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1 Characterization of the OIBDP

Having a contaminated sample Zmn , we can rewrite the objective as

Lλ,n(b, β, Zmn ) :=

 1
n(n− 1)

∑∑
i 6=j,i,j∈I

L((Yi − Yj)(sb,β(Xi)− sb,β(Xj))) + Jλ(β)


+ 1
n(n− 1)

∑∑
i<j,i,j∈I0

L((Y 0
i − Y 0

j )(sb,β(Xi)− sb,β(Xj)))

+ 1
n(n− 1)

∑∑
i<j,i∈I0,j∈I

L((Y 0
i − Yj)(sb,β(X0

i )− sb,β(Xj)))

=: Gλ,n(β̃, Zn−m) + Fn(β̃, Z0
m) +Hn(β̃, Zn−m, Z0

m)

(1)

for β̃ = (b, β) and where Z0
m denotes the contaminated part of the sample, i.e., Z0

m =
{(X0

i , Y
0
i ), i = 1, ...,m}, Zn−m is the clean part of the sample and I0 denotes the indices

of the contaminated instances w.r.t. Zn, i.e., I0 is an m−subset of {1, ..., n} such that
I ∪ I0 = {1, ..., n} and I ∩ I0 = ∅ for the indices I of the clean instances w.r.t. Zn. Note
that Zhao et al. (2018) do not need the Hn−term since there are no interactions between
clean and contaminated instances.
Before we state the definition of our OIBDP for ranking, we proceed along the same

lines as Zhao et al. (2018) and study the effect of outliers. Analogously, we first consider
a single outlier, wlog. I0 = {1}, i.e., we have the data set Z̃n = Zn−1 ∪ {Z0

1} where
Z0

1 = (X0
1 , Y

0
1 ) is some contaminated instance. Let

(b̂, β̂(Z̃n)) = argmin
(b,β):|b|<∞

(Lλ,n(β̃, Z̃n)).
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Let the loss function satisfy limu→−∞(L(u)) =∞ for illustration. Then, for ||X0
1 || → ∞

and ||Y 0
1 || → ∞, the loss diverges for each instance such that (Ŷi − Ŷj)(Yi − Yj)→ −∞.

Here, we have to ensure that (sb̂,β̂(Xi) − sb̂,β̂(X0
1 ))(Yi − Y 0

1 ) ≥ 0 for all i 6= 1. These
conditions correspond to the constraint set

Š+
Z0

1
:=
⋂
Š+
Z0

1
(i), Š+

Z0
1
(i) := {β | (sb,β(Xi)− sb,β(X0

1 ))(Yi − Y 0
1 ) ≥ 0}

which mimicks the set S+
Z0

1
from (Zhao et al., 2018, p. 8), so that we can formulate the

optimization problem as (Zhao et al., 2018, Eq. (3.3)) as

min
|b|<∞,β∈Š+

Z0
1

(Gλ,n(β̃, Zn−1))

with Gλ,n from Eq. 1. Clearly, the set Š+
Z0

1
is a cone as an intersection of cones which

is true since for β ∈ Š+
Z0

1
(i) it holds that cβ ∈ Š+

Z0
1
(i) for any c ≥ 0. For the case of m

outliers, we similarly get the constraint set

Š+
Z0

m
=
⋂
i∈I0

Š+
Z0

i
.

In the ranking setting, we get interesting insights into the constraint set due to the
fact that even in the single outlier case, the pairwise nature of ranking problems
lets the outlier act globally, in contrast to the classification setting from Zhao et al.
(2018) where each outlier acts locally. We now distinguish between X− and Y−outliers.
i) Y−outliers: If we have only outliers in the response, allXi are maintained but some

Yi are contaminated such that one observes Y 0
i , i.e., the outlier set contains instances

(Xi, Y
0
i ) for i ∈ I0. Let wlog. Y 0

1 be the only outlier. Then, letting ||Y 0
1 || → ∞ can

cause the data to be (linearly) inrankable. To see why this is only possible but not
guaranteed, consider the most simple case that p = 1. Let Yi1 ≤ ... ≤ Yin for pair-wise
different ij ∈ {1, 2, .., n}. Having linearly rankable data, i.e., Yj > Yi ⇔ Xj > Xi,
replacing Yi1 with an extreme negative outlier, i.e., letting Y 0

i1 → −∞, does not alter
the linear rankability of the data, therefore, is not affecting the quality of the estimated
coefficient so that its sign is maintained. The same holds for Y 0

in → ∞. On the other
hand, for general p, if one of the intermediate responses is replaced by an extreme outlier,
the set Š+

z0
1
breaks down to {0p}.

ii) X−outliers: Extreme X−outliers can have a similar effect. X−outliers solely
affect the predictors, so the outliers are given by (X0

i , Yi) for i ∈ I0, i.e., the attacker
cannot alter the responses. Consider again the example with p = 1 as above and let
||X0

i1 || → −∞. Again, this has no effect since any positive coefficient still produces a
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perfect ranking, similarly when replacing the regressor Xin corresponding to the largest
response Yin by an extreme positive outlier.
We can prove an analog to (Zhao et al., 2018, Thm. 2). In our work, the result is of

lesser importance since we cannot conclude that the OIBDP always exists which Zhao
et al. (2018) indeed can for their angular BDP. Assume that we have a bounded loss
function, i.e., L(u) ≤ Cl <∞. Define

Guλ,m(β̃, Zn−m) = Gλ,n(β̃, Zn−m) + n(n− 1)− (n−m)(n−m− 1)
n(n− 1) Cl,

as an analog to Zhao et al. (2018) with Gλn from Eq. 1. The second summand indicates
the upper loss bound achieved due to the outliers, i.e., both due to the pairwise compar-
isons of outliers as well as due to the pairwise comparisons of outliers and non-outliers.

