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Abstract
Instance ranking problems intend to recover the ordering of the instances in a data 
set with applications in scientific, social and financial contexts. In this work, we 
concentrate on the global robustness of parametric instance ranking problems in 
terms of the breakdown point which measures the fraction of samples that need to 
be perturbed in order to let the estimator take unreasonable values. Existing break-
down point notions do not cover ranking problems so far. We propose to define a 
breakdown of the estimator as a sign-reversal of all components which causes the 
predicted ranking to be potentially completely inverted; therefore, we call it the 
order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a lin-
ear model, for several different carefully distinguished ranking problems and pro-
vide least favorable outlier configurations, characterizations of the order-inversal 
breakdown point and sharp asymptotic upper bounds. We also compute empirical 
OIBDPs.

Keywords Breakdown point · Quantitative robustness · Instance ranking problems · 
Sparsity

1 Introduction

A well-known issue when analyzing data is that the data usually are not clean but 
consist of perturbations that can severely distort an estimator. Instances that are dis-
tant from the majority of the data are often termed as “outliers”. For a well-founded 
analysis, it is required to define an underlying ideal model so that the data points 
are interpreted as independent realizations from this model. However, wrong model 
assumptions let the real data appear as contaminated data. In these cases, methods 
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from robust statistics (Huber and Ronchetti, 2009; Hampel et  al., 1986; Rieder, 
1994; Maronna et al., 2019) to handle these phenomena are necessary to incorporate 
even contaminated data points appropriately since just removing possible outliers 
is the wrong way as for example discussed in Hampel et  al. (1986). Even worse, 
in contrast to the classical convex contamination model [see, e.g., (Rieder, 1994, 
Sec. 4.2)] where an instance either stems from a contaminated distribution or from 
the ideal distribution, the cell-wise outlier model from Alqallaf et al. (2009) allows 
for contaminating the single predictor components for each instance independently 
which causes the probability to have even one clean instance in the data to tend to 
zero which again is a manifestation of the curse of dimensionality.

Robust statistics provides two concepts to measure the quantitative robustness 
of an estimator. Since robust statistics identifies estimators as statistical function-
als (Huber and Ronchetti, 2009; Hampel et al., 1986; Rieder, 1994; Maronna et al., 
2019), functional derivatives (e.g., Averbukh and Smolyanov, 1967) can be applied 
in order to linearize this functional in a first-order expansion which goes back to 
Von Mises (1947). The functional derivative, usually a Gâteaux derivative, has been 
identified in Hampel (1974) with the influence curve which is an important diagnos-
tic tool which measures the infinitesimal impact of one data point on the estimator.

In contrast to the influence curve which quantifies the local robustness of an esti-
mator, i.e., only allowing for an infinitesimal fraction of the data being contami-
nated, the breakdown point (BDP), introduced in Hampel (1971, Sec. 6) in a func-
tional version and in Donoho and Huber (1983) in a finite-sample version, studies 
the global robustness of an estimator. The finite-sample BDP from Donoho and 
Huber (1983) quantifies the minimum fraction of instances in a data set so that con-
taminating any such fraction of data points arbitrarily can let the estimator “break 
down”, while the functional BDP essentially quantifies the allowed maximum Prok-
horov distance between the ideal and the contaminated distribution without the esti-
mator breaking down. There has yet been a lot of work on BDPs, see for example 
(Rousseeuw, 1984, 1985; Davies, 1993; Hubert, 1997; Genton, 1998; Becker and 
Gather, 1999; Gather and Hilker, 1997) or (Donoho and Stodden, 2006) which cover 
location, scale, regression and spatial estimators and (Hubert et al., 2008) who study 
the BDP for multivariate estimators. Recently, a BDP for classification (Zhao et al., 
2018) and for multiclass-classification (Qian et al., 2019) has been proposed.

While regression and classification aim for an exact fit of the response value, 
there exist types of problems where one is only interested in an ordering of the 
instances and not of the particular responses. These problems are ranking problems 
which are very important in for example in document ranking (Page et  al., 1999; 
Herbrich et al., 1999a; Cao et al., 2006), medicine (Agarwal and Sengupta, 2009), 
credit risk-screening (Clémençon et al., 2013b) or biology and chemistry (Agarwal, 
2010; Kayala et al., 2011; Morrison et al., 2005). Due to the global nature of rank-
ing problems where essentially each instance pair is compared, the existing global 
robustness measures, i.e., the existing BDP concepts, are not suitable here.

