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Section 1 contains details of simulation studies and the application to the Enran email

data. The proofs of Lemmas 4, 5 and 6 are given in Sections 2, 3 and 4, respectively.

Sections 5, 6 and 7 contain the proofs of Lemmas 7, 8 and 9, respectively. We present the

proofs of Theorems 2 and 3 in Sections 8 and 9, respectively. The proof of equation (15)

is in Section 10. Section 11 contains the detailed simplification calculations of the bias

term B∗ in equation (19). The following inequalities in the main text are restated here,

which will be used in the proofs repeatedly.

bn0 ≤ min
i,j
|µ′(πij)| ≤ max

i,j
|µ′(πij)| ≤ bn1, (1a)

max
i,j
|µ′′(πij)| ≤ bn2, (1b)

max
i,j
|µ′′′(πij)| ≤ bn3. (1c)

1 Simulation studies

We set the parameter values to be a linear form, i.e., α∗i = (i − 1)L/(n − 1) for i =

1, . . . , n. We considered four different values for L as L ∈ {0, log(log n), (log n)1/2, log n}.
By allowing α∗ to grow with n, we intended to assess the asymptotic properties under
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different asymptotic regimes. Each node had two covariates Xi1 and Xi2. Specifically,

Xi1 took values positive one or negative one with equal probability and Xi2 came from

a Beta(2, 2) distribution. All covariates were independently generated. The edge-level

covariate zij between nodes i and j took the form: zij = (xi1 ∗ xj1, |xi2 − xj2|)>. For the

homophily parameter, we set γ∗ = (0.5, 1)>. Thus, the homophily effect of the network is

determined by a weighted sum of the similarity measures of the two covariates between

two nodes.

By Corollary 5, given any pair (i, j), ξ̂i,j = [β̂i − β̂j − (β∗i − β∗j )]/(1/v̂i,i + 1/v̂j,j)
1/2

converges in distribution to the standard normality, where v̂i,i is the estimate of vi,i by

replacing (β∗, γ∗) with (β̂, γ̂). Therefore, we assessed the asymptotic normality of ξ̂i,j using

the quantile-quantile (QQ) plot. Further, we also recorded the coverage probability of the

95% confidence interval and the length of the confidence interval. The coverage probability

and the length of the confidence interval of γ̂ were also reported. Each simulation was

repeated 10, 000 times.

We did simulations with network sizes n = 100 and n = 200 and found that the QQ-

plots for these two network sizes were similar. Therefore, we only show the QQ-plots for

n = 100 to save space. Further, the QQ-plots for L = 0 and L = log(log n) are similar.

Also, for L = (log n)1/2 and L = log n, they are similar. Therefore we only show those for

L = log(log n) and L = log n in Figure 1. In this figure, the horizontal and vertical axes

are the theoretical and empirical quantiles, respectively, and the straight lines correspond

to the reference line y = x. In Figure 1, when L = log(log n), the empirical quantiles

coincide well with the theoretical ones. When L = (log n)1/2, the empirical quantiles have

a little derivation from the theoretical ones in the upper tail of the right bottom subgraph.

These figures show that there may be large space for improvement on the growing rate of

‖β‖∞ in the conditions in Corollary 5.

Table 4 reports the coverage probability of the 95% confidence interval for βi − βj

and the length of the confidence interval. As we can see, the length of the confidence

interval decreases as n increases, which qualitatively agrees with the theory. The coverage

frequencies are all close to the nominal level 95%. On the other hand, the length of the

confidence interval decreases as L increases. It seems a little unreasonable. Actually, the

theoretical length of the 95% confidence interval is (1/vii + vjj)
1/2 multiple by a constant

factor. Since vii is a sum of a set of exponential items, it becomes quickly larger as L

increases. As a result, the length of confidence interval decreases as long as the estimates

are close to the true values. The simulated coverage probability results shows that the

estimates are very good. So, this phenomenon that the length of confidence interval

decreases in Table 4, also agrees with the theory.

Table 5 reports the coverage frequencies for the estimate γ̂ and bias corrected estimate

γ̂bc at the nominal level 95%, and the standard error. As we can see, the differences
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Figure 1: The QQ plots of ξ̂i,j (n=100).

Table 4: The reported values are the coverage frequency (×100%) for βi − βj for a pair
(i, j) / the length of the confidence interval(×10).

n (i, j) L = 0 L = log(log n) L = (log n)1/2 L = log n
100 (1, 2) 94.56/4.60 95.08/2.97 94.80/2.42 94.69/0.97

(50, 51) 94.72/4.60 94.93/2.04 94.89/1.43 94.83/0.31
(99, 100) 95.12/4.60 94.41/1.40 94.38/0.85 94.13/0.10

200 (1, 2) 95.20/3.24 94.79/2.01 94.76/1.63 95.09/0.52
(100, 101) 95.03/3.24 94.75/1.33 94.91/0.92 95.47/0.14
(199, 200) 94.58/3.24 95.05/0.88 94.63/0.52 93.90/0.04

between the coverage frequencies with uncorrected estimates and bias corrected estimates

are very small. All coverage frequencies are very close to the nominal level. The bias

under the case of the Poisson distribution is very small in our simulation design.

Table 5: The reported values are the coverage frequency (×100%) for γi for i / length
(×10) of confidence interval (γ∗ = (0.5, 1)>).

n γ̂ L = 0 L = log(log n) L = (log n)1/2 L = log n
100 γ̂1 95.13/0.52 95.25/0.22 94.92/0.15 95.04/0.02

γ̂bc,1 95.11/0.52 95.25/0.22 94.92/0.15 95.04/0.02
γ̂2 94.98/3.08 95.28/1.31 95.00/0.88 95.06/0.15
γ̂bc,2 94.93/3.08 95.29/1.31 95.02/0.88 95.06/0.15

200 γ̂1 94.87/0.26 95.49/0.10 95.07/0.07 94.92/0.007
γ̂bc,1 94.87/0.26 95.47/0.10 95.08/0.07 94.91/0.007
γ̂2 95.31/1.52 95.12/0.59 94.97/0.39 94.49/0.041
γ̂bc,2 95.31/1.52 95.12/0.59 94.95/0.39 94.49/0.041
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1.1 A real data example

We use the Enron email dataset as an example analysis [Cohen (2004)], available from

https://www.cs.cmu.edu/~enron/. The Enron email data was acquired and made pub-

lic by the Federal Energy Regulatory Commission during its investigation into fraudulent

accounting practices. The raw data is messy and needs to be cleaned before any analysis

is conducted. Zhou et al. (2007) applied data cleaning strategies to compile the Enron

email dataset. We use their cleaned data for the subsequent analysis. The resulting data

comprises 21, 635 messages sent between 156 employees with their covarites information.