Theorem 1.1. Let β 6= 0p and let the loss function be decreasing with limu→∞(L(u)) = 0
and limu→−∞(L(u)) = Cl <∞. Then the estimator does not break down in the sense of
the population resp. sample OIBDP for ranking if and only if

min
β̃1∈∆+

BL

(Guλ,n(β̃1, Zn−m)) < min
β̃2∈∆−

BL

(Gλ,n(β̃2, Zn−m)) (2)

for S−∩ as in Def. 4, S+
∩ = Rp \ S−∩ and ∆+

BL = {(b, β) | β ∈ S+
∩ , |b| < ∞} and ∆−BL

analogously.

Proof. We argue along the same lines Zhao et al. (2018) with some modifications but
for making the proof self-contained, we detail out the steps. We restrict ourselves to
the population setting since in the sample setting, one just has to replace the original
coefficient by the coefficient estimated on the original data. We define the following set
of outliers:

Žm0 (X,Y, β) := {(X0
i , Y

0
i ) | X0

ij = Xij + cij ∀j : βj ≥ 0, X0
ij = Xij − cij ∀j : βj < 0,

0 < cij < ckj ∀i < k ∀j, |X0
ij | > max

i
(|Xij |) ∀i, Y 0

i > Y 0
k ∀i < k,max(Y 0

i ) < min(Yi)}.

Graphically, this set is easily understood and is depicted for an example in Fig. 1 in
the proof of Lemma 2 for p = 1. By construction of the X0

i , we proceed along the cone
where xβ is increasing ensuring that the magnitude of each component X0

ij exceeds the
magnitude of each Xij and that the X0

i are different. However, the responses are defined
such that they are descending with i while the original coefficient β would lead to an
ascending ordering, i.e., the ordering is reverted and on top of that, the ordering of each
outlier compared with each original observation is reverted.
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Consequently, for any β̃2 ∈ ∆−BL, we have

Lλ,n(β̃2, Žn) = min
Z0

m

(Ln(β̃2, Z̃n)) = Gλ,n(β̃2, Zn−m)

where Žn = Zn−m∪Ž0
m for Ž0

m ∈ Ž0
m(X,Y, β) and Z̃n = Zn−m∪Z0

m for any outlier set Z0
m

since any such β̃2 reverts the ordering on the original data but makes perfect predictions
for all pairs of outliers and all pairs with one outlier and one original response. We
cannot guarantee that any β̃1 ∈ ∆+

BL achieves the worst-case loss for the components Hn

and Fn, but by construction, for such a given β̃1, there definitely exists an outlier set Ž0
m

such that

Lλ,n(β̃1, Žn) = sup
Z0

m

(Ln(β̃1, Z̃n)) = Guλ,n(β̃1, Zn−m).

Although we cannot guarantee that a worst-case outlier set exists such that every coeffi-
cient that does not satisfy the breakdown criterion suffers supremal loss, for now we can
only conclude that the estimator does not breakdown if

min
β̃1∈∆+

BL

(Gλ,n(β̃1, Zn−m)) < min
β̃2∈∆−

BL

(Gλ,n(β̃2, Zn−m)).

Now, we are ready to prove the stated equivalence.
i) Assume that the estimator does not break down, i.e., the computed estimator β̂λ(Z̃n)
is contained in ∆+

BL for any outlier set Z0
m. Then, due to the fact that for any β̃1 ∈ ∆+

BL,
there exist an outlier set such that β̃1 suffers the maximal loss Guλ,n(β̃1, Zm−n), it follows
that the inequality in Eq. 2 indeed holds.
ii) Assume that inequality 2 holds. The property Lλ,n(β̃1, Žn) ≤ Guλ,n(β̃1, Zn−m) obvi-
ously holds. The statement Lλ,n(β̃2, Zn) ≥ Lλ,n(β̃2, Žn) for Z̃n = Zn−m ∪ Z0

m holds by
construction for any outlier set Z0

m still holds so that we conclude

min
β̃1∈∆+

BL

(Lλn(β̃, Žn)) ≤ min
β̃1∈∆+

BL

(Gλn(β̃1, Zn−m)) < min
β̃2∈∆−

BL

(Gλ,n(β̌2, Zn−m)) ≤

min
β̃2∈∆−

BL

(Lλ,n(β̃2, Z̃n))

where the strict inequality holds by assumption and where the last inequality holds since
any outlier set from the worst case outlier set Žm0 (X,Y, β) lets no pair of an outlier and
an original response suffer any loss for any coefficient from ∆−BL which is not guaranteed
by general outlier sets. Therefore, the estimator does not break down since a coefficient
from ∆+

BL will be optimal, i.e., achieve the minimum loss.

