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Abstract
We propose a general model that jointly characterizes degree heterogeneity and 
homophily in weighted, undirected networks. We present a moment estimation 
method using node degrees and homophily statistics. We establish consistency and 
asymptotic normality of our estimator using novel analysis. We apply our general 
framework to three applications, including both exponential family and non-expo-
nential family models. Comprehensive numerical studies and a data example also 
demonstrate the usefulness of our method.
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1 Introduction

Jointly modeling a network and nodal or edge-wise coviarates has long been an 
interesting problem. One natural idea is to extend a widely used network model to 
incorporate covariates. For example, Yang et  al. (2013), Zhang et  al. (2016) and 
Binkiewicz et al. (2017) introduced nodal covariates into a stochastic block model 
(SBM), which captures the clustering structure in networks. In this paper, we will 
study the extension of another network model, called �-model (Rinaldo et al., 2013; 
Yan and Xu, 2013; Yan et al., 2016b, 2019; Chen et al., 2021; Zhang et al., 2021) 
that characterizes a different important aspect of network data, namely, degree heter-
ogeneity (Cho et al., 2011). The degree (total number of connections) of a node pro-
vides important profiling information about its structural role in the network (Bor-
gatti and Everett, 2000; Zhang and Xia, 2022; Maugis, 2020). A famous example 
is that (Babai et al. 1980) shows that efficient graph matching can usually succeed 
with high probability between two shuffled random graphs, using a degree-based 
algorithm. The �-model, named by Chatterjee et al. (2011), is an undirected, binary 
network:

where A = (aij), 1 ≤ {i, j} ≤ n is a binary adjacency matrix. Later, Yan et  al. 
(2016b) and Fan et al. (2022+) extend this model to weighted networks with edge 
distributions including Poisson, geometric, exponential and so on. This paper will 
generalize (Yan et al., 2016b) rather than the original binary edge �-model.

What we incorporate into a weighted �-model are edge-wise covariates. We 
notice that this set up also accommodates nodal covariates (e.g., immutable char-
acteristics such as gender, race and genetic features; and/or mutable ones, including 
location, occupation and hobbies) since they can be easily transformed into edge-
wise similarity/dissimilarity measures. According to Graham (2017), this part of 
the data encodes the homophily effect in network formation. As a quick illustration, 
consider two node pairs (i1, i2) and (j1, j2) . Even if {�i1 , �i2} are very different from 
{�j1 , �j2} , their edge expectations �[ai1,i2 ] and �[aj1,j2 ] might not differ too much, if 
they have similar edge covariates zi1,i2 ≈ zj1,j2.

Jointly modeling both degree heterogeneity and homophily, as well as developing 
effective estimation and inference methods along with supporting theory, is an inter-
esting challenge. As aforementioned, covariate-assisted stochastic block models have 
been comparatively well-studied, whereas few works exist to extend the �-model. 
Among notable exceptions, Graham (2017) generalizes (1) by extending �i + �j to 
�i + �j + zT

ij
� and devises a likelihood-based method for estimation and inference. 

Recently, independent works (Stein and Leng, 2020, 2021) further introduce �1 regu-
larization to the joint model for undirected and directed networks, respectively. Both 
research groups (Graham, 2017; Stein and Leng, 2020, 2021) focus exclusively on 

(1)
ℙ(aij = 1) =

e𝛽i+𝛽j

1 + e𝛽i+𝛽j
,

aij = aji, 1 ≤ i < j ≤ n
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binary edges for cleanness. On the other hand, many networks, such as communica-
tions, co-authorship, brain activities and others, have weighted edges.

In this paper, we develop a general joint model for weighted edges. Different from 
the likelihood-based approaches in Graham (2017) and Stein and Leng (2020, 2021), 
we propose and analyze a method-of-moment parameter estimation. As discussed 
later in the paper, moment method has its unique advantage in addressing slightly 
dependent network edge formation—despite this paper exclusively focuses on inde-
pendent edge generation, we understand that a comprehensive study here paves the 
road toward successfully handling the very challenging problem of dependent edges.

We develop a two-stage Newton method that first finds an error bound for 
‖�̂ − �‖∞ for a fixed � via establishing the convergence rate of the Newton iterative 
sequence and then derives ‖�̂ − �‖∞ based on a profiled equation under some con-
ditions. When all parameters are bounded, the �∞ norm error for �̂  is in the order 
of Op(n

−1∕2) while the �∞ norm error for �̂  is in the order of Op(n
−1) , both up to a 

logarithm factor. When the parameters diverge, the error bounds depend on addi-
tional factors involved with the ranges of � and � . Further, we derive an asymptotic 
representation of the moment estimator, based on which, we derive their asymptotic 
normal distributions under classical CLT conditions. To illustrate the unified results, 
we present three applications, along with comprehensive numerical simulations and 
a real-data example.

The rest of the paper is organized as follows. In Sect. 2, we present our general 
model. In Sect.  3, we propose our moment estimation equations. In Sect.  4, we 
establish consistency and asymptotic normality of our estimator under mild condi-
tions. Section 5 illustrates the application of our general framework to weighted net-
works with logistic, Poisson and probit edge formation schemes. Section 6 contains 
summary and discussion. Due to limited space, simulation results and the real data 
application are relegated to Supplementary Material.

2  Covariate‑assisted ˇ‑model

We shall jointly analyze data from two sources: network and edge-wise covariates. 
The network data are represented by an adjacency matrix A = (aij)n×n, 1 ≤ i < j ≤ n . 
We study undirected networks without self-loops, i.e., A is symmetric aij = aji and 
aii = 0 . In this paper, each entry aij may be binary or weighted (such as collabora-
tion counts in a co-authorship network and phone call lengths). Let di =

∑
j≠i aij be 

the degree of node i and d = (d1,… , dn)
T be the degree sequence. In addition to 

network data, we also observe a covariate vector zij ∈ ℝ
p on each edge. This set-

ting also covers the scenario when we observe nodal attributes xi : simply define a 
similarity/dissimilarity measure g(⋅, ⋅) that converts these attributes to edge-wise 
covariates via g(xi, xj) . Examples including Euclidean distance for continuous xi ’s 
and Hamming distance for binary xi’s.