There are 6, 650 messages having more than one recipient across their ‘To’, ‘CC’ and

‘BCC’ fields, with a few messages having more than 50 recipients. For our analysis, we

exclude messages with more than ten recipients, which is a subjectively chosen cut-off

that avoids emails sent en masse to large groups. Each employee has three categorical

variables: departments of these employees (Trading, Legal, Other), the genders (Male,

Female) and seniorities (Senior, Junior). Employees are labelled from 1 to 156. The 3-

dimensional covariate vector zij of edge (i, j) is formed by using a homophilic matching

function between these 3 covariates of two employees i and j, i.e., if xik and xjk are equal,

then zijk = 1; otherwise zijk = 0.

For our analysis, we removed the employees “32” and “37” with zero degrees, where

the estimators of the corresponding node parameters do not exist. This leaves a connected

network with 154 nodes. The minimum, 1/4 quantile, median, 3/4 quantile and maximum

values of d are 1, 95, 220, 631 and 4637, respectively. It exhibits a strong degree hetero-

geneity. The estimators of αi with their estimated standard errors are given in Table 6.

The estimates of degree parameters vary widely: from the minimum −4.36 to maximum

2.97. We then test three null hypotheses β2 = β3, β76 = β77 and β151 = β154, using the

homogeneity test statistics ξ̂i,j = |β̂i− β̂j|/(1/v̂i,i + 1/v̂j,j)
1/2. The obtained p-values turn

out to be 1.7 × 10−24, 1.8 × 10−4 and 6.2 × 10−23, respectively, confirming the need to

assign one parameter to each node to characterize the heterogeneity of degrees.

The estimated covariate effects, their bias corrected estimates, their standard errors,

and their p-values under the null of having no effects are reported in Table 7. From this

table, we can see that the estimates and bias corrected estimates are almost the same,

indicating that the bias effect is very small in the Poisson model and it corroborates the

findings of simulations. The variables “department” and “seniority” are significant while

“gender” is not significant. This indicates that the gender has no significant influence

on the formation of organizational emails. The coefficient of variable “department” is

positive, implying that a common value increases the probability of two employees in the

same department to have more email connections. On the other hand, the coefficient of

variable “seniority” is negative, indicating that two employees in the same seniority have

less emails than those with unequal seniorities. This makes sense intuitively.
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Table 6: The estimates of βi and their standard errors in the Enron email dataset.
Node di β̂i σ̂i Node di β̂i σ̂i Node di β̂i σ̂i Node di β̂i σ̂i

1 723 1.03 0.37 41 309 0.15 0.57 79 309 −0.46 0.79 117 1176 1.49 0.29
2 67 −1.36 1.22 42 281 0.08 0.6 80 281 −0.08 0.65 118 398 0.4 0.5
3 275 0.03 0.6 43 690 0.96 0.38 81 690 0.32 0.53 119 369 0.35 0.52
4 1202 1.54 0.29 44 234 −0.13 0.65 82 234 0.32 0.52 120 2673 2.33 0.19
5 678 0.94 0.38 45 704 1 0.38 83 704 −1.45 1.27 121 571 0.75 0.42
6 249 −0.07 0.63 46 952 1.27 0.32 84 952 −0.74 0.89 122 2174 2.15 0.21
7 375 0.35 0.52 47 998 1.38 0.32 85 998 0.72 0.43 123 343 0.26 0.54
8 40 −1.88 1.58 48 686 0.99 0.38 86 686 −2.04 1.71 124 115 −0.8 0.93
9 428 0.48 0.48 49 1224 1.54 0.29 87 1224 −0.31 0.71 125 195 −0.29 0.72
10 95 −1.01 1.03 50 141 −0.63 0.84 88 141 −1.29 1.16 126 102 −0.96 0.99
11 231 −0.12 0.66 51 101 −0.95 1 89 101 −1.31 1.17 127 180 −0.4 0.75
12 31 −2.16 1.8 52 1 −5.57 10 90 1 0.52 0.48 128 67 −1.39 1.22
13 85 −1.15 1.08 53 1138 1.46 0.3 91 1138 1.17 0.35 129 185 −0.38 0.74
14 53 −1.62 1.37 54 66 −1.41 1.23 92 66 1.59 0.28 130 1798 1.96 0.24
15 182 −0.36 0.74 55 155 −0.5 0.8 93 155 −1.02 1.03 131 3157 2.5 0.18
16 26 −2.34 1.96 56 266 0.02 0.61 94 266 −1.49 1.3 132 98 −0.96 1.01
17 702 0.98 0.38 57 555 0.76 0.42 95 555 0.94 0.38 133 57 −1.5 1.32
18 182 −0.36 0.74 58 423 0.47 0.49 96 423 −2.22 1.86 134 106 −0.93 0.97
19 122 −0.78 0.91 59 3715 2.69 0.16 97 3715 −1.88 1.58 135 182 −0.39 0.74
20 4637 2.97 0.15 60 298 0.14 0.58 98 298 0.79 0.41 136 79 −1.19 1.13
21 14 −2.96 2.67 61 1832 1.97 0.23 99 1832 −1.96 1.62 137 676 0.96 0.38
22 44 −1.8 1.51 62 65 −1.41 1.24 100 65 0.31 0.53 138 2340 2.23 0.21
23 135 −0.69 0.86 63 419 0.46 0.49 101 419 −0.19 0.67 139 3 −4.5 5.77
24 826 1.15 0.35 64 68 −1.37 1.21 102 68 −0.34 0.72 140 208 −0.2 0.69
25 135 −0.64 0.86 65 1159 1.48 0.29 103 1159 −1.48 1.3 141 56 −1.56 1.34
26 668 0.95 0.39 66 170 −0.45 0.77 104 170 −1.04 1.03 142 241 −0.08 0.64
27 644 0.88 0.39 67 815 1.13 0.35 105 815 −1.65 1.39 143 645 0.88 0.39
28 20 −2.59 2.24 68 112 −0.87 0.94 106 112 −1.3 1.19 144 540 0.71 0.43
29 190 −0.34 0.73 69 707 0.99 0.38 107 707 −1.38 1.21 145 1080 1.43 0.3
30 99 −0.97 1.01 70 33 −2.09 1.74 108 33 −1.32 1.18 146 67 −1.39 1.22
31 60 −1.47 1.29 71 136 −0.68 0.86 109 136 1.12 0.35 147 440 0.51 0.48
33 241 −0.11 0.64 72 788 1.12 0.36 110 788 −0.95 0.99 148 165 −0.49 0.78
34 996 1.35 0.32 73 179 −0.41 0.75 111 179 −1.07 1.07 149 588 0.8 0.41
35 96 −0.98 1.02 74 720 1 0.37 112 720 −0.03 0.62 150 38 −1.95 1.62
36 97 −1.02 1.02 75 313 0.15 0.57 113 313 1.21 0.33 151 1330 1.65 0.27
38 564 0.74 0.42 76 184 −0.38 0.74 114 184 −0.04 0.62 152 120 −0.81 0.91
39 711 0.98 0.38 77 358 0.32 0.53 115 358 −0.06 0.65 153 219 −0.21 0.68
40 202 −0.29 0.7 78 137 −0.64 0.85 116 137 −0.94 0.99 154 298 0.1 0.58
155 82 −1.17 1.1 156 480 0.6 0.46

2 Proof of Lemma 4

Proof of Lemma 4. Recall that πij = βi + βj + z>ijγ and

Fi(β, γ) =
∑
j 6=i

µij(βi + βj + z>ijγ)− di, i = 1, . . . , n.