2
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2 Proofs and additional examples

2.1 Outliers and breakdown for ranking with linear scoring functions

Proof (Proof of Lem. 1). a) Since Jλ(β)→∞ as ||β|| → ∞, we just have to show that
there exists a β with ||β|| <∞ such that the objective is finite. This is true since β = 0p
leads to a finite loss and Jλ(0p) = 0, so there definitely exists an optimizer of Lλ,n with
finite norm, disregarding if we have Zn or Zmn .
b) Recall that ranking loss functions are based on the product of the differences of the
responses resp. the fitted responses. Clearly, having infinite values, we face the problem
that it is impossible to reasonably define something like ”∞−∞” which would arise if
for example β = (∞,−∞) and Xi = (1, 1). However, the indicator loss function in the
hard ranking loss can be simply rewritten as

I({{Yi > Yj} ∩ {Ŷi < Ŷj}} ∪ {{Yi < Yj} ∩ {Ŷi > Ŷj}}),

so the loss will always be computable. If ||β|| =∞ but if Ŷi = sb,β(Xi) and Ŷj = sb,β(Xj)
are computable, we can indeed get an infinite norm solution. For example, consider
univariate predictors so that β = ∞ leads to sb,β(x) = ±∞ for sign(x) = ±1 (let
sign(0) := 0). Then, if the signs coincide, which is true if for example all Xi > 0, we
just get the loss L(0) as for random guessing which proves the statement since there is
no evidence that there exists a coefficient with finite norm which can beat each coefficient
with infinite norm.

2

Remark 2.1. The potential incomputability of the scores for infinite coefficient compo-
nents is a severe problem. Therefore, we propose to treat the whole ranking model as
random guessing (i.e., β = 0p) if there exists any i such that sb,β(Xi) is not computable.

2.2 Hard ranking

The following example has been announced in Rem. 9.

Example 2.1. We already thought of an outlier scheme with more dependencies where,
here wlog. p = 2, we do not use X(3) = (X ′1 + 2, X ′2) but X(3) = (X ′1 + 1, X ′2 + 1),
i.e., the outliers form the edges of a square. Then these four outliers already enable
two comparisons along both axes which required five outliers using the proposed outlier
scheme in the proof of Thm. 2. The next iteration would be to build a square with
vertex length 2 where the outliers define the edges, the mid-points of the vertices and the
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middle point of the square which leads to nine comparisons along each axis. In general,
we would have k2 outliers and k2(k − 1)/2 axis-wise comparisons. The general strategy
would construct a p−dimensional hypercube grid with kp outliers, leading to kp(k− 1)/2
axis-wise comparisons. This strategy can be beneficial for small n, for example in the
case p = 3 and k = 2, we have 4 comparisons along each axis using only 8 outliers while
our strategy before would require 12 outliers to beat this (9 outliers would only lead to
3 comparisons along each axis). However, it is easily revealed that this strategy does
not work for larger n, for example in the case p = 2 and k = 5, we had 25 outliers
and 50 comparisons, but with the strategy before, 24 outliers would already enable 66
comparisons. Maybe future research is able to nevertheless reveal a better strategy than
ours proposed in the proof of Thm. 2.

Proof (Proof of Cor. 2). i) We prove the statement by setting k := cn for some c ∈]0, 1].
The condition for a breakdown is then

cn(cn+ 1)
2

!
>

(n− pcn− 1)(n− pcn− 2)
2

⇐⇒ c2n2 + cn
!
> n2 − 2pcn2 − 3n+ p2c2n2 + 3pcn+ 2

⇐⇒ n2(c2 + 2pc− p2c2 − 1)
!
> n(3pc− c− 3) + 2 n>0⇐⇒ n(c2 + 2pc− p2c2)

!
> 3pc− c− 3 + 2

n
(3)

and since 3pc − c − 3 is fixed and 2/n → 0 asymptotically, we only have to guarantee
that the bracket is positive, i.e.,

c2 + 2pc− p2c2 > 0 =⇒ c =


−1−p
1−p2

1−p
1−p2 = 1

p+1

where the first case is not meaningful since it contradicts c > 0. Therefore, we asymp-
totically set c∗ = 1/(p+ 1) and get

m∗ = 1 + c∗np = 1 + p

n(1 + p) ⇐⇒
m∗

n
= 1
n

+ p

1 + p

which asymptotically equals p/(p+ 1) as stated.
ii)-iii) The second statement is obvious since for any such sequence (bn)n eventually

leads to a diverging number p(n) of variables with p(n)/(1 + p(n))→ 1. Note that in the
last statement in the last line in Eq. 3, the right hand side cannot grow indefinitely with
p since pc < 1 (due to the requirement that n− pcn− 2 ≥ 0), so the same computations
as for static p hold. The third statement already has been discussed for the fixed p ≥ n.

2
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The following example provides finite-sample upper bounds for the OIBDP for hard
ranking with the indicator loss in selected scenarios.

Example 2.2. We simulate the BDP for different p and for a sequence of values for
n > p:

Figure 1: Plots of upper bound for the BDPs for ranking for different p

2.3 Expected OIBDP

Let us outline an artificial case where the outlier flexibility is severely hindered so that
the expected OIBDP is better suited.

