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Abstract
We propose forward variable selection procedures with a stopping rule for feature 
screening in ultra-high-dimensional quantile regression models. For such very large 
models, penalized methods do not work and some preliminary feature screening is 
necessary. We demonstrate the desirable theoretical properties of our forward proce-
dures by taking care of uniformity w.r.t. subsets of covariates properly. The necessity 
of such uniformity is often overlooked in the literature. Our stopping rule suitably 
incorporates the model size at each stage. We also present the results of simulation 
studies and a real data application to show their good finite sample performances.

Keywords  Forward procedure · Check function · Sparsity · Screening consistency · 
Stopping rule

1  Introduction

Suppose that we have n i.i.d. observations of (Y ,X) , (Yi,Xi) , i = 1,… , n , and that this 
(Y ,X) satisfies the following sparse ultra-high-dimensional � th quantile regression 
model :

and

(1)Y = X
T�∗ + � with X = (X1,… ,Xp)

T ∈ ℝ
p
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where X1 ≡ 1 , �i = Yi − X
T
i
�∗,

Linear quantile regression models are very popular since Koenker and Basset (1978) 
(see also Koenker, 2005). We denote the set of relevant covariate indexes by 
M = {j ∈ [p] | �∗

j
≠ 0} and set m = |M| , where [p] ∶= {1,… , p} and |S| is the num-

ber of the elements of S ⊂ [p] . In this paper, we deal with the cases where p can be 
ultra-high-dimensional like p = O(exp(ncp)) as specified later and m is much smaller 
than p with a known upper bound Kn . In such ultra-high-dimensional cases, p can be 
too large for commonly used penalized methods such as the Lasso (cf. Tibshirani, 
1996), the SCAD (cf. Fan and Li, 2001), and the MCP (cf. Zhang, 2010). Besides, in 
some cases, these established penalized methods also miss some of relevant covari-
ates as shown in our simulation studies in Sect. 3.

Therefore, other feasible procedures for feature screening or variable selection 
are necessary and a lot of authors have proposed them. Forward regression has been 
recognized as a helpful tool of feature screening for mean regression models since 
Wang (2009). Recently we have seen some papers on generalized linear models as we 
describe later in this section. See also Chapter 8 of Fan et al. (2020). However, there 
have been only a few papers and no rigorous result on forward feature screening for 
quantile regression models. This is because the randomness of the newly selected vari-
able at each step affects the asymptotics. Therefore, we propose novel model-based 
forward procedures for quantile regression models and deal with the proposed pro-
cedures rigorously from a theoretical point of view by taking the randomness of the 
newly selected variable at each step into account. Hence, this paper fills this gap by 
offering effective forward feature screening procedures for quantile regression models 
with thorough theoretical justification. We also present the results of numerical studies 
showing the usefulness of the proposed procedures and our contributions range from 
theoretical to methodological aspects.

Our forward procedures are greedy ones and may choose some irrelevant covari-
ates. This means we should carry out some statistical inference or apply penalized 
methods like the SCAD after our procedures. As for the penalized procedures like the 
Lasso, the adaptive Lasso, and the SCAD for quantile regression models, see, e.g., 
Belloni and Chernozhukov (2011), Wang et al. (2012), Fan et al. (2014), Zheng et al. 
(2015), Sherwood and Wang (2016), and Honda et al. (2019). See also Bühlmann and 
van de Geer (2011), Hastie et al. (2015), and Fan et al. (2020) for general results and 
recent developments on high-dimensional issues.

There are a lot of feature screening procedures based on marginal models or some 
association measure between the dependent variable and an individual covariate, e.g., Fan 
and Lv (2008), Fan and Song (2010), He et al. (2013), and Wu and Yin (2015). It is well 
known that such procedures may miss some relevant covariates if they are applied only 
once and some authors have proposed these procedure iteratively with no theory. As for 
forward variable selection procedures, there are Wang (2009), Ing and Lai (2011), Luo 

(2)E{��(�)|X} = 0 and �∗ = (�∗
1
,… , �∗

p
)T = arg min

�∈ℝp

E{��(Y − X
T�)},

��(t) = � − I(t ≤ 0), and ��(t) = t{� − I(t ≤ 0)}.
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and Chen (2014), and Cheng et al. (2016), to name a few. Liu et al. (2015) is an excel-
lent review paper of feature screening procedures. Feature screening procedures are also 
called just screening procedures.

In this paper, we consider forward variable selection procedures for ultra-high-dimen-
sional quantile regression models by minimizing Ln(X

T
S
�S) defined in (7) as in Wang 

(2009) and Cheng et al. (2016) for ultra-high-dimensional mean regression models and 
Pijyan et  al. (2020) and Honda and Lin (2021) for ultra-high-dimensional generalized 
linear models. In addition, we propose simpler forward procedures for ultra-high-dimen-
sional quantile regression models by using a sequentially conditional approach, not fully 
minimizing (7), as in Zheng et al. (2020) and Honda and Lin (2021) for ultra-high-dimen-
sional generalized linear models. We examine our forward procedures together with our 
stopping rule in a unified way. There are some other forward quantile regression proce-
dures proposed in Kong et al. (2019) and Tang et al. (2022). Our procedures are based on 
minimizing the loss function and can be easily extended to varying coefficient quantile 
regression models as in Cheng et al. (2016) and Honda and Lin (2021).

When we investigate ultra-high-dimensional forward procedures theoretically, we have 
to take full care of a kind of uniformity w.r.t. S ⊂ [p] . This is because the newly selected 
variable at each step is not determined in advance except for an unimaginably ideal setup. 
Then we describe the properties of our procedures including screening consistency in 
Sect. 2. As far as we know, no other paper on quantile regression models has paid atten-
tion to this kind of uniformity for high-dimensional quantile regression. Stopping rules 
for forward procedures are often constructed from information criteria such as EBIC. See 
Chen and Chen (2008, 2012) about EBIC. Lee et al. (2014) gave some useful related 
results on quantile regression. However, their results do not cover the cases where the 
upper bound Kn increases to infinity. Our proposed stopping rule covers such cases. We 
also present the results of our numerical studies in Sect. 3. Our simulation results dem-
onstrate that our procedures compete well with the other procedures and show the best 
performances in some examples.

This paper is organized as follows. In Sect. 2, we describe the notation, our procedures, 
technical assumptions, and our main results. We present the results of our numerical stud-
ies in Sect. 3. We prove our main theoretical results in Sect. 4. The proofs of technical 
lemmas are relegated to the supplement. Additional numerical results are also given in 
the supplement.

2 � Forward selection procedures

In this subsection, we introduce the notation and give the details of our procedures. Then 
we state technical assumptions and finally present our theoretical results in a unified way.

2.1 � Notation

We can assume that E{Xj} = 0 and E{X2
j
} = 1 for j ≥ 2 without loss of generality. 

Besides, we set pn = p ∨ n and denote the Euclidean norm of a vector v by ‖v‖.
For S ⊂ [p] , we define XS and �S by
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from X = (X1,… ,Xp)
T and � = (�1,… , �p)

T , respectively. Similarly we define XiS 
from Xi = (Xi1,… ,Xip)

T . Recall that X1 ≡ 1.
Next we define the regression coefficient �∗

S
∈ ℝ

|S| for a possibly misspecified 
S ⊂ [p] and h∗

jS
∈ ℝ for j ∈ Sc by

and

respectively. Then we have

and

When M ⊂ S , �∗
S
 is exactly from �∗ as XS from X . However, if M ⊄ S , �∗

S
 is not a 

subvector of �∗ . This is because this model does not include some relevant covari-
ates and is misspecified.

The sample and population objective functions for S ⊂ [p] are defined by

and

respectively. We estimate �∗
S
 and h∗

jS
 by

and

respectively. We repeat that �∗
S
 is not a subvector of �∗ if M ⊄ S.

XS = (Xj)j∈S ∈ ℝ
|S| and �S = (�j)j∈S ∈ ℝ

|S|

(3)�∗
S
= arg min

�S∈ℝ
|S|

E
{
��
(
Y − X

T
S
�S

)}

(4)h∗
jS
= arg min

hjS∈ℝ

E
{
��
(
Y − X

T
S
�∗
S
− XjhjS

)}
,

(5)E
{
XS��

(
Y − X

T
S
�∗
S

)}
= 0

(6)E
{
Xj��

(
Y − X

T
S
�∗
S
− Xjh

∗
jS

)}
= 0.

(7)Ln(X
T
S
�S) =

1

n

n∑
i=1

��
(
Yi − X

T
iS
�S

)

(8)LS(�S) = E
{
Ln(X

T
S
�S)} = E{��

(
Y − X

T
S
�S

)}
,

(9)�̂S = arg min
�S∈ℝ

|S|
Ln
(
X
T
S
�S

)

(10)ĥjS = arg min
hjS∈ℝ

Ln
(
X
T
S
�̂S + XjhjS

)
,
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We examine the properties of �̂S in Lemma 2 in Sect. 4 by taking the uniformity 
w.r.t. S into account. On the other hand, ĥjS is an auxiliary tool and we do not need any 
properties of ĥjS in proving our main theoretical results.

In our procedures, we minimize Ln(X
T
S
�S) in (7) and do not use the sample version 

of (15) in Assumption LB. Therefore, extension to more general models like vary-
ing coefficient models are easy and straightforward. Besides, minimizing Ln(X

T
S
�S) is 

directly linked to our stopping rule and we can present the theoretical results for our 
procedures in a unified way.

2.2 � Forward selection procedures

We propose three procedures. We call the first one the full regression procedure (here-
after called FR) since it fully minimizes Ln(X

T
S
�S) w.r.t. �S at each step. This full 

regression procedure may take a little longer time if p is extremely large. The sec-
ond one minimizes Ln(XS�̂S + XjhjS) w.r.t. hjS at each step and will be suitable for 
extremely large p. We call the second one SC. The third one is a combination of the 
first two procedures, FR and SC, and chooses a set of candidates for full regression by 
using the results for Ln(XS�̂S + XjĥjS) . Our main theoretical results focus on the first 
two procedures. However, the third one enjoys the same properties as the first two as 
we state in Corollary 1 at the end of Sect. 2.3.