The Jacobian matrix F ′γ(β) of Fγ(β) can be calculated as follows. By finding the partial

derivative of Fi with respect to β, for i 6= j we have

∂Fi(β, γ)

∂βj
= µ′ij(πij),

∂Fi(β, γ)

∂βi
=
∑
j 6=i

µ′ij(πij),

∂2Fi(β, γ)

∂βi∂βj
= µ′′ij(πij),

∂2Fi(β, γ)

∂β2
i

=
∑
j 6=i

µ′′ij(πij).
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Table 7: The estimators of γi, the corresponding bias corrected estimators, the standard
errors, and the p-values under the null γi = 0 (i = 1, 2, 3) for Enron email data.

Covariate γ̂i γ̂bc,i σ̂i p-value
Department 0.167 0.167 1.13 < 0.001

Gender −0.006 −0.006 1.27 0.62
Seniority −0.203 −0.203 1.09 < 0.001

When β ∈ B(β∗, εn1) and γ ∈ B(γ∗, εn2), by inequality (1b), we have∣∣∣∣∂2Fi(β, γ)

∂βi∂βj

∣∣∣∣ ≤ bn2, i 6= j.

Therefore, ∣∣∣∣∂2Fi(β, γ)

∂β2
i

∣∣∣∣ ≤ (n− 1)bn2,

∣∣∣∣∂2Fi(β, γ)

∂βj∂βi

∣∣∣∣ ≤ bn2. (2)

Let

gij(β) = (
∂2Fi(β, γ)

∂β1∂βj
, . . . ,

∂2Fi(β, γ)

∂βn∂βj
)>.

In view of (2), we have

‖gii(β)‖1 ≤ 2(n− 1)bn2,

where ‖x‖1 =
∑

i |xi| for a general vector x ∈ Rn. Note that when i 6= j and k 6= i, j,

∂2Fi(β, γ)

∂βk∂βj
= 0.

Therefore, we have ‖gij(β)‖1 ≤ 2bn2, for j 6= i. Consequently, for vectors x, y, v ⊂ D, we

have

‖[F ′γ(x)]v − [F ′γ(y)]v‖∞

≤ max
i
{
∑
j

[
∂Fi
∂βj

(x, γ)− ∂Fi
∂βj

(y, γ)]vj}

≤ ‖v‖∞max
i

n∑
j=1

|∂Fi
∂βj

(x, γ)− ∂Fi
∂βj

(y, γ)|

= ‖v‖∞max
i

n∑
j=1

|
∫ 1

0

[gij(tx+ (1− t)y)]>(x− y)dt|

≤ 4bn2(n− 1)‖v‖∞‖x− y‖∞.

It completes the proof.
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3 Proof of Lemma 5

To show this lemma, we need one preliminary result. We first introduce the concentration

inequality. We say that a real-valued random variable X is sub-exponential with parameter

κ > 0 if

E[|X|p]1/p ≤ κp for all p ≥ 1.

Note that if X is a κ-sub-exponential random variable with finite first moment, then

the centered random variable X − E[X] is also sub-exponential with parameter 2κ. This

follows from the triangle inequality applied to the p-norm, followed by Jensen’s inequality

for p ≥ 1: [
E
(∣∣X − E[X]

∣∣p)]1/p ≤ [E
(
|X|p

)
]1/p +

∣∣E[X]
∣∣ ≤ 2[E

(
|X|p

)
]1/p.

Sub-exponential random variables satisfy the following concentration inequality.

Lemma 10 (Vershynin (2012), Corollary 5.17). Let X1, . . . , Xn be independent centered

random variables, and suppose each Xi is sub-exponential with parameter κi. Let κ =

max1≤i≤n κi. Then for every ε ≥ 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − E(Xi))

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

[
−nγ ·min

( ε2
κ2
,
ε

κ

)]
,

where γ > 0 is an absolute constant.

Proof of Lemma 5. Recall that aij − Eaij, 1 ≤ i < j ≤ n, are independent and sub-

exponential with respective parameters hij and maxi,j hij ≤ hn. We set ε in Lemma 10

as

ε = hn

(
2 log(n− 1)

γ(n− 1)

)1/2

.

Assume n is sufficiently large such that ε/κ =
√

2 log(n− 1)/γ(n− 1) ≤ 1. By applying

the concentration inequality in Theorem 10, we have for each i = 1, . . . , n,

P

(
1

n− 1
|di − Edi| ≥ hn

(
2 log(n− 1)

γ(n− 1)

)1/2
)
≤ 2 exp

(
−(n− 1)γ · 2 log n

γ(n− 1)

)
=

2

(n− 1)2
.
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By the union bound,

P

(
‖d− Ed‖∞ ≥ hn

√
2

γ
(n− 1) log(n− 1)

)

≤
n∑
i=1

P
(
|di − Edi| ≥ hn

√
2

γ
(n− 1) log(n− 1)

)
≤ 2n

(n− 1)2
.

Similarly, we have

P

∥∥∥∥∥∑
i<j

zij(aij − Eaij)

∥∥∥∥∥
∞

≥ hnn log n

 ≤ 1− 2p

n
.

4 Proof of Lemma 6

Proof of Lemma 6. Note that F ′γ(β) ∈ Ln(bn0, bn1) when β ∈ B(β∗, εn1) and γ ∈ B(γ∗, εn2),

and Fγ(β̂γ)=0. To prove this lemma, it is sufficient to show that the Kantovorich condi-

tions for the function Fγ(β) hold when D = B(β∗, εn1) and γ ∈ B(γ∗, εn2), where εn1 is

a positive number and εn2 = o(b−1
n1 (log n/n)1/2). The following calculations are based on

the event En:

En = {d : max
i
|di − Edi| = O(hn(n log n)1/2)}.

In the Newton iterative step, we set the true parameter vector β∗ as the starting point

β(0) := β∗..

Let V = (vij) = ∂Fγ(β
∗)/∂β> and S = diag(1/v11, . . . , 1/vnn). By Lemma 2, we have

ℵ = ‖V −1‖∞ = O((nbn0)−1). Recall that Fγ∗(β
∗) = Ed − d and γ ∈ B(γ∗, (log n/n)1/2)

and Assumption 1 holds, Note that the dimension p of γ is a fixed constant. If εn2 =

o(b−1
n1 (log n)1/2n−1/2), by the mean value theorem, we have

‖Fγ(β∗)‖∞ ≤ ‖d− Ed‖∞ + max
i
|
∑

j 6=i
[µij(β

∗, γ)− µij(β∗, γ∗)]|

≤ O(hn(n log n)1/2) + max
i

∑
j 6=i

|µ′ij(β∗, γ̄)||z>ij(γ − γ∗)|

= O(hn(n log n)1/2).

