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Section 1 contains details of simulation studies and the application to the Enran email
data. The proofs of Lemmas 4, 5 and 6 are given in Sections 2, 3 and 4, respectively.
Sections 5, 6 and 7 contain the proofs of Lemmas 7, 8 and 9, respectively. We present the
proofs of Theorems 2 and 3 in Sections 8 and 9, respectively. The proof of equation (15)
is in Section 10. Section 11 contains the detailed simplification calculations of the bias
term B, in equation (19). The following inequalities in the main text are restated here,

which will be used in the proofs repeatedly.

bno < min ¢/ ()| < max |p/ (i) < bnr, (1a)
2y 2y

max 1" ()] < bua, (1b)

max |p" (i) < bps. (1c)

)

1 Simulation studies

We set the parameter values to be a linear form, i.e., of = (i — 1)L/(n — 1) for i =

1,...,n. We considered four different values for L as L € {0,log(logn), (logn)*/2,logn}.

By allowing a* to grow with n, we intended to assess the asymptotic properties under
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different asymptotic regimes. Each node had two covariates X;; and X;,. Specifically,
X;1 took values positive one or negative one with equal probability and X, came from
a Beta(2,2) distribution. All covariates were independently generated. The edge-level
covariate z;; between nodes i and j took the form: z;; = (z;1 * x;1, |T:2 — xj2|) . For the
homophily parameter, we set v* = (0.5,1)". Thus, the homophily effect of the network is
determined by a weighted sum of the similarity measures of the two covariates between
two nodes.

By Corollary 5, given any pair (4, 7), f” = [6; — Bj — (87 = B/ (1 0iz + 1/0;)1/?
converges in distribution to the standard normality, where 9;; is the estimate of v;; by
replacing (8%, v*) with (B ,7). Therefore, we assessed the asymptotic normality of éz ; using
the quantile-quantile (QQ) plot. Further, we also recorded the coverage probability of the
95% confidence interval and the length of the confidence interval. The coverage probability
and the length of the confidence interval of 7 were also reported. Each simulation was
repeated 10,000 times.

We did simulations with network sizes n = 100 and n = 200 and found that the QQ-
plots for these two network sizes were similar. Therefore, we only show the QQ-plots for
n = 100 to save space. Further, the QQ-plots for L = 0 and L = log(logn) are similar.
Also, for L = (logn)'/? and L = logn, they are similar. Therefore we only show those for
L =log(logn) and L = logn in Figure 1. In this figure, the horizontal and vertical axes
are the theoretical and empirical quantiles, respectively, and the straight lines correspond
to the reference line y = x. In Figure 1, when L = log(logn), the empirical quantiles
coincide well with the theoretical ones. When L = (logn)'/2, the empirical quantiles have
a little derivation from the theoretical ones in the upper tail of the right bottom subgraph.
These figures show that there may be large space for improvement on the growing rate of
| Blloe in the conditions in Corollary 5.

Table 4 reports the coverage probability of the 95% confidence interval for §; — f3;
and the length of the confidence interval. As we can see, the length of the confidence
interval decreases as n increases, which qualitatively agrees with the theory. The coverage
frequencies are all close to the nominal level 95%. On the other hand, the length of the
confidence interval decreases as L increases. It seems a little unreasonable. Actually, the
theoretical length of the 95% confidence interval is (1/v;; + v;;)'/? multiple by a constant
factor. Since v; is a sum of a set of exponential items, it becomes quickly larger as L
increases. As a result, the length of confidence interval decreases as long as the estimates
are close to the true values. The simulated coverage probability results shows that the
estimates are very good. So, this phenomenon that the length of confidence interval
decreases in Table 4, also agrees with the theory.

Table 5 reports the coverage frequencies for the estimate 7 and bias corrected estimate

pe at the nominal level 95%, and the standard error. As we can see, the differences
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Figure 1: The QQ plots of & (n=100).

Table 4: The reported values are the coverage frequency (x100%) for ; — §; for a pair
(7,7) / the length of the confidence interval(x10).

n (i,7) L=0 L=log(logn) L= (logn)"? L =1logn
100 (1,2) 9456/460  95.08/2.97  94.80/242  94.69/0.97
(50,51)  94.72/4.60  94.93/2.04  9489/1.43  94.83/0.31
(99,100) 95.12/4.60  94.41/1.40  94.38/0.85  94.13/0.10

200 (1,2)  95.20/3.24  94.79/2.01  94.76/1.63  95.09/0.52
(100,101) 95.03/3.24  94.75/1.33  94.91/0.92  95.47/0.14
(199,200) 94.58/3.24 95.05/0.88 94.63/0.52  93.90/0.04

between the coverage frequencies with uncorrected estimates and bias corrected estimates
are very small. All coverage frequencies are very close to the nominal level. The bias

under the case of the Poisson distribution is very small in our simulation design.

