

∑K

c=1

∑Nc

i=1
yci).

5.1  SSDW estimating equation for β in sample total form

As outlined above, we develop the two-stage survey sampling-based doubly 
weighted (SSDW) GQL estimating equation for � as in the following theorem.

Theorem 1 Re-express the (F) from (6) as

where aci(⋅) denotes an inverse correlation-based weighted function of covariates 
in the cth cluster, as shown by (35). To reflect this change in (F) , modify the survey 
sample s∗ from (6) as

We may then exploit the modified SS(s∗ ) from (64) along with the sampling weights 
w(c,i)∈s∗ from (62), and estimate � involved in the (F)-based estimating function �y(�) 
in (34), by solving the SSDW (survey sample-based doubly weighted) estimating 
equation, given by

as we can show that the proposed 𝜏y(�) in (65) is design unbiased for the targeted 
(F)-based estimating function

in (34).

Proof Recall from (13) that under the present two-stage sampling setup, the design 
expectation of a data function, namely EDs∗

(⋅), is equivalent to two successive expec-
tations, written as

(62)w(c,i)∈s∗ =
K

k

Nc

nc
,

(63)
F ∶ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K}

⇒ {(yci, aci), i = 1,… ,Nc; c = 1,… ,K},

(64)
SS(s∗) ∶ {(yci, xci), i = 1,… , nc; c = 1,… , k}

⇒ {(yci, aci), i = 1,… , nc; c = 1,… , k}.

(65)𝜏y(�) =

k∑
c=1

nc∑
i=1

w(c,i)∈s∗aci(⋅)
(
yci − 𝜇ci

(
�, 𝜎2

𝛾

))
= 0 ⇒ �̂SSDW,

(66)�y(�) =

K∑
c=1

Nc∑
i=1

aci

(
�, �2

�

)(
yci − �ci

(
�, �2

�

))
,

EDs∗
(⋅) ≡ Ep1

Ep2c
[(⋅)|p1],
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where p1 is the first-stage sampling design for clusters selection, and p2c is the sec-
ond-stage sampling design for individuals selection within a given cluster (c). Thus, 
we express the design expectation over the SSDWGQL estimating function 𝜏y(�), as

by (62).
Next, we define two random indicator variables as follows. First, let �1,c be a ran-

dom indicator variable such that

[Cochran (1977,  Section  2.9)], with Ep1
[�1,c] =

k

K
, following (9(i)). Similarly, let 

�2,i|c be the second random indicator variable such that

with Ep2c
[�2,i|c] =

nc

Nc

, following (9(ii)). We may then re-express the design expecta-
tion in (67), as

which is the same as the HGQL estimating function �y(�), in (66). Hence, the SSDW 
estimating function 𝜏y(𝛽), in (65), is design unbiased for the HGQL estimating func-
tion �y(�), in (66).   ◻

(67)

EDs∗

[
𝜏y(�)

]
= Ep1

[
k∑

c=1

Ep2c

{
nc∑
i=1

w(c,i)∈s∗aci(⋅)
(
yci − 𝜇ci

(
�, 𝜎2

𝛾

))}
|p1

]

=
K

k

[
Ep1

k∑
c=1

Nc

nc
Ep2c

{
nc∑
i=1

aci(⋅)
(
yci − 𝜇ci

(
�, 𝜎2

𝛾

))}
|p1

]
,

(68)�1,c =

{
1 if the c − th cluster is in the first-stage sample s∗

1

0 otherwise

(69)

�2,i|c =
{

1 if the i th unit from the c-th cluster is in the sample s∗
2c

0 otherwise

(70)

EDs∗
[𝜏y(𝛽)] =

K

k

K∑
c=1

Nc

nc
Ep1

𝛿1,c

[
Nc∑
i=1

Ep2c
𝛿2,i|caci(⋅)

(
yci − 𝜇ci

(
𝛽, 𝜎2

𝛾

))]

=
K

k

K∑
c=1

Nc

nc
Ep1

𝛿1,c

[
Nc∑
i=1

nc

Nc

aci(⋅)
(
yci − 𝜇ci

(
𝛽, 𝜎2

𝛾

))]
, using (69)

=
K

k

K∑
c=1

Nc

nc

k

K

[
Nc∑
i=1

nc

Nc

aci(⋅)
(
yci − 𝜇ci

(
𝛽, 𝜎2

𝛾

))]
, using (68)

=

K∑
c=1

Nc∑
i=1

aci(⋅)
(
yci − 𝜇ci

(
𝛽, 𝜎2

𝛾

))
,
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5.2  SSDW estimating equation for  σ2
γ in sample total form