Example 2.3. Note that we implicitly assumed open regressor resp. responses spaces
when constructing the outlier set. If we have compact regressor or response sets, there
is no guarantee that the outlier scheme is applicable. To illustrate this setting for p = 1,
let again β > 0 and let the original data be linearly rankable according to this coeffi-
cient. More precisely, assume the (very artificial) case that n is even and n/2 points are
given by (max(X ),max(Y)) and the other half of the points at the respective minima.
Assuming a bounded loss function, wlog. the indicator loss function, we have no choice
but to replace one of these clusters completely by keeping the regressor value but by mov-
ing the response to the other extremum of the response space. Now, the usual outlier
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scheme that we already introduced is no longer applicable. The only chance we have is to
start by replacing wlog. the whole upper cluster by n/2 outliers according to the scheme
(X0

i , Y
0
i ) = (max(X ) − εi,min(Y) + εi) for ε1 > ε2 > ... > εk > 0 with ε1 being small

enough to let the first outlier be contained in the open interior of X × Y. This strategy
is depicted in Fig. 2 where we jittered the points at the left corner only to make them
visible.

Figure 2: Worst-case outliers for p = 1

Tedious algebra reveals an asymptotic BDP of p2/(p2 + 0.5).

2.4 Hard binary and hard d−partite ranking problems

Proof (Proof of Cor. 3). Follows the same steps as in the proof of Thm. 2 with the
difference that we cannot explicitly produce Y−outliers on the score scale (since it is
unobservable) but only on the response scale. For illustration, set p = 2. We cannot
produce extreme Y−outliers but we indeed can produce extreme X−outliers, so let wlog.
β1, β2 > 0. We again use a starting point X ′ = (maxi(Xi1),maxi(Xi2)) and set Y ′ = 1.
Then, let Y (1), Y (2) = −1 and X(1) = (X ′1 + c1, X

′
2), X(2) = (X ′1, X ′2 + c2). Letting

c1, c2 →∞ will induce an unbounded loss when comparing (X ′, Y ′) with each of the both
outliers, so β1, β2 < 0 is enforced. Clearly, this will also produce losses when comparing
the original data pairs and the pairs with one original data point and one outlier, but
they are finite.
This strategy clearly also holds for p = 1 and p > 2 where a complete sign-reversal is

again no longer guaranteeable for p ≥ n. For p = n − 1, we can use the last remaining
original data point as starting point for the construction if its response is negative and
an analogous construction otherwise.

2
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Remark 2.2. Due to the ordering of the classes in d−partite ranking problems, a similar
approach can be executed to show that the upper bound for the OIBDP for ranking in
this setting is identical. One just has to set Y ′ = d and set Y (1) = Y (2) = 1. Letting
the respective predictor components diverge, the breakdown should be achievable for any
setting where Y ′ has to be a higher label than Y (1) and Y (2), but however, using the
extreme classes is the most logical configuration.

Proof (Proof of Lem. 3). Due to the discrete observable response space, we cannot apply
the outlier scheme the we suggested in Fig. 1. We first need to identify the configuration
of the original responses that supports the true coefficient most. Therefore, we wlog.
assume that β > 0 is the true coefficient. Then, for even n, the worst-case original data
configuration (from the view of the attacker) is composed by a set of n/2 instances with
Xi > 0 and Yi = 1 and a set of n/2 instances with Xj < 0 and Yj = −1. For uneven n,
either ”half” contains dn/2e resp. bn/2c instances. Since we do not have a classification
problem where one usually classifies all instances with a score greater than zero as class
1 instance and vice versa, we do not necessarily have to consider X = 0 as ”boundary”,
we do it just for the sake of easiness.

Figure 3: Worst-case outliers for p = 1

Now, starting by replacing either the m < n/2 rightmost resp. leftmost instances
(w.r.t. X) by outliers that keep the regressor value but switch the response sign would not
lead to a breakdown if one only has access to the binary outcome, see Fig. 3. This is easily
seen assuming n(mod 4) = 0. If the n/4 rightmost instances are replaced as suggested,
each β > 0 will produce exactly (n/4)2 misrankings which arise from comparing each
of the n/4 original instances on the right half with the n/4 outliers. In contrast, any
β < 0 will produce n2/8 misrankings by comparing each of the leftmost n/2 instances
with the n/4 remaining instances on the right half. Note that one cannot compare the
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instances on the left half with the outliers since they all have the same response value.
Replacing more than n/4 instances will even supply the original coefficient more whence
we considered the case that around the half of the instances belong to either class as the
worst case.
Therefore, a reasonable outlier scheme is to start by replacing the leftmost and the

rightmost instance simultaneously by outliers as illustrated in Fig. 3, i.e., by switching
the sign of the response. Note that due to the binary response and the indicator loss
function, Y−outliers and X−outliers can be regarded as being equivalent, so it suffices
only to use Y−outliers, keeping the original regressor values. This first step induces, for
even n, exactly n/2 misrankings by comparing the leftmost outliers with every instance
of class -1 and additionally (n/2− 1) misrankings by comparing the remaining original
instances on the right half with the rightmost outlier for β > 0 (the sum will also be
(n − 1) for uneven n). In contrast, the remaining (n/2 − 1) original instances on the
left half lead to (n/2 − 1)(n/2 − 1) misrankings by comparing them with the (n/2 − 1)
original instances on the right half for β < 0 (resp. (bn/2c − 1)(dn/2e − 1) ones).
Assuming that for step k, one has k outliers on each side, i.e., a total of 2k outliers,

one gets the requirement for k∗ stated in Eq. 5.1. Asymptotically, we assume k = cn

and easily conclude that c∗ = 1
2 −

√
1/8, so the asymptotic BDP is

m∗

n
= 2c∗ = 1−

√
1
2 .