Table 5:  The reported values are the coverage frequency (x100%) for ~; for ¢ / length
(x10) of confidence interval (v* = (0.5,1)").
n v L=0 L =log(logn) L= (logn)/? L =1logn
100 4 95.13/0.52 95.25/0.22 94.92/0.15 95.04/0.02
Yot 95.11/0.52 95.25/0.22  94.92/0.15 95.04/0.02
Yo 94.98/3.08 95.28/1.31 95.00/0.88 95.06/0.15
Yben 94.93/3.08 95.20/1.31  95.02/0.88  95.06/0.15
200 4 94.87/0.26 95.49/0.10 95.07/0.07 94.92/0.007
Ypen 9487/0.26 95.47/0.10  95.08/0.07  94.91/0.007
42 95.31/1.52 95.12/0.59 94.97/0.39 94.49/0.041
Yz 95.31/1.52 95.12/0.59  94.95/0.39  94.49/0.041




1.1 A real data example

We use the Enron email dataset as an example analysis [Cohen (2004)], available from
https://www.cs.cmu.edu/~enron/. The Enron email data was acquired and made pub-
lic by the Federal Energy Regulatory Commission during its investigation into fraudulent
accounting practices. The raw data is messy and needs to be cleaned before any analysis
is conducted. Zhou et al. (2007) applied data cleaning strategies to compile the Enron
email dataset. We use their cleaned data for the subsequent analysis. The resulting data
comprises 21,635 messages sent between 156 employees with their covarites information.
There are 6,650 messages having more than one recipient across their ‘To’, ‘CC’ and
‘BCC’ fields, with a few messages having more than 50 recipients. For our analysis, we
exclude messages with more than ten recipients, which is a subjectively chosen cut-off
that avoids emails sent en masse to large groups. Each employee has three categorical
variables: departments of these employees (Trading, Legal, Other), the genders (Male,
Female) and seniorities (Senior, Junior). Employees are labelled from 1 to 156. The 3-
dimensional covariate vector z;; of edge (i, ) is formed by using a homophilic matching
function between these 3 covariates of two employees ¢ and j, i.e., if z;; and x; are equal,
then z;;, = 1; otherwise z;;, = 0.

For our analysis, we removed the employees “32” and “37” with zero degrees, where
the estimators of the corresponding node parameters do not exist. This leaves a connected
network with 154 nodes. The minimum, 1/4 quantile, median, 3/4 quantile and maximum
values of d are 1, 95, 220, 631 and 4637, respectively. It exhibits a strong degree hetero-
geneity. The estimators of a; with their estimated standard errors are given in Table 6.
The estimates of degree parameters vary widely: from the minimum —4.36 to maximum
2.97. We then test three null hypotheses By = (3, 876 = P77 and 151 = Pis4, using the
homogeneity test statistics & = |8; — 5;]/(1/0:s + 1/9;,;)"/?. The obtained p-values turn
out to be 1.7 x 10724, 1.8 x 10™* and 6.2 x 10723, respectively, confirming the need to
assign one parameter to each node to characterize the heterogeneity of degrees.

The estimated covariate effects, their bias corrected estimates, their standard errors,
and their p-values under the null of having no effects are reported in Table 7. From this
table, we can see that the estimates and bias corrected estimates are almost the same,
indicating that the bias effect is very small in the Poisson model and it corroborates the
findings of simulations. The variables “department” and “seniority” are significant while
“gender” is not significant. This indicates that the gender has no significant influence
on the formation of organizational emails. The coefficient of variable “department” is
positive, implying that a common value increases the probability of two employees in the
same department to have more email connections. On the other hand, the coefficient of
variable “seniority” is negative, indicating that two employees in the same seniority have

less emails than those with unequal seniorities. This makes sense intuitively.
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Table 6: The estimates of ; and their standard errors in the Enron email dataset.