Hereafter we assume that we have a given upper bound Kn for the following proce-
dures. As for �n in (11), almost any �n going to ∞ will work from a theoretical point of 
view and we set �n = log log n in the numerical studies. See (21) and (22) after Theo-
rem 2 about the conditions on �n and Kn.

•	 Full Regression Procedure (FR):
	   Take S0 = {1} and begin with k = 1 . We stop the procedure if (11) is not satis-

fied or k = Kn.

(a) Set S = Sk−1 . Then define jk by

(b) Check whether we have significantly improved Ln(X
T
Sk−1

�̂Sk−1
) by adding jk . 

Specifically, if we have with S = Sk−1,

set Sk = Sk−1 ∪ {jk} and go to (a). If not, set M̂ = Sk−1 and end this algorithm. Note 
that the second term on the LHS of (11) is actually given by j = jk defined in (a). 
See Remark 2 at the end of this subsection about the stopping rule defined in (11). 

Next we propose a simpler and faster forward selection procedure by following 
Zheng et al. (2020) and call it the sequentially conditional procedure (hereafter called 
SC) as in Zheng et al. (2020).

jk = arg min
j∈Sc

min
�S∪{j}

Ln
(
X
T
S∪{j}

�S∪{j}

)
.

(11)Ln
(
X
T
S
��Sbig) −min

j∈Sc
min
�S∪{j}

Lnbig(X
T
S∪{j}

�S∪{j}big) > 𝜉n|S| log pn∕n,
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•	 Sequentially Conditional Procedure (SC) : Replace jk in (a) of FR with 

and

in (b) of FR.

In (12), we choose only the best index among Sc and denote it by jk there. As in Lin 
et  al. (2022), we can choose more indices for (b) based on 
minhjS Ln(X

T
S
�̂S + XjhjS) = Ln(X

T
S
�̂S + XjĥjS) for j ∈ Sc . In the next procedure, we 

choose m0 indices for (b) as in (14) by using Ln(X
T
S
�̂S + XjĥjS) for j ∈ Sc . Then we 

minimize Ln(X
T
S∪{j}

�S∪{j}) w.r.t. �S∪{j} for every j in MS defined in (14) and select the 
best j ∈ MS to be added to Sk−1.

We can also say that before full minimization w.r.t. �S∪{j} for all j ∈ Sc , we apply 
some preliminary screening to Sc in FR by using the results of Ln(X

T
S
�̂S + XjĥjS) . 

Namely, we choose MS in (14) from Sc with a kind of conditional SIS procedure as 
in Barut et al. (2016). Then we apply the same procedure as FR with Sc replaced with 
MS . This is our greedier variant of SC (hereafter called gSC). See Remark 1 about 
more details of this procedure.

•	 A greedier variant of SC (gSC): First we fix an positive integer m0 and denote gSC 
with this m0 by gSC(m0 ). Specifically, we construct the index set MS for S by

Then we replace Sc with this MS in (a) and (b) of FR. Note that 
|MS| = m0 . We repeat that Ln(X

T
S
�̂S + XjĥjS) is among the smallest m0 of 

{Ln(X
T
S
�̂S + X

�
ĥ
�S) |� ∈ Sc} if j ∈ MS and that |MS| = m0.

Two remarks are in place. Remark 1 is about our motivation to gSC(m0 ) and m0 , 
and Remark 2 is about our stopping rule in (11).

Remark 1  SC, namely gSC(1), carries out one-dimensional quantile regression 
(p − k − 1) times and only one (k + 1)-dimensional quantile regression for jk as in (13) 
at the kth step. This is desirable in terms of computational time. However, in some 
situations, the second or third best index in (12) can actually be better in terms of full 
(k + 1)-dimensional quantile regression. Or the variable minimizing Ln(X

T
S
�S∪{j}) for 

j ∈ Sc will be very highly ranked in (a) of SC even if it is not jk there and will be found 
in MS for some reasonably large m0 . Thus, gSC(m0 ) serves as a desirable combination 
of FR and SC in terms of computational time and minimization of Ln(X

T
S
�S∪{j}) . As 

we stated, selecting MS from Sc is a kind of conditional SIS procedure as in Barut 
et al. (2016) instead of carrying out full minimization w.r.t. �S∪{j} for all j ∈ Sc . There 

(12)jk = arg min
j∈Sc

min
hjS

Ln
(
X
T
S
�̂S + XjhjS

)

(13)min
j∈Sc

min
�S∪{j}

Ln
(
X
T
S∪{j}

�S∪{j}

)
with min

�S∪{jk}

Ln
(
X
T
S∪{jk}

�S∪{jk}

)

(14)
MS ∶=

{
j ∈ Sc |Ln(XT

S
�̂S + XjĥjS) is among the smallest m0

of all Ln
(
X
T
S
�̂S + X

�
ĥ
�S

)
, � ∈ Sc.

}
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seems to be no optimality theory as to how many covariates should be selected for 
SIS (this is m0 here) and mn = ⌈n∕ log n⌉ is one of widely used practical choices for 
the number of selected covariates. See also a few lines after Steps (1)–(3) on p. 438 
in Kong et al. (2019). The authors of Kong et al. (2019) cited three papers on SIS and 
introduced this choice. In addition, our numerical studies demonstrated that the idea of 
gSC(m0 ) with m0 = mn worked well numerically. From a theoretical point of view, this 
gSC(m0 ) enjoys the same properties as the other two as we prove in Corollary 1 at the 
end of Sect. 2.3.

Remark 2  Note that |S| on the RHS in (11) is the cost for dealing with the uniformity 
w.r.t. S as Kn → ∞ . This kind of uniformity w.r.t. S is necessary to dealing with sequen-
tial procedures rigorously and is often overlooked in the literature. When we consider 
mean regression models, estimators like �̂S are explicitly available and we can establish 
the similar uniformity much more easily without |S| in (11). If the upper bound Kn is 
bounded, we can remove this |S| on the RHS in (11) from a theoretical point of view. In 
our numerical studies, our stopping rule tend to stop a little too early and we used some 
practical remedies to this early termination problem as described in Sect. 3.

2.3 � Assumptions

Next we present our assumptions before we describe our theoretical results. For quan-
tile regression models, explicit expressions of �∗

S
 and �̂S are unavailable and we need 

assumptions like Assumption LB. Hereafter we consider only S satisfying |S| ≤ Kn.
We write C1,C2,… for generic positive constants and their values may vary from 

place to place. Contrary to C1,C2,… , we use D1,D2,… in a similar way with their 
values fixed; namely, their values do not change from place to place. All of these con-
stants are independent of n. We use an ∼ bn for {an} and {bn} when an < C1 < bn and 
bn < C2 < an.

The following assumption is similar to Assumption (E) in Zheng et al. (2020) and 
this is our basic assumption. It stipulates how large the signal is when M ⊄ S . If the 
LHS of (15) is small for any j ∈ Sc , the remaining signal is negligible and there will 
be no need of adding new covariates. In Theorem  1, we relate the LHS of (15) in 
Assumption LB to our Ln(X

T
S
�̂S) , Ln(X

T
S
�̂S + XjĥjS) , and Ln(X

T
S∪{j}

�̂S∪{j}).
Assumption LB   There is a uniform lower bound �LB such that

for some j ∈ M ∩ Sc if M ⊄ S . Note that we allow �LB to decreases to 0 while satis-
fying the conditions in Theorems 1–3.

We prove in Lemma 1 in Sect. 4 that we can improve LS(�
∗
S
) sufficiently by adding 

some j ∈ Sc if M ⊄ S . Then we use the above assumption together with some techni-
cal assumptions given below. This is because theoretical analysis of quantile regres-
sion models needs assumptions on conditional density functions and we also have to 
consider the uniformity in S. In the literature on screening procedures for high-dimen-
sional models, results such as (ii) in Lemma 1 in Sect. 4 are often assumed.

(15)||E
{
Xj𝜓𝜏

(
Y − X

T
S
�∗
S

)}|| > 𝜅LB
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We describe the other technical assumptions for our theoretical results here. We 
decided to present simpler assumptions and avoid complicated assumptions and these 
assumptions can be relaxed to some extent as we make comments in the proofs. Since 
the boundedness of h∗

jS
Xj is necessary in Assumption FY and the proof of Lemma 1, 

we state an assumption on this boundedness before Assumption FY on conditional 
density functions.
Assumption B 

(1)	 |Xj| < XM uniformly in j ∈ [p] for some positive constant XM.
(2)	 |h∗

jS
| < Dh uniformly in S (M ⊄ S) and j ∈ Sc for some positive constant Dh.

(1) of Assumption B can be relaxed a little. See Remark 3 after the proof of Lemma 
1 in the supplement.

Assumption FY is about conditional density functions of Y. This kind of 
assumption is common in the literature on quantile regression. We denote the con-
ditional density function of Y on some random vector W by fY (y|W).
Assumption FY 

(1)	 There are positive constants C1 and C2 and a small positive �1 such that

uniformly in S (M ⊄ S) and j ∈ Sc.
(2)	 There are positive constants C3 and C4 and a small positive �2 such that

uniformly in S (M ⊂ S) . Recall that we have XT
S
�∗
S
= X

T�∗ for such S. This 
assumption holds automatically if we have (17) with S = [p] . As for S such that 
M ⊄ S , inequalities in (17) for such S follow from those in (16).

(3)	 For S (M ⊂ S) , fY (y|XS) is uniformly Lipshitz continuous in y on 
(XT

S
�∗
S
− �2,X

T
S
�∗
S
+ �2) , where �2 is the same as in (17).

We write �m(A) and �M(A) for the minimum and maximum eigenvalues of a 
symmetric matrix A, respectively. The next assumption is closely related to eigen-
values of XSX

T
S
∕n and inevitable to linear regression models.