We already argued in Rem. 2.2 that outlier strategies for binary ranking problems are
also applicable to d−partite ranking problems. Although one would have more flexible
outlier schemes if the instance labels are diverse enough, for example, by considering
ascending classes on the right half and descending classes on the left half which enables
to produce more misrankings for the original coefficient by taking outlier-outlier-pairs
into account, we would be essentially be in the same setting as in the binary ranking
problem if one considers the ”least favorable” configuration of the original data where
the instances on the left half belong to class 1 and the ones on the right half to class
d, making the upper bound of the OIBDP for the binary ranking problem also a sharp
bound for the d−partite ranking problem.

2

Proof (Proof of Thm. 3). Let us illustrate the proof for p = 2. Similarly as in the
univariate case in Lem. 3, it does not suffice to generate axis-wise outliers along one
direction (i.e., either for very large or very small X·,j for axis j) but one has to generate
outliers on both sides. More precisely, again assuming a starting point X∗, for each k one
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has to produce one axis-wise outlier on axis j where the j−th variable is greater than the
j−th variable for all other data and where the response is -1 (wlog. let again βj > 0 for
all j) and one outlier where the j−th variable is lower than the j−th variable for all other
data with response 1. This leads to m = 1+2pk outliers per iteration. On each axis, there
are k outliers on each side, leading to k(k + 1) misrankings since the starting point X∗

either has response 1 or -1, leading to kl additional misrankings. In contrast, the sign-
reverted coefficient potentially causes misrankings between all remaining (n − 2pk − 1)
original data points, so the formula 5.2 is proven.
Clearly, if no remaining data points would be available, an early stopping strategy

is applicable, i.e., it would suffice to let the starting point have response 1 and to only
consider one axis-wise outlier with larger regressor value and response -1, so for p ≤ n−1,
the BDP always exists.
Again, since there essentially is no difference in the robustness of bipartite and d−partite

ranking problems as already discussed in Rem. 2.2 and the proof of Lemma 3, the results
directly transfer to d−partite ranking problems.

2

Proof (Proof of Cor. 4). Statement i) follows using some algebra as in similar state-
ments before, ii) is true since the coefficient in i) converges to 1 for growing p and iii)
has already been discussed.

2

2.5 Localized ranking problems

Proof (Proof of Cor. 5). If the ranking loss is unbounded, we can directly use Thm. 1
with the only difference that due to the localization on the top K instances, the number
n in Thm. 1 must be replaced by K. Then the first part follows.
As for the case of an unbounded classification loss function, we propose a similar

construction as for the hard ranking case. There, we needed one starting point outlier
and based on this outlier, we constructed our outlier scheme. Here, we use one of the
clean instances of class -1 as starting point. Based on this starting point outlier, we
proceed similarly as in the outlier scheme from Thm. 1 by constructing outliers whose
predictor vector differs from the predictor vector of the starting point by one component.
W.l.o.g., for βj > 0 for all j, the starting point has the predictor vector X ′. Then, in
iteration 1, the outlier j has the predictor vector (X ′1, ..., X ′j−1, X

′
j−cj , X ′j+1, ..., X

′
p) and

response 1. When moving cj →∞, the component β̂j is eventually forced to sign-switch

11



to a negative sign since otherwise, the loss would diverge. Note that In contrast to the
ranking part where the starting point outlier already counts to the K top instances, we
can generate K axis-wise outliers in the classification part since the starting point outlier
is one of the bottom instances, so the BDP exists unless p > K.

2

Proof (Proof of Lem. 4). i) Since we concentrate on the true top K instances, we have
to use the outlier scheme depicted in Fig. 4 if β > 0 is the true coefficient (for β < 0,
the responses of the m rightmost instances would be moved upwards).

Figure 4: Worst-case outliers for the localized ranking problem for p = 1

Then, any coefficient β > 0 will misclassify m instances, i.e., the outliers, while
any coefficient β < 0 will misclassify (K − m) instances. As for the ranking part,
any coefficient β > 0 will produce both misrankings on the outliers as well as on every
pair of an outlier an a clean top-K−instance, leading to m(m − 1)/2 + m(K − m)
misrankings, whereas any coefficient β < 0 will produce misrankings on the non-outlier
top-K−instances, i.e., (K −m)(K −m− 1)/2 misrankings. Therefore, the statement in
Eq. 6.1 in the minimum-brackets is true. Moreover, if we had m = K outliers, the loss
for β < 0 would be zero and since any positive coefficient produces a loss greater than
zero, indicating that the BDP is not larger than K/n which proves the outer minimum
operator in Eq. 6.1.

ii) The only difference in the case K > n/2 compared to the case K ≤ n/2 is that the
broken coefficient does not necessarily cause (K −m) misclassifications due to the fact
that more than the half of the instances are labeled as class 1 instances. Consider the
concrete example that n = 100, K = 70 and m = 10, following the scheme in Fig. 4.
Then β < 0 does not lead to 60 misclassifications but just to 30 misclassifications, i.e.,
the rightmost n −K = 30 instances. However, if we had K = 52, we would not make
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n − K = 48 misclassifications but just K − m = 42 ones. Since n − K < K − m iff
K > (n+m)/2, Eq. 6.2 follows.

iii) Once m > n − K, we cannot misclassify m instances with the coefficient of the
original sign but only (n − K) ones (the leftmost (n − K) ones in Fig. 4). The same
is true for the broken coefficient where the rightmost (n − K) instances in Fig. 4 are
misclassified. This lets the classification loss be equal for both cases and reduces the
problem to the hard ranking problem on BestK .