8



Repeatedly utilizing Lemma 2, we have

δ = ‖[F ′γ(β∗)]−1Fγ(β
∗)‖∞ = ‖[F ′γ(β∗)]−1‖∞‖Fγ(β∗)‖∞ = O(

hn
bn0

√
log n

n
)

By Lemma 4, Fγ(β) is Lipschitz continuous with Lipschitz coefficient λ = 4bn2(n − 1).

Therefore, if
bn2hn
b2
n0

= o(

√
n

log n
),

then

ρ = 2ℵλδ = O(
1

nbn0

)×O(bn2n)×O(
hn
bn0

√
log n

n
)

= O

(
bn2hn
b2
n0

√
log n

n

)
= o(1).

The above arguments verify the Kantovorich conditions. By Lemma 3, it yields that

‖β̂γ − β∗‖∞ = O

(
hn
bn0

√
log n

n

)
.

By Lemma 5, P (En) → 1 such that the above equation holds with probability at least

1−O(n−1). It completes the proof.

5 Proof of Lemma 7

Proof of Lemma 7. Recall that

Qc(γ) = (Qc,1(γ), . . . , Qc,p(γ))> =
∑
j<i

zij(µij(β̂γ, γ)− aij),

and Q′c(γ) is the Jacobian matrix of Qc(γ).

When causing no confusion, we write Qc,k(γ) as Qc,k, k = 1, . . . , p. Note that

Qc,k =
∑
j<i

zijk(µij(β̂γ, γ)− aij).

By finding the first order partial derivative of function Qc,k with respect to variable γl,

we have
∂Qc,k

∂γl
=
∑
j<i

zijkµ
′(π̂ij)

(
∂β̂γ,i
∂γl

+
∂β̂γ,j
∂γl

+ zijl

)
,
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where π̂ij = β̂γ,i + β̂γ,j + z>ijγ and β̂γ = (β̂γ,1, . . . , β̂γ,n)>. Again, with the second order

partial derivative, we have

∂2Qc,k

∂γ>∂γl
=
∑
j<i

zijkµ
′′(π̂ij)

(
∂β̂γ,i
∂γ>

+
∂β̂γ,j
∂γ>

+ zij

)(
∂β̂γ,i
∂γl

+
∂β̂γ,j
∂γl

+ zijl

)

+ zijkµ
′(π̂ij)

(
∂2β̂γ,i
∂γ>∂γl

+
∂2β̂γ,j
∂γ>∂γl

)
.

Recall that maxi,j ‖zij‖∞ = O(1) and when β ∈ B(β∗, εn1), γ ∈ B(γ∗, εn2), we have:

max
i,j
|µ′(πij)| ≤ bn1, max

i,j
|µ′′(πij)| ≤ bn2, max

i,j
|µ′′′(πij)| ≤ bn3. (3)

So, we have

‖ ∂
2Qc,k

∂γ>∂γl
‖ = O

(
n2

[
bn2(‖ ∂β̂γ

∂γ>
‖)2 + bn1 max

i
‖ ∂

2β̂γ,i
∂γ>∂γl

‖

])
. (4)

In view of (4), to derive the upper bound of
∂2Qc,k
∂γ>∂γl

, it is left to bound ∂β̂γ
∂γ>

and
∂2β̂γ,i
∂γ>∂γl

.

Recall that F (β̂γ, γ) = 0. With the derivative of function F (β̂γ, γ) on variable γ, we

have
∂F (β, γ)

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

∂β̂γ
∂γ>

+
∂F (β, γ)

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

= 0. (5)

Thus, we have

∂β̂γ
∂γ>

= −

[
∂F (β, γ)

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]−1
∂F (β, γ)

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

. (6)

To simplify notations, define

V = (vij)n×n :=
∂F (β, γ)

∂β

∣∣∣∣
β=β̂γ ,γ=γ

, W = (wij)n×n := V −1 − S, F := F (β, γ),

where S = (sij)n×n and sij = δij/vii. Note that

∂Fi
∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

=
∑
j 6=i

zijµ
′
ij(β̂γ, γ). (7)

10



By inequality (3), we have

‖ ∂F
∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

‖ ≤ max
i,k

∑
j 6=i

|µ′ij(β̂γ, γ)||zijk| = O(bn1n). (8)

By combing (6) and (8) and applying Lemma 2, we have

‖ ∂β̂γ
∂γ>
‖∞ ≤ ‖V ‖∞‖‖

∂F (β̂γ, γ)

∂γ>
‖∞ ≤ O(

1

nbn0

) ·O(bn1n) = O(
bn1

bn0

). (9)

Next, we will evaluate ∂2β̂γ
∂γk∂γ>

. By (5), we have

∂

∂γk

[
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]
∂β̂γ
∂γ>

+

[
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]
∂2β̂γ
∂γk∂γ>

+
∂

∂γk

[
∂F

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]
= 0.

It leads to that

∂2β̂γ
∂γk∂γ>

= −V −1 ∂

∂γk

[
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]
∂β̂γ
∂γ>

− V −1 ∂

∂γk

[
∂F

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]
:= −I1 − I2. (10)

For i 6= j, we have (
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

)
ij

= µ′ij(β̂γ, γ),

∂

∂γk

(
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

)
ij

= µ′′ij(β̂γ, γ)(T>ij
∂β̂γ
∂γk

+ zijk).

Thus, ∣∣∣∣∣∣ ∂∂γk
(
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

)
ij

∣∣∣∣∣∣ ≤ bn2

(
2

∥∥∥∥∥ ∂β̂γ∂γ>

∥∥∥∥∥+ max
i,j
‖zij‖∞

)
. (11)

Note that (
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

)
ii

=
∑
j 6=i

µ′ij(β̂γ, γ).

By (11), we have∣∣∣∣∣ ∂∂γk
(
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

)
ii

∣∣∣∣∣ ≤ (n− 1)bn2

(
2

∥∥∥∥∥ ∂β̂γ∂γ>

∥∥∥∥∥+ max
i,j
‖zij‖∞

)
. (12)

11



For all i = 1, . . . , n and j = 1, . . . , p, in view of (11) and (12), we have∣∣∣∣∣∣
{

∂

∂γk

[
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]
∂β̂γ
∂γ>

}
ij

∣∣∣∣∣∣
≤

n∑
`=1

∣∣∣∣∣
{

∂

∂γk

[
∂F

∂β

∣∣∣∣
β=β̂γ ,γ=γ

]}
i`

∣∣∣∣∣
∣∣∣∣∣∣
(
∂β̂γ
∂γ>

)
`j

∣∣∣∣∣∣
≤ 2(n− 1)bn2

∥∥∥∥∥ ∂β̂γ∂γ>

∥∥∥∥∥
(

2

∥∥∥∥∥ ∂β̂γ∂γ>

∥∥∥∥∥+ max
i,j
‖zij‖∞

)

= O(nbn2

∥∥∥∥∥ ∂β̂γ∂γ>

∥∥∥∥∥
2

).