Assumption X 

(1)	 There are positive constants C1 and C2 such that

uniformly in S.
(2)	 There are positive constants C3 and C4 such that

(16)C1 < fY
(
y|(XT

S
,Xj

)T)
< C2 on

(
X
T
S
�∗
S
− DhXM − 𝛿1,X

T
S
�∗
S
+ DhXM + 𝛿1

)

(17)C3 < fY (y|XS) < C4 on
(
X
T
S
�∗
S
− 𝛿2,X

T
S
�∗
S
+ 𝛿2

)

C1 < 𝜆m
(
E
{
XSX

T
S

}) ≤ 𝜆M
(
E
{
XSX

T
S

})
< C2

C3 < 𝜆m
(
E
{
XSX

T
S
fY
(
X
T
S
�∗
S
||XS

)}) ≤ 𝜆M
(
E
{
XSX

T
S
fY
(
X
T
S
�∗
S
||XS

)})
< C4
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uniformly in S (M ⊂ S).

We can prove by using the standard arguments that the sample versions of 
Assumptions X(1)(2) hold with probability tending to 1 under Assumptions X(1)
(2). Therefore, we also assume that the sample versions hold with probability 
tending to 1 for simplicity of presentation. We know Assumption X(2) follows 
from Assumptions FY(2) and X(1). However, we make Assumption X(2) an inde-
pendent assumption for better understanding of the proof of Theorem 2.

2.4 � Theoretical results

In this subsection, we state Theorems 1–3 which cover both FR and SC in a unified 
way. We deal with the theoretical properties of gSC(m0 ) in Corollary 1 at the end of this 
subsection.

In the literature on non-iterative feature screening, authors usually take an associa-
tion measure between Y and Xj , which we denote it by �(Y ,Xj) here. This �(Y ,Xj) often 
comes from marginal models like SIS. Then those authors make an assumption that 
𝜌(Y ,Xj) > 𝜂n if j ∈ M for some suitable �n . Then they carry out feature screening or 
variable selection by estimating �(Y ,Xj) by some estimator denoted by �n(Y ,Xj) here. 
They establish the screening consistency by proving that 𝜌n(Y ,Xj) > 𝜂n for j ∈ M with 
probability tending to 1. In practical situations, we have no idea about �n and there is no 
optimality theory as to the number of selected covariates. Therefore, practical rules as 
in Remark 1 are often used as to how many covariates are selected for SIS-type feature 
screening. We can say choosing MS from Sc in gSC(m0 ) is a kind of SIS-type feature 
screening.

If M ⊄ S , Theorem 1 relates Assumption LB to a sufficiently large improvement on 
Ln(X

T
S
�̂S) . Since we deal with forward procedures for quantile regression models rigor-

ously, there should be S in (15) of Assumption LB. Some technical assumptions are also 
necessary. Recall that the true coefficient is given by minimizing LS(�S) for M ⊂ S.

Theorem 1  Suppose that Assumptions LB, B(1)(2), FY(1)(2), and X(1) hold. Besides, 
setting S = Sk−1 for k < Kn , we assume that

where DLB , DU1 , and DU2 are given in Lemmas 1, 3, and 4 in Sect. 4, respectively. 
Then with probability tending to 1, we have uniformly in k smaller than Kn,

and

(18)
DLB�

2
LB

2
≥ DU1

(√|S| log pn
n

+
|S|2 log pn

n

)
+ DU2|S|

√
log pn

n
,

Ln
(
X
T
S
�̂S

)
−min

j∈Sc
Ln
(
X
T
S∪{j}

�̂S∪{j}

) ≥ DLB�
2
LB

2

Ln
(
X
T
S
�̂S

)
−min

j∈Sc
Ln
(
X
T
S
�̂S + XjĥjS

) ≥ DLB�
2
LB

2
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with S = Sk−1 if M ⊄ Sk−1.

The condition in (18) looks complicated. However, (19) is a simple sufficient condi-
tion for (18) and it allows ultra-high-dimensional cases.

Since we propose forward procedures, we need a suitable stopping rule to save com-
putational time and avoid large |S|. Even if Kn < cn for some c ∈ (0, 1) , large-dimen-
sional quantile regression may cause some computational problems. As our numerical 
studies demonstrate, we obtain models of reasonable size due to our stopping rule. In 
Theorem 2, we establish the theoretical validity of our stopping rule for FR and SC : 
our procedures do not stop until M ⊂ Sk and our procedures stop once M ⊂ Sk.

Theorem 2  Suppose that Assumptions LB, B(1)(2), FY(1)(2)(3), and X(1)(2) and (18) 
hold. As long as DLB𝜅

2
LB

> 𝜉n|Sk| log pn∕n and |Sk| < Kn , our algorithms FR and SC 
do not stop while M ⊄ Sk with probability tending to 1. Besides, assume

Then once M ⊂ Sk and |Sk| < Kn , our FR and SC procedures stop at this step with 
probability tending to 1.

The first inequality in Theorem 2 is less restrictive than the inequality in (19). The 
inequality in (20) is similar to (19). Assuming that log pn ∼ n�1 and �LB ∼ n−�2 for 
some positive �1 and �2 , we give some upper bounds on Kn and �n here. Considering all 
of (18)–(20) and inequalities in Theorem 2, we obtain this sufficient condition :

and

In our procedures, we choose only one variable at each step and we need an argu-
ment different from many other papers on feature screening to establish screening con-
sistency. Reduction in Ln(X

T
S
�̂S) at each step should be large enough to find all the 

members in M before we reach the upper limit Kn . According to Theorem , both FR 
and SC enjoy the screening consistency if �LB in (15) is not very small. Recall that 
S0 = {1}.

Theorem 3  Suppose that Assumptions LB, B(1)(2), FY(1)(2), and X(1) and (18) hold 
and set

Then M ⊂ Sk for some k < Kn with probability tending to 1 if

(19)Kn

√
log pn

n
= o(�2

LB
).

(20)Kn(log n)
7∕2

√
log pn

n
= o(1).

(21)Kn = o
(
n1∕2−𝛾1∕2−2𝛾2

)
with 1∕2 − 𝛾1∕2 − 2𝛾2 > 0

(22)�nKn = o
(
n1−�1−2�2

)
with �n → ∞.

Δ = LS0

(
�∗
S0

)
− L[p](�

∗)
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Finally we deal with gSC(m0 ). For any m0 , gSC(m0 ) has the same desirable prop-
erties as FR and SC as we show in Corollary 1. We prove Corollary 1 by exploiting 
the fact that gSC(m0 ) is between FR and SC in terms of minimization.

Corollary 1  We have the same results for gSC(m0 ) as in Theorem 2 under the assump-
tions of Theorem 2. We also have the same results for gSC(m0 ) as in Theorem 3 under 
the assumptions of Theorem 3.

3 � Numerical studies

In this section, we evaluate the finite sample performances of the proposed procedures 
through simulation studies and an application to a real gene expression data set. We 
carried out all the computations by using R.

3.1 � Simulation studies

In this subsection, we assess the finite sample performances of gSC(1), gSC(m0 ), and 
FR with or without the stopping rule (11). As mentioned in Remark 1, a larger value 
of m0 will borrow more strength from FR at the cost of additional computation; thus, 
aside from gSC(1), we consider gSC(25) and gSC(mn ) with mn = ⌈n∕ log n⌉ for com-
parison. This mn is commonly used in the literature of feature screening and seems 
moderate under the setting n = 400 (so that mn = 67 ) considered in this subsection.

To terminate the proposed algorithms, we adopt the following rules:
We terminate the algorithm if (11) is not satisfied i times consecutively or the iteration 
number achieves Kn . The former criterion based on (11) is denoted as Ti , and the pro-
posed algorithms using Ti are denoted as gSC(1)+Ti , gSC(25)+Ti , gSC(mn)+Ti , and 
FR+Ti . On the other hand, the algorithms achieving Kn iterations with no stopping 
rule are denoted as just gSC(1), gSC(25), gSC(mn ), and FR. We tried i = 1, 2, and 3 
for Ti . Note that FR+T1 means exactly the full regression procedure in Sect. 2.2, and 
T2 and T3 are our remedies for preventing the early stopping or termination. The same 
kind of practical rule is also adopted in Cheng et al. (2016) for the same purpose.

The proposed procedures are compared to the penalized quantile regression mod-
els with the Lasso penalty (Belloni and Chernozhukov, 2011), the adaptive Lasso 
(ALasso) penalty, and the non-convex SCAD and MCP penalties. Their tuning param-
eter � is chosen by minimizing the BIC for penalized quantile regression (QBIC(� )) 
(Lee et al., 2014)

where �̂� is the penalized quantile regression estimator with respect to � . In Lee et al. 
(2014), the authors suggest using Cn = log pn for the purpose of variable selection 
consistency. Since the goal of this study is to choose a small set of variables with the 

(23)
2Δ

DLB𝜅
2
LB

< Kn − 2.

(24)log
(
Ln
(
X
T �̂�

))
+ |�̂�|Cn log n∕(2n),
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sure screening property, we use Cn = 1∕ log n for Lasso and use Cn = log log pn for 
SCAD, MCP and ALasso. Note that the weight of ALasso is determined by Lasso.

In addition to the penalized regression methods, we also compare with the mar-
ginal screening method using the conditional quantile utility (CQU) of Wu and 
Yin (2015) and the associated forward regression using the partial quantile util-
ity (FR-PQU) of Kong et  al. (2019). The number of variables selected by CQU 
is set as ⌈n∕ log(n)⌉ following the recommendation of the authors, and the number 
of iteration for FR-PQU is set as Kn to make a fair comparison with our proposed 
ones without applying the stopping rule. In addition to FR-PQU, we also choose the 
model with minimum QBIC(S) from the Kn nested models generated by FR-PQU as 
suggested in Section 3.2.1. of Kong et al. (2019). This QBIC (S) is defined by

We take Cn = log log pn so that the criterion QBIC(S) is comparable to QBIC(� ) for 
penalized regression models, and denote such combination as FR-PQU+QBIC. It is 
expected that FR-PQU+QBIC can largely reduce the false positives from FR-PQU 
but remains containing all relevant variables, so we can say that this FR-PQU+QBIC 
is the counterpart of our proposed procedures using the stopping rule (11). Note that 
FR-PQU and FR-PQU+QBIC considered in this subsection correspond to QFR and 
QFR+QBIC3 in Kong et al. (2019), respectively.

For implementation, we use the package quantreg of Koenker (2021) to solve 
(12) and (13) for our proposed methods, and the package rqPen (Sherwood and 
Maidman, 2020) for penalized regression methods.