Node di Bz a'i Node di 61 &i Node di ﬁl OA'l' Node di ﬁl OA'i
i 723 1.03 037 41 300 015 057 79 300 —0.46 0.79 117 1176 1.49 029
2 67 —1.36 122 42 281  0.08 06 80 281  —0.08 0.65 118 398 0.4 0.5
3 275  0.03 0.6 43 690 096 0.38 81 690 032 053 119 369 035  0.52
4 1202 154 029 44 234 —0.13 0.65 82 234 032 052 120 2673 233 0.19
5 678 094 0.38 45 704 1 0.38 83 704 145 127 121 571 075 0.42
6 249  —0.07 0.63 46 952  1.27 032 84 952  —0.74 0.89 122 2174 215 0.21
7 375 035 052 47 998  1.38  0.32 85 998  0.72  0.43 123 343 026  0.54
8 40 —1.88 1.58 48 68 099 038 86 686 —2.04 171 124 115 —0.8 093
9 428 048 048 49 1224 154 029 87 1224 —031 071 125 195 —0.29 0.72
10 95  —1.01 1.03 50 141  —0.63 084 88 141 —1.29 116 126 102  —0.96 0.9
11 231  —0.12 0.66 51 101 —095 1 89 101 -1.31 117 127 180 —04 0.75
12 31 —2.16 18 52 1 =557 10 90 1 0.52 048 128 67 —1.39 1.22
13 85 —1.15 1.08 53 1138 146 0.3 91 1138 1.17 035 129 185 —0.38 0.74
14 53 —1.62 137 54 66 —1.41 123 92 66 1.59 028 130 1798 1.96  0.24
15 182  —0.36 074 55 155 —05 0.8 93 155 —1.02 1.03 131 3157 2.5  0.18
16 26 —2.34 196 56 266  0.02 0.61 94 266 —1.49 1.3 132 98  —0.96 1.01
17 702 098 038 57 555 076 042 95 555  0.94  0.38 133 57 —15  1.32
18 182  —0.36 0.74 58 423 047 049 96 423 —222 1.86 134 106 —0.93 0.97
19 122 —0.78 091 59 3715 269 016 97 3715 —1.88 158 135 182 —0.39 0.74
20 4637 297 0.15 60 208 014 058 98 208 079 041 136 79 —1.19 1.13
21 14 —2096 267 61 1832 197 0.23 99 1832 —1.96 1.62 137 676 096  0.38
22 44 -18 151 62 65 —1.41 1.24 100 65 0.31 053 138 2340 223 021
23 135 —0.69 086 63 419 046 049 101 419 —0.19 0.67 139 3 45  5.77
24 826  1.15 0.35 64 68  —1.37 121 102 68  —0.34 072 140 208 —0.2 0.69
25 135 —0.64 086 65 1159 148 029 103 1159 —1.48 1.3 141 56  —1.56 1.34
26 668 095 039 66 170 —0.45 0077 104 170 —1.04 1.03 142 241 —0.08 0.64
27 644  0.88 039 67 815 113 035 105 815 —1.65 1.39 143 645 088  0.39
28 20 —259 224 68 112 —0.87 094 106 112 —1.3 119 144 540 071  0.43
29 190 —0.34 073 69 707 099 038 107 707 —1.38 1.21 145 1080 143 0.3
30 99  —0.97 1.01 70 33 —209 174 108 33 -1.32 118 146 67 —1.39 1.22
31 60 147 129 71 136 —0.68 086 109 136  1.12  0.35 147 440  0.51  0.48
33 241  —0.11 064 72 788 1.12  0.36 110 788 —0.95 099 148 165 —0.49 0.78
34 996  1.35 0.32 73 179  —0.41 075 111 179 —1.07 1.07 149 588 0.8 041
35 96  —0.98 1.02 74 720 1 037 112 720 —0.03 0.62 150 38 —1.95 1.62
36 97  —1.02 102 75 313 015 057 113 313  1.21 033 151 1330 1.65 0.27
38 564 074 042 76 184 —0.38 074 114 184 —0.04 062 152 120 —0.81 0.91
39 711 098 0.38 77 358  0.32 0.53 115 358 —0.06 0.65 153 219 —0.21 0.68
40 202 —029 0.7 78 137  —0.64 085 116 137 —0.94 0.99 154 298 0.1 058
155 82 117 1.1 156 480 0.6  0.46

2 Proof of Lemma 4
Proof of Lemma 4. Recall that m;; = 3; + 5; + Z;V and

The Jacobian matrix F!(3) of I, () can be calculated as follows. By finding the partial

JFi

derivative of F; with respect to 3, for ¢ # j we have

OFi(B,7)

0p;

*Fi(B,7)

9p:0p;

= pi;(7i5),

= p;(7ij),

aFﬁv

O?Fy(B,7)

a2

Z :Uzg 7TZ]

JF#i

ZM (735)-

JF



Table 7: The estimators of 7;, the corresponding bias corrected estimators, the standard
errors, and the p-values under the null 7; = 0 (i = 1,2, 3) for Enron email data.

Covariate i Voc,i 0;  p-value
Department  0.167 0.167 1.13 < 0.001
Gender —0.006 —-0.006 1.27  0.62

Seniority  —0.203 —0.203 1.09 < 0.001

When 5 € B(5*,€,1) and v € B(7Y*, €,2), by inequality (1b), we have

Therefore, PR(5)| _ PFE(B,7)
3—63‘ < (n— )b, o ‘ < bpy. (2)
Let £.(6) = <82Fi(ﬂm) W)T.

04108 7 08.08;
In view of (2), we have
g (B) [l < 2(n — 1)bna,

where ||z]|; = >, |z;| for a general vector € R™. Note that when i # j and k # 1, j,

2Fi(67 7)

——F =0.
9Bx0p;
Therefore, we have ||g;;(5)]|1 < 2by2, for j # i. Consequently, for vectors x,y,v C D, we
have
ITE ()]v = [F (1)]vle
oF; OF;
< x, ~— 35 W, Uj
< o )= o)
- ||vr|oomaxz | / gt + (1= )] @ — )
< dbna(n — 1)Hv||oo\|x — Ylloo-
It completes the proof. O



3 Proof of Lemma 5

To show this lemma, we need one preliminary result. We first introduce the concentration
inequality. We say that a real-valued random variable X is sub-exponential with parameter
k>0 if

E[|X|P]'? < kp forallp>1.

Note that if X is a k-sub-exponential random variable with finite first moment, then
the centered random variable X — E[X] is also sub-exponential with parameter 2x. This
follows from the triangle inequality applied to the p-norm, followed by Jensen’s inequality
for p > 1:

[E(|X —EX][")]7 < EB(IXP)]7 + [EX]] < 2[E(X]7)].