Notice that unlike the use of the first-order responses for the estimation of �, one 
uses second-order responses to estimate this cluster variance/correlation param-
eter (Jiang 1998; Sutradhar 2004). A reflection of this difference is clear from the 
HGQL estimating equation (34) for �, and the HGQL estimating equation (51) for 
�2
�
. More specifically, the HGQL estimating function in the left hand side of (51) 

consists of two sub-functions. The first sub-function �y,1(�2
�
) is based on squared 

responses, whereas the sub-function �y,2(�2
�
) was written separately using the pair-

wise product responses. Now because the estimating function �y,1(�2
�
) is quite 

similar to that of the estimating function �y(�) (34) for �, the survey sample (s∗)
-based unbiased estimating function for �y,1(�2

�
) would be similar to that of 𝜏y(�) 

developed in (65). However, for computational convenience, the specific formula 
for an unbiased function 𝜏y,1(𝜎2

𝛾
), along with a slightly different type of unbiased 

function 𝜏y,2(𝜎2
𝛾
) for �y,2(�2

�
) is provided in Theorem 2 below.

Theorem 2 In view of the two sub-functions in the FP (F)-based HGQL estimating 
function for �2

�
 in (61) [see also (51)], let the FP (F) from (6) be re-expressed as

as a reflection of the first sub-function in (61), and as

as a reflection of the second sub-function in (61). Also suppose that the survey sam-
ple s∗ in (6) with selected sampled individuals ({1,… , i,… , nc; c = 1,… , k}) from 
F ∶ {1,… , i,… ,Nc; c = 1,… ,K}, is re-expressed as

corresponding to (71), and as

corresponding to (72). We may then exploit the modified SS(s∗ ) from (73)–(74) along 
with the sampling weights w(c,i)∈s∗ from (62), and estimate �2

�
 involved in the (F)-

based estimating function �y(�2
�
) in (61), by solving the SSDW (survey sample-based 

doubly weighted) estimating equation for �2
�
, given by

(71)
F ∶ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K}

⇒ {(y2
ci
, �ci), i = 1,… ,Nc; c = 1,… ,K},

(72)
F ∶ {(yci, xci), i = 1,… ,Nc; c = 1,… ,K}

⇒ {(yciycj, 𝜉c,ij), i < j = 2,… ,Nc; c = 1,… ,K},

(73)
F ∶ {(y2

ci
, �ci), i = 1,… ,Nc; c = 1,… ,K}

⇒ s∗ ∶ {(y2
ci
, �ci), i = 1,… , nc; c = 1,… , k},

(74)
F ∶ {(yciycj, 𝜉c,ij), i < j = 2,… ,Nc; c = 1,… ,K}

⇒ s∗ ∶ {(yciycj, 𝜉c,ij), i < j = 2,… , nc; c = 1,… , k},
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which yields the desired SSDW estimator �̂�2
𝛾 ,SSDW

 for �2
�
, as we can show that SSDW 

estimating function 𝜏y(𝜎2
𝛾
) in (75) is a design unbiased sample function for the (F)-

based estimating function �y(�2
�
) in (61).

Proof Notice that the first term in the left hand side of (75), i.e.,

is similar to 𝜏y(�) =
∑k

c=1

∑nc
i=1

w(c,i)∈s∗aci(⋅)
�
yci − 𝜇ci

�
�, 𝜎2

𝛾

��
 in (65) for � estima-

tion. Thus, the design expectation of 𝜏y,1(𝜎2
𝛾
) can be computed by using the same 

operation as in (70), yielding

which is the first term in the HGQL estimating function for �2
�
 in (61).

Next to examine the unbiasedness of the second term in the left hand side of (75), 
using the joint indicator variables from (69) for paired individuals selection, we take 
the design expectation of this second term as follows.

which is the second term in the left hand side of the targeted (F)-based HGQL esti-
mating function in (61) for �2

�
 . This proves the theorem by combining (76) and (77) 

together.   ◻

(75)

𝜏y(𝜎
2
𝛾
) = 𝜏y,1(𝜎

2
𝛾
) + 𝜏y,2(𝜎

2
𝛾
) =

k∑
c=1

nc∑
i=1

w(c,i)∈s∗𝜉ci

(
𝛽, 𝜎2

𝛾

)(
y2
ci
− 𝜆c,ii

(
�, 𝜎2

𝛾

))

+

k∑
c=1

nc∑
i<j

w(c,i)∈s∗

(
Nc − 1

nc − 1

)
𝜉c,ij

(
𝛽, 𝜎2

𝛾

)(
yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

))