Our goal is to jointly model degree heterogeneity and homophily. Degree heteroge-
neity is captured by a latent parameter �i ∈ ℝ on each node. Homophily is driven by 
edge-wise covariates under our framework. Specifically, it is accounted for by zT

ij
� , 
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where the exogenous parameter � ∈ ℝ
p can be understood analogously like a regres-

sion coefficient in a generalized linear model.
Now we present our model. Given Z = (zij) , the network entries aij are generated 

independently by the following model, which we call “covariate-assisted �-model”:

where f is a known probability density /mass function, �i is the degree parameter of 
node i and � is a p-dimensional regression coefficient for the covariate zij . Our model 
(2) generalizes the semi-parametric models in econometrics literature (Fernández-
Vál and Weidner, 2016) with binary and exponential responses for undirected net-
works. We focus on these additive models for computational tractability. It would 
be an interesting future work to generalize the method of our analysis to address the 
more general case where �, z and � enter the model as non-additive effects.

The model (2) extends not only the well-known �-model, but also many of its vari-
ants (Yan et al., 2016b). In many examples, such as �-model, f (⋅) is an increasing func-
tion of �i . Consequently, nodes having relatively large degree parameters will have 
more links than those nodes with low degree parameters, without considering homoph-
ily. To further illustrate the usefulness of (2), we consider two running examples.

Example 1 (Binary edges) In statistical network analysis, a long-studied problem 
is to jointly model network data with additional covariates. For example, Yang 
et al. (2013) and Zhang et al. (2016) incorporate nodal covariates into a stochastic 
block model; in contrast our model provides a flexible tool for incorporating nodal 
and/or edge-wise covariates into a �-model. Here, we consider binary edges, i.e. 
aij ∈ {0, 1} . Let F be some properly chosen transformation: F ∶ ℝ → [0, 1] . The 
probability of aij is

Two popular choices of F(⋅) are sigmoid transformation F(x) = ex∕(1 + ex) (Graham, 
2017) and probit transformation F(x) = �(x) , where �(x) is the CDF of N(0, 1).

Example 2 (Unbounded discrete edges) This example generalizes the Poisson �-
model in Section 3.4 of Yan et al. (2016b). Here, we model aij ∼ Poisson

(
�ij
)
 , where 

�ij = exp(�i + �j + zT
ij
�) . That is,

(2)aij|{z, �, �} ∼ f
(
aij
||�i + �j + zT

ij
�
)
.

ℙ(aij = a) = {F(�i + �j + zT
ij
�)}a{1 − F(�i + �j + zT

ij
�)}1−a, a ∈ {0, 1}.

logℙ(aij = a) = a(�i + �j + zT
ij
�)

− exp(�i + �j + zT
ij
�) − log a!.
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3  Parameter estimation

To motivate the estimation method for our covariate-assisted �-model (2), it is 
helpful to very briefly recall that for the classical �-model, i.e., � ≡ 0 , there are 
two mainstreams of estimation methods: MLE (Chatterjee et al., 2011; Rinaldo 
et al., 2013) and method of moments (Yan et al., 2016b). While MLE is a widely 
recognized method for model parameter estimation, as aforementioned in the 
introduction, method-of-moments may enjoy an easier extension to dependent-
edge scenarios in the future (see also Sect. 6). Therefore, we propose and study 
a moment estimator in this paper. Notice that �[aij] depends on the model param-
eters only through

There exists a function �(⋅) such that �[aij] = �(�ij) . In some future texts, we find it 
more convenient to emphasize that �(�ij) can be viewed as the (i, j) element of an 
n × n matrix. Therefore, we slightly abuse notation and might sometimes use a dif-
ferent notation �ij(�, �) to represent �(�ij).

Now we are ready to present our method of moments parameter estimation. 
To motivate our formulation, consider a special case when the edge distribution 
belongs to an exponential family, namely,

Examples of (4) include logistic model and Poisson model with covariates, as in 
Sect.  5. Sending the partial derivatives of the log-likelihood function of (4) to zero, 
we obtain the following moment equations.

where [n] = {1,… , n} . Denote the solution to (5) and (6) by (�̂, �̂) . We shall address 
the natural questions of existence and uniqueness of (�̂, �̂) in Theorem 1.

Now we discuss some computational issues. When the number of nodes n is 
small and f is the binomial, Probit, or Poisson probability function or Gamma den-
sity function, we can simply use the package “glm" in the R language to solve (5) 
and (6). For relatively large n, it might not have large enough memory to store the 
design matrix for � required by the R package “glm". In this case, we recommend 
the use of a two-step iterative algorithm by alternating between solving the first 
equation in (5) via the fixed point method (Chatterjee et al., 2011) or the gradient 
descent algorithm (Bubeck, 2015) and solving the second equation in (6).

(3)�ij ∶= �i + �j + zT
ij
� .

(4)L(a�𝛽, z, 𝛾) = C(𝛽, z, 𝛾) ⋅ e

�∑
1≤i<j≤n aij⋅(𝛽i+𝛽j+z

T
ij
𝛾)
�
⋅ h(a, z).

(5)di =
∑

j∶j≠i

�ij(�, �), i ∈ [n]

(6)
∑

1≤i<j≤n

zijaij =
∑

1≤i<j≤n

zij𝜇ij(𝛽, 𝛾)



374 Q. Wang et al.

1 3

4  Asymptotic properties

In this section, we present the consistency and asymptotic normality of the moment 
estimator. We start with notation. For any C ⊂ ℝ

n , let C0 and C denote the interior and 
closure of C, respectively. For a vector x = (x1,… , xn)

T ∈ ℝ
n , let ‖x‖ be a generic 

notation for vector norm. Specifically, inherit the notion of ‖x‖p to denote �p norm 
from functional analysis. Let B∞(x, �) = {y ∶ ‖x − y‖∞ ≤ �} be an �-neighborhood 
of x under �∞ metric. For an n × n matrix J = (Ji,j) , let ‖J‖∞ denote the matrix norm 
induced by the �∞-norm on vectors in ℝn , i.e.,

‖J‖max = maxi,j �Jij� , and let ‖J‖ be a generic notion for matrix norm. We use a super-
script “*" to mark the true parameter. But in early sections of this paper, without 
causing ambiguity, we might omit it when stating the model.