Consider the problem to order instances in a data set. If responses are available, 
this can be identified with minimizing a pair-wise loss function, i.e., which oper-
ates on pairs of responses and their predictions by checking if their ordering coin-
dices, as shown in the seminal work of (Herbrich et al., 1999a, b). We then speak of 
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instance ranking problems in the terminology of Fürnkranz and Hüllermeier (2011). 
Clémençon et al. (2008) proposed the statistical framework for such instance rank-
ing problems which emerge from ordinal regression (Herbrich et  al., 1999a) and 
proved that the common approach of empirical risk minimization (ERM) is indeed 
suitable for such ranking problems. There are three ways of casting a ranking prob-
lem, i.e., either the ordering of all instances has to be correct (hard ranking), one just 
wants to identify the top K instances for a given K (weak ranking, (Clémençon and 
Vayatis, 2007)) or the best K instances have to be identified and the ordering of these 
instances has to be correct [localized ranking, Clémençon and Vayatis (2007)]. Fur-
thermore, one distinguishes between binary responses which lead to binary or bipar-
tite ranking problems [e.g., Joachims (2002), Freund et al. (2003), Clémençon and 
Vayatis (2010)], d-partite ranking problems for categorical responses with d catego-
ries [e.g., Clémençon et al. (2013c), Fürnkranz et al. (2009)] and continuous ranking 
problems (Sculley, 2010; Clémençon and Achab, 2017).

Instance ranking problems are usually solved by learning a real-valued, here para-
metric, scoring function which assigns a score to each instance with the goal to min-
imize some ranking error between the predicted ordering of the instances accord-
ing to the scores and the true ordering. The peculiarity of ranking problems is that 
they have an inherent equivariance nature, i.e., multiplying each response with the 
same positive factor or adding the same fixed value to it does not alter the order-
ing. Therefore, the norm of the coefficient which is considered by the regression 
BDP is not suitable here. It is out of question that for a ranking prediction, it would 
be even worse to predict an inverted ordering than to perform random guessing (to 
which zero or infinite coefficients essentially correspond) which exactly motivates 
our so-called OIBDP which is the minimum fraction of perturbed data points so 
that the nonzero coefficient components can be inverted. At the first glance, we get 
unreasonable BDPs in high-dimensional settings, i.e., if the predictor dimension 
is no longer smaller than the number of observations, but this can be remedied by 
assuming sparse underlying models resp. sparse model selection which is natural in 
such settings [e.g., Bühlmann and Van De Geer (2011)].

Our contribution is threefold: (i) We propose the definition of the order-inversal 
BDP for ranking problems which embeds the BDP concept of robust statistics into 
that area of machine learning; (ii) we provide explicit worst-case outlier configura-
tions; and (iii) we compute upper bounds for the corresponding OIBDPs for differ-
ent ranking problems.

The rest of this work is organized as follows. Section 2 compiles necessary pre-
liminaries in terms of a more concise definition of the loss functions corresponding 
to the different ranking problems as well as the BDP concept. In Sect. 3, we show 
why neither the classical BDP for regression nor the angular BDP for classification 
is suitable for ranking problems and propose the OIBDP for ranking. In Sects.  4, 
5 and 6, we propose outlier schemes and prove asymptotic bounds for the OIBDP 
for hard continuous resp. hard binary and hard d-partite resp. localized continuous 
ranking problems. In Sect. 7, we discuss the applicability of BDP concepts to the 
remaining instance ranking problems. In Sect. 8, we relate the computed BDPs to 
sparse underlying models and outline how robust ranking can be achieved in practi-
cal applications. We also provide empirical OIBDPs based on simulated and real 
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data. Section 9 is an outlook devoted to SVM- resp. SVR-type approaches. Further 
results and selected proofs can be found in the supplementary file.

2  Preliminaries

Let D = (X, Y) be a data set with regressors Xi ∈ X ⊂ ℝ
p and responses Yi ∈ Y ⊂ ℝ . 

We start by revisiting suitable loss functions for different types of instance ranking 
problems and the breakdown point concept.