= 0 ⇒ �̂�2
𝛾 ,SSDW

,

𝜏y,1(𝜎
2
𝛾
) =

k∑
c=1

nc∑
i=1

w(c,i)∈s∗𝜉ci

(
𝛽, 𝜎2

𝛾

)(
y2
ci
− 𝜆c,ii

(
�, 𝜎2

𝛾

))

(76)EDs∗

[
𝜏y,1(𝜎

2
𝛾
)
]
=

K∑
c=1

Nc∑
i=1

𝜉ci

(
𝛽, 𝜎2

𝛾

)(
y2
ci
− 𝜆c,ii

(
�, 𝜎2

𝛾

))
= 𝜏y,1(𝜎

2
𝛾
),

(77)

EDs∗

[
𝜏y,2(𝜎

2
𝛾
)
]
= EDs∗

[
k∑

c=1

nc∑
i<j

w(c,i)∈s∗

(
Nc − 1

nc − 1

)
𝜉c,ij

(
𝛽, 𝜎2

𝛾

)(
yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

))]

=
K

k

K∑
c=1

Nc

nc

(
Nc − 1

nc − 1

)
Ep1

𝛿1,c

[
Nc∑
i<j

Ep2c
{𝛿2,i|c𝛿2,j|c}𝜉c,ij

(
𝛽, 𝜎2

𝛾

)(
yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

))]

=
K

k

K∑
c=1

Nc

nc

(
Nc − 1

nc − 1

)
k

K

[
Nc∑
i<j

nc(nc − 1)

Nc(Nc − 1)
𝜉c,ij

(
𝛽, 𝜎2

𝛾

)(
yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

))]

=

K∑
c=1

Nc∑
i<j

𝜉c,ij

(
𝛽, 𝜎2

𝛾

)
(yciycj − 𝜆c,ij

(
�, 𝜎2

𝛾

)
) = 𝜏y,2(𝜎

2
𝛾
),
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6  Asymptotic properties

6.1  Asymptotic normality of the SSDW estimator of the regression parameter β

Because the regression parameters are of main interest, in this section, we exam-
ine the asymptotic distributional behavior of �̂SSDW obtained by solving the SSDW 
(survey sample-based doubly weighted) estimating equation (65) for �. Notice that 
in general this nonlinear estimating equation (65) is solved iteratively by using the 
large sample (n =

∑k

c=1
nc → ∞)-based first-order Taylor series approximation 

given by

which, for n → ∞, by using the notations yc∈s∗ = (yc1,… , yci,… , ycnc )
⊤ and 

�c∈s∗ (⋅) = (𝜇c1(⋅),… ,𝜇ci(⋅),… ,𝜇cnc
(⋅))⊤, may be re-expressed as

We remark that in the present two-stage cluster sampling setup, the sample size 
n =

∑k

c=1
nc → ∞, mainly by considering large number of independent clusters such 

that k → K → ∞. As far as the cluster size is concerned, it is enough to have nc ’s as 
nc → Nc, where, as pointed out in Sect. 1, Nc ’s are large but fixed.

Now, the derivatives in (79), by using similar notations as in (37), may be 
expressed as

(78)

�̂SSDW − � ≃ −

⎡⎢⎢⎢⎣

k�
c=1

nc�
i=1

w(c,i)∈s∗

𝜕aci(⋅)(yci − 𝜇ci

�
�, 𝜎2

𝛾

�
)

𝜕�⊤

⎤⎥⎥⎥⎦

−1

×

�
k�

c=1

nc�
i=1

w(c,i)∈s∗aci(⋅)(yci − 𝜇ci

�
�, 𝜎2

𝛾

�
)

�
+ op(1∕

√
n),

(79)

�̂SSDW − � = −

[
1

k

k∑
c=1

K

k

Nc

nc
A∗
c,Nc

(
�, 𝜎2

𝛾

)𝜕�c∈s∗ (⋅)

𝜕�⊤

]−1

×

[
1

k

k∑
c=1

K

k

Nc

nc
A∗
c,Nc

(
�, 𝜎2

𝛾

)
(yc∈s∗ − �c∈s∗ (⋅))

]

(80)= −

[
1

k

k∑
c=1

𝜕f c(�|yc)
𝜕�⊤

]−1[
1

k

k∑
c=1

f c(�|yc)
]
, (say).
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Also, in (79), the inverse correlation-based weight matrix has the form

which is a sample version of the F -based weight matrix

defined in (38).
Following two lemmas will be applied to derive the asymptotic distribution of 

�̂SSDW. Lemma 9 below deals with the probability convergence of 
∑k

c=1

𝜕f c(��yc)
𝜕�⊤  in 

(80), whereas Lemma 10 below provides the covariance matrix of 
∑k

c=1
f c(��yc) 

in (80).