We deal with three examples, each of which has three different levels of quan-
tile: � = 0.3, 0.5 and 0.7. A total of 100 simulation replications are carried out with 
(n, p) = (400, 1000) , and, taken from n = 400 , the maximum iteration number Kn 
for the forward-type algorithms is set as 30. The detailed settings for the design 
matrix X , the coefficient vector �∗ , and the error distribution of � are listed below.

Example 1   The response Y is obtained by

where � follows the t-distribution with degree of freedom 3 and the parameter � 
measures the heteroscedasticity. The predictor vector (X1,… ,Xp+1) is set as X1 = 1 
and Xj = X̃j for j ≥ 2 , where (X̃2,… , X̃p+1) follows the multivariate t-distribution 
Np(0,Σ) with degree of freedom 3 and Σjk = 0.5|j−k| . The � is set as � = 0.5 so that 
the quantile coefficient of X2 is around -0.292 at � = 0.3 , exactly 0 at � = 0.5 , and 
around 0.292 at � = 0.7 , respectively. Thus, we have M = {7, 13, 16, 21} for � = 0.5 
and M = {2, 7, 13, 16, 21} for � ≠ 0.5 . In this example, we deal with unbounded Xj , 
weak signals on regression coefficients, and the heteroscedastic error terms to check 
the numerical robustness of our procedures.

Example 2   Adopted from Wu and Yin (2015), the response Y is obtained by

log
(
Ln
(
X
T
S
�̂S

))
+ |S|Cn log n∕(2n).

Y = 1 + 1.5X7 + 0.7X13 + X16 − 0.5X21 + (1 + �)X2�,
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where � follows from a Cauchy distribution. The predictor vector (X1,… ,Xp+1) 
is set to X2 and {Xj}j≥2 follow the multivariate normal distribution Np(0,Σ) with 
Σjk = 0.5 for j ≠ k and Σjj = 1 for j, k = 2,… , p + 1 . In this example, we have 
M = {2, 3, 4, 5, 6} for � = 0.5 but M = {2, 3, 4, 5, 6, 21} for � ≠ 0.5.

Example 3   The response Y is obtained from

where � follows the t-distribution with degrees of freedom 3. The predictor vector 
is generated as follows: X1 = 1,X2 = W2 −W3 −W4,X3 = W3 −W4,X4 = 2W4 , and 
Xj = W4 + Uj for j ≥ 5 , where variables in {W2,… ,W4,U5,… ,Up+1} are indepen-
dently generated from N(0, 1). Given this specification, both X3 and X4 are uncorre-
lated with the response Y, but are correlated with irrelevant variables {Xj}j≥5 through 
W4 (with Cor(X3,Xj) = −0.5 and Cor(X4,Xj) = 0.707 ). Both X3 and X4 are called 
marginally weak variables since they are almost impossible to be detected by mar-
ginal screening methods like CQU; in addition, the interference of correlation made 
by irrelevant variables also adds the difficulty in variable screening.

In order to evaluate the performances of each screening procedure, we write M̂
(b)

 
for the index set constructed by one particular method in the bth simulation replica-
tion. Note that we exclude the intercept term {1} from M̂

(b)
 when evaluating its per-

formance. Based on {M̂
(b)
}100
b=1

 and M , we measure the frequency of sure screening 
(Sure), the averaged number of true positives (TP), and the averaged number of false 
positives (FP) defined by

respectively. Additionally, the averaged computing time (Time) in seconds of each 
procedure is also recorded.

The simulation results of Example 1–3 are summarized in Tables 1, 2 and 3, from 
which we make the following observations:

(i) In Tables 1, 2 and 3, gSC(25)+Ti , gSC(mn)+Ti , and FR+Ti with i = 2, 3 give 
quite satisfactory performances in the balance of high Sure and low FP among all the 
proposed methods. In particular, gSC(mn)+T3 and FR+T3 compare favorably to CQU, 
ALasso, SCAD and MCP because gSC(mn)+T3 and FR+T3 have both higher Sure val-
ues and lower FP values. Note that only gSC(mn)+Ti and FR+Ti with i = 2, 3 detect X4 
in Table 3 satisfactorily. Besides, just FR+T3 has perfect Sure values in Table 3.

(ii) FR-PQU+QBIC performs similarly to gSC(mn)+Ti and FR+Ti with i = 2, 3 in 
Table 1. However, its performances deteriorate seriously in Tables 2 and 3. It seems 
that QBIC(S) does not work well in Tables 2 and 3 while our T2 and T3 work reason-
ably well. As for FR-PQU, which has no model selection or stopping rule, it works 
slightly better for X2 in Table  1 and shows similar performances to gSC(mn)+T3 

Y = X2 + X3 + X4 + X5 + X6 + exp(X21)�,

Y = 2X2 + 2X3 + 2X4 + �,

Sure =

100∑
b=1

I
{
M ⊂ �M

(b)}
, TP = 100−1

100∑
b=1

|||M
⋂

�M
(b)||| and FP = 100−1

100∑
b=1

|||M
c
⋂

�M
(b)|||,
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Table 1   Simulation results for Example 1 with (n, p) = (400, 1000)

X
2

X
7

X
13

X
16

X
21

Sure TP FP Time

� = 0.3,M = {2, 7, 13, 16, 21}

 CQU 5 100 100 100 83 5 3.88 63.12 3.82
  Lasso 54 100 100 100 100 54 4.54 49.32 23.62
  ALasso 21 100 99 100 100 21 4.20 0.66 23.95
  SCAD 18 100 99 99 100 18 4.16 0.35 30.80
  MCP 28 100 99 100 99 28 4.26 0.63 31.66
  gSC(1)+T

1
8 100 98 100 97 8 4.03 0.12 4.59

  gSC(1)+T
2

48 100 100 100 100 48 4.48 0.67 5.71
  gSC(1)+T

3
52 100 100 100 100 52 4.52 1.63 6.77

  gSC(1) 58 100 100 100 100 58 4.58 25.42 25.75
  gSC(25)+T

1
8 100 98 100 97 8 4.03 0.12 4.70

  gSC(25)+T
2

52 100 99 100 99 52 4.50 0.65 5.85
  gSC(25)+T

3
58 100 100 100 100 58 4.58 1.57 6.97

 gSC(25) 59 100 100 100 100 59 4.59 25.41 28.36
 gSC(m

n
)+T

1
8 100 98 100 97 8 4.03 0.12 4.93

 gSC(m
n
)+T

2
52 100 99 100 99 52 4.50 0.65 6.11

  gSC(m
n
)+T

3
58 100 100 100 100 58 4.58 1.57 7.33

  gSC(m
n
) 63 100 100 100 100 63 4.63 25.37 36.53

  FR+T
1

8 100 98 100 97 8 4.03 0.12 5.33
  FR+T

2
52 100 99 100 99 52 4.50 0.65 6.77

  FR+T
3

59 100 100 100 100 59 4.59 1.56 8.35
  FR 61 100 100 100 100 61 4.61 25.39 57.43
  FR-PQU+QBIC 63 100 100 100 100 63 4.63 0.63 114.38
  FR-PQU 81 100 100 100 100 81 4.81 25.19 114.38
� = 0.5,M = {7, 13, 16, 21}

  CQU 5 100 100 100 81 81 3.81 63.19 3.84
  Lasso 8 100 100 100 100 100 4.00 34.91 11.94
  ALasso 0 100 100 100 100 100 4.00 0.05 12.21
  SCAD 0 100 100 100 100 100 4.00 0.01 13.65
  MCP 0 100 100 100 100 100 4.00 0.06 15.90
  gSC(1)+T

1
1 100 100 100 99 99 3.99 0.49 5.02

  gSC(1)+T
2

1 100 100 100 100 100 4.00 1.48 6.07
  gSC(1)+T

3
2 100 100 100 100 100 4.00 2.48 7.21

  gSC(1) 6 100 100 100 100 100 4.00 26.00 25.66
  gSC(25)+T

1
2 100 100 100 99 99 3.99 0.49 5.16

  gSC(25)+T
2

3 100 100 100 100 100 4.00 1.48 6.33
  gSC(25)+T

3
5 100 100 100 100 100 4.00 2.48 7.47

  gSC(25) 8 100 100 100 100 100 4.00 26.00 28.55
  gSC(m

n
)+T

1
2 100 100 100 99 99 3.99 0.49 5.42

  gSC(m
n
)+T

2
3 100 100 100 100 100 4.00 1.48 6.63

  gSC(m
n
)+T

3
5 100 100 100 100 100 4.00 2.48 7.82

  gSC(m
n
) 7 100 100 100 100 100 4.00 26.00 37.03
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and FR+T3 in the other results except for X4 in Table 3. Note that FR-PQU fails to 
detect X4 in Table 3 and that it has much higher FP values because it selects exactly 
Kn covariates. The most significant difference between FR-PQU and our { gSC(mn ), 
FR} is whether we carry out full minimization w.r.t. �S∪{j} . We think that the differ-
ences in the results for X4 in Table 3 come from this full minimization w.r.t. �S∪{j} in 
gSC(m

n
) + T

3
 and FR + T

3
 . As we describe in (iii), increasing m0 improves the perfor-

mances of gSC(m0)+Ti significantly. Recall that we carry out full minimization w.r.t. 
�S∪{j} m0 times at each step.