2.1  Ranking problems and motivating example

Example 1 Consider data from tax fraud detection where for n tax payers, repre-
sented by predictor vectors Xi ∈ ℝ

p , one has information about their past tax com-
pliance. This information is either represented by a binary response variable (fraud-
ulent/compliant) or by a continuous pseudo-response variable, e.g., the damage 
(which is negative if the corresponding tax payer indeed gets a refund). Due to the 
limited capacities of finance offices, it is desirable to use machine learning in order 
to facilitate the selection of income tax statements that need to be investigated fur-
ther. This strategy is known as risk-based auditing [e.g., Pickett (2006)]. Since just 
classifying instances as fraudulent or compliant leads to the potential problem that 
there are more income tax statements classified as fraudulent than the finance offices 
can investigate, i.e., one has a prioritization problem. Training a ranking model 
which learns an ordering of the instances, i.e., in which order the income tax state-
ments should be investigated, avoids this, as already done for example in Torgo and 
Ribeiro (2007).

Assuming that one has continuous (pseudo-)responses, a regression model should 
predict Ŷi that are close to the true Yi . In contrast, a ranking model works perfectly 
if it correctly predicts the orderings, i.e., if Yj > Yi , any predictions Yi and Yj so that 
Ŷj > Ŷi holds is correct, while the predicted values do not need to be close to the true 
responses.

However, it is well-known from regression that one single outlying instance can 
make the regression model worthless. Therefore, it is important to investigate the 
robustness of ranking problems, i.e., whether outliers can perturb a ranking model 
and whether it is possible to make the ranking model completely worthless, which 
would especially be the case if the predicted ordering inverts the true ordering of all 
instances, leading to rigorous investigations of the most compliant tax payers.

In this work, we assume a linear model Yi = s�(Xi) + �i for the �i being i.i.d. reali-
zations from some centered distribution with existing second moments and a scoring 
function s� ∶ X → ℝ for some parameter 𝛽 ∈ Θ ⊂ ℝ

p . Xij refers to the j-th entry of 
row Xi and X

⋅,j to the j-th column of X. The j-th component of the coefficient vector 
� is denoted by �j.
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In the case of hard ranking problems, the goal is to retrieve the correct order-
ing of all instances. Therefore, the parameter � in the linear model is optimized 
according to

where L ∶ X × X × Y × Y × Θ → [0,∞] is some loss function that compares 
instance pairs. In (Herbrich et al., 1999b) or (Clémençon et al., 2008), L is the indi-
cator function

which just checks whether a misranking occurred, i.e., if the true resp. the predicted 
pair-wise orderings did not coincide, but the actual magnitude of the product is not 
taken into account. Since this loss function is not even continuous, one often con-
siders surrogate losses (see Werner, 2021a for an overview). In the following BDP 
computations, we will always consider general loss functions that can be rewritten 
as L((Yi − Yj)(s�(Xi) − s�(Xj)) in the same manner as classification loss functions are 
frequently rewritten as L(ys�(x)).

For weak ranking problems (Clémençon and Vayatis, 2007), the goal is to 
correctly retrieve the best K instances for a user-defined K without ordering 
them internally. The empirical counterpart of the misclassification risk can be 
expressed by

with the set BestK of the true top K indices where the ranks correspond to a descend-
ing ordering. Again, the indicator function may be replaced by any classification 
loss function L ∶ X × Y × � → [0,∞].

Localized ranking problems (Clémençon and Vayatis, 2007) aim to correctly 
retrieve the best K instances but also to order these K instances correctly. The 
optimization problem is

One can again replace the indicator function by surrogates. Note that one may 
replace the set B̂estK in the double sum by BestK . We will discuss both cases in 
Sect. 6.

For further discussions of these loss functions and for instance ranking, see 
Werner (2021a).