Next, we set up regularity conditions for our main theorems. Assume �(⋅) has con-
tinuous third derivative. Recall �ij = �i + �j + zT

ij
� as defined in (3). Suppose there exist 

bn0, bn1, bn2, bn3 > 0 such that 

 hold for all � ∈ B∞(�
∗, �n1), � ∈ B∞(�

∗, �n2) , where 𝜖n1, 𝜖n2 > 0 are two diminishing 
numbers as n → ∞.

Condition (7a) is mild, requiring that the derivative of the expectation function �(x) 
is positive for all x ∈ ℝ or negative. The conditions (7b)–(7d) may seem quite techni-
cal and abstract for readers. To help with intuitive understanding, let us illustrate them 
using Example 1 with a logistic link function. In this case, �(x) = ex∕(1 + ex) . Straight 
calculations show

‖J‖∞ = sup
x≠0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n�

j=1

�Ji,j�,

(7a)min
i,j

𝜇�(𝜋ij) ⋅max
i,j

𝜇�(𝜋ij) > 0,

(7b)bn0 ≤ min
i,j

|��(�ij)| ≤ max
i,j

|��(�ij)| ≤ bn1,

(7c)max
i,j

|���(�ij)| ≤ bn2,

(7d)max
i,j

|����(�ij)| ≤ bn3.

��(x) =
ex

(1 + ex)2
,

���(x) =
ex(1 − ex)

(1 + ex)3
,

����(x) =
ex(1 − 4ex + e2x)

(1 + ex)4
.
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It is easy to verify that max
{
|��(x)|, |���(x)|, |����(x)|

}
≤ 1∕4 , where we used

Therefore, in this example, we can set bn1 = bn2 = bn3 = 1∕4 and

where z∗ ∶= maxi,j ‖zij‖∞.
In addition to the regularity conditions (7a)–(7d) this section, we shall also need 

the following assumptions:

Assumption 1 (Bounded covariates) Suppose maxi,j ‖zij‖∞ ≤ Cz holds for some uni-
versal constant Cz.

Assumption 2 (Sub-exponential edge distribution) The distribution of aij − �aij is 
sub-exponential, with parameter hij . Denote hn ∶= maxi,j hij.

Assumption 1 is naturally satisfied by some popular dissimilarity measures 
between nodal covariates, such as Hamming distance. If the observed zij ’s or nodal 
covariates seem to vary wildly, we can simply apply a transformation such as sig-
moid or probit functions to tame them into universally bounded edge covariates, see 
Sect. 6 of Zhang and Xia (2022). Assumption 2 is satisfied by many popular edge 
distributions, such as those in Yan et al. (2016b). We make this assumption mostly 
to make our narration succinct – it can be replaced by any other conditions that guar-
antee |di − �di| = Op(n

1∕2) and �
∑

i<j(aij − �aij)� = Op(n) , respectively.

4.1  Consistency

The asymptotic behavior of the estimator (�̂, �̂) critically depends on the curvature 
of �(�, �) . To study this curvature, we start with setting up some notation. Define

For simplicity, we write F(�, �) = (F1(�, �),… ,Fn(�, �))
T . Also denote F� ,i(�) to be 

Fi(�, �) for an arbitrary given � , denote F� (�) = (F� ,1(�),… ,F� ,n(�))
T and define �̂� 

to be the solution to F� (�) = 0 . Set

|���(x)| ≤ ex

(1 + ex)2

||||
(1 − ex)

(1 + ex)

||||
and

|����(x)| = ex

(1 + ex)2

|||||

(1 − ex)2

(1 + ex)2
−

2ex

(1 + ex)2

|||||
.

(8)bn0 = min
i,j

e�ij

(1 + e�ij )2
≥

e2‖�
∗‖∞+‖�∗‖1z∗+2�n1+p�n2

(1 + e2‖�
∗‖∞+‖�∗‖1z∗+2�n1+p�n2)2

,

(9)Fi(�, �) =

n∑

j=1,j≠i

�ij(�, �) − di, i = 1,… , n.
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By definition, we have the following relationships:

Similar to Chatterjee et al. (2011) and Yan et al. (2016a), we define a notion called 
“ L class matrices” for narration convenience. Given some M ≥ m > 0 , we say an 
n × n matrix V = (vij) belongs to the matrix class Ln(m,M) if V is a diagonally bal-
anced matrix with positive elements bounded by m and M, i.e.,

Since � is linear in � , for any 1 ≤ {i ≠ j} ≤ n , we have

It is easy to verify that (13) yields that when 𝜇�(x) > 0 , � ∈ B∞(�
∗, �n1) and 

� ∈ B∞(�
∗, �n2) , we have F�

�
(�) ∈ Ln(bn0, bn1) . For simplicity, we assume 

F�
�
(�) ∈ L(bn0, bn1) hereafter (if −F�

�
(�) ∈ L(bn0, bn1) , we could rewrite 

F̃� (�) ∶= −F� (�) ). Define a convenient shorthand

and define an abbreviation V = V(�∗, �∗) . We will establish the consistency of the 
estimator �̂� using the theorems of Newton method, for which we shall need an 
explicity formulation of F�

�
(�) . This inverse does not have a closed form, but fortu-

nately, by mimicking (Simons and Yao, 1999; Yan et al., 2015) proposed a conveni-
ent approximate inversion formula V ∈ Ln(m,M) by

at approximate error of O
(
M2∕(n2m3)

)
 under the matrix maximum norm (i.e., the 

maximum of all absolute elements of a matrix).
With the above notation preparations, now we commence the asymptotic anal-

ysis of the estimator. First, we have

(10)Q(𝛽, 𝛾) =
∑

i<j

zij(𝜇ij(𝛽, 𝛾) − aij),

(11)Qc(𝛾) =
∑

i<j

zij
(
𝜇ij(𝛽𝛾 , 𝛾) − aij

)
.

F(�̂, �̂) =0, F� (�̂� ) = 0,

Q(�̂, �̂) =0, Qc(�̂) = 0.