(iii) As for m0 , the performances of gSC(25)+Ti are better than those of gSC(1)+Ti 
in Tables 2 and 3 and almost the same as those of gSC(mn)+Ti and FR+Ti in Tables 1 

Table 1   (continued)

X
2

X
7

X
13

X
16

X
21

Sure TP FP Time

  FR+T
1

2 100 100 100 99 99 3.99 0.49 6.07
  FR+T

2
3 100 100 100 100 100 4.00 1.48 7.69

  FR+T
3

5 100 100 100 100 100 4.00 2.48 9.39
  FR 8 100 100 100 100 100 4.00 26.00 58.49
  FR-PQU+QBIC 2 100 100 100 100 100 4.00 0.27 115.05
  FR-PQU 9 100 100 100 100 100 4.00 26.00 115.05
� = 0.7,M = {2, 7, 13, 16, 21}

  CQU 16 100 100 100 80 13 3.96 63.04 3.76
  Lasso 62 100 100 100 99 62 4.61 50.13 25.88
  ALasso 20 100 100 100 99 20 4.19 0.37 26.20
  SCAD 16 100 100 100 100 16 4.16 0.22 29.91
  MCP 26 100 100 100 100 26 4.26 0.31 33.96
  gSC(1)+T

1
5 100 99 100 98 5 4.02 0.06 4.44

  gSC(1)+T
2

40 100 100 100 100 40 4.40 0.68 5.56
  gSC(1)+T

3
47 100 100 100 100 47 4.47 1.61 6.65

  gSC(1) 61 100 100 100 100 61 4.61 25.39 25.13
 gSC(25)+T

1
6 100 99 100 97 5 4.02 0.06 4.62

  gSC(25)+T
2

48 100 100 100 100 48 4.48 0.60 5.70
  gSC(25)+T

3
55 100 100 100 100 55 4.55 1.53 6.85

  gSC(25) 64 100 100 100 100 64 4.64 25.36 27.75
  gSC(m

n
)+T

1
6 100 99 100 97 5 4.02 0.06 4.82

  gSC(m
n
)+T

2
48 100 100 100 100 48 4.48 0.60 5.99

  gSC(m
n
)+T

3
55 100 100 100 100 55 4.55 1.53 7.14

  gSC(m
n
) 63 100 100 100 100 63 4.63 25.37 35.45

  FR+T
1

6 100 99 100 97 5 4.02 0.06 5.38
  FR+T

2
48 100 100 100 100 48 4.48 0.60 6.92

  FR+T
3

55 100 100 100 100 55 4.55 1.53 8.51
  FR 64 100 100 100 100 64 4.64 25.36 57.64
  FR-PQU+QBIC 67 100 100 100 100 67 4.67 0.63 111.59
  FR-PQU 85 100 100 100 100 85 4.85 25.15 111.59
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Table 2   Simulation results for Example 2 with (n, p) = (400, 1000)

X
2

X
3

X
4

X
5

X
6

X
21

Sure TP FP Time

� = 0.3,M = {2, 3, 4, 5, 6, 21}

  CQU 84 79 81 88 82 1 1 4.15 62.85 3.77
  Lasso 94 92 93 95 93 6 6 4.73 19.43 22.68
  ALasso 72 69 70 76 68 0 0 3.55 0.10 23.32
  SCAD 55 59 54 62 54 2 1 2.86 0.30 49.94
  MCP 55 59 57 60 56 2 2 2.89 0.28 65.04
  gSC(1)+T

1
67 61 63 76 54 1 0 3.22 0.40 3.22

  gSC(1)+T
2

82 75 80 80 79 11 0 4.07 0.55 4.12
  gSC(1)+T

3
86 84 85 88 87 35 20 4.65 0.97 4.99

  gSC(1) 98 97 94 97 98 73 65 5.57 24.43 26.10
  gSC(25)+T

1
70 63 74 74 70 1 0 3.52 0.13 3.35

  gSC(25)+T
2

89 85 87 88 92 7 0 4.48 0.17 4.25
  gSC(25)+T

3
93 92 93 95 96 56 44 5.25 0.40 5.17

  gSC(25) 99 99 98 100 100 80 79 5.76 24.24 27.49
  gSC(m

n
)+T

1
70 63 74 74 70 1 0 3.52 0.13 3.50

  gSC(m
n
)+T

2
89 85 87 88 92 7 0 4.48 0.17 4.46

  gSC(m
n
)+T

3
93 92 93 95 96 56 44 5.25 0.40 5.43

  gSC(m
n
) 99 99 98 100 100 81 80 5.77 24.23 35.49

  FR+T
1

70 63 74 74 70 1 0 3.52 0.13 3.78
 FR+T

2
89 85 87 88 92 7 0 4.48 0.17 4.97

  FR+T
3

93 92 93 95 96 56 44 5.25 0.40 6.18
  FR 99 99 98 100 100 82 80 5.78 24.22 59.49
  FR-PQU+QBIC 54 50 49 58 51 2 1 2.64 0.59 113.97
  FR-PQU 96 97 95 98 98 76 68 5.60 24.40 113.97
� = 0.5,M = {2, 3, 4, 5, 6}

  CQU 87 84 84 89 87 5 48 4.31 62.69 3.37
  Lasso 99 99 99 99 98 0 98 4.94 22.53 16.63
  ALasso 91 89 90 92 90 0 86 4.52 0.01 16.78
  SCAD 84 81 77 83 81 0 68 4.06 0.02 28.15
  MCP 83 83 77 84 83 0 67 4.10 0.03 41.12
  gSC(1)+T

1
83 81 80 85 80 0 12 4.09 0.03 3.70

  gSC(1)+T
2

100 100 100 99 98 0 97 4.97 0.15 4.59
  gSC(1)+T

3
100 100 100 100 100 0 100 5.00 1.12 5.48

  gSC(1) 100 100 100 100 100 5 100 5.00 25.00 25.96
  gSC(25)+T

1
83 75 81 86 77 0 5 4.02 0.03 3.74

  gSC(25)+T
2

100 99 99 100 99 0 97 4.97 0.08 4.64
  gSC(25)+T

3
100 100 100 100 100 0 100 5.00 1.05 5.55

  gSC(25) 100 100 100 100 100 6 100 5.00 25.00 27.09
  gSC(m

n
 )+T

1
83 75 81 86 77 0 5 4.02 0.03 3.90

 gSC(m
n
)+T

2
100 99 99 100 99 0 97 4.97 0.08 4.89

  gSC(m
n
)+T

3
100 100 100 100 100 0 100 5.00 1.05 5.85

  gSC(m
n
) 100 100 100 100 100 5 100 5.00 25.00 31.34



409

1 3

Forward variable selection 

and 2. In Table  3, gSC(mn)+Ti outperforms gSC(25)+Ti and gSC(mn)+T3 works as 
well as FR+T2 and FR+T3 . Increasing m0 improves the performances of gSC(m0 ) 
largely and the commonly used practical rule for m0 , mn = ⌈n∕ log n⌉ , seems to be a 
reasonable choice.

All of (i)–(iii) and the columns of computational time imply that both 
gSC(m

n
) + T

i
 and FR+Ti with i = 2, 3 work well in terms of performances and com-

putational time. Therefore, we recommend them and gSC(mn)+Ti may be suitable 
for extremely p. We present additional simulation results for (n, p) = (400, 4000) in 
the supplement and those results also confirm this conclusion. Our remedies for 
preventing early stopping and the commonly used practical rule for m0 also show 
good finite sample properties in the additional simulation results.

Table 2   (continued)

X
2

X
3

X
4

X
5

X
6

X
21

Sure TP FP Time

  FR+T
1

83 75 81 86 77 0 5 4.02 0.03 4.17
  FR+T

2
100 99 99 100 99 0 97 4.97 0.08 5.37

  FR+T
3

100 100 100 100 100 0 100 5.00 1.05 6.65
  FR 100 100 100 100 100 5 100 5.00 25.00 58.93
  FR-PQU+QBIC 83 78 75 77 76 0 60 3.89 0.35 120.00
  FR-PQU 100 100 100 100 100 4 100 5.00 25.00 120.00
� = 0.7,M = {2, 3, 4, 5, 6, 21}

  CQU 77 63 72 75 72 25 2 3.84 63.16 3.22
  Lasso 96 97 95 96 97 72 71 5.53 34.52 21.82
  ALasso 86 78 82 82 84 12 8 4.24 0.03 22.13
  SCAD 67 61 66 71 65 9 5 3.39 0.37 48.04
  MCP 69 59 65 71 62 7 2 3.33 0.59 63.61
  gSC(1)+T

1
79 63 68 78 71 8 0 3.67 0.32 3.57

  gSC(1)+T
2

92 84 87 93 87 9 0 4.52 0.47 4.46
  gSC(1)+T

3
93 91 94 96 96 34 27 5.04 0.95 5.34

  gSC(1) 98 96 99 99 98 54 52 5.44 24.56 25.58
  gSC(25)+T

1
82 69 73 80 78 7 0 3.89 0.11 3.67

  gSC(25)+T
2

96 89 94 99 96 8 0 4.82 0.18 4.59
  gSC(25)+T

3
98 97 100 100 99 62 59 5.56 0.44 5.51

  gSC(25) 100 99 100 100 100 72 71 5.71 24.29 26.79
  gSC(m

n
)+T

1
82 69 73 80 78 7 0 3.89 0.11 3.84

  gSC(m
n
)+T

2
96 89 94 99 96 8 0 4.82 0.18 4.83

  gSC(m
n
)+T

3
98 97 100 100 99 62 59 5.56 0.44 5.77

  gSC(m
n
) 100 99 100 100 100 73 72 5.72 24.28 34.83

  FR+T
1

82 69 73 80 78 7 0 3.89 0.11 4.18
  FR+T

2
96 89 94 99 96 8 0 4.82 0.18 5.37

  FR+T
3

98 97 100 100 99 62 59 5.56 0.44 6.62
  FR 100 99 100 100 100 72 71 5.71 24.29 57.85
  FR-PQU+QBIC 60 55 59 60 58 6 1 2.98 1.03 110.50
  FR-PQU 96 97 96 97 97 53 50 5.36 24.64 110.50
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Table 3   Simulation results for Example 3 with (n, p) = (400, 1000)

X
2

X
3

X
4

Sure TP FP Time

� = 0.3,M = {2, 3, 4}

  CQU 100 7 1 0 1.08 65.92 3.63
  Lasso 100 100 53 53 2.53 90.64 26.80
  ALasso 100 100 40 40 2.40 11.55 27.78
  SCAD 100 94 36 36 2.30 7.36 64.65
  MCP 100 100 6 6 2.06 10.31 73.44
  gSC(1)+T