(1)min
�∈Θ

(
Lhard
n

(�) =
1

n(n − 1)

∑∑

i≠j

L(Xi,Xj, Yi, Yj, �)

)

L(Xi,Xj, Yi, Yj, 𝛽) = I((Yi − Yj)(s𝛽(Xi) − s𝛽(Xj)) < 0)

(2)Lweak,K
n

(𝛽) =
2

n

∑

i∈BestK

I( rk (s𝛽(Xi)) > K)

(3)
Lloc,K
n

(𝛽) ∶=
n − K

n
Lweak,K
n

(𝛽) +
2

n(n − 1)∑∑

i<j,i,j∈BestK

I((s𝛽(Xi) − s𝛽(Xj))(Yi − Yj) < 0).
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2.2  Quantitative robustness

Robustness of an estimator can be understood in the sense that it allows for perturba-
tions or even large contaminations of the underlying sample without the quality of 
the estimator being significantly affected. One can distinguish between quantitative 
and qualitative robustness. The latter goes back to Hampel (1971) and essentially 
indicates the continuity of the underlying statistical functionals.

As for quantitative robustness, one further has to distinguish between global and 
local robustness. Local robustness is devoted to the effect of small perturbations of 
the data where the term ”small” means that, for finite samples, only one observation 
may be contaminated, so in other words, the influence curve or influence function 
which is the diagnostic tool for local robustness measures the infinitesimal influ-
ence of a single observation on the estimator. In contrast, global robustness allows 
for large perturbations, i.e., a considerable fraction of the data points being con-
taminated arbitrarily. The maximum fraction which an estimator can cope with, i.e., 
without taking unreasonable values, is measured by the breakdown point.

2.2.1  The breakdown point concept

Let Zn be a sample (X1, Y1),… , (Xn, Yn) . Let 𝛽(Zn) be the estimated coefficient for 
the scoring function s� based on Zn . The finite-sample BDP of Donoho and Huber 
(1983) is defined as follows.

Definition 1 The finite-sample breakdown point of an estimator 𝛽  is defined as

where Zm
n

 denotes any sample that has exactly (n − m) instances in common with Zn , 
i.e., m instances can be modified arbitrarily.

Note that this definition assumes that � ∈ ℝ
p . In cases where 𝛽 ∈ Θ ⊂⊂ ℝ

p , the 
situation would get more difficult since here a breakdown may be defined in the 
sense that 𝛽  is located at the boundary of Θ . In this case, one would require some 
transformation that moves the boundaries of Θ to infinite values, see for example 
(He, 2005) who proposed to use a log-transformation for computing the BDP of 
scale estimators in order to move the value 0 to −∞.

A variety of extensions of the BDP concept have been proposed in the literature. 
Stromberg and Ruppert (1992) and Sakata and White (1995) proposed BDPs for 
regression, Sakata and White (1998) suggested a BDP definition for location-scale esti-
mators, while Genton (1998) propose the spatial BDP for variogram estimators and 
Genton and Lucas (2003) and Genton (2003) introduce a BDP for dependent samples 
(time series). Donoho and Stodden (2006), Donoho (2006) propose a BDP for model 
selection, Kanamori et al. (2004) study the BDP for SVMs and Hennig (2008) trans-
ferred the BDP concept to the dissolution point concept for clustering. Ruckdeschel and 

(4)𝜖∗(𝛽, Zn) = min

{
m

n

||||
supZm

n
(||𝛽(Zm

n
)||) = ∞

}
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Horbenko (2012) suggest an expected BDP that respects the ideal distribution of the 
original data. See Davies and Gather (2005) for a notable discussion paper on BDPs.

2.2.2  Angular breakdown point for classification

Recently, Zhao et al. (2018) proposed the following definition of a breakdown point 
that is suitable for classification, calling it ”angular breakdown point” since it is based 
on the angle between the decision hyperplane of the original coefficient and the one 
estimated on a contaminated sample. The following definition stems from Zhao et al. 
(2018, Def. 1) and assumes linear classifiers.

Definition 2 (Angular breakdown point for classification) The (population) angu-
lar breakdown point for classification is given by

Zhao et al. (2018, Def. 1’) also proposed a sample counterpart of this breakdown 
point where � is replaced by 𝛽(Zn) and therefore S− by Ŝ− with the respective replace-
ment. The angular breakdown point indicates that modifying more than �(�, Zn) of the 
sample Zn by arbitrary points can induce an angle between the original decision hyper-
plane and the hyperplane of the coefficient corresponding to the contaminated sample 
of at least �∕2 , leading to very low discriminative power if the classifier corresponding 
to 𝛽(Zn) was sufficiently well. This setting has been extended to multi-class classifica-
tion in Qian et al. (2019).