Thus,

‖I1‖ =

∥∥∥∥∥V −1

{
∂

∂γk

[
∂F

∂γ

∣∣∣∣
β=β̂γ ,γ=γ

]}(
∂β̂γ
∂γ>

)∥∥∥∥∥
≤ ‖V −1‖∞ ×max

i

p∑
j=1

∣∣∣∣∣∣
{

∂

∂γk

[
∂F

∂β>

∣∣∣∣
β=β̂γ ,γ=γ

]
∂β̂γ
∂γ>

}
ij

∣∣∣∣∣∣
= O

(
bn2

bn0

‖∂β̂γ
∂γk
‖2

)
. (13)

Since
∂Fi
∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

=
∑
j 6=i

zijµ
′
ij(β̂γ, γ),

we have
∂

∂γk

[
∂Fi
∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]
=
∑
j 6=i

zijµ
′′
ij(β̂γ, γ)(

∂β̂γ
∂γk

+ zijk),

such that∥∥∥∥∥ ∂

∂γk

[
∂F

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]∥∥∥∥∥
∞

≤ (n− 1)bn2(max
i,j
‖zij‖∞)(‖∂β̂γ

∂γk
‖+ max

i,j
‖zij‖∞).

12



Consequently, we have

‖I2‖∞ = ‖V −1 ∂

∂γk

[
∂F

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]
‖∞

≤ ‖V −1‖∞‖
∂

∂γk

[
∂F

∂γ>

∣∣∣∣
β=β̂γ ,γ=γ

]
‖∞

= O(
1

nbn0

+
b2
n1

nb3
n0

)× (n− 1)bn2κn(‖∂β̂γ
∂γk
‖+ κn) (14)

= O

(
bn2

bn0

× ‖∂β̂γ
∂γk
‖∞

)
. (15)

By combining (10), (13) and (15), it yields that

‖ ∂2β̂γ
∂γk∂γ>

‖ = O

(
bn2

bn0

‖∂β̂γ
∂γk
‖2

)
. (16)

Consequently, in view of (4), (9) and (16), we have

‖ ∂
2Qc,k

∂γ>∂γl
‖ = O(n2bn2‖

∂β̂γ
∂γk
‖2 + n2bn1 ·

bn2

bn0

‖∂β̂γ
∂γk
‖2

= O

(
n2b3

n1bn2

b3
n0

)
. (17)

Note that

|
p∑
j=1

{[Q′c(x)]ij − [Q′c(y)]ij}vj| ≤ ‖v‖1 max
i,j
|[Q′c(x)]ij − [Q′c(y)]ij|. (18)

By the mean value theorem, we have

|[Q′c(x)]k` − [Q′c(y)]k`| =

∣∣∣∣∣∂[Q′c(γ)]k`
∂γ>

∣∣∣∣
γ=t

(x− y)

∣∣∣∣∣
≤

∥∥∥∥∥∂2Qc,k(γ)

∂γ>∂γl

∣∣∣∣
γ=t

∥∥∥∥∥
1

‖x− y‖∞, (19)

where t = αx + (1 − α)y for some α ∈ (0, 1). By combining inequalities (18), (19) and

(17), we have

‖[Q′c(x)]v − [Q′c(y)]v‖∞ ≤ λ‖x− y‖∞‖v‖∞, (20)

where

λ = O(n2b3
n1bn2b

−3
n0 ).
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This completes the proof.

6 Proof of Lemma 8

Proof of Lemma 8. Recall that Fi(β
∗, γ∗) =

∑
j 6=i(µij(β

∗, γ∗) − aij), i = 1, . . . , n. By

applying a second order Taylor expansion to H(β̂γ∗ , γ
∗), we have

F (β̂γ∗ , γ
∗) = F (β∗, γ∗) +

∂F (β∗, γ∗)

∂β>
(β̂∗−β∗) +

1

2

[
n−1∑
k=1

(β̂∗k − β∗k)
∂2F (β̄∗, γ∗)

∂βk∂β>

]
× (β̂∗−β∗),

(21)

where β̄∗ lies between β̂∗ and β∗. We evaluate the last term in the above equation row

by row. Its `th row is

R` :=
1

2
(β̂∗ − β∗)>∂

2F`(β̄
∗, γ∗)

∂β∂β>
(β̂∗ − β∗), ` = 1, . . . , n. (22)

A directed calculation gives that

∂2F`(β̄
∗, γ∗)

∂βi∂βj
=


∑

t6=i µ
′′(π̄it), ` = i = j

µ′′(π̄`j), ` = i, i 6= j; ` = j, i 6= j

0, ` 6= i 6= j.

By (1b), we have

max
`=1,...,n

2|R`| ≤ max
`=1,...,n

∑
1≤i<j≤n−1

|∂
2F`(β̄

∗, γ∗)

∂βi∂βj
|‖β̂∗ − β∗‖2

≤ 2bn2(n− 1)‖β̂∗ − β∗‖2.

By Lemma 6, we have that

max
`=1,...,n

|R`| = Op

(
bn2h

2
n log n

b2
n0

)
. (23)

Let R = (R1, . . . , Rn)> and V = −∂F (β∗, γ∗)/∂β>. Since H(β̂∗, γ∗) = 0, by (21), we

have

β̂∗ − β∗ = V −1F (β∗, γ∗) + V −1R. (24)

Note that V ∈ Ln(bn0, bn1). By (23) and Lemma 1, we have

‖V −1R‖∞ ≤ ‖V −1‖∞‖R‖∞ = Op(
bn2h

2
n log n

nb3
n0

).
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7 Proof of Lemma 9

Proof of Lemma 9. For convenience, write

β̂∗ = β̂γ, V (β, γ) = −∂F (β, γ)

∂β>
, Q′β,` :=

∂Q`(β, γ)

∂β>
, ` = 1, . . . , p.

When evaluating functions f(β, γ) on (β, γ) at its true value (β∗, γ∗), we suppress the

argument (β∗, γ∗). This is, write Q′β,` = Q′β,`(β
∗, γ∗), etc. Note that V ∈ Ln(bn0, bn1). Let

W = V −1 − S. By Lemma 8, we have

− ∂Q`(β
∗, γ∗)

∂β>
(β̂∗ − β∗) = Q′β,`(V

−1F + V −1R) = Q′β,`(SF +WF + V −1R). (25)

We will bound Q′β,`SF , Q′β,`WF and Q′β,`V
−1R in turn as follows. Let z∗ = maxi,j ‖zij‖∞.