Sub-exponential random variables satisfy the following concentration inequality.

Lemma 10 (Vershynin (2012), Corollary 5.17). Let X, ..., X, be independent centered
random variables, and suppose each X; is sub-exponential with parameter k;. Let kK =

maxXi<j<n Ki. 1hen for every e > 0,

'

where v > 0 is an absolute constant.

li(xi - E(X;))| > e) < 2exp {—m - min (Z—Z %)} :

n <
=1

Proof of Lemma 5. Recall that a;; — Ea;j, 1 < ¢ < j < n, are independent and sub-

exponential with respective parameters h;; and max;; h;; < h,. We set € in Lemma 10

= ()

Assume n is sufficiently large such that ¢/k = \/2log(n — 1)/v(n — 1) < 1. By applying

as

the concentration inequality in Theorem 10, we have for each i =1,...,n,
1 2log(n — 1)\ 21
P| ——l|di —Edi| > h, 2log(n — 1) < 2exp —(n—l)y'ﬂ
n—1 Y(n—1) Y(n—1)
B 2
C(n—1)%



By the union bound,

IP’<Hd— Ed|.. > hn\/%(n — 1)log(n — 1) )

= 2
< 308 (1~ B 2 oy 20— 1) ot - 1))
; v
i=1
< 2n
T (-1
Similarly, we have
2p
P ; zij(aij — Eaij) Z hnn IOgTL S 1-— ?
i<j

o0

4 Proof of Lemma 6

Proof of Lemma 6. Note that F(8) € L, (bno, bp1) when 3 € B(8*, €n1) and v € B(7*, €,2),
and FV(B\W):O. To prove this lemma, it is sufficient to show that the Kantovorich condi-
tions for the function F.(f) hold when D = B(f*, €,1) and v € B(7", €y2), where €, is
a positive number and e,; = o(b,; (logn/n)'/?). The following calculations are based on
the event E,,:

E,={d: miax\di — Ed;| = O(hyn(nlogn)V/?)}.

In the Newton iterative step, we set the true parameter vector S* as the starting point
O = g* .

Let V = (vy;) = OF,(8*)/08" and S = diag(1/v11,...,1/vs,). By Lemma 2, we have
N = ||V~ = O((nbuy) ™). Recall that F,-(8*) = Ed — d and v € B(v*, (logn/n)"/?)
and Assumption 1 holds, Note that the dimension p of v is a fixed constant. If €,, =

o(b, ! (logn)*/?n=1/2), by the mean value theorem, we have

(BN < IId—Edlloo+m§X|Z#i[Mij(ﬂ*,v)—Mij(ﬁ*,v*)]l

< Olhu(nlogn)!”) +max ) |y (5" ) |57 = 7°)
J#

O(hy(nlogn)'/?).



Repeatedly utilizing Lemma 2, we have

5 = [IIF(B)] s (B loe = (B ool 5 (8" oo = o<,f—”\/ 1°§”>

n0

By Lemma 4, F, (/) is Lipschitz continuous with Lipschitz coefficient A = 4b,5(n — 1).
Therefore, if

bnzhn N O( n )
b2, logn”’
then
O = O(——) x Ofban) x O(1m /1087
P= B nbnO "2 bn() n

bnohy, [logn
= 0 =o(1).
( brg n > o)
The above arguments verify the Kantovorich conditions. By Lemma 3, it yields that
~ h, [logn
— Bl =02 ,
18, - &l (bno\/ - )

By Lemma 5, P(E,) — 1 such that the above equation holds with probability at least
1 —O(n™'). Tt completes the proof. O

5 Proof of Lemma 7

Proof of Lemma 7. Recall that

Qe(7) = (Qea (), - Qe =D 2i5(nij (B, 7) — azy),

j<i

and Q’(7) is the Jacobian matrix of Q.(¥).

When causing no confusion, we write Q. x(7v) as Qcx, kK =1,...,p. Note that

Qe = Z Zijk(ﬂij(Bw v) — aij)-

j<i
By finding the first order partial derivative of function (). ; with respect to variable ;,

ank 1/~ agyz agvj
- = ij ij -+ =tz |,
o ;Zﬂkﬂ () ( v v 7

we have




where 7;; = B%Z- + B%j + ZJV and 57 = (37,1, e ,B%n)T. Again, with the second order

partial derivative, we have

0*Qe _ . OBy, agw’ aB\%i 83%3‘
Oy T oy, - ;Zijkﬂ (7713) (a,y'l' + o T + zij oV, + o + Ziji

PBri OB

. !~ . 5t Y53

+ Zijett (7i5) <(97T3% + oo )

Recall that max; ; ||2ij]|cc = O(1) and when 5 € B(8*, €,1),7 € B(7*, €42), we have:

H%%}XW(%’N < bn1, HZl%X|M"(7Tij)| < bna, II%?XW"'(%N < bps. (3)

So, we have

82Qck 2 aB\’Y 2
) — —_— 4
575, o(n bl 1)+ b 55| @)

In view of (4), to derive the upper bound of %’“ , it is left to bound 85 222 and aifg;

Recall that F' (67, v) = 0. With the derivative of function F’ (ﬁv, ) on variable 7, we
have