(12)vii =

n∑

j=1,j≠i

vij, i = 1,… , n, m ≤ vij ≤ M, i, j = 1,… , n;i ≠ j.

(13)

�Fi(�, �)

��i
=
∑

j≠i

��(�ij),

�Fi(�, �)

��j
=��(�ij).

V(�, �) ∶= F�
�
(�),

(14)S = diag(1∕v11,… , 1∕vnn)
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Combining (15) and (16), the Jacobian matrix Q�
c
(�) = �Q�

c
(�)∕�� has the following 

formulation:

The asymptotic behavior of �̂  crucially depends on Q�
c
(�) . But the �̂� that appears 

in the definition of Q�
c
(�) does not have a closed form. To facilitate the quantitative 

study of the curvature of Qc(�) , define

which can be viewed as a relaxed version of �Qc(�)∕�� . When � ∈ B∞(�
∗, �n1) , by 

Section 10 of Supplemental Material, we have

for each given (i, j) ∶ 1 ≤ i < j ≤ n , where recall that the entries of H are sums 
n(n − 1)∕2 of terms, thus n−2 would be a proper rescaling factor.

We assume H(�, �) is positively definite. When aij belongs to exponential fam-
ily of distributions, H(�, �) is the Fisher information matrix of the concentrated 
likelihood function on � (e.g. page 126 of Amemiya, 1985) and is thus positive 
definite. See also Sect. 5. In fact, the asymptotic variance of �̂  is H−1(�, �) when 
f (⋅) in (2) is an exponential-family distribution; see the applications in Sect.  5. 
Thus, the asymptotic behavior of �̂  will be ill-posed without this assumption. 
Define

Now we formally state the consistency result.

Theorem  1 Let �2
n
= n2‖(V−1 − S)Cov(F(�∗, �∗))(V−1 − S)‖max . Suppose Assump-

tions 1 and 2 and conditions (7a)–(7d) hold, and

(15)
�F� (�̂� )

��T
=

�F(�̂� , �)

��T

��̂�

�T
+

�F(�̂� , �)

��T
= 0,

(16)�Qc(�)

��T
=

�Q(�̂� , �)

��T

��̂�

�T
+

�Q(�̂� , �)

��T
.

(17)
�Qc(�)

��T
=

�Q(�̂� , �)

��T
−

�Q(�̂� , �)

��T

[
�F(�̂� , �)

��T

]−1
�F(�̂� , �)

��T
.

(18)

H(�, �) =
�Q(�, �)

��T

−
�Q(�, �)

��T

[
�F(�, �)

��T

]−1
�F(�, �)

��T
,

(19)
1

n2

(
H(�, �∗)

)
ij
=

1

n2

(
H(�∗, �∗)

)
ij
+ o(1),

(20)�n ∶= sup
�∈B∞(�∗,�n1)

‖n2 ⋅ H−1(�, �∗)‖∞
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Then the moment estimator �̂  exists with high probability, and we further have

Our proof of Theorem 1 analyzes a two-stage Newton method and is thus dif-
ferent from Graham (2017) that uses a convergence rate analysis of the fixed point 
method in Chatterjee et al. (2011).

When f (⋅) in model (2) is an exponential family distribution, then 
V = Cov(F(�∗, �∗)) . In this case, the expression inside the norm of �2

n
 simplifies into

By Lemma 1, ‖V−1 − S‖max = O(b2
n1
b−3
n0
n−2) . Thus, �2

n
= O(b2

n1
∕b3

n0
) . We have the 

following corollary.

Corollary 1 Assume V = Cov(F(�∗, �∗)) and the conditions of Theorem 1 hold. If

then

When f (⋅) in model (2) belongs to exponential-family distributions and ‖�∗‖∞ 
and ‖�∗‖∞ are universally bounded, then bn0, bn1, bn2 and �n are constants. Further, 
if all covariates are bounded, H(�∗, �∗)∕n2 is approximately a constant matrix such 
that �n is also a constant. In this case, the conditions in Theorem 1 easily hold. Fur-
ther, if bn0, bn1, bn2, �n, hn are constants, then the convergence rates of �̂  and �̂  are 
Op((log n∕n)

1∕2) and Op(log n∕n) , respectively. This reproduces the error bound in 
Chatterjee et  al. (2011). This convergence rate matches the minimax optimal upper 
bound ‖�̂ − �‖∞ = Op((log p∕n)

1∕2) for the Lasso estimator in the linear model 
with a p-dimensional parameter vector � and the sample size n (Lounici, 2008). The 

(21)
�2
n
b4
n1
bn2

b3
n0

(
bn2h

2
n

b3
n0

+ �n

)
= o

(
n

log n

)
.

‖�̂ − �∗‖∞ = Op

�
�nbn1 log n

n

�
h2
n
bn2

b3
n0

+ �n

��
= op(1)

‖�̂ − �∗‖∞ = Op

�
hn

bn0

�
log n

n

�
= op(1).

(V−1 − S)V(V−1 − S) = V−1 − S +
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convergence rate Op(log n∕n) for �̂  is very close to the square root rate N−1∕2 in the 
classical large sample theory, where N = n(n − 1)∕2.

4.2  Asymptotic normality of ̂̌

We derive the asymptotic expansion format of �̂  by applying a second-order Taylor 
expansion to F(�̂, �̂) and showing that various remainder terms are asymptotically 
negligible.

Theorem 2 Assume the conditions of Theorem 1 hold. If

then for any fixed i,

Let uii =
∑

j≠i Var(aij) . If 
∑

j≠i �(aij − �aij)
3∕v

3∕2

ii
→ 0 , then, by the Lyapunov’s 

central limit theorem, u−1∕2
ii

{di − �(di)} converges in distribution to the stand-
ard normal distribution. When considering the asymptotic behaviors of the vector 
(d1,… , dr) with a fixed r, one could replace the degrees d1,… , dr by the independ-
ent random variables d̃i = ai,r+1 +⋯ + ain , i = 1,… , r . Therefore, we have the fol-
lowing lemma.

Proposition 1 Under the conditions of Theorem 2, if u−3∕2
ii

∑
j∶j≠i �(aij − �aij)

3
→ 0 , 

then we have:

(1) For any fixed r ≥ 1 , (d1 − �(d1),… , dr − �(dr)) are asymptotically independent 
and normally distributed with mean zero and marginal variances u11,… , urr , 
respectively.