A direct calculation gives

Q′β,`,i =
n∑

j=1,j 6=i

zij`µ
′
ij(π

∗
ij),

such that

|Q′β,`,i| ≤ (n− 1)z∗bn1. (26)

Thus, by Lemmas 2 and 8, we have

|Q′β,`V −1R| ≤
∑
i

|Q′β,`,i|‖V −1R‖∞

≤ n(n− 1)bn1Op(
bn2h

2
n log n

nb3
n0

) = Op(
nbn2bn1h

2
n log n

b3
n0

). (27)

Then we bound Q′β,`SF . A direct calculation gives that

Q′β,`SF =
n∑
i=1

Q′β,`,i
vii

Fi =
n∑
i=1

ciHi, (28)

where

ci =
Q′β,`,i
vii

, i = 1, . . . , n.

It is easy to show that

max
i=1,...,n

|ci| ≤
z∗bn1

bn0

.
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By expressing Q′β,`SF as a sum of aijs, we have

Q′β,`SF = 2
∑

1≤i<j≤n

ci(µij − aij),

Note aij (i < j) is independent and bounded by hnz∗. By applying the concentration

inequality for subexponential random variables to the above sum, we have

|Q′β,`SF | = Op(hnn log n). (29)

Finally, we bound Q′β,`WF . Let

σ2
n = max

i,j
n2|(W>Cov(F )W )ij|.

Therefore, by (26), we have

Var(Q′β,`WF ) = [Q′β,`]
>W>Cov(F )WQ′β,`

=
∑
i,j

Q′β,`,i(W
>Cov(F )W )ijQ

′
β,`,j

= O
(
n2 × n−2σ2

n × b2
n1n

2
)

= O(n2b2
n1σ

2
n).

By Chebyshev’s inequality, we have

P(|Q′β,`WH| > nb2
n1σn(log n)1/2) ≤ O(n2σ2

nb
2
n1b
−3
n0 )

n2b2
n1b
−3
n0σ

2
n log n

→ 0.

It leads to

Q′β,`WH = Op(nbn1σn(log n)1/2). (30)

By combining (25), (27) (29) , (30), it yields

max
`=1,...,p

|Q′β,`(β̂∗ − β∗)|

= Op(
nbn2bn1h

2
n log n

b3
n0

) +Op(hnn log n) +Op(nbn1σn(log n)1/2)

= Op

(
nbn1 log n(

h2
nbn2

b3
n0

+ σn)

)
.

In the case of V = Cov(F ), the equation (30) could be simplified. Denote W =

V −1 − S. Then we have

Cov(WF ) = W>Cov(F )W = (V −1 − S)V (V −1 − S) = V −1 − S + SV S − S.

16



A direct calculation gives that

(SV S − S)ij =
(1− δij)vij
viivjj

.

By Lemma 1, we have

|(W>Cov(F )W )ij| = O

(
b2
n1

n2b3
n0

)
.

Then, we have

Q′β,`WF = Op

(
nb2

n1

b
3/2
n0

)
,

which leads to the simplification:

max
`=1,...,p

|Q′β,`(β̂∗ − β∗)| = Op

(
h2
nbn1bn2n log n

b3
n0

)
.

It completes the proof.

8 Proofs for Theorem 2

Proof of Theorem 2. To simplify notations, write µ′ij = µ′(β∗i + β∗j + z>ijγ
∗) and

V =
∂F (β∗, γ∗)

∂β>
, Vγβ =

∂F (β∗, γ∗)

∂γ>
.

Let π∗ij = β∗i + β∗j + z>ijγ
∗ and π̂ij = β̂i + β̂j + z>ij γ̂. By a second order Taylor expansion,

we have

µ(π̂ij)− µ(π∗ij) = µ′ij(β̂i − βi) + µ′ij(β̂j − βj) + µ′ijz
>
ij(γ̂ − γ) + gij, (31)

where

gij =
1

2

β̂i − β∗iβ̂j − β∗j
γ̂ − γ∗


> µ′′ij(π̃ij) −µ′′ij(π̃ij) µ′′ij(π̃ij)z

>
ij

−µ′′ij(π̃ij) µ′′ij(π̃ij) −µ′′ij(π̃ij)z>ij
µ′′ij(π̃ij)z

>
ij −µ′′ij(π̃ij)z>ij µ′′ij(π̃ij)zijz

>
ij


β̂i − β∗iβ̂j − β∗j
γ̂ − γ∗

 ,

and π̃ij lies between π∗ij and π̂ij. By calculations, gij can be simplified as

gij = µ′′(π̃ij)[(β̂i − βi)2 + (β̂j − βj)2 + 2(β̂i − βi)(β̂j − βj)]
+2µ′′(π̃ij)z

>
ij(γ̂ − γ)(β̂i − βi + β̂j − βj) + (γ̂ − γ)>µ′′(π̃ij)zijz

>
ij(γ̂ − γ)
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Recall that z∗ := maxi,j ‖zij‖∞ = O(1). Note that |µ′′(πij)| ≤ bn2 when β ∈ B(β∗, εn1)

and γ ∈ B(γ∗, εn2). So we have

|gij| ≤ 4bn2‖β̂ − β∗‖2
∞ + 2bn2‖β̂ − β∗‖∞‖γ̂ − γ∗‖1κn + bn2‖‖γ̂ − γ∗‖2

1κ
2
n

≤ 2bn2[4‖β̂ − β∗‖2
∞ + ‖γ̂ − γ∗‖2

1z
2
∗ ].

Let gi =
∑

j 6=i gij, g = (g1, . . . , gn)>. If (4.11) in the main text holds and

ηn :=
b2
n1κ

2
n log n

n
(
h2
nbn2

b3
n0

+ σn)2 = o(1),

then

max
i=1,...,n

|gi| ≤ nmax
i,j
|gi,j| = O(

h2
nbn2 log n

b2
n0

) +Op(bn2ηn log n) = Op(
h2
nbn2 log n

b2
n0

). (32)

Writing (31) into a matrix form, it yields

d− Ed = V (β̂ − β∗) + Vγβ(γ̂ − γ∗) + g,

which is equivalent to

β̂ − β∗ = V −1(d− Ed) + V −1Vγβ(γ̂ − γ∗) + V −1g. (33)

We bound the last two remainder terms in the above equation as follows. Let W =

V −1 − S. Note that (Sg)i = gi/vii and (n− 1)bn0 ≤ vii ≤ (n− 1)bn1. By Lemma 2 in the

main text, we have

‖V −1g‖∞ ≤ ‖V −1‖∞‖g‖∞ = O(
1

nbn0

× h2
nbn2 log n

b2
n0

). (34)

Note that the ith of Vγβ is
∑n

j=1,j 6=1 µ
′
ijz
>
ij . So we have

‖Vγβ(γ̂ − γ∗)‖∞ ≤ (n− 1)z∗‖γ̂ − γ∗‖1 = Op(κnbn1 log n(
bn2h

2
n

b3
n0

+ σn)).