= + = 0. 5
opT B=B~y=" oy’ oy’ B=By = )
Thus, we have
~ -1
&YT 96 ! B=By =" 87T B=B~ ="

To simplify notations, define

OF(B,7)

V= (Uij)nxn = (‘M

) W= (wzj)nxn = V_l - Su F = F(/B7ry)7

B=By =7

where S = (8;j)nxn and s;; = d;;/v;;. Note that

OF; ~
T = Z Zz‘j/vb;jww ) (7)
7 18=By =y G

10



By inequality (3), we have

| < maxd |8y )zl = Obarn). (8)

H
~
afy ﬁ—ﬁ"/v Y=" ' ]#l

By combing (6) and (8) and applying Lemma 2, we have

wnm < O(L) - O(bpn) = O(%). (9)

oo < |IVlso
oo < IV ol 1 =55 — b

577

Next, we will evaluate 83:5%. By (5), we have

o for| o [or 75 o for
O 987 o, nmy] 97" OB |53, 4=n] OWOY" O [O7T |5p, hmy '
It leads to that
8257 _ —V_li 8_F 8_57 — V—li 8_F
oo’ O | 987 5=, 1=+ 07" O | 97" |9=p, n=r
= —]1 - IQ. (10)
For 7 # j, we have
oF ~
T = 13;(By,7),
<85T BE’WV’Y) ij 7
o [ oF ~ ap
- R =" , ZT—W + Ziik)-
Ok <3ﬁT - } /%](5“/ Y)( 7 Oy jk)
Thus,
) <8F ) ( 0B,
— [ —= < bpa | 2||z—=|| + max||2ij||co | - (11)
5} 0BT |, » oy’ i
Tk 6 B=B~ 7= ij v J
Note that
oF ~
T = > 1 (By,7).
<8BT 537777) i ; o
By (11), we have
o (oF o
O (86T 5=§mv=7>ii =t e ( oy’ +H%2XHZ]H ) "2
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Foralli=1,...,nand j=1,...,p, in view of (11) and (12), we have

0 |oF 8,
8"}% aﬂT /3:/3’7»7:7 a’}/T ij
-y {i oF ” %)
B =1 (3”)% op B=By =7 it 87T 2
0B OB
< B Yy et -
2(n — 1)bps o (2 90T +IIZ12X||2”||OO>
a3, |’
Thus,
0 |OF 0
1Ll = V7' 5= | 5o 6”
afyk 67 B:B’WW:’Y
B
< [V X max ——
< v Z { o am MWJ W}Zj
857 2
p— . 1
0 (bn0| Y ) (13
Since OF
a—_lz_ R - Z Zz]ﬂ’;](ﬁ’yv 7)7
T =By =y G#i
we have
0 | OF, ﬁ'y
- | —=F Zz Ba +Zl
Ove | T 5=Bw7—7] ; ity (By O ik)s
such that
o | OF s
— | = < (n — 1)bpa(max ||z ||oo) (| 5= || + max || 2|0 )-
o |07 B:BM:J ) ( )bna( 12 123l )(II(MII 12 125l o)
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Consequently, we have

0 | OF
Il = V7555 ]noo
7= By v="
_ 0 | oOF
< Vel 5| ]Hm
7 lg= By v=v
1 ﬁ ap,
= O( 1)><(n—1)bn2/<en(H H+ffn) (14)

nbno  nb3,

- (b H%”Hoo) | (15)

By combining (10), (13) and (15), it yields that

@Zﬁv bn2 @B'y 2
— || = ) 1
55l = (%” 5. (16)

Consequently, in view of (4), (9) and (16), we have

82@0& 2 85“/ 2 2 aﬁ'y 2
Il = Olbual G2 + b - 222
n?b3 b,
- o( wlz) (17)
n0
Note that
P
> {[Qu(@)]i; — [QLw)isYos| < vl max Q)]s — [QL(Y)]is]- (18)
=1 ’
By the mean value theorem, we have
: 0@y
Q- @l = | 2%k oy
SR
82@6/6(7)
< =5 = Ylloo; 19
< | T | e (19

where t = ax + (1 — o)y for some a € (0,1). By combining inequalities (18), (19) and
(17), we have
I[Qc()]v = [Qe(y)]v]lee < Allz = yllsollv]loo, (20)

where

A = O(n2b3 babrd).
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This completes the proof. O

6 Proof of Lemma 8

Proof of Lemma 8. Recall that Fi(8*,v*) = > ;(ni(B*,7") — ay), i = 1,...,n. By
applying a second order Taylor expansion to H (@*,'y*), we have

OF 5* * —1 O2F B*, * ~ .
(21)

where * lies between B\* and g*. We evaluate the last term in the above equation row

F(By,7*) = F(B*,7") +

k=

by row. Its th row is

. 1 x * TaZFe(B*’fy*) Dx * —
Re-—§(5 - 5%) W(ﬁ -6%), £=1,...,n. (22)