Lemma 9 The inverse correlation-based weighted gradient matrix within the 
square bracket of the first term in the right hand side of (80) converges in probability 
as

where Ac,Nc
(⋅) is the p × Nc matrix defined in (38), and 𝜕�c∈F

𝜕�⊤  is the Nc × p derivative 
matrix given by (37).

Proof Notice that in (83)

(81)

𝜕�c∈s∗

�
�, 𝜎2

𝛾

�

𝜕�⊤
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜇c1

�
�,𝜎2

𝛾

�

𝜕�⊤

⋮

𝜕𝜇ci

�
�,𝜎2

𝛾

�

𝜕�⊤

⋮

𝜕𝜇cnc

�
�,𝜎2

𝛾

�

𝜕�⊤

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∶ nc × p

=
�
(xc1,… , xci,… , xcnc ) diag [�̄�c,11,… , �̄�c,ii,… , �̄�c,ncnc]

�⊤

=
�
(xc1,… , xci,… , xcnc )V̄c,nc

�
�, 𝜎2

𝛾

��⊤
.

(82)A∗
c,Nc

(
�, �2

�

)
=
(
ac1

(
�, �2

�

)
,… , acnc

(
�, �2

�

))
∶ p × nc,

Ac,Nc

(
�, �2

�

)
= (ac1

(
�, �2

�

)
,… , aci

(
�, �2

�

)
,… , acNc

(
�, �2

�

)
) ∶ p × Nc,

(83)

k∑
c=1

𝜕f c(�|yc)
𝜕�⊤

=

k∑
c=1

K

k

Nc

nc
A∗
c,Nc

(
�, 𝜎2

𝛾

)𝜕�c∈s∗

𝜕�⊤

→p

K∑
c=1

Ac,Nc

(
�, 𝜎2

𝛾

)𝜕�c∈F

𝜕�⊤
= G̃

(
�, 𝜎2

𝛾

)
(say),

(84)
k∑

c=1

K

k

Nc

nc
A∗
c,Nc

(
�, 𝜎2

𝛾

)𝜕�c∈s∗

𝜕�⊤
=

k∑
c=1

nc∑
i=1

K

k

Nc

nc
aci(⋅)

𝜕𝜇ci

(
�, 𝜎2

𝛾

)

𝜕�⊤
.
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Further notice that for

it was shown in (70) that

Hence, replacing (yci − �ci

(
�, �2

�

)
) in (85) with 

𝜕𝜇ci

(
�,𝜎2

𝛾

)

𝜕�⊤ , and applying (86), we 
obtain the convergence as

which is the same as 
∑K

c=1
Ac,Nc

�
�, 𝜎2

𝛾

�
𝜕�c∈F

𝜕�⊤ = G̃
�
�, 𝜎2

𝛾

�
 given by (83) under the 

lemma.   ◻

In Lemma  10 below, we provide the formula for the covariance matrix of ∑k

c=1
f c(��yc) = ∑k

c=1

∑nc
i=1

w(c,i)∈s∗aci(⋅)
�
yci − �ci

�
�, �2

�

��
∶ p × 1, defined in 

(78)–(80).

Lemma 10 For zci
(
�, �2

�

)
= aci

(
�, �2

�

)
(yci − �ci

(
�, �2

�

)
), suppose that

Also suppose that

denote the FP-based between and within clustered covariance matrices, respec-
tively. Then,

(85)zci

(
�, �2

�

)
= aci

(
�, �2

�

)
(yci − �ci

(
�, �2

�

)
),

(86)

k∑
c=1

nc∑
i=1

K

k

Nc

nc
zci

(
�, �2

�

)

→p EDs∗

[
k∑

c=1

nc∑
i=1

K

k

Nc

nc
zci

(
�, �2

�

)]
=

K∑
c=1

Nc∑
i=1

zci

(
�, �2

�

)
.

(87)
k∑

c=1

nc∑
i=1

K

k

Nc

nc
aci(⋅)

𝜕𝜇ci

(
�, 𝜎2

𝛾

)

𝜕�⊤
→p

K∑
c=1

Nc∑
i=1

aci(⋅)
𝜕𝜇ci

(
�, 𝜎2

𝛾

)

𝜕�⊤
,

Zc =

Nc∑
i=1

zci(⋅), Z̄c =
Zc

Nc

, Z̄ =
1

K

K∑
c=1

Zc.