2

Corollary 2.1. i) Asymptotically, a fixed K would lead to a BDP of zero. For K = n,
we get the asymptotic BDP of 1−

√
0.5 as for hard ranking.

ii) For K = K(n) := dn for d ∈]0, d0] with d0 ≈ 0.6352578, we can conclude that for
m = cn, we have

c∗ = 2− d−
√

4− 6d+ 5d2/2

which takes values in ]0, 0.270514] and is strictly monotonically increasing w.r.t. d.
iii) For K = K(n) := dn for d ∈ [d0, d1] with d1 ≈ 0.773455, we can conclude that for
m = cn, we have

c∗ = 1−
√
−1 + 4d− 5d2/2

which takes values in [0.2265413, 0.270514] and has its minimum at d1.
iv) For K = K(n) := dn for d ∈ [d1, 1], we have the asymptotic BDP d(1−

√
0.5).

Proof. Statement i) is trivial. The formulae in statements ii) and iii) can be easily
computed but we have to explain the value d0. As we have seen in Lem. 4, it depends
on m whether the asymptotic BDP corresponding to Eq. 6.1 or to Eq. 6.2 applies,
depending on min(K − m,n − K). Graphically, we search for the first intersection of
both BDPs in dependence of d (note that the second intersection is given at d = 1). A
numerical evaluation delivers the value d0 above, see the black curve (asymptotic BDP
from ii)) and the blue curve (asymptotic BDP from iii) which is only valid for at least
K > n/2, therefore the growth for decreasing d can be ignored) in Fig. 5. Note that at d0,
the asymptotic BDP for both cases is given by around 0.270514 which equals 2(d0− 0.5)
and can be explained by our argumentation in the proof of Lemma 4 that the larger m is
in the case K > n/2, the lower is the number of misclassified instances for the broken
coefficient, so according to the formula in Eq. 6.2, we switch between both asymptotics
once n− dn > dn− cn, i.e., once c > 2(d− 0.5). For statement iv), we similarly have to
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find d for which dn > n − cn holds (i.e., K > n −m). Again, by numerical evaluation
where we search for the intersection of the purple curve and the black line in Fig. 5 (for
illustration, we also added the graph of d 7→ 1 − d (red line) which intersects the blue
curve at the same point) which is the case at d1 where the BDP is exactly 1 − d1, so
increasing d from here will cause the regime switch in the classification part of the right
hand side, which results in the combined BDP curve in the right part of Fig. 5.

Figure 5: Asymptotic BDP for K ≤ n/2 and K > n/2

2

Proof (Proof of Thm. 4). Along the same lines as the proofs of Thm. 2 and Lemma 4.

2

Corollary 2.2. For the localized ranking problem where the localized ranking loss is
computed on BestK and where both the classification and the ranking loss are indicator
functions, we asymptotically conclude that
i) the BDP is zero for K and p being fixed,
ii) the BDP for c ≤ 0.5 tends to

pc∗, c∗ = 4p− 3pd
p2 − 1 −

√
16p2 − 28p2d+ 12p2d2 + 4d− 3d2

(p2 − 1)2

and for c > 0.5, it tends to the same quantity provided that c ≤ 2(d− 0.5), to

pc∗, c∗ = 2p− pd
p2 − 1 −

√
4p2d− 4p2d2 − 8d+ 5d2 + 4

(p2 − 1)2

for c ∈ [2(d− 0.5), 1− d] and to dp/(p+ 1) otherwise. For p→∞, the break-even point
is given by d0 ≈ 0.6923 and the second break-even point tends to 1 for growing p.
iii) the BDP tends to the asymptotic BDP for hard ranking, i.e., p/(p+ 1), for d = 1.
iv) the BDP does not exist for p = p(n) with p(n)/n→ b ≥ d.
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Proof. Statement i) is trivial, statement iv) has already been discussed (since the BDP
converges to 1 for d→ 1, there is no second regime-switching point as in the univariate
case), the formulae in ii) can be easily computed and iii) follows directly. As for d0, see
Fig. 6 for illustration where the black curve corresponds to the first formula in ii) and
the red curve to the second formula.

Figure 6: Asymptotic BDP for K ≤ n/2 and K > n/2

2

2.5.1 Localized continuous ranking problems on B̂estK

Alternatively, we can localize the ranking loss on B̂estK , i.e., the goal is to ensure that
the instances that are predicted to be at the top of the list are ranked correctly, although
these instances may not be the true top instances. We provide similar results.

Lemma 2.1. Let p = 1. For the localized continuous ranking problem optimizing

n−K
n

2
n

∑
i∈BestK

I(rk(sβ(Xi)) > K)+ 2
n(n− 1)

∑∑
i<j,i,j∈B̂estK

I((sβ(Xi)−sβ(Xj))(Yi−Yj) < 0),

(4)
the sample and population OIBDP for ranking
i) is given by

m̌

n
, m̌ = min

(
K,min

{
k

∣∣∣∣ n−Kn · 2(K −m)
n

+ (K −m)(K −m− 1)
2n(n− 1) <

n−K
n

· 2m
n

})
(5)

for K ≤ (n+m)/2,
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ii) is given by

m̌

n
, m̌ = min{k

∣∣∣∣ n−Kn · 2(n−K)
n

+ (K −m)(K −m− 1)
2n(n− 1)

<
n−K
n

· 2m
n

+ 1
n(n− 1)

[
m(m− 1)

2 +m(K −m)
]
}

(6)

for K ∈ [(n+m)/2, n−m],
iii) is given by Eq. 4.1 in Lemma 2 where n in the definition of m̌ is replaced by K for
K ≥ n−m.