A directed calculation gives that

Do W (Tin), L=1=]
ToB0B 1 (Tej), C=ii#jil=ji#]
0, 04i4 ]

aQFZ(B* 7*) .
max 2|Ry] < max Z |18 = 817
l=1,....n {=1,...n I<izjen—1 86185]
< 2bpa(n— 1[I - B
By Lemma 6, we have that
bnoh? 1
max |R,| =0, (Q”TW) . (23)
l=1,..., n bTLO

Let R = (Ry,...,R,)" and V = —9F(B*,7")/0B7. Since H(B*,v*) = 0, by (21), we
have

B =B =VIF@, )+ V'R (24)
Note that V' € L,,(bno, bn1). By (23) and Lemma 1, we have

bnoh? logn

VIRl < IV Y llR|leo = O .
I [ 1 ™ ( b, )
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7 Proof of Lemma 9

Proof of Lemma 9. For convenience, write

3 _OF(B,7)

0
ﬁ* — B’Y’ V(ﬁ,’}/) = W? _ Qﬁ(ﬁv’}/) /

Q/ﬁ,z = W’

=1,...,p.

When evaluating functions f(3,7) on (8,7) at its true value (8*,7*), we suppress the
argument (3*,~*). This is, write Q , = Q} ,(8%,7"), etc. Note that V' € L,,(bno, bn1). Let

W =V~-!—-S. By Lemma 8, we have

0Qu(B".7")
95T

(5"~ 5") = Q3 (V"'F + V7'R) = Q (SF + WF + V'R).

(25)

We will bound Q% ,SF, Q3 ,WF and Q% ,V "R in turn as follows. Let z, = max; ; || 2]/ -

A direct calculation gives
n

Q’BM: Z Zijllvb;;j(ﬂ-:j)a

=1
such that
’QIBZZ| < (n—1)zbn.

Thus, by Lemmas 2 and 8, we have

Qs VTRl < > Qb lIV T Rl

nbm bnl h% lOg n

< n(n-— 1)bn10p(n721—) = Oy(

Then we bound Q7 ,SF. A direct calculation gives that

i=1 i=1
where o
BLi
7 y b — 17 , 1
Vi
It is easy to show that
2b 1
max ;] < =
i=1,...,n bnO

15

).
bro

(27)

(28)



By expressing Q’MS F' as a sum of a;;s, we have

QuSF =2 Y ci(piy — ayy),

1<i<j<n

Note a;; (i < j) is independent and bounded by h,z.. By applying the concentration

inequality for subexponential random variables to the above sum, we have
Q4 SF| = Oy(hunlogn) (29)
Finally, we bound @} ,WF'. Let

o2 = maxn?|(W ' Cov(F)W ).

1]
Therefore, by (26), we have
Var(Qy WF) = [Qf,] W' Cov(F)WQj,
= D QbW Cov(F)W);jQe,
1,
= O (n* xn %0} x b} n?)
= O(n*b?,02).
By Chebyshev’s inequality, we have

O(n%02b?,b;3)

/ 2 1/2 n-nl"n|
POQ’B’KWH‘ > b on(logn) %) < n25%1b;g)0% logn =0
It leads to
Qs WH = Oy(nbn10,(log n)t/?). (30)

By combining (25), (27) (29) , (30), it yields

Nbnobnih? logn
= Op( b3
n0

h2b,
= 0, (nbnl log n( 23 2 4 Un)) )
n0

) + Op(hnnlogn) 4+ Oy(nbyi0,(logn)/?)

In the case of V' = Cov(F), the equation (30) could be simplified. Denote W =
V~1 — S. Then we have

Cov(WF) =W Cov(FYW = (V! =S)WV{V1-8)=V'1-8+5VS-5.

16



A direct calculation gives that

(1 — dij)vij
ViV

By Lemma 1, we have

(W Cov (F)W)ys| = 0( by ) |

253
n2b;,

Then, we have

n0

nbfl1
Q,/B,EWF = Op (W) ’

which leads to the simplification:

=1,...,

h2b,1b,onlogn
b ’

It completes the proof. O

8 Proofs for Theorem 2

Proof of Theorem 2. To simplify notations, write p;; = (8} + 55 + zl-;y*) and

L OF() L, OF(EY)
98T VB oNT
Let mf;, = 87 + 0 + z;7" and 75 = B+ BJ + z;7. By a second order Taylor expansion,
we have
p(T@i) — () = iy (Bi = Bi) + 13y (85 = B5) + pizzy (3 — ) + 945 (31)
where
o) * T " (= " ([~ " (= T ) *
1 éz -5 :uij(ﬂ-ij) My (75) Mij(ﬂ-ij)zz‘j éz — B
9i =3 B; — 55 =i (Fig) e (Fig) — iy (i) 245 Bi =065 ],
el /ng(%ij)zz'—; _M;/j(%ij)zi—; i (ﬁij>zij2;; Sl

and 7;; lies between 77; and 7;;. By calculations, g;; can be simplified as

gij = M”(ﬁz‘j)[(@ — B+ (Bg —B;)? + 2(@ - @)(Ey — 5;)]
2 (7o) 2 (= 1) (B; — Bi+ By — By) + (A — ) " (Fig) 22 (B — )

17



Recall that z, := max;; ||2i|lc = O(1). Note that |p"(m;;)| < b when 5 € B(5*, €n1)
and v € B(7*, €,2). So we have