(88)

V1⋅

(
�, 𝜎2

𝛾

)
=

1

K

K∑
c=1

{
(Zc − Z̄)(Zc − Z̄)�

}
, and

Vc

(
�, 𝜎2

𝛾

)
=

1

Nc

Nc∑
i=1

zciz
⊤
ci
−

2

Nc(Nc − 1)

Nc∑
i<j

zciz
⊤
cj
,
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which, when sampling fractions are assumed to be negligible, reduces to

Proof Recall from Sect. 5.1 that under the present TSCS setup, the design expecta-
tion has the form EDs∗

(⋅) ≡ Ep1
Ep2c

[(⋅)|p1]. By this token for covariance computa-
tion, we use

More specifically, we need to compute

Now to simplify Ep2c

�
1

nc

∑nc
i=1

zci

�
 in (91) and covp2c

�
1

nc

∑nc
i=1

zci

�
 in (92), we first 

write

where �2, i|c is the random indicator variable defined in (69) [see also Cochran 
(1977, Section 2.9)], with

(89)

cov

[
k∑

c=1

f c(�|yc)
]
= cov

(
k∑

c=1

nc∑
i=1

w(c,i)∈s∗zci(⋅)

)

= K2
(
K − k

K

)
1

k
V1⋅

(
�, �2

�

)
+ (K∕k)

[
K∑
c=1

N2
c

Nc − nc

Nc

1

nc
Vc

(
�, �2

�

)]

= V∗
n

(
�, �2

�

)
, (say) ,

(90)V∗
n

(
�, �2

�

)
=

K2

k
V1⋅

(
�, �2

�

)
+ (K∕k)

[
K∑
c=1

N2
c

nc
Vc

(
�, �2

�

)]
.

covDs∗
(⋅) = covp1 [Ep2c

{(⋅)|p1}] + Ep1
[ covp2c{(⋅)|p1}].

(91)

covp1

[
Ep2c

{(
k∑

c=1

nc∑
i=1

w(c,i)∈s∗zci

)
|p1

}]

= covp1

[
K

k

k∑
c=1

NcEp2c

{
1

nc

nc∑
i=1

zci

}]

(92)

and

Ep1
covp2c

(
k∑

c=1

nc∑
i=1

w(c,i)∈s∗zci

)

= Ep1

[
(K2∕k2)

k∑
c=1

N2
c
covp2c

{
1

nc

nc∑
i=1

zci

}]
.

(93)1

nc

nc∑
i=1

zci =
1

nc

Nc∑
i=1

�2, i|czci,
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Hence,

Now putting (96) in (91) we obtain

by using the first matrix formula from (88). Similarly by using (97) in (92), we 
compute

(94)E[�2,i|c] =
nc

Nc

, var (�2,i|c) =
nc

Nc

(1 −
nc

Nc

),

(95)

cov
(
�2,i|c, �2,j|c

)
= E

(
�2,i|c�2,j|c

)
− E

(
�2,i|c

)
E
(
�2,j|c

)

=
nc(nc − 1)

Nc(Nc − 1)
−

(
nc

Nc

)2

= −
nc

Nc(Nc − 1)
(1 −

nc

Nc

).

(96)Ep2c

{
1

nc

nc∑
i=1

zci

}
=

1

nc

Nc∑
i=1

E[�2,i|c]zci =
1

Nc

Nc∑
i=1

zci,

(97)

covp2c

{
1

nc

nc∑
i=1

zci

}
= covp2c

{
1

nc

Nc∑
i=1

𝛿2,i|czci

}

=
1

n2
c

[
Nc∑
i=1

zciz
⊤
ci
var (𝛿2,i|c) + 2

Nc∑
i<j

zciz
⊤
ci
cov (𝛿2,i|c, 𝛿2,j|c)

]

=

(
1 −

nc

Nc

)
1

nc

[
1

Nc

Nc∑
i=1

zciz
⊤
ci
−

2

Nc(Nc − 1)

Nc∑
i<j

zciz
⊤
cj

]

=

(
1 −

nc

Nc

)
1

nc
Vc

(
�, 𝜎2

𝛾

)

(98)

covp1Ep2c

(
k∑

c=1

nc∑
i=1

w(c,i)∈s∗zci

)
= covp1

[
(K∕k)

k∑
c=1

{
Nc∑
i=1

zci

}]
= K2 covp1

[
1

k

k∑
c=1

Zc

]

= K2
(
K − k

K

)
1

k

1

K

K∑
c=1

{
(Zc − Z̄)(Zc − Z̄)�

}

= K2
(
K − k

K

)
1

k
V1⋅

(
�, 𝜎2

𝛾

)
,
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by using the second matrix formula from (88). The covariance formula in the 
lemma, more specifically in (89), now follows by adding (99) with (98).   ◻

We now provide the main distributional result in Theorem 3 below.