3  Outliers and breakdown for ranking with linear scoring functions

As a motivation, we consider continuous ranking problems where the responses are 
continuously valued (taking values in wlog. the whole space ℝ ) in this section.

3.1  Why neither the regression nor the classification breakdown point work

We start by proving a counterpart of Zhao et  al. (2018, Prop. 3.1) showing that the 
finite-sample breakdown point in Eq. 4 in also not reasonable in the ranking context. To 
this end, let the objective function of regularized continuous ranking with linear scor-
ing functions be given by

where sb,�(x) ∶= x� + b so that s(Xi) =∶ Ŷi is a parametric scoring function for some 
optional intercept b with |b| < ∞ , a loss function L as introduced in Sect. 2 and a 
regularizer J�(�) satisfying

(5)𝜖(𝛽, Zn) = min

{
m

n

||||
𝛽(Zm

n
) ∈ S−

}
, S− = {𝛽 | 𝛽T𝛽 ≤ 0}.

L𝜆,n(b, 𝛽, Zn) =
1

n(n − 1)

∑∑

i<j

L((Yi − Yj)(sb,𝛽(Xi) − sb,𝛽(Xj))) + J𝜆(𝛽)
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where 0p is the vector of length p containing only zeroes. The fourth property is also 
known as coercivity [e.g. Werner (2006)]. The regularizer encourages sparse models 
and therefore does not take the intercept b into account.

Definition 3 A sample Zn is linearly inrankable if there exists no linear scoring 
function (linear in � ) sb,�(x) = x� + b such that we can perfectly replicate the rank-
ing of the responses in Zn ; otherwise, we call the sample linearly rankable.

Graphically, in the most simple case, linear rankability can be easily under-
stood in the sense that ordering the instances w.r.t. their j-th component leads 
to a perfect ordering of the responses, for all j. If the re-ordered responses are 
strictly monotonically increasing, 𝛽j > 0 perfect replicates their ordering and vice 
versa. If this holds for all j, the coefficient � consisting of these �j also retrieves 
the ordering perfectly. However, linear inrankability is generally not given if this 
property is violated for some axes.

Example 2 Consider the sample ((1, 1), 1), ((2, 4), 2), (2.5, 10), 50). Evidently, linear 
rankability is given and each coefficient with 𝛽1, 𝛽2 > 0 leads to a perfect ranking. 
Now, consider the sample ((1, 1), 1), ((0, 3), 2), ((3, 2), 3). In contrast to the sample 
before, the responses clearly do neither strictly monotonically increase or decrease 
with increasing X

⋅,1 nor with increasing X
⋅,2 . However, for � ∶= (1, 1) and arbitrary 

but finite b, we have Ŷ1 = 2 + b , Ŷ2 = 3 + b , Ŷ3 = 5 + b , so the ranking is perfect.

This example points out that linear inrankability does not only depend on some 
strict monotonicity of the responses w.r.t. some variable but also on the variables 
themselves (unless the strict monotonicity is satisfied along all axes). This is a 
first motivating aspect which makes the angular breakdown point from Zhao et al. 
(2018) inappropriate for ranking. Let us state the following counterpart to Zhao 
et al. (2018, Prop. 3.1) whose proof can be found in the supplementary file.

Lemma 1 Let L be a nonnegative loss function, L(0) < ∞ , and let assumptions (6) 
hold. 

(a)  For 𝜆 > 0 , it holds that ||𝛽(Zn)|| < ∞ and ||𝛽(Zm
n
)|| < ∞ for any Zn and Zm

n
.

(b)  For � = 0 , norm finiteness of the estimated coefficient cannot be guaranteed.

Lemma  1 indicates that the usual finite-sample breakdown point in Eq.  4 is 
insufficient for measuring the robustness of regularized ranking problems since 
any contamination keeps the norm of the estimated coefficient finite if the 
assumptions in the lemma hold. As for the angular BDP for classification intro-
duced in Zhao et al. (2018), we similarly can conclude that it is inappropriate for 

(6)
i) J� ≥ 0, J0 ≡ 0, ii) J(�) = 0 ⟺ � = 0p,

iii) J(−�) = J(�), iv) J(�)
||�||→∞
⟶ ∞,
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ranking if the variables are scaled differently or if they take values in different 
spaces.

Example 3 Let the sample ((5, 0.