4bn2||5 ~ 6*||go + 2bn2”ﬁ - B*||OO||/7\ - V*HI’% + bn2” ||/7\ - 7*”%’{721
2bn2[4]18 — B*|1%, + II7 — v*IIF22].

lgi] <
<

Let g; = Z#i gijs 9= (g1,--.,9,) . If (4.11) in the main text holds and

]
then
Jnax ;| < nmax|gi;| = O(hib?;;%) + Op(bnamn logn) = Op(h’%b’;%)- (32)
Writing (31) into a matrix form, it yields
d—Ed=V(B-B)+ V(A -7+,
which is equivalent to
BB =V d-Ed)+V V(G -7)+V g (33)

We bound the last two remainder terms in the above equation as follows. Let W =
V-1 —S. Note that (Sg); = g;/vi and (n — 1)bpo < v;; < (n — 1)b,;. By Lemma 2 in the
main text, we have

1 h2b,5logn

V=gl < 1V cllglloe = O x 25250, (34

Note that the ith of Vg is Y77 ) pij;25. So we have

~ * ~ * n2/ty
Va6 = 7)llse < (0 = Dzl[7 =77l = Op(knbur log (=5~ + ou)).
n0

By Lemma 2 in the main text, we have

nbno

o~ * — ~ * Knbn1logn n 31
VY0 =1l < IV alVoa(F = 7)o = O, (a2 4 ) . (35)
Since max; [(WQW )| < 02 /n?, we have

n? 1
—a,%(log mE |Var{[W (d — Ed)|;}| = oz )2

P((W(d — Ed)]; > onlogn/n) < (36)

18



Consequently, by combining (33), (34), (35) and (36), we have

buah?

~ Knbni logn
1 ( 5 +0n)).
n0

Bi = B = [S(d = Ed)]; + O

nbnO

It completes the proof.

9 Proof of Theorem 3

Proof of Theorem 3. Assume that the conditions in Theorem 1 hold. A mean value ex-

pansion gives

0Q.(7)
oy’

where 7 lies between v* and 7. By noting that Q.(7) = 0, we have

100607 Q.
VNE-7) = |5 W} xS

Note that the dimension of « is fixed. By Theorem 1 and (4.10) in the main text, we have

Qc(ﬁ) - Qc(’y*) = (;}7 - 'Y*>,

~—

N onT =l = ngl)o NH(ﬁ )

Write B* as Bw* for convenience. Therefore,
VNG =) = B x (<28 o ), 37
G-) (£ +o,(1) (37)
By applying a third order Taylor expansion to Q(B\*, v*), it yields

- \/LNQ(B*,V*) =51+ 5+ 53, (38)

where

Si = — Q") — 7 |25 (B - ),

S2 =~ Yo | By — ) 2280 < (B — ).

S5 = g S Ziel By — 80 By = 51) | 3ot | (B = 7)),
and B* = t3*+ (1 — t)B* for some ¢ € (0,1). Similar to the proof of Theorem 4 in Graham
(2017), we will show that (1) Sy is the bias term having a non-zero probability limit; (2)

S3 is an asymptotically negligible remainder term.
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We first evaluate the term S3. We calculate gy, = G%Sk%(ﬁﬁ_ ’876);@ according to the indices
i, ],k as follows. Observe that g;;z = 0 when i, j, k are different numbers because 1;; only
has two arguments 3; and [3; and its third partial derivative on three different 3;, 3; and

B is zero . So there are only two cases below in which g, # 0.

(1) Only two values among three indices i, j, k are equal. If k = i;i # j, gijr = 2 %:;“,
for other cases, the results are similar.
(2) Three values are equal. ggrr = Z#k zki%’%’“j )
Therefore, we have
*) Y Y
S — * * _ * * _ *
5 Gf e aﬁkaﬁlaﬁh (B = BB = BB = B)

k,l,h

63 * R 83 Q¥ %) .
- L {Z%Q—a@m @ — g+ LU e e g

93705
83 *
+Z 863 )3 — gy’ }

So

[Ss]lc <

4 Puii(B*,7%)) n(n—1) =
e x e { [T e A 20— e,

ij
By Lemma 6, we have
bnsh? (logn)®/?

1S5l00 = Op( ).
’ 3 n'/2by,

Similar to the calculation in the derivation of the asymptotic bias in Theorem 4 in
Graham (2017), we have Sy = B, + 0,(1), where B, is defined at (4.12) in the main text.
Recall that V = 0F(8*,7*) /08" and Vgs := 0Q(B*,~*)/0B". By noting that

d — Ed = Z (aij — E(lm)ﬂj,

1<i<j<n
we have
—[Q(B"7) = VsV (d —Ed)| = > (ai; — Bay;)(zi; — VsV ' Tiy).
1<i<j<n

Similar to the calculation in the derivation of the asymptotic expression of S; in Graham
(2017), we have

1 \/—25136 7 +0P<1)

1<
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Therefore, it shows that equation (38) is equal to

\/_Zs” Y \/_st (B*,7") + By + 0,(1), (39)

1<t 1<t

with \/LN D im1 D Sai (8%, 7%) equivalent to the first two terms in (38) and B. the prob-
ability limit of the third term in (38).
Substituting (39) into (37) then gives

-~ * [7— r[7— 1 * *
\/N(V—’V)ZH 'B.+H ' x \/_N;SU(B Y") + 0p(1).