By Lemma 2 in the main text, we have

‖V −1Vγβ(γ̂ − γ∗)‖∞ ≤ ‖V −1‖∞‖Vγβ(γ̂ − γ∗)‖∞ = Op

(
κnbn1 logn

nbn0
( bn2h

2
n

b3n0
+ σn)

)
. (35)

Since maxi |(WΩW>)ii| ≤ σ2
n/n

2, we have

P([W (d− Ed)]i > σn log n/n) ≤ n2

σ2
n(log n)2

|Var{[W (d− Ed)]i}| =
1

(log n)2
. (36)
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Consequently, by combining (33), (34), (35) and (36), we have

β̂i − β∗i = [S(d− Ed)]i +Op(
κnbn1 log n

nbn0

(
bn2h

2
n

b3
n0

+ σn)).

It completes the proof.

9 Proof of Theorem 3

Proof of Theorem 3. Assume that the conditions in Theorem 1 hold. A mean value ex-

pansion gives

Qc(γ̂)−Qc(γ
∗) =

∂Qc(γ̄)

∂γ>
(γ̂ − γ∗),

where γ̄ lies between γ∗ and γ̂. By noting that Qc(γ̂) = 0, we have

√
N(γ̂ − γ∗) =

[ 1

N

∂Qc(γ̄)

∂γ>

]−1

× Qc(γ
∗

√
N

).

Note that the dimension of γ is fixed. By Theorem 1 and (4.10) in the main text, we have

1

N

∂Qc(γ̄)

∂γ>
p→ H̄ := lim

N→∞

1

N
H(β∗, γ∗).

Write β̂∗ as β̂γ∗ for convenience. Therefore,

√
N(γ̂ − γ∗) = H̄−1 × (−Q(β̂∗, γ∗)√

N
) + op(1). (37)

By applying a third order Taylor expansion to Q(β̂∗, γ∗), it yields

− 1√
N
Q(β̂∗, γ∗) = S1 + S2 + S3, (38)

where
S1 = − 1√

N
Q(β∗, γ∗)− 1√

N

[
∂Q(β∗,γ∗)

∂β>

]
(β̂∗ − β∗),

S2 = − 1
2
√
N

∑n
k=1

[
(β̂∗k − β∗k)

∂2Q(β∗,γ∗)
∂βk∂β>

× (β̂∗ − β∗)
]
,

S3 = − 1
6
√
N

∑n
k=1

∑n
l=1{(β̂∗k − β∗k)(β̂∗l − β∗l )

[
∂3Q(β̄∗,γ∗)
∂βk∂βl∂β>

]
(β̂∗ − β∗)},

and β̄∗ = tβ∗+(1− t)β̂∗ for some t ∈ (0, 1). Similar to the proof of Theorem 4 in Graham

(2017), we will show that (1) S2 is the bias term having a non-zero probability limit; (2)

S3 is an asymptotically negligible remainder term.
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We first evaluate the term S3. We calculate gijk = ∂3Q(β,γ)
∂βk∂βi∂βk

according to the indices

i, j, k as follows. Observe that gijk = 0 when i, j, k are different numbers because µij only

has two arguments βi and βj and its third partial derivative on three different βi, βj and

βk is zero . So there are only two cases below in which gijk 6= 0.

(1) Only two values among three indices i, j, k are equal. If k = i; i 6= j, gijk = zij
∂3µij
∂π3
ij

;

for other cases, the results are similar.

(2) Three values are equal. gkkk =
∑

i 6=k zki
∂3µki
∂π3
ki

.

Therefore, we have

S3 =
1

6
√
N

∑
k,l,h

∂3Q(β̄∗, γ∗)

∂βk∂βl∂βh
(β̂∗k − β∗k)(β̂∗l − β∗l )(β̂∗h − β∗h)

=
1

6
√
N

{∑
i<j

∂3Q(β̄∗, γ∗)

∂β2
i ∂βj

(β̂∗i − β∗i )2(β̂∗j − β∗j ) +
∂3Q(β̄∗, γ∗)

∂β2
j ∂βi

(β̂∗j − β∗j )2(β̂∗i − β∗i )

+
∑
i

∂3Q(β̄∗, γ∗)

∂β3
i

(β̂∗i − β∗i )3

}
.

So

‖S3‖∞ ≤ 4

3
√
N
×max

i,j

{
|∂

3µij(β̄
∗, γ∗))

∂π3
ij

|‖zij‖∞
}
× n(n− 1)

2
‖β̂∗ − β‖3

∞.

By Lemma 6, we have

‖S3‖∞ = Op(
bn3h

3
n(log n)3/2

n1/2b3
n0

).

Similar to the calculation in the derivation of the asymptotic bias in Theorem 4 in

Graham (2017), we have S2 = B∗ + op(1), where B∗ is defined at (4.12) in the main text.

Recall that V = ∂F (β∗, γ∗)/∂β> and VQβ := ∂Q(β∗, γ∗)/∂β>. By noting that

d− Ed =
∑

1≤i<j<n

(aij − Eaij)Tij,

we have

−[Q(β∗, γ∗)− VQβV −1(d− Ed)] =
∑

1≤i<j≤n

(aij − Eaij)(zij − VQβV −1Tij).

Similar to the calculation in the derivation of the asymptotic expression of S1 in Graham

(2017), we have

S1 =
1√
N

∑
j<i

sij(β
∗, γ∗) + op(1),
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Therefore, it shows that equation (38) is equal to

1√
N

∑
j<i

sij(β̂
∗, γ∗) =

1√
N

∑
j<i

sij(β
∗, γ∗) +B∗ + op(1), (39)

with 1√
N

∑n
i=1

∑
j 6=i s

∗
γij

(β∗, γ∗) equivalent to the first two terms in (38) and B∗ the prob-

ability limit of the third term in (38).

Substituting (39) into (37) then gives

√
N(γ̂ − γ∗) = H̄−1B∗ + H̄−1 × 1√

N

∑
j<i

sij(β
∗, γ∗) + op(1).

It completes the proof.

10 Proof of (15)

Recall that πij = z>ijγ + βi + βj, µij(πij) = Eaij and Tij is an n-dimensional vector with

ith and jth elements 1 and other elements 0. By calculations, we have

∂Q(β, γ)

∂γ>
=
∑
j<i

zijz
>
ijµ
′
ij(πij),

∂Q(β, γ)

∂β>
=
∑
j<i

zijT
>
ij µ
′
ij(πij),

∂F (β, γ)

∂γ>
=


∑

j 6=1 z
>
1jµ
′
1j(π1j)

...∑
j 6=n z

>
njµ
′
nj(πnj)

 .