(2) More generally, 
∑n

i=1
ci(di − �(di))∕

√
uii is asymptotically normally distributed 

with mean zero and variance 
∑∞

i=1
c2
i
 whenever c1, c2,… are fixed constants, and 

∑∞

i=1
c2
i
< ∞.

Part (2) follows from part (1) and the fact that

by Theorem 4.2 of Billingsley (1995). To see (22), it suffices to show that the eigen-
values of the covariance matrix of (di − �(di))∕u

1∕2

ii
 , i = r + 1,… , n are bounded by 

�2
n
b2
n1

(
h2
n
bn2

b3
n0

+ �2
n

)2

= o

(
n

log n

)
,

�̂i − �i = v−1
ii
(di − �di) + Op

(
�nbn1 log n

nbn0

(bn2h2n
b3
n0

+ �n

))
.

(22)lim
r→∞

lim sup
t→∞

Var

�
n�

k=r+1

ci
di − �(di)√

uii

�
= 0
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2 for all r < n , which is implied by the well-known Perron-Frobenius theorem: if A 
is a symmetric positive definite matrix with diagonal elements equaling to 1, with 
nonnegative off-diagonal elements, then its largest eigenvalue is less than 2. In view 
of Proposition 1, we immediately have the following corollary.

Corollary 2 Assume that conditions in Theorem 2 hold. If u−3∕2
ii

∑
j≠i �(aij − �aij)

3
→ 0 , 

then for fixed k the vector (u−1∕2
11

v11(�̂1 − �∗),… , u
−1∕2

kk
vkk(�̂k − �∗

k
) converges in dis-

tribution to the k-dimensional multivariate standard normal distribution.

4.3  Asymptotic normality of ̂

Let Tij = ei + ej , where ei ∈ ℝ
n is all zero except its ith element equals 1. Define

When evaluating H(�, �) , Q(�, �) , V(�, �) and VQ�(�, �) at their true values (�∗, �∗) , 
we omit the arguments �∗, �∗ , i.e., V = V(�∗, �∗) . Recall we earlier defined 
N = n(n − 1) . Also define

where we recall the definition of H(�, �) from (18). We have

Theorem  3 Let U = Var(d) . Assume the conditions in Theorem 1 hold. If 
bn3h

3
n
b−3
n0

= o(n1∕2∕(log n)3∕2) , then we have

where

Note that sij(�, �) , i < j , are independent vectors. By Lyapunov’s central limit the-
orem, we have

V(�, �) =
�F(�, �)

��T
, VQ�(�, �) =

�Q(�, �)

��T
,

sij(�, �) = (aij − �aij)(zij − VQ�(�, �)[V(�, �)]
−1Tij).

H̄ = lim
n→∞

1

N
H(𝛽∗, 𝛾∗),

√
N(�𝛾 − 𝛾∗) = H̄−1B∗ + H̄−1 ×

1
√
N

�

i<j

sij(𝛽
∗, 𝛾∗) + op(1),

(23)B∗ = lim
n→∞

1

2
√
N

n�

k=1

�
�2Q(�∗, �∗)

��k��
T

V−1UV−1ek

�
.



381

1 3

Asymptotic theory in network models

Proposition 2 Let �ij = Var(aij) and z̃ij = zij − VQ�V
−1Tij . For any nonzero vector 

c = (c1,… cp)
T , if

then (cT𝛴c)−1∕2
∑

i<j�s𝛾ij (𝛽
∗, 𝛾∗) converges in distribution to the standard normal dis-

tribution, where � = Cov(Q − VQ�V
−1H).

In view of Proposition 2 and Theorem 3, we immediately have

Corollary 3 Assume the conditions in Theorem 3 and (24) hold. Then, for any 
nonzero vector c = (c1,… cp)

T , we have

When the edge distribution (2) belongs to exponential family, we have V = U . 
Consequently, �F(�∗, �∗)∕�� = Var(d) , B∗ and � can be simplified as follows:

and

Note that asymptotic normality of �̂  contains a bias term and needs to be corrected 
when constructing confidence interval and hypothesis testing. Here, we employ the 
analytical bias correction formula in Dzemski (2019): �̂bc = �̂ − N−1∕2H−1(�̂, �̂)B̂ , 
where B̂ is a plug-in estimator for B∗ using �̂  and �̂  . Other bias-corrections include 
(Graham, 2017; Fernández-Vál and Weidner, 2016).

5  Applications

In this section, we illustrate the theoretical result by three applications: the logis-
tic distribution, Poisson distribution and probit distribution for f (⋅) . Moreover, 
any other distributions such as the geometric distribution that lead to the well-
defined moment estimator could also be used, besides the logistic distribution and 
the Poisson distribution.

(24)

∑
i<j(c

T�zij)
3𝜆3

ij

[
∑

i<j(c
T�zij)

2𝜆ij]
3∕2

= o(1),

(25)
√
NcT (�𝛾 − 𝛾)

d
−→N

�
H̄−1B∗, c

TH̄T𝛴H̄c
�
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∑
j≠k zkj�
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kj
(�∗

ij
)
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j≠k �

�
kj
(�∗

ij
)
,

𝛴 =
�

i<j

zijz
T
ij
𝜇�
ij

−
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�∑
j≠i zij𝜇

�
ij

��∑
j≠i z

T
ij
𝜇�
ij

�
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5.1  The logistic model

We consider the generalized �-model in Graham (2017) with the logistic 
distribution:

Graham (2017) derived the consistency and asymptotic normality of the restricted 
MLE. The aim of this application is to show that these properties of the unrestricted 
MLE continue to hold. In this model, the MLE is the same as the moment estimator.

The numbers involved with the conditions in theorems are as follows. Because aij ’s 
are Bernoulli random variables, they are sub-exponential with hn = 1 . The numbers 
bn0, bn1, bn2 and bn3 are as defined in (8) and the paragraph right above it. The condition 
(21) in Theorem 1 becomes that

where �n = e2‖�
∗‖∞+‖�∗‖∞.