1
100 46 4 4 1.50 1.54 2.71

  gSC(1)+T
2

100 99 4 4 2.03 2.01 3.59
  gSC(1)+T

3
100 100 4 4 2.04 3.00 4.47

  gSC(1) 100 100 4 4 2.04 27.96 25.75
  gSC(25)+T

1
100 84 47 47 2.31 1.16 3.16

  gSC(25)+T
2

100 100 57 57 2.57 2.10 4.27
  gSC(25)+T

3
100 100 58 58 2.58 3.12 5.20

  gSC(25) 100 100 58 58 2.58 27.42 26.92
  gSC(m

n
)+T

1
100 85 51 51 2.36 1.15 3.35

  gSC(m
n
)+T

2
100 100 80 80 2.80 2.29 4.90

  gSC(m
n
)+T

3
100 100 85 85 2.85 3.39 5.99

  gSC(m
n
) 100 100 85 85 2.85 27.15 30.25

  FR+T
1

100 85 51 51 2.36 1.15 3.61
  FR+T

2
100 100 85 85 2.85 2.34 5.60

   FR+T
3

100 100 100 100 3.00 3.64 7.48
  FR 100 100 100 100 3.00 27.00 58.88
  FR-PQU+QBIC 100 100 1 1 2.01 12.91 115.77
  FR-PQU 100 100 5 5 2.05 27.95 115.77
� = 0.5,M = {2, 3, 4}

  CQU 100 2 0 0 1.02 65.98 3.37
  Lasso 100 100 88 88 2.88 103.71 27.93
  ALasso 100 100 79 79 2.79 6.64 29.34
  SCAD 100 96 74 74 2.70 3.92 52.88
  MCP 100 100 19 19 2.19 8.86 66.53
  gSC(1)+T

1
100 41 5 5 1.46 1.59 2.73

  gSC(1)+T
2

100 98 5 5 2.03 2.02 3.61
  gSC(1)+T

3
100 100 5 5 2.05 3.00 4.50

  gSC(1) 100 100 5 5 2.05 27.95 25.72
  gSC(25)+T

1
100 86 64 64 2.50 1.14 3.33

  gSC(25)+T
2

100 100 65 65 2.65 2.01 4.27
  gSC(25)+T

3
100 100 69 69 2.69 3.09 5.30

  gSC(25) 100 100 69 69 2.69 27.31 26.81
  gSC(m

n
)+T

1
100 88 68 68 2.56 1.12 3.54

  gSC(m
n
)+T

2
100 100 86 86 2.86 2.18 4.86

  gSC(m
n
)+T

3
100 100 93 93 2.93 3.32 6.02

  gSC(m
n
) 100 100 95 95 2.95 27.05 29.79
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3.2 � Real data analysis

In this subsection, we consider a gene expression dataset reported in Bühlmann et al. 
(2014) to illustrate the performances of the proposed methods. The data contains 71 
independent samples (n = 71) , from which the logarithm of 4088 gene expression lev-
els (p = 4088) and of a response variable riboflavin (vitamin B2) production rate in 
Bacillus subtilis are measured. This dataset is available in R package hdi. Apart from 
the fact that the number of variables greatly exceeds the number of observations, there 
are 5.17% out of 

(
4088

2

)
 pairs whose correlation is greater than 0.7 in absolute value. 

Table 3   (continued)

X
2

X
3

X
4

Sure TP FP Time

  FR+T
1

100 88 68 68 2.56 1.12 3.75
  FR+T

2
100 100 88 88 2.88 2.20 5.39

  FR+T
3

100 100 100 100 3.00 3.44 7.12
  FR 100 100 100 100 3.00 27.00 58.10
  FR-PQU+QBIC 100 100 0 0 2.00 13.25 116.58
  FR-PQU 100 100 8 8 2.08 27.92 116.58
� = 0.7,M = {2, 3, 4}

  CQU 100 4 0 0 1.04 65.96 3.22
  Lasso 100 100 54 54 2.54 91.55 30.34
  ALasso 100 100 38 38 2.38 12.00 31.41
  SCAD 100 96 40 40 2.36 8.71 67.03
  MCP 100 100 6 6 2.06 10.29 77.78
  gSC(1)+T

1
100 38 7 7 1.45 1.62 2.76

  gSC(1)+T
2

100 100 7 7 2.07 2.00 3.66
  gSC(1)+T

3
100 100 7 7 2.07 3.00 4.59

  gSC(1) 100 100 7 7 2.07 27.93 25.49
  gSC(25)+T

1
100 56 34 34 1.90 1.44 3.11

  gSC(25)+T
2

100 100 41 41 2.41 2.07 4.17
  gSC(25)+T

3
100 100 45 45 2.45 3.15 5.19

  gSC(25) 100 100 46 46 2.46 27.54 26.64
  gSC(m

n
)+T

1
100 67 47 47 2.14 1.33 3.36

  gSC(m
n
)+T

2
100 100 62 62 2.62 2.15 4.63

  gSC(m
n
)+T

3
100 100 79 79 2.79 3.49 6.12

  gSC(m
n
) 100 100 81 81 2.81 27.19 29.95

  FR+T
1

100 68 48 48 2.16 1.32 3.61
  FR+T

2
100 100 68 68 2.68 2.20 5.27

  FR+T
3

100 100 100 100 3.00 3.81 7.80
  FR 100 100 100 100 3.00 27.00 57.99
  FR-PQU+QBIC 100 100 0 0 2.00 13.22 119.53
  FR-PQU 100 100 8 8 2.08 27.92 119.53
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Thus, the main objective is now to select predictive genes for different quantiles of the 
riboflavin production rate using the methods considered in Sect. 3.1, where a small 
part out of high-dimensional gene expressions are possibly co-expressed. Before anal-
ysis, all the genes are rescaled to have mean 0 and variance 1.

To evaluate the prediction performance, we randomly partitioned the 71 samples 
into two disjoint sets: the training set of size 50 and the testing set of size 21. Under 
this n << p circumstance, we adopt a two-stage procedure to select relevant genes 
based on the training set: a screening method in {CQU, gSC(1)+T3 , gSC(mn)+T3 , 
FR+T3 , FR-PQU+QBIC} followed by a regularization method in {Lasso, SCAD, 
MCP}. The proposed procedures gSC(1)+T3 , gSC(mn)+T3 , and FR+T3 all have the 
sure screening property under the assumptions of our Theorems 1–3 as shown in 
Sect. 2, but they showed different behaviors in our simulation studies and can have 
their own advantages as screening procedures. Thus, we further consider the method 
called “Hybrid,” which is defined as the union of variable sets selected by gSC(1)+T3 , 
gSC(mn)+T3 , and FR+T3 . We call the screening–regularization pairs CQU+Lasso, 
CQU+SCAD, CQU+MCP, and so on. We also present the results of screening 
only, namely just gSC(1)+T3 , gCS(mn)+T3 , FR+T3 , Hybrid, and FR-PQU+QBIC 
for reference in Table  4. Table  9 in the supplementary material is the counterpart 
of Table 4 for screening methods with no stopping rule or model selection, namely 
gSC(1), gSC(mn ), FR, and FR-PQU. In Table 9, SC(1), gSC(mn ), FR, and FR-PQU 
are followed by regularization methods like Lasso. In addition, we implement Lasso 
and ALasso, where the weight in ALasso is determined by Lasso. The testing set is 
applied to evaluate the prediction error (PE) of the � th conditional quantile, defined by 
(21)−1

∑21

i=1
��(yi − X

T
i
�̂) , where �̂ is the estimator of � obtained from the training set. 

This procedure is repeated for 50 times, and the median of PE as well as the median 
model size (Size) are reported in Table 4.

We first observe that, at each level of �, � ∈ {0.3, 0.5, 0.7} , the proposed method 
in {gSC(1)+T3 , gSC(mn)+T3 , FR+T3 } has lower PE than FR-PQU+QBIC, and FR-
PQU+QBIC have lower PE than CQU, CQU+Lasso, CQU+SCAD, and CQU+MCP. 
The comparatively high PE values for CQU-based methods partly result from the 
requirement of independence assumption, which is not satisfied in this dataset. Sec-
ond, by taking mn = ⌈50∕ log(50)⌉ = 13 , both PE and Size values of gSC(mn)+T3 
is close to that of FR+T3 , and is comparable to that of gSC(1)+T3 : the PE value of 
gSC(mn)+T3 is lower (higher) than that of gSC(1)+T3 at � = 0.3 and 0.7 (at � = 0.5 ). 
We further observe that the results of screening only do not seem to be significantly 
different from those combined with a regularization method in terms of PE and Size. 
Finally, the Hybrid+Lasso method has the smallest PE value at � = 0.3 , the ALasso 
method has the smallest PE value at � = 0.5 , and the Hybrid method has the smallest 
PE value at � = 0.7 . Note that Hybrid has slightly larger Size values but has appar-
ently smaller PE values than those of gSC(1)+T3 , gSC(mn)+T3 , or FR+T3 . It means the 
methods in {gSC(1)+T3 , gSC(mn)+T3 , FR+T3 } yield similar results, and the predictive 
genes missed by one can be selected by the others.

Next, we proceed our analysis by comparing genes selected from methods in 
Table 4 based on the full data ( n = 71 ). Note that the follow-up regularization step 
in {Lasso, SCAD, MCP} to the forward-type screening method in {gSC(1)+T3 , 
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gSC(mn
)+ T3 , FR+T3 , FR-PQU+QBIC} does not remove any gene, so we only pre-

sent their screening results in Table 5. Since the genes YXLC, YXLD and YXLE are 
located in the same operon and they are highly correlated with the gene YXLJ, the 
genes in set {YXLC, YXLD, YXLE, YXLJ} are likely to be co-expressed and involved 
in a similar cellular functions. We denote that the set {YXLC, YXLD, YXLE, YXLJ} 
is selected if at least one gene within this set is selected by a specific method. The 
gene sets {XHLA ,XHLB, XTRA​} and {ARGF,ARGJ} are denoted in a similar man-
ner. We present the correlation in Table 10 in the supplemantary material and the com-
plete result in Table 5, and refer the readers to SubtiWiki at http://www.subtiwiki.uni-
goettingen.de/ for more details about the annotation of genes and operon in Bacillus 
subtilis.