Theorem 3 

where G̃
(
�, 𝜎2

𝛾

)
 is the p × p matrix given by (83) under Lemma  9, and the p × p 

matrix V∗
n

(
�, �2

�

)
 has the formula as in (89)–(90) under Lemma 10.

Proof First by using Lemma 9, more specifically by (83), it follows from (80) that

Next one may write

because f c(�|yc) has the formula given in (79), which by (70) converges to a quan-
tity which is a zero/null vector by (34). This leads to EDs∗

�
1

k

∑k

c=1
f c(��yc)

�
= 0, 

and covDs∗

�
1

k

∑k

c=1
f c(��yc)

�
=

1

k2
V∗
n

�
�, �2

�

�
 by Lemma 10 (see (89)).

Further because y1,… , yc,… , yk involved in 
∑k

c=1
f c(��yc) are independent vec-

tors from k clusters, we assume that the multivariate version of Lindeberg’s condi-
tion holds, that is,

holds, for all 𝜖 > 0, p∗(⋅) being the probability distribution of f c. Then, the Linde-
berg–Feller central limit theorem [Amemiya (1985). Theorem 3.3.6] implies the fol-
lowing convergence in distribution (→d) ∶

(99)

Ep1
covp2c

(
k∑

c=1

nc∑
i=1

w(c,i)∈s∗zci

)
= Ep1

[
(K2∕k2)

k∑
c=1

N2
c
covp2c

{
1

nc

nc∑
i=1

zci

}]

= Ep1

[
(K2∕k2)

k∑
c=1

N2
c

Nc − nc

Nc

1

nc
Vc

(
�, �2

�

)]

= (K∕k)

[
K∑
c=1

N2
c

Nc − nc

Nc

1

nc
Vc

(
�, �2

�

)]
,

(100)limk→K→∞�̂SSDW →d Np(�, G̃
−1
(
�, 𝜎2

𝛾

)
V∗
n

(
�, 𝜎2

𝛾

)
G̃

−1
(
�, 𝜎2

𝛾

)
),

(101)
[
�̂SSDW − �

]
→p −kG̃

−1
(
�, 𝜎2

𝛾

)[
1

k

k∑
c=1

f c(�|yc)
]
.

(102)f̄ n(�|𝜎2
𝛾
) =

1

k

[
k∑

c=1

f c(�|yc)
]
∼
(
0,

1

k2
V∗
n

(
�, 𝜎2

𝛾

))
,

(103)limk→K→∞V
∗−1

n

k∑
c=1

∑
{f �

c
V∗−1

n
f c}>𝜖

f cf
�
c
p∗(f c) = 0
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Ip being the p × p identity matrix. Next use (104) in (101) and obtain

which is the same multivariate normal distribution stated in (100) under the theo-
rem.   ◻

6.2  Consistency of  ̂̌ SSDW

We examine the asymptotic order of convergence of �̂SSDW to � in Theorem 4 below. 
For the purpose, we first notice that �̂SSDW satisfies the convergence relationship 
given in (101). Hence, its convergence to � will depend on two regularity condi-
tions; first condition (C∗

1
) on G̃

(
�, 𝜎2

𝛾

)
 in (101), and the second condition (C∗

2
) will 

be needed on the covariance matrix of 1
k

∑k

c=1
f c(��yc). These conditions are devel-

oped as follows.
C∗
1
. By (38) re-express G̃

(
�, 𝜎2

𝛾

)
 in (101) (see also (83)) as

and suppose that for an N =
∑K

c=1
Nc dependent finite and bounded quantity �N , the 

fixed design covariates {xci, i = 1,… ,Nc;c = 1,… ,K} in the FP (F) satisfy the con-
dition given by

Before we write the second condition, in Lemma 11 below, we provide the model-
assisted formulas for the between and within clustered covariance matrices defined 
in (88) under Lemma 10.

(104)Zn = k[V∗
n
]−

1

2 f̄ n(�) →d Np(0, Ip).