By Theorem 1, we have the following corollary.

Corollary 4 If (27) holds, then

We discuss the condition and convergence rates related to the graph density. The 
expectation of the graph density is

where N = n(n − 1)∕2 . To see what is �n , let us consider the case of that zij is one 
dimension. By using S in (14) to approximate V−1(�, �) , one can get

In this case, �n is approximately the inverse of n−2H(�∗, �∗) , which depends on the 
covariates, the configuration of parameters, and the derivative of the mean function 

ℙ(aij = 1) =
e
�i+�j+z

T
ij
�

1 + e
�i+�j+z

T
ij
�
.
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n
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n
= o

(√
n

log n

)
,
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�
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�
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𝜌n ∶=
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N
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T
ij
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1 + e
𝛽i+𝛽j+z

T
ij
𝛾
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H(𝛽, 𝛾) =
∑

1≤i<j≤n

z2
ij
𝜇�(𝜋ij)

−

n∑

i=1

1

vii

(
n∑

j=1,j≠i
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�(𝜋ij)
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�(⋅) . Since the relationship between (�n, bn0) and �n depends on the configuration of 
the parameters � and � , where recall the definition of bn0 in (8), it is not possible to 
express �n and bn0 as a function of �n for a general � and � . Therefore, we consider 
one special case that �1 = ⋯ = �n ≤ c for illustration, where c is a constant, and 
assume that zij is independently drawn from the standard normality. In this case, by 
large sample theory, we have

such that �n ≍ 1∕�n , where an ≍ bn means c1an ≤ bn ≤ c2an with two constants c1 
and c2 for sufficiently large n. Further, bn0 = O(�n).

Then the condition in Corollary 1 becomes

and, the convergence rates are

Here, estimation consistency requires a strong assumption 𝜌n ≫ (n∕ log n)1∕8 . It 
would be of interest to relax it.

Since aij ’s ( j < i ) are independent, it is easy to show the central limit theorem for di 
and N−1∕2

∑
j<i�sij(𝛽, 𝛾) as given in Su et al. (2018) and Graham (2017) respectively. So 

by Theorems 2 and 3, the central limit theorem holds for �̂  and �̂  . See Su et al. (2018) 
and Graham (2017) for details.

5.2  The Poisson model

We now consider the Poisson model in Example 2.
Recall that the expectation of aij is �ij = e

zT
ij
�+�i+�j . In this case, �(x) = ex . The likeli-

hood function is

It is a special case of the general exponential random graph model, where 
(dT ,

∑
i<j aijz

T
ij
)T is the sufficient statistic for the parameter vector (�T , �T )T . There-

fore, the maximum likelihood equations are identical to the moment equations 
defined in (5) and (6).

Define

1

N

∑

1≤i<j≤n

z2
ij
𝜇�(𝜋ij)

p.
−→

e2𝛽1

(1 + e2𝛽1)2
,

1

n

n∑

j=1,j≠i

zij𝜇
�(𝜋ij)

p.
−→0,

�n

(log n∕n)1∕8
→ ∞,

‖�̂ − �∗‖∞ = Op

�
log n

n�4
n

�
, ‖�̂ − �∗‖∞ = Op

�
1

�n

�
log n
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�
.

ℙ(A) ∝ exp

(
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i=1

𝛽idi +
∑

1≤i<j≤n

aij(z
T
ij
𝛾)

)
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 So bni ’s ( i = 0,… , 3 ) in inequalities (7b), (7c) and (7d) are

Clearly, Poisson(� ) is sub-exponential with parameter c� , where c is a constant; see 
Example 4.6 in Zhang and Chen (2021). Thus, hn in Assumption 1 is ce2qn . By Theo-
rem 1, we have the following corollary.

Corollary 5 If �ne7qn = o((n∕ log n)1∕2) , then then

We discuss the condition and convergence rates related to the average weight. 
The expectation of the average weight is

As in the first application, bn0 , bn1 and bn2 can not be represented as functions on �n 
for general parameters � and � . To get some intuitive understandings, let us consider 
a simple special case where 𝛽1 = ⋯ = 𝛽n < c with a constant c, � is a constant and 
zij independently follows from a symmetric continuous distribution with a bounded 
support and the unit variance. In this case,

where c1 , c2 and c3 are positive constants. Then, the condition in Theorem 1 becomes

and the convergence rates are

Note that di =
∑

j≠i aij is a sum of n − 1 independent Poisson random variables. 
Since vij = �aij = �ij , we have

qn ∶= sup
�∈B∞(�∗,�n1),�∈B∞(�∗,�n2)

max
i,j

|�i + �j + zT
ij
�|.

bn0 = e−qn , bn1 = eqn , bn2 = eqn , bn3 = eqn .
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�
�ne

8qn log n
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�
= op(1),
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2
n
,

�n = o

((
n

log n
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Byusing the Stein-Chen identity (Stein, 1972; Chen, 1975) for the Poisson distribu-
tion, it is easy to verify that

It follows

If e4qn = o(n1∕2) , then the above expression goes to zero. For any nonzero vector 
c = (c1,… cp)

T , if

This verifies the condition (24). Consequently, by Corollaries 2 and 3, we have the 
following result.

Corollary 6 If (29) holds and �2
n
�6
n
e28qn = o(n1∕2∕(log n)3∕2), then:

(1) N1∕2�
−1∕2

(�̂ − �∗) converges in distribution to multivariate normal distribution 
with mean 𝛴

−1∕2
H̄−1B∗ and covariance Ip , where Ip is the identity matrix, where 

�̄� = N−1H̄−1 �𝛴H̄−1;
(2) for a fixed r, the vector (v1∕2

11
(�̂1 − �∗

1
),… , v

1∕2
rr (�̂r − �∗

r
) converges in distribution 

to the r-dimensional standard normal distribution.

5.3  The probit model

The two examples above are exponential family of distributions. Here, we pay atten-
tion to the probit distribution, which is not exponential. Let �(x) = (2�)1∕2e−x

2∕2 be the 
standard normal density function and �(x) = ∫

x

−∞
�(x)dx be its the distribution func-

tion. The probit model assumes

where � is the standard derivation. Since the parameters are scale invariable, we 
simply set � = 1 . Then,

e−qn ≤ vij = e
𝛽i+𝛽j+z

T
ij
𝛾
≤ eqn , 1 ≤ i < j ≤ n.