As shown in Table 5, the genes sets {YXLC, YXLD, YXLE, YXLJ} and {XHLA, 
XHLB, XTRA​} are selected by all the methods except for FR-PQU at all considered 

Table 4   Prediction analysis for the gene expression dataset. Values in parentheses are estimated standard 
deviation

Screen Regularization � = 0.3 � = 0.5 � = 0.7

PE Size PE Size PE Size

Lasso ALasso 0.226 (0.060) 4 (1.7) 0.225 (0.047) 4 (1.7) 0.217 (0.056) 4 (1.7)
CQU Lasso 0.278 (0.067) 5 (2.5) 0.264 (0.075) 5 (2.5) 0.243 (0.048) 5 (2.5)

SCAD 0.275 (0.057) 3 (1.6) 0.263 (0.054) 3 (1.6) 0.241 (0.044) 3 (1.6)
MCP 0.281 (0.058) 3 (1.3) 0.259 (0.056) 3 (1.3) 0.241 (0.042) 3 (1.3)

gSC(1)+T
3

– 0.251 (0.049) 4 (0.0) 0.239 (0.054) 4 (0.0) 0.211 (0.038) 4 (0.0)
Lasso 0.249 (0.049) 4 (0.0) 0.238 (0.054) 4 (0.0) 0.211 (0.038) 4 (0.0)
SCAD 0.248 (0.049) 4 (0.0) 0.240 (0.054) 4 (0.1) 0.211 (0.038) 4 (0.1)
MCP 0.249 (0.049) 4 (0.1) 0.240 (0.054) 4 (0.1) 0.211 (0.039) 4 (0.1)

gSC(m
n
)+T

3
– 0.235 (0.067) 4 (0.0) 0.247 (0.052) 4 (0.0) 0.200 (0.048) 4 (0.0)
Lasso 0.237 (0.067) 4 (0.0) 0.244 (0.051) 4 (0.0) 0.202 (0.048) 4 (0.0)
SCAD 0.237 (0.066) 4 (0.0) 0.245 (0.051) 4 (0.1) 0.199 (0.048) 4 (0.1)
MCP 0.238 (0.067) 4 (0.1) 0.245 (0.051) 4 (0.1) 0.200 (0.048) 4 (0.1)

FR+T
3

– 0.238 (0.070) 4 (0.0) 0.247 (0.047) 4 (0.0) 0.202 (0.047) 4 (0.0)
Lasso 0.238 (0.070) 4 (0.1) 0.244 (0.047) 4 (0.1) 0.204 (0.047) 4 (0.1)
SCAD 0.238 (0.070) 4 (0.1) 0.245 (0.047) 4 (0.1) 0.201 (0.047) 4 (0.1)
MCP 0.238 (0.070) 4 (0.1) 0.246 (0.047) 4 (0.1) 0.202 (0.047) 4 (0.1)

Hybrid – 0.218 (0.059) 7 (1.1) 0.237 (0.050) 7 (1.1) 0.187 (0.040) 7 (1.1)
Lasso 0.216 (0.060) 6 (1.2) 0.239 (0.049) 6 (1.2) 0.191 (0.041) 6 (1.2)
SCAD 0.217 (0.058) 5 (1.1) 0.241 (0.047) 5 (1.1) 0.200 (0.041) 5 (1.1)
MCP 0.216 (0.059) 5 (1.1) 0.240 (0.047) 5 (1.1) 0.200 (0.041) 5 (1.1)

FR-
PQU+QBIC

– 0.278 (0.066) 6 (2.7) 0.253 (0.050) 6 (2.7) 0.220 (0.039) 6 (2.7)

Lasso 0.277 (0.066) 6 (2.6) 0.255 (0.050) 6 (2.6) 0.218 (0.039) 6 (2.6)
SCAD 0.276 (0.067) 6 (2.5) 0.254 (0.048) 6 (2.5) 0.217 (0.040) 6 (2.5)
MCP 0.275 (0.065) 6 (2.5) 0.257 (0.050) 6 (2.5) 0.217 (0.040) 6 (2.5)
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Table 5   A comparison of genes selected by various methods

Gene ALasso CQU+SCAD CQU+MCP gSC(1)+T
3

gSC(m)+T
3

FR+T
3

FR-PQU+QBIC

� = 0.3

 ARGJ
√ √

 PHRI_r
√

 YCGN
√

 YHZA
√

 YKOC
√ √

 YTRP
√

 YOAB
√ √ √

 YXLC
√

 YXLD
√ √ √ √

 YXLE
√

YXLJ
 XHLA

√ √ √
 XHLB

√
� = 0.5

 IOLA
√ √ √

 XHLB
√

 XTRA​
√ √ √

 YCGN
√ √

 YDDR
√ √

 YTGB
√ √ √

 YTOQ
√

 YVNB
√

 YWFO
√ √

 YXLD
√ √ √ √ √

 YXLJ
√

� = 0.7

 DPPC
√

 IOLA
√ √ √

 XKDM
√

 XTRA​
√ √ √

 YCGN
√ √ √

 YCKE
√ √

 YDAO
√

 YKUH
√

YTGB
 YXLD

√
 YXLE

√ √
 YXLJ

√ √ √
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levels of � , the gene set {ARGF, ARGJ} is selected by gSC(mn)+T3 and FR+T3 at 
� = 0.3 . The importance of these gene sets have been certified in Bühlmann et  al. 
(2014) and Das et al. (2019) based on mean regression models, where the gene YXLD 
and the gene ARGF have been discovered associated with the riboflavin production 
rate directly, and the gene XHLA has been identified as a stable gene (potentially) 
having a causal effect on the riboflavin production rate. We also observe that the gene 
YCGN is selected by ALasso at � = 0.3 , by CQU_SCAD and CQU_MCP at � = 0.5 , 
and by our methods at � = 0.7 ; the gene IOLA is only identified by our methods at 
� = 0.5 and � = 0.7 . These genes have been overlooked in the literature of using the 
mean regression models to analyze the riboflavin dataset and may deserve more atten-
tion for further study.

4 � Assumptions and proofs

In this section, we prove Theorems 1–3 and Corollary 1. Before the proofs, we present 
technical lemmas for the proofs of Theorems 1–3 and Corollary 1. The technical lem-
mas are verified in the supplement.

Recall that |S| and |S ∪ {j}| are less than or equal to Kn in this section and the sup-
plement, too.

4.1 � Technical lemmas

In this subsection, we state technical lemmas for the proofs of Theorems 1–3 and Cor-
ollary 1. The proofs of these lemmas are given in the supplement.

Lemma 1 relates Assumption LB in Sect.  2 to the improvement in LS(�S) when 
M ⊄ S.

Lemma 1  Suppose that Assumptions LB, B(1)(2), and FY(1) hold. Then there are posi-
tive constants D1 , D2 , and DLB for (i) and (ii).

(i) If M ⊄ S , we have for some j ∈ M ∩ Sc,

(ii) If M ⊄ S , we have for some j ∈ M ∩ Sc,

In Lemma 2, we consider the uniform convergence rate of �̂S in (9). Note that 
|S|1∕2 in (25) is the cost for the uniformity in S. The proof of this lemma is based on 
the standard arguments in the literature on quantile regression. For example, see the 
proofs of Theorem 1 in Fan et al. (2014), Proposition 1 in Honda et al. (2019), and 
Lemma C in Kong et al. (2019). However, none of them deals with the uniformity in S 
for |S| ≤ Kn or gives the rate such as given in (25) for quantile regression models.

|h∗
jS
| ≥ D1�LB.

E
{
��
(
Y − X

T
S
�∗
S

)}
− E

{
��
(
Y − X

T
S
�∗
S
− Xjh

∗
jS

)} ≥ D2|h∗jS|2 ≥ DLB�
2
LB
.
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Lemma 2  Suppose that Assumptions B(1)(2), FY(1)(2), and X(1) hold. Then we have 
for some positive constant DR,

uniformly in S with probability tending to 1.

In Lemma 3, we evaluate the difference between LS(�
∗
S
) and its estimator uniformly 

in S such that M ⊄ S . Lemma 4 deals with a similar problem. The rate in Lemma 4 
dominates that in Lemma 3.

Lemma 3  Suppose that Assumptions B(1)(2) and FY(1) hold. Then we have for some 
positive constant DU1,

uniformly in S (M ⊄ S) with probability tending to 1.

As we mentioned earlier, the properties of ĥjS are not necessary to the proofs of 
Theorems 1–3 and Corollary 1 and we deal with h∗

jS
 in Lemma 4.

Lemma 4  Suppose that Assumptions B(1)(2), FY(1), and X(1) hold. Then we have for 
some positive constant DU2,

uniformly in S (M ⊄ S) and j ∈ Sc with probability tending to 1.

4.2 � Proofs of Theorems 1–3

We prove Theorems 1–3 by using Lemmas 1–4. We put the proof of Theorem 2 after that 
of Theorem 3 because that of Theorem 2 is long and complicated. We verify Theorem 2 
by following the proof of Theorem 2 of Honda et al. (2019) and the proof of Theorem 2 
of Honda and Lin (2021). The former deals with the cases where Kn is bounded and the 
uniformity in S is trivial. The latter is about generalized varying coefficient models, not 
quantile regression models.

Corollary 1 follows from the proofs of Theorems 2 and 3 by just noting two ine-
qualities and the uniformity w.r.t. S. We give the proof at the end of this subsection.

Proof of Theorem 1   Recall that M ⊄ S in this theorem. Then by the definitions of �̂S 
and ĥjS , we have

(25)‖�̂S − �∗
S
‖ ≤ DR�S�1∕2

��S� log pn
n

(26)||Ln
(
X
T
S
�̂S

)
− LS

(
�∗
S

)|| ≤ DU1

(√|S| log pn
n

+
|S|2 log pn

n

)

(27)|Ln(XT
S
�̂S + Xjh

∗
jS
) − LS((�

∗T
S
, h∗

jS
)T )| ≤ DU2|S|

√
log pn

n
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uniformly in j ∈ Sc and S.