(105)

�̂SSDW − � = G̃
−1
(
�, 𝜎2

𝛾

)
[V∗

n

(
�, 𝜎2

𝛾

)
]
1

2 [V∗
n

(
�, 𝜎2

𝛾

)
]−

1

2 kf̄ n(�|𝜎2
𝛾
)

= G̃
−1
(
�, 𝜎2

𝛾

)
[V∗

n

(
�, 𝜎2

𝛾

)
]
1

2Zn

→d Np(0, G̃
−1
(
�, 𝜎2

𝛾

)
V∗

n

(
�, 𝜎2

𝛾

)
G̃

−1
(
�, 𝜎2

𝛾

)
),

(106)

G̃
(
�, 𝜎2

𝛾

)
=

K∑
c=1

𝜕�⊤
c

(
�, 𝜎2

𝛾

)

𝜕�
�
−1
c,Nc

(
�, 𝜎2

𝛾

)𝜕�c

(
�, 𝜎2

𝛾

)

𝜕�⊤

= (xc1,… , xci,… , xcNc
)V̄c,Nc

(
�, 𝜎2

𝛾

)
�
−1
c,Nc

(
�, 𝜎2

𝛾

)
V̄c,Nc

(
�, 𝜎2

𝛾

)
(xc1,… , xci,… , xcNc

)⊤

= (xc1,… , xci,… , xcNc
)Θc,Nc

(
�, 𝜎2

𝛾

)
(xc1,… , xci,… , xcNc

)⊤

=

K∑
c=1

Nc∑
i=1

𝜃c,ij(⋅)xcix
⊤
cj
∶ p × p,

(107)
1∑K

c=1
Nc

������

K�
c=1

Nc�
i=1

𝜃c,ij(⋅)xcix
⊤
cj

������
≤ 𝓁N .
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Lemma 11 The model assisted between clustered covariance matrix, say 
V(1⋅)M

(
�, �2

�

)
, and the model assisted within cluster covariance matrix, say 

V(c)M

(
�, �2

�

)
, have the formulas

where �c,ii
(
�, �2

�

)
, and �c,ij

(
�, �2

�

)
 for i ≠ j, are given by (23) and (24), respectively, 

and aci(⋅) ∶ p × 1 is given in (35).

Proof Proof is available from Appendix A in the supplementary file.   ◻

Now suppose that the above model-assisted clustered covariance matrices satisfy 
the following regularity condition.

C∗
2
. For finite and bounded quantities m1 and m2, the between and within clustered 

covariance matrices in (88) satisfy

respectively. We use the aforementioned two regularity conditions and prove the 
consistency of �̂SSDW as in the following theorem.

Theorem  4 Suppose that the aforementioned two regularity conditions C∗
1
 [in 

(107)] and C∗
2
 [in (110)] hold. The SSDW regression parameter estimator obtained 

from (65) [see also (78)] then satisfies the order of convergence, as

implying that
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)
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𝛾

)
aci(⋅)a

⊤
cj
(⋅),
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V(c)M

(
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𝛾

)
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(
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𝛾

)
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⊤
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(⋅)

−
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Nc(Nc − 1)

Nc∑
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(
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𝛾

)
aci(⋅)a

⊤
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(⋅),

(110)
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{
K2

N
|V(1⋅)M

(
�, �2

�

)
|
}
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{
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N
|V(c)M

(
�, �2

�

)
|
}

≤ m2,

(111)
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�
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�
N−1

�
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�
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√
N

�
m1

1

k
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1

k

K�
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1
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� 1

2 ⎞⎟⎟⎠
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(1∕

√
N)

�
m1

�2
N

1

k
+
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�2
N

1

k

K�
c=1

1
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� 1

2 ⎞⎟⎟⎠
,

(112)limnc→Nc, k→K→∞(�̂SSDW − �) →p 0,
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because �N , m1, and m2, all are finite and bounded quantities. Hence, �̂SSDW is 
consistent for �.

Proof Consider the first-order Taylor series approximation for �̂SSDW given by (78). 
Notice from Lemma 9 that the derivative matrix within the square bracket in the first 
term of the right hand side of (78) converges in probability to G̃

(
�, 𝜎2

𝛾

)
 which by 

the regularity condition C∗
1
, more specifically by (107) has the order of convergence

Furthermore, for the second term in the right hand side of (78), one writes �∑k

c=1

∑nc
i=1

w(c,i)∈s∗aci(⋅)(yci − �ci

�
�, �2

�

�
)
�
→p 0, in the order of

by the regularity condition C∗
2
 in (108). Finally apply (113) and (114) to (78) and 

obtain the convergence order as in (111) under the theorem.   ◻

6.3  Consistency of �̂
2

,SSDW
 obtained from (75)

Use the first-order Taylor series expansion of the SSDW estimating function (75) for 
�2
�
, and write

(113)|G̃
(
�, 𝜎2

𝛾
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| = |
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| = O(𝓁NN).