Proof. The situation here is inherently different from the case that the ranking perfor-
mance is computed on BestK . We have to distinguish carefully between the two outlier
schemes in Fig. 1 and Fig. 4.
Let us start with the case that K < n/2. The misclassification rate is obviously not

affected by localizing the ranking performance on B̂estK , so the formulae from Lemma
4 remain valid. As for the misrankings, if we consider the outlier scheme as in Fig.
4, we will not produce any misranking for the original coefficient. This is true since
for β > 0, the rightmost instances are predicted to be the best ones and the ordering of
their responses is correctly predicted as ascending. In contrast, any negative coefficient
produces a complete inversion of the ordering of the remaining (K−m) original instances,
i.e., (K −m)(K −m− 1)/n misrankings. Let us now consider the outlier scheme as in
Fig. 1. First note that the number of necessary outliers to produce a breakdown cannot
exceed K since we can achieve a zero loss for the broken coefficient using the outlier
scheme in Fig. 4 while the loss for the coefficient of the original sign is greater than zero
due to the classification part. Now, the outliers according to Fig. 1 cause m(m − 1)/2
misrankings on the m rightmost instances and additional m(K − m) misrankings for
any pairs of an outlier and one of the remaining rightmost (K − m) instances. Any
negative coefficient however again produces (K −m)(K −m− 1)/2 misrankings on the
intermediate (K −m) instances. On the other hand, while the original coefficient only
makes m misclassifications, the broken coefficient misclassifies the maximum number of
K instances.
Now, we have to argue which of the proposed outlier schemes applies. The answer

is that it depends on K. Still assuming K ≤ (m + n)/2, we can observe that the
classification loss is constant for the outlier scheme from Fig. 1 for any β < 0 for only
a small additional ranking loss for β > 0. We deduct that for K ≤ (n + m)/2, one
should use the outlier scheme as in Fig. 4 (asymptotically, it can be shown by numerical
evaluation that the required number of outliers is always larger for the outlier scheme as
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in Fig. 1 for K = dn for d ≤ d0 ≈ 0.692291) and for K > (n+m)/2, we should use the
outlier scheme as in Fig. 1. This proves formula 5 and part i) as well as formula 6 and
part ii) where the dependence on K has already been discussed in the proof of Lemma 4.
Finally, note that once K ≥ m−n, the broken coefficient will only misclassify (n−K)

instead of m instances, so the misclassification loss is equal for β > 0 and β < 0. Since
only the ranking part remains which is the same as in the hard ranking setting with n
replaced by K, statement iii) is valid.

2

Corollary 2.3. i) Asymptotically, a fixed K would lead to a BDP of zero. For d = 1,
we get the asymptotic BDP of 1−

√
0.5 as for hard ranking.

ii) For K = K(n) := dn for d ∈]0, d0] for d0 ≈ 0.5774659, we can conclude that for
m = cn, we have

c∗ = 4− 3d−
√

16− 28d+ 12d2

which takes values in ]0, 0.30993] and is strictly monotonically increases with d.
iii) For K = K(n) := dn for d ∈ [d0, d1] with d1 ≈ 0.773455, we can conclude that for
m = cn, we have

c∗ = 1−
√
−1 + 4d− 5d2/2

which takes values in [0.2265413, 0.30993] and has its minimum at d1.
iv) For K = K(n) := dn for d ∈ [d1, 1], we have the asymptotic BDP d(1−

√
0.5).

Proof. Along the same lines as the proof of the Cor. 2.1. The asymptotic BDP in
dependence of d is depicted in Fig. 7.

Figure 7: Asymptotic BDP for K ≤ n/2 and K > n/2

2
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Theorem 2.1. Let wlog. the indicator loss functions for both the classification and the
ranking part be used and let p ≥ 2. Then, the upper bound for the OIBDP for localized
ranking with the optimization problem as in Eq. 4 is given by

m∗

n
, m∗ = min(1 + pk∗,K),

k∗ = min
{
k

∣∣∣∣ n−Kn 2(K − pk − 1)
n

+ (K − 1− pk)(K − 2− pk)
2n(n− 1) <

n−K
n

2(1 + pk)
n

}
(7)

for the case K ≤ (n+m)/2. For K > (n+m)/2, we have m∗ = 1 + pk∗ where

k∗ = min
{
k

∣∣∣∣ n−Kn 2(n−K)
n

+ (K − 1− pk)(K − 2− pk)
2n(n− 1) <

n−K
n

2(1 + pk)
n

+ k(k + 1)
2n(n− 1)

}
(8)

and for K > n−m, we get the same k∗ as in Eq. 4.2 in Thm. 2. This quantity always
exists for p ≤ K − 1.

Proof. Along the same lines as the proofs of Thm. 2 and Lemma 2.1.