By Lemma 4, we have with probability tending to 1,

uniformly in j ∈ Sc and S.
By Lemma 1, we have for some j ∈ M ∩ Sc,

With probability tending to 1, we have for that j,

We used (28)–(30) and Lemma 3 here.
By combining (31) and the assumption in (18), we obtain

Hence, the proof is complete. 	�  ◻

Proof of Theorem 3   Notice that if k ≤ Kn and M ⊄ Sk , we have by Lemma 3,

and

By (33) and (34), we have

if k ≤ Kn and M ⊄ Sk . If k = Kn , this contradicts the assumption in (23). Then 
M ⊂ Sl for some l < Kn.

Hence, the proof is complete. 	�  ◻

(28)Ln
(
X
T
S∪{j}

�̂S∪{j}

) ≤ Ln
(
X
T
S
�̂S + XjĥjS

) ≤ Ln
(
X
T
S
�̂S + Xjh

∗
jS

)

(29)Ln
(
X
T
S
�̂S + Xjh

∗
jS

) ≤ LS∪{j}
((
�∗T
S
, h∗

jS

)T)
+ DU2|S|

√
log pn

n

(30)LS∪{j}
((
�∗T
S
, h∗

jS

)T) ≤ LS
(
�∗
S

)
− DLB�

2
LB
.

(31)

Ln
(
X
T
S∪{j}

�̂S∪{j}

) ≤ Ln
(
X
T
S
�̂S + XjĥjS

) ≤ LS
(
�∗
S

)
− DLB�

2
LB

+ DU2|S|
√

log pn

n

≤ Ln
(
X
T
S
�̂S

)
− DLB�

2
LB

+ DU2|S|
√

log pn

n

+ DU1

(√|S| log pn
n

+
|S|2 logn

n

)
.

(32)Ln
(
X
T
S∪{j}

�̂S∪{j}

) ≤ Ln
(
X
T
S
�̂S + XjĥjS

) ≤ Ln
(
X
T
S
�̂S

)
−

DLB�
2
LB

2
.

(33)LSk

(
�∗
Sk

)
−

DLB�
2
LB

2
≤ Ln

(
X
T
Sk
�̂Sk

) ≤ Ln
(
X
T
S0
�̂S0

) ≤ LS0

(
�∗
S0

)
+

DLB�
2
LB

2

(34)Ln(X
T
S0
�̂S0

) − Ln(X
T
Sk
�̂Sk

) ≥ k
DLB�

2
LB

2
.

(35)(k − 2)
DLB�

2
LB

2
≤ LS0

(
�∗
S0

)
− LSk

(
�∗
Sk

) ≤ Δ
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Proof of Theorem  2  The result for Sk such that M ⊄ Sk follows from Theorem  1 
straightforwardly.

We concentrate on the cases where M ⊂ Sk and we prove that our algorithms stop 
once M ⊂ Sk . The proof consists of two steps.

Hereafter we drop the subscript k since we have to consider all the S containing 
M . Then �∗

S
 is exactly a subvector of �∗ and we have for such S,

Step 1 First we derive an explicit expression of Ln(X
T
S
�̂S) − Ln(X

T
S
�∗
S
) in (50) and 

we prove the desired result for S such that M ⊂ S by exploiting the expression.
To get the expression in (50), we closely examine

where G(⋅) is clearly defined, E�{⋅} is the conditional expectation of {�1,… , �n} 
on {X1,… ,Xn} , and ‖�S − �∗

S
‖ ≤ √

�n�S� log pn∕n . We specify �n going to ∞ later 
in this proof. Note that 

√
�n�S� log pn∕n is large enough here although this can be 

smaller than the rate in Lemma 2. Notice that

where bi = X
T
iS
(�S − �∗

S
) and

We evaluate n−1
∑n

i=1
G(XT

iS
�S) by repeated use of Bernstein’s inequality. Before we 

apply the inequality, note

and

(36)X
T
S
�∗
S
= X

T�∗ and � = Y − X
T
S
�∗
S
.

(37)

1

n

n∑
i=1

G
(
X
T
iS
�S

)
∶= Ln

(
X
T
S
�S

)
− Ln

(
X
T
S
�∗
S

)
+

1

n

n∑
i=1

X
T
iS

(
�S − �∗

S

)
{� − I(�i ≤ 0)}
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where C1 , C2 , and C3 are suitable positive constants. We used Assumption FY(2) in 
evaluating E�[{G(X

T
iS
�S)}

2] and Assumption X(1) in evaluating 
∑n

i=1
�bi�3.

By (40), (41), and Bernstein’s inequality (Lemma 2.2.9 of van der Vaart and 
Wellner (1996)), we have for any fixed �S satisfying ‖�S − �∗

S
‖ ≤ √

�n�S� log pn∕n,

where P�(⋅) is the conditional probability of {�1,… , �n} on {X1,… ,Xn} and we 
specify �n going to ∞ later in the proof.

Recall that in Assumption X(1), we also assume that the sample version holds 
uniformly with probability tending to 1. This means that (42) is true when the sam-
ple version of Assumption X(1) holds and that we have (42) uniformly with prob-
ability tending to 1.

To establish the uniformity in �S and S, we exploit the small-block argument and 
divide the region {�S ∈ ℝ

�S� � ‖�S − �∗
S
‖ ≤ √

�n�S� log pn∕n} into sufficient small 
blocks. Then the number of such small blocks are less than nDSB|S| for some large 
fixed DSB . If

we can establish a uniform evaluation of (37) in both S and �S . A sufficient condi-
tion of (43) is

This is satisfied with �n = �n = log n due to (20). Hereafter we take �n = �n = log n.
Hence, we have uniformly in both �S and S,

We calculate the conditional expectation in (45) by employing Knight’s identity (see 
(59) in the supplement) with u = Yi − X

T
iS
�∗
S
 and v = X

T
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S
) there. Then by 

following the standard argument in the quantile regression literature and also using 
Assumption FY(2)(3), we obtain uniformly in both �S and S,
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where

Define aS by

By applying Bernstein’s inequality componentwise, we have

uniformly in S. We define �S by

and consider �S satisfying

Note that �S = 0 satisfies (48) due to (47) and Assumption X(2).
We put �S + �S and (46) into (45) and then we obtain uniformly in S,

By the optimality of �̂S , the convexity of Ln(X
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Step 2 By exploiting the expression in (50), we can proceed as in Step 3 of the proof 
of Theorem 2 in Honda and Lin (2021) although the paper deals with generalized 
varying coefficient models. We borrow the notation from the paper.

Hereafter we write S+ = S ∪ {j} for S and j such that M ⊂ S , |S| < Kn , and j ∉ S . 
Then we evaluate Ln(�̂S+

) − Ln(�̂S) by using (50). Here note that 
Ln(X

T
S+
�∗
S+
) = Ln(X

T
S
�∗
S
) since M ⊂ S.

We write

Note that �̂jj ∈ ℝ and �̂T

jS
∈ ℝ

|S|.
The expression in (50) shows we have only to closely examine

where �̂jj

S
= (�̂jj − �̂jSΣ̂

−1
S
�̂
T

jS
)−1.

If we show that the RHS of (52) has the stochastic order of |S|Op(n
−1 log pn) uni-

formly in S and j, Theorem 2 for Sk containing M follows from this fact and (50). This is 
because the RHS of (11) is stochastically larger than (52).

Assumption X(2) implies that

uniformly in j and S.
Besides, we recall that a2

j
= Op(n

−1 log pn) uniformly in j as in (47). This and (53) 
imply that the third term of the RHS of (52) has the stochastic order of Op(n

−1 log pn) 
uniformly in S and j.

Next we deal with the first and second terms of the RHS of (52). Then we should 
evaluate �̂jSΣ̂

−1
S
aS , which is rewritten as

Since by Assumption X(1)(2) we have for some positive constants C4 , C5 , and C6,

and

uniformly in i, j, and S with probability tending to 1, we employ the standard argu-
ment based on Bernstein’s inequality conditionally on �̂jSΣ̂
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uniformly in m, S, and j.
Note that |S| in Op({(nL)

−1|S| log pn}1∕2) above is necessary because �̂jSΣ̂
−1
S
XiS 

depends on i, j, and S and we have to take into account all S and j satisfying M ⊂ S , 
|S| < Kn , and j ∉ S . The same kind of argument is also given in the proof of Lemma 2 
in the supplement.

It follows from (55) that the first and second terms of the RHS of (52) has the sto-
chastic order of |S|Op(n

−1 log pn) uniformly in S and j.
Hence, the proof of Theorem 2 is complete. 	�  ◻

Proof of Corollary 1   If S = Sk−1 is common to FR, SC, and gSC(m0 ), we have at the 
kth step :

where jk in (57) is from SC. Recall the definition of MS in (14) and the uniformity 
w.r.t. S in the proofs of the lemmas and theorems.

In the proof of Theorem 2, we have proved that if S ⊂ M , we have uniformly in 
j ∈ Sc,

This and (56) imply the latter half of Theorem 2.
In the proof of Theorem 1, we have proved that if S ⊄ M,

for SC. This and (57) imply the former half of Theorem 2 and Theorem 3.
Hence, the proof of Corollary 1 is complete. 	�  ◻

5 � Conclusions

In this paper, we proposed three forward variable selection procedures with a stop-
ping rule for ultra-high-dimensional sparse quantile regression models. We estab-
lished their desirable properties such as screening consistency by taking care of 
necessary uniformity w.r.t. covariate index sets in Sect. 2. Such uniformity has been 
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often overlooked in the literature on forward variable selection procedures for high-
dimensional models. As we noted before, our procedures are greedy ones and statisti-
cal inference or some other procedures should follow our procedures.

We also carried out some numerical studies in Sect. 3. In Sect. 3.1, we compared 
our procedures with the Lasso, adaptive Lasso, SCAD, and MCP and some other pro-
cedures. Our procedures worked very well compared to all the other procedures as 
variable selection and screening procedures in our three examples. In Sect.  3.2, we 
applied our procedures and the other procedures to the riboflavin data set in Bühlmann 
et al. (2014).

In conclusion, we recommend gSC(mn)+Ti and FR+Ti with i = 2, 3 . As our numer-
ical studies also show, there seems to be no perfect variable selection procedure in 
high-dimensional setups. Researchers should try several procedures for ultra-high-
dimensional sparse quantile regression model including ours if necessary.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00849-z.
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