Note that

H(β, γ∗) =
∂Q(β, γ∗)

∂γ>
− ∂Q(β, γ∗)

∂β>

[
∂F (β, γ∗)

∂β>

]−1
∂F (β, γ∗)

∂γ>
.

To simplify notations, let

A =
∂Q(β, γ∗)

∂γ>
, B =

∂Q(β, γ∗)

∂β>
, V =

∂F (β, γ∗)

∂β>
, D =

∂F (β, γ∗)

∂γ>
.

When emphasizing the arguments β and γ, we writeA(β, γ∗) instead ofA and so on. When

β ∈ B(β∗, εn1), V ∈ L(bn0, bn1). Let W = V −1 − S, where S = diag(1/v11, . . . , 1/vnn).

Then we have

H = A−BV −1D = A−BSD −BWD.
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Recall that z∗ = maxi,j ‖zij‖∞ and maxi,j |µ′ij(β, γ∗)| ≤ bn1. To simplify notations, we

suppress the subscript “max” in the matrix maximum norm ‖ · ‖max in this section. It

yields

‖B‖ ≤ nz∗bn1, ‖D‖ ≤ nz∗bn1,

such that

‖BWD‖ = max
i,j
|BikWklDlj| = O(

b2
n1

n2b3
n0

)× n2z2
∗b

2
n1 = O

(
b4
n1z

2
∗

b3
n0

)
. (40)

Now, we evaluate A(β, γ∗)− A(β∗, γ∗). By the mean value theorem, we have

‖A(β, γ∗)− A(β∗, γ∗)‖ = ‖
∑
j≤i

zijz
>
ij

[
∂µij(β, γ

∗)

∂πij
− ∂µij(β

∗, γ∗)

∂πij

]
‖

≤ max
i,j
‖zijz>ij‖n2bn2‖β − β∗‖∞

≤ n2z2
∗bn2‖β − β∗‖∞. (41)

Next, we evaluate [BSD](β, γ∗)− [BSD](β∗, γ∗). Note that

[BSD]ij =
∑
k,l

BikSklDlj =
n∑
k=1

BikDkj

vkk
,

Bkl(β, γ
∗) =

∑
j 6=l

zljk
∂µlj(β, γ

∗)

∂πlj
,

∂Bkl(β, γ
∗)

∂β
=
∑
j 6=l

zljk
∂2µlj(β, γ

∗)

∂π2
lj

Tlj,

Dkl(β, γ
∗) =

∑
j 6=k

zkjl
∂µkj(β, γ

∗)

∂πkj
,

∂Dkl(β, γ
∗)

∂β
=
∑
j 6=k

zkjl
∂2µkj(β, γ

∗)

∂π2
kj

Tkj.

Since |µ′(πij)| ≤ bn1 and |µ′′(πij)| ≤ bn2, we have

|Bkl(β, γ
∗)| ≤ nκnbn1, |Dkl(β, γ

∗)| ≤ nz∗bn1, (42)

and for a vector v,

‖∂Bkl(β,γ
∗)

∂β>
v‖ ≤ z∗bn2[(n− 1)|vl|+

∑
j 6=l |vj|],

‖∂Dkl(β,γ
∗)

∂β>
‖ ≤ z∗bn2[(n− 1)|vl|+

∑
j 6=l |vj|].

(43)
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By (42) and (43), we have

|∂[Bik(β̃, γ
∗)Dkj(β̃, γ

∗)]

∂β>
v| ≤ 2nz2

∗bn1bn2[(n− 1)|vl|+
∑
j 6=l

|vj|]. (44)

It is easy to see that

|vkk| ≤
∑
i 6=k

|∂µik
∂πik
| ≤ (n− 1)bn1, ‖

∂vkk
∂β>
‖1 =

∑
i 6=k

‖∂
2µik
∂π2

ik

Tik‖1 ≤ 2(n− 1)bn2 (45)

By the mean value theorem, we have

Bik(β, γ
∗)Dkj(β, γ

∗)

vkk(β, γ∗)
− Bik(β

∗, γ∗)Dkj(β
∗, γ∗)

vkk(β∗, γ∗)
= f>(β̃, γ∗)(β − β∗),

where β̃ lies between β and β∗, and

f(β, γ∗) =
1

v2
kk(β̃, γ

∗)

[
∂[Bik(β̃, γ

∗)Dkj(β̃, γ
∗)]

∂β>
vkk(β̃, γ

∗)− vkk(β̃, γ
∗)

∂β>
Bik(β̃, γ

∗)Dkj(β̃, γ
∗)

]
.

By (44) and (45), we have

|f>(β̃, γ∗)(β − β∗)|

≤ O

(
1

(n− 1)2b2
n0

{
[n2κ2

nbn1bn2‖β − β∗‖∞ × (n− 1)bn1 + [nκnbn1]2nbn2‖β − β∗‖∞
})

= O(nb2
n1bn2z

2
∗‖β − β∗‖∞b−2

n0 ) = O(nz2
∗bn2‖β − β∗‖∞

b2
n1

b2
n0

).

Consequently,

|[BSD](β, γ∗)− [BSD](β∗, γ∗)|

=
n∑
k=1

|
(
Bik(β, γ

∗)Dkj(β, γ
∗)

vkk(β, γ∗)
− Bik(β, γ)Dkj(β, γ)

vkk(β, γ)

)
|

≤ O(n2bn2z
2
∗‖β − β∗‖∞b2

n1b
−2
n0 ). (46)

By inequalities (40), (41) and (46), if

b2
n1

b2
n0

bn2z
2
∗‖β − β∗‖∞ = o(1),

then
1

n2
H(β, γ∗)ij =

1

n2
H(β∗, γ∗)ij + o(1).
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11 Simplifying expression of B∗ in (19)

In the case of V = ∂F (β∗, γ∗)/∂β = Var(d), B∗ can be simplified as follows. Let W =

V −1 − S. A direct calculation gives that

n∑
k=1

[
∂2Q(β∗, γ∗)

∂βk∂β>
Sek

]
=

n∑
k=1

∑
j 6=k zkjµ

′′
kj(π

∗
ij)∑

j 6=k µ
′
kj(π

∗
ij)

.

By Lemma 1, we have

n∑
k=1

[
∂2Q`(β

∗, γ∗)

∂βk∂β>
Wek

]
=
∑
j 6=k

zkj`µ
′′(π∗kj)(wkj + wkn) = O

(
b2
n1bn2

b3
n0n

)
.

So, if b2
n1bn2b

−3
n0 = o(n), then

B∗ =
1√
N

n∑
k=1

[
∂2Q(β∗, γ∗)

∂βk∂β>
V −1ek

]
= − 1√

N

n∑
k=1

∑
j 6=k zkjµ

′′
kj(π

∗
ij)∑

j 6=k µ
′
kj(π

∗
ij)

, (47)
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