It completes the proof. O

10 Proof of (15)

Recall that m;; = zi}y + B + B, pij(mi;) = Ea;; and T;; is an n-dimensional vector with

1th and jth elements 1 and other elements 0. By calculations, we have

0@ B 9Q(8,7)
Zzlj zj:uzj 7TZJ

7<i
9Q(5,
8(BT ) - Zzz] :uzj 7T7J
7<i
AN .
aF(ﬁ,y) _ Z];ﬁl 1]1/1/1](71_1])
oy’

3 #n Zngbimg (Tng)

Note that

9Q(B.1") _ 9Q(B.~") PF(@WT OF(B.7")

H(/877*) = a,y‘r 8BT aBT a,y‘r

To simplify notations, let

_0Q(8,7") _0Q(8,7") _OF(B,7") _OF(B,7)
A_@’V—T’ B_—aﬁT , V_—aﬁT : D_—87T .

When emphasizing the arguments  and 7, we write A(S, v*) instead of A and so on. When
B € B(B* €n), V € L(bpo,bn1). Let W = V=t — 8 where S = diag(1/vi1,...,1/vmm).
Then we have

H=A—-BV'D=A-BSD - BWD.

21



Recall that z, = max;; ||zl and max;;[u;;(8,7%)] < bui. To simplify notations, we
suppress the subscript “max” in the matrix maximum norm || - ||max in this section. Tt
yields

IBIl < n2bny,  [|Df] < nzebm,

such that
2

b b4 2
IBW D] = max | But¥iaDy| = Oy x stz =0 (). )

2713 *7nl T 3
bn() bnO

Now, we evaluate A(,~v*) — A(8*,~*). By the mean value theorem, we have

IABA) = AB A = 1Y 22 [3%(5 ) 8/1@-]»(6*,7*)1 H

87'('1] 87@7

1<t

IN

mz;x“zw 25 In%bna| B — B0

A

Next, we evaluate [BSD|(8,7*) — [BSD](8*,v*). Note that

[BSD);; ZB,kSlel] = Z By

(%
1 kk

0
Bklﬂ’y Zzljk Ml]57)7

J#l on i
OBu(B,7") (B, 7")
TORNE, T ) PRl A M Ay oy
ap ; e omy Y
0
Du(B,7") = 2yt Mkéﬁ7)7
Jj#k TTkj
0Dy (B,7") 32Mkj (8,7")
— = LT
aﬁ ;Zkﬂ aﬂ_ij kj
Since |/ (m;5)| < bpy and @ (m;5)] < bya, we have
|Br(B,7)| < nknbur,  [Di(B8,77)| < nzibn, (42)
and for a vector v,
||6§§/(ﬁ;) ol < zbe[(n — Dol + 325 [v5l; (43)
122 < zabol(n — Dfurl + 3 [vs1).
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By (42) and (43), we have

03T

v| < 2n22bubual(n — D] + ) Jvs]. (44)
J#l

It is easy to see that

Ok Ovy, 0% i,
sl € 35021 < 0= D gt = UG Tl < 2= a4

By the mean value theorem, we have

_ TR (A _ B*
ek (B, 7%) ok (B, 7*) (BB =B,

where 3 lies between 3 and 3*, and

O[Bik(B,7*) Di (B,7")] 5 vek(B,7%) ~ - ]

! 95 vk(B,7") — 95T Bie(8,7") Dij (B,77) | -

Ul%k(éa 7*)

By (44) and (45), we have

f(B,7") =

LB A8 = 5

1 * *
< O ( Gy (02l = 5l % (0= D + ol = 51}
2,

= O(nbilbnﬂfHﬁ - B Hoobr:oz) = O(”'Zfbrﬂuﬁ - B*HoobT)
n0

Consequently,

HBSD](ﬁ ’Y ) [BSD](ﬁ* ’Y*)\

Vkk 5 Y ) vek(B,7)
< 0( 2o 22|18 = B[l brgy)- (46)

By inequalities (40), (41) and (46), if

b2l [ = B[l = o(1),

2
bnO

then . .
—H(B,7")ij = ﬁH(ﬁ*a’y*)zj +o(1).
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11 Simplifying expression of B, in (19)

In the case of V.= 0F(pB*,v*)/0p = Var(d), B, can be simplified as follows. Let W =
V~1 —S. A direct calculation gives that

- 02Q(6*, *) } ];ékzkjlukj )
Z|: aﬁkaﬁ—r Z Z]#k'uk]( z]) '

k=1

By Lemma 1, we have
- 8262@(5*7 ’7*) * bilbrﬂ
X Faar | = S =0 ().

So, if b2 bnab, S = o(n), then

1« Zj?ék; ij:u/k/j<ﬂ-;<j)

_1 _
b \/_Z{ 3ﬁk8ﬁT ek} B \/Nk:1 Zj;ék“kj(ﬂjj) ’

(47)
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