2

Corollary 2.4. For the localized ranking problem where the localized ranking loss is
computed on B̂estK and where both the classification and the ranking loss are indicator
functions, we asymptotically conclude that
i) the BDP is zero for K and p being fixed,
ii) the BDP for c ≤ 0.5 tends to

pc∗, c∗ = 4− 3d
p
−
√

16− 28d+ 12d2

p2

and for c > 0.5, it tends to the same quantity provided that c ≤ 2(d− 0.5), to

pc∗, c∗ = 2p− pd
p2 − 1 −

√
4p2d− 4p2d2 − 8d+ 5d2 + 4

(p2 − 1)2

for c ∈ [2(d− 0.5), 1]. For p→∞, the break-even point is given by d0 ≈ 0.6923.
iii) the BDP tends to the asymptotic BDP for hard ranking, i.e., p/(p+ 1), for d = 1.
iv) the BDP does not exist for p = p(n) = bnn with bn → b ≥ d.

Proof. Similar as in Cor. 2.2. Note that the first formula in ii) tends to the respective
one in Cor. 2.2 for p→∞ while the second formulae are already equal.

2
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2.6 Other ranking problems

Proof (Proof of Cor. 6). Follows the same argumentation as the corresponding corol-
laries before. The starting point can be an arbitrary instance from the bottom of the
list, so the axis-wise outliers (with a response tending to infinity) enforce the respective
coefficients to switch their sign in order to keep the classification loss low.

2

Proof (Proof of Thm. 5). Statement a) is trivial since the number of misclassifications
is then lower for the coefficient with the opposite sign than for the original coefficient.
Statement b) is only a coarse bound which cannot be tightened due to the missing ranking
loss part in the weak ranking problems. The only opportunity that we have is to use an
instance from the bottom of the list and to place axis-wise outliers with sufficiently large
responses so that they are at the top of the list around this starting point. In the worst
case, we have to start from an original instance from the bottom of the list and replace
all K true top instances with such axis-wise outliers. Statement c) is obvious.

2

2.7 The sample OIBDP

In principle, we could directly transfer the results from this paper that restricted them-
selves to the population OIBDPs to the sample OIBDP setting. However, the sample
OIBDP heavily relies on the quality of the estimator β̂ on the clean data set (note that
the sample angular BDP from Zhao et al. (2018) faces the same issue). Let us first
recapitulate an important definition that can be found for example in Bühlmann and
Van De Geer (2011).

Definition 2.1. Assume that S0 is the true set of variables and Ŝ is the set of parameters
selected by the model selection procedure. The model selection procedure is variable
selection consistent if P (Ŝ = S0) −→ 1 for n→∞.

Variable selection consistency is a strict assumption. Theoretical results often cover a
relaxed property, the so-called screening property (Bühlmann and Van De Geer (2011))
which indicates that the set of selected variables contains the set of true variables asymp-
totically, so variable selection consistency is the special case of equality of the two sets.
Note that even sophisticated algorithms like L2-Boosting (Bühlmann and Yu (2003),
Bühlmann (2006)) fail to be variable selection consistent (Vogt (2018)). If the model
selection procedure therefore has only the screening property, it essentially selects too
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many variables, making the ranking problem artificially more robust. We do not think
that this is reasonable since this seeming robustness would result from the deficiencies
of the applied model selection algorithm. Therefore, we only consider variable selection
consistent model selection which enables the following asymptotic result.

Corollary 2.5. Let q = q(n) such that q(n) with q(n)/n→ b ∈]0, 1[ resp q(n)/n→ b < d

for K(n)/n→ d ∈]0, 1]. Then the asymptotic sample order-inversal breakdown point for
all non-localized ranking problems resp. localized ranking problems considered in this
work exists provided that the estimated coeffient is computed using a variable selection
consistent procedure.

Note that variable selection consistency is an asymptotic property, so for fixed n,
even a procedure that satisfies this property can produce an estimated coefficient which
selects irrelevant variables or which misses relevant variables. Summarizing, we believe
that sample versions of BDPs are not very informative and should always be considered
with caution.

2.8 Outlook: SVM-type approaches

Proof (Proof of Lem. 5). The statement is easily seen since (α̂∗, α̂) obviously satisfies
the constraints. The first sum of the objective does not change, also the third sum does
not change by switching the sign of the two factors. The negation of the second sum due
to the sign switch of the responses is compensated by the sign switch of the coefficient
differences, so the value of the objective for the solution (α̂∗, α̂) on the manipulated data
is identical to the value of the objective of the solution (α̂, α̂∗) on the clean data and
since a minimum is attained, (α̂∗, α̂) is optimal.

2

Proof (Proof of Cor. 9). Similarly as in the proof of Lemma 5, let α̂ be a solution of
the corresponding dual optimization problem which is given in (Herbrich et al., 1999,
Eq. (68)). The objective function invokes a double sum where factors YiYj appear (note
that Yi ∈ {±1} for all i in their work). However, switching the sign of all responses
will not affect the objective function and therefore keep the solution. Due to the linear
expansion of the weights given in (Herbrich et al., 1999, Eq. (69)), all summands that
form the weights are sign-switched, so the whole weight coefficient is sign-reverted since
the features stay untouched. The same is true if the kernelized SVMs which are computed
by maximizing the objective function given in (Herbrich et al., 1999, Eq. (75)), so by
the analog expansion of the weights, implicitly given in (Herbrich et al., 1999, Eq. (79)),
a breakdown is achieved.

2
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