(28)�(a3
ij
) = �3

ij
+ 3�2

ij
+ �ij.

∑
j≠i �(a

3
ij
)

v
3∕2

ii

≤
(n − 1)eqn

(n − 1)3∕2e−qn
= O(

e4qn

n1∕2
).

(29)

∑
j<i(c

T�zij)
3𝜆3

ij

�∑
j<i(c

T�zij)
2𝜆ij

�3∕2 = o(1),

ℙ(aij = 1) = 𝛷
(
1

𝜎
(𝛽i + 𝛽j + z⊤

ij
𝛾)
)
,
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Since �(x) = (2�)1∕2e−x
2∕2 is an decreasing function on |x|, we have when |x| ≤ Qn,

Let h(x) = xe−x
2∕2 . Then h�(x) = (1 − x2)e−x

2∕2 . Therefore, when x ∈ (0, 1) , h(x) is 
an increasing function on its argument x; when x ∈ (1,∞) , h(x) is an decreasing 
function on x. As a result, h(x) attains its maximum value at x = 1 when x > 0 . Since 
h(x) is a symmetric function, we have |h(x)| ≤ e−1∕2 ≈ 0.6 . So

We only consider conditions for consistency here and those for central limit theorem 
are similar and omitted. By (17), it is not difficult to verify

The parameter hn in Assumption 2 for a bounded random variable is a constant. In 
view of Theorem 1, we have the following corollary.

Corollary 7 If

then the moment estimator (�̂, �̂) exists with high probability, and we further have

6  Discussion

In this paper, we present a moment estimation for inferring the degree parameter � 
and homophily parameter � in model (2). We establish consistency of the moment 
estimator (�̂, �̂) under several conditions and also derive its asymptotic normal-
ity. The convergence rates of �̂  and �̂  are nearly optimal when all parameters are 
bounded by a constant; but may not be optimal when the numbers bn0 , bn1 , bn2 and �n 
diverge. Theorems 2 and 3 require stronger assumptions than consistency, but this is 
a widely observed phenomenon in existing literature (Yan et al., 2016a, 2019; Zhang 
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et al., 2021). Whether it is possible to establish consistency and asymptotic normal-
ity under even weaker conditions will be an interesting future work.

For cleanness, in this work, we assume that maxi,j ‖zij‖∞ < c is universally 
bounded. In fact, our theory can be extended to allow it to slowly diverge. It is 
another interesting future research to investigate how fast it can diverge while pre-
serving consistency.

The independent edge assumption leads to convenient characterization of the orders 
of ‖d − �d‖∞ and ‖

∑
i<j zij(aij − �aij)‖∞ , based on which, we establish the central 

limit theorems of d and 
∑

i<j zijaij . For sub-exponential aij , the orders of ‖d − �d‖∞ 
and ‖

∑
i<j zij(aij − �aij)‖∞ are O((n log n)1∕2) and O(n log n) , respectively, up to a fac-

tor determined by the sub-exponential parameter hn . Going forward, we can introduce 
slight dependency between edges. Under such setting, we can still use some Hoef-
fding-type inequalities for dependent random variables to establish tail bounds simi-
lar to those in this paper (Delyon, 2009), as long as edge dependency is sufficiently 
light. Remarkably, our method-of-moments estimation remains effective, since it only 
requires specification of the marginal distributions of aij’s, not the joint distribution of 
A. Certainly, quantitative study along this direction would require highly nontrivial 
future efforts.

Computation for covariate-assisted �-models is challenging in general. The GLM 
package we use, which was also employed by Chen et  al. (2021), Stein and Leng 
(2020) and Stein and Leng (2021), do not scale well. Directly programming the 
Newton method seems more promising, but still might encounter difficulty when 
the network is �(105) . Unfortunately, the reduction method invented by Zhang et al. 
(2021) only works for the classical and some generalized �-models without covari-
ates, not for covariate-assisted �-models. Exploring efficient computational methods 
is an interesting open challenge for future research.
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Appendix

Preliminaries

In this section, we present three results that will be used in the proofs. The first is 
on the approximation error of using S to approximate the inverse of V belonging to 
the matrix class Ln(bn0, bn1) , where V = (vij)n×n and S = diag(1∕v11,… , 1∕vnn) . Yan 
et  al. (2015) obtained the upper bound of the approximation error, which has an 
order n−2 . Hillar et al. (2012) gave a tight bound of ‖V−1‖∞ . These results are stated 
below as lemmas.

Lemma 1 (Proposition 1 in Yan et al., 2015) If V ∈ Ln(bn0, bn1) , then the following 
holds:
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Lemma 2 (Hillar et al., 2012) For V ∈ Ln(bn0, bn1) , we have

Let F(x) ∶ ℝ
n
→ ℝ

n be a function vector on x ∈ ℝ
n . We say that a Jacobian 

matrix F�(x) with x ∈ ℝ
n is Lipschitz continuous on a convex set D ⊂ ℝ

n if for any 
x, y ∈ D , there exists a constant 𝜆 > 0 such that for any vector v ∈ ℝ

n the inequality

holds. We will use the Newton iterative sequence to establish the existence and con-
sistency of the moment estimator. Gragg and Tapia (1974) gave the optimal error 
bound for the Newton method under the Kantovorich conditions (Kantorovich, 
1948).

Lemma 3 (Gragg and Tapia, 1974) Let D be an open convex set of ℝn and 
F ∶ D → ℝ

n a differential function with a Jacobian F�(x) that is Lipschitz contin-
uous on D with Lipschitz coefficient � . Assume that x0 ∈ D is such that [F�(x0)]

−1 
exists,

Then: (1) The Newton iterations xk+1 = xk − [F�(xk)]
−1F(xk) exist and 

xk ∈ B∞(x0, t
∗) ⊂ D for k ≥ 0 . (2) x∗ = lim xk exists, x∗ ∈ B∞(x0, t

∗) ⊂ D and 
F(x∗) = 0.

Error bound between ̂̌ and ˇ∗

The lemma below shows that F� (�) is Lipschitz continuous. The proofs of all the 
lemmas in this section are given in the supplementary material.

Lemma 4 Let D = B∞(𝛽
∗, 𝜖n1)(⊂ ℝ

n) be an open convex set containing the true 
point �∗ . For � ∈ B∞(�

∗, �n2) , if inequality (7d) holds, then the Jacobian matrix F�
�
(x) 

of F� (x) on x is Lipschitz continuous on D with the Lipschitz coefficient 4bn2(n − 1).

(30)‖V−1 − S‖max = O

�
b2
n1

n2b3
n0

�
.

1

2bn1(n − 1)
≤ ‖V−1‖∞ ≤

3n − 4

2bn0(n − 1)(n − 2)
.

‖[F�(x)]v − [F�(y)]v‖∞ ≤ �‖x − y‖∞‖v‖∞

‖[F�(x0)]
−1‖∞ ≤ ℵ, ‖

�
F�(x0)

�−1
F(x0)‖∞ ≤ 𝛿, 𝜌 = 2ℵ𝜆𝛿 ≤ 1,

B∞(x0, t
∗) ⊂ D, t∗ =

2

𝜌

�
1 −

√
1 − 𝜌

�
𝛿 =

2𝛿

1 +
√
1 − 𝜌

≤ 2𝛿.
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Since aij , 1 ≤ i < j ≤ n , are independent and sub-exponential with parameters 
hij(≤ hn) , by the concentration inequality for sub-exponential random variables (e.g., 
Corollary 5.17 in Vershynin, 2012), we have the following lemma.

Lemma 5 With probability at least 1 − O(n−1) , we have

In view of Lemmas 4 and 5, we obtain the upper bound of the error between �̂� 
and �∗ by using the Newton method.

Lemma 6 Let �n1 be a positive number and �n2 = o(b−1
n0
(log n)1∕2n−1∕2) . Assume that 

(7b), (7c) and (7d) hold. If

then with probability at least 1 − O(n−1) , for � ∈ B∞(�
∗, �n2) , �̂� exists and satisfies

Proofs for Theorem 1

To show Theorem 1, we need three lemmas below.

Lemma 7 Let D = B∞(𝛾
∗, 𝜖n2)(⊂ ℝ

p) be an open convex set containing the true point 
�∗ . Assume that (7b), (7c), (7d) and (32) hold. If ‖F(�∗, �∗)‖∞ = O(hn(n log n)

1∕2) , 
then Qc(�) is Lipschitz continuous onD with the Lipschitz coefficient n2bn2b3n1b

−3
n0

.

Lemma 8 Write �̂∗ as �̂�∗ and V = �F(�∗, �∗)∕��T . �̂∗ has the following expansion:

where R = (R1,… ,Rn)
T is the remainder term and

Lemma 9 Let � = Cov(F(�∗, �∗)) . Let �2
n
= n2‖(V−1 − S)�(V−1 − S)‖max . For any 

� ∈ B∞(�
∗, �n1) and � ∈ B∞(�

∗, �n2) , we have

(31)‖F(�∗, �∗)‖∞ = O(hn
√
n log n), ‖Q(�∗, �∗)‖∞ = O(hnn log n).

(32)
bn2hn

b2
n0

= o

(√
n

log n

)
,

‖�̂� − �∗‖∞ = Op

�
hn

bn0

�
log n

n

�
= op(1).

(33)�̂∗ − �∗ = V−1F(�∗, �∗) + V−1R,

‖‖‖V
−1R

‖‖‖∞ = Op

(
bn2h

2
n
log n

nb3
n0

)
.

‖�Q(�, �)
��T

(�̂∗ − �∗)‖∞ = Op

�
nbn1 log n

�
bn2h

2
n

b3
n0

+ �n

��
.
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Further, when � = −�F(�∗, �∗)∕��T , we have

Now we are ready to prove Theorem 1.

Proof of Theorem 1 We construct the Newton iterative sequence to show the consist-
ency. In view of Lemma 3, it is sufficient to demonstrate the Newton-Kantovorich 
conditions. We set �∗ as the initial point � (0) and � (k+1) = � (k) − [Q�

c
(� (k))]−1Qc(�

(k)).
By Lemma 6, with probability at least 1 − O(n−1) , we have we have

This shows that �̂� (0) exists such that Qc(�
(0)) and Q�

c
(� (0)) are well defined.

Recall the definition of Qc(�) and Q(�, �) in (10) and (11). By Lemmas 5 and 9, 
we have

By Lemma 7, � = n2b3
n1
bn2b

−3
n0

 . Note that ℵ = ‖[Q�
c
(𝛾∗)]−1‖∞ = O(𝜅nn

−2) . Thus,

As a result, if Eq. (21) holds, then

By Theorem 3, the limiting point of the sequence {� (k)}∞
k=1

 exists, denoted by �̂  , and 
satisfies

By Lemma 6, �̂�̂ exists, denoted by �̂  , and (�̂, �̂) is the moment estimator. It com-
pletes the proof.   ◻

Supplementary Information The online version contains supplementary material available at https:// 
doi. org/ 10. 1007/ s10463- 022- 00848-0.

‖�Q(�, �)
��T

(�̂∗ − �∗)‖∞ = Op

�
h2
n
bn1bn2n log n

b3
n0

�
.

‖�̂� − �∗‖∞ = Op

�
hn

bn0

�
log n

n

�
.

‖Qc(�
∗)‖∞ ≤‖Q(�∗, �∗)‖∞ + ‖Q(�̂�∗ , �∗) − Q(�∗, �∗)‖∞

=Op

�
nbn1 log n

�
h2
n
bn2

b3
n0

+ �n

��
.

� = ‖[Q�
c
(�∗)]−1Qc(�

∗)‖∞ = Op

�
�nbn1 log n

n

�
h2
n
bn2

b3
n0

+ �n

��
.

𝜌 = 2ℵ𝜆𝛿 = Op

(
𝜅2
n
b4
n1
bn2 log n

nb3
n0

(
h2
n
bn2

b3
n0

+ 𝜎n

))
= op(1).

‖�̂ − �∗‖∞ = Op(�).
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