(114)
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, by applying Lemma 11 to (89)
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(115)
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where z∗
ci

(
�, �2

�

)
= �ci

(
�, �2

�

)(
y2
ci
− �c,ii

(
�, �2

�

))
, and 

z̃∗c,ij

(
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𝛾

)
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(
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𝛾
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(
�, 𝜎2
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))
, by (75) (see also (61)).

Suppose that the following regularity condition C∗
3
 holds.

C∗
3
. For an N-dependent finite and bounded quantity hN ,

Lemma 12 C∗
3
⇒ S1( in (115)) = O(NhN).

Proof To prove this convergence rate, write 
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, respectively. Apply them to 

(117), and write

by using (116), i.e., C∗
3
. This proves the lemma.   ◻

Next, as far as the response dependent stochastic function S2,y in (115) is con-
cerned, by applying the so-called stochastic convergence principle [e.g., Bishop 
et al. (1975, Theorem 14.4-1)], we can write
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Now because by (76) and (77), one obtains

it then follows by using the F -based moment properties from (23)–(24) that 
EM[Y

2
ci
− �c,ii

(
�, �2

�

)
] = 0, and EM[YciYcj − �c,ij

(
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] = 0, implying by (120) 

that

Hence, by (119), one writes

The purpose of the following lemma is to derive the formula for this variance, i.e., 
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Lemma 13 The model-assisted design (Ds∗ )-based variance of S2,y is given by
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and

as the F -based scalar functions dependent on covariates only.

Proof The formulas for the F  covariate-based scalar functions in the lemma are 
derived in Appendix B in the supplementary file.   ◻

Now suppose that the following regularity condition hold:
C∗
4
. For N =

∑K

c=1
Nc-dependent finite and bounded quantities rN,1, rN,2, rN,3, 

and rN,4,

We can now prove the consistency of �̂�2
𝛾 ,SSDW

 for �2
�
, as in Theorem 5 below.

Theorem 5 For finite and bounded quantities hN and {rN,1, rN,2, rN,3, rN,4} used 
to define the regularity conditions C∗

3
 and C∗

4
, the SSDW estimator �̂�2

𝛾 ,SSDW
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from (75) satisfies the order of convergence, as
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where n =
∑k

c=1
nc. Thus, we obtain

showing that �̂�2
𝛾 ,SSDW

 obtained by solving the survey weighted GQL estimating Eq. 
(75) is consistent for �2

�
.

Proof By (118), S−1
1

≡ O(N−1h−1
N
), where S1 is defined in (115). Next, by (122),

where the variance,var (S2,y), is obtained by putting (124) and (125) into (123) under 
the Lemma 13. The convergence order in (128) then follows from (115).   ◻

7  Concluding remarks

When the two-stage cluster sample s∗ constructed in (6) is treated to be a simple ran-
dom sample-based single-stage cluster sample, it is shown in this paper, specifically 
in Sect. 2, that this mis-specification produces biased and hence inconsistent regres-
sion estimates.

To remedy the abovementioned inference drawback, i.e., to use the TSCS s∗ in 
(6) correctly, it is important to note that this s∗ is chosen from a FP (F), also defined 
in (6), which involves two types of parameters, namely the regression parameter �, 
and the cluster correlation parameter �2

�
. The estimation of � in the presence of �2

�
 is 

new in the F  setup; whereas it is known in an S setup that these parameters can be 
consistently and efficiently estimated by using the GLMM-based GQL estimation 
approach (Sutradhar 2004), for example. This motivated us in this paper to construct 
first two GQL estimating functions for � and �2

�
 using the FP (F)-based hypotheti-

cal data. These two functions were then estimated unbiasedly by using the TSCS 
s∗ from (6), and these correct sample-based estimating equations were referred to 
as the SSDW (survey sample-based doubly weighted) estimating equations. More 
specifically, (F)-based hypothetical estimating equations were provided in Sect. 4, 
and the TSCS s∗-based corresponding SSDW estimating equations were developed 
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in Sect. 5. The resulting estimators were shown, in Sect. 6, to be consistent for their 
respective parameters. Thus, this paper for the first time provided a theoretical foun-
dation for consistent estimation of the parameters using the TSCS data. The results 
developed in this paper, therefore, should be useful for practitioners from statistical 
agencies, for example, dealing with TSCS data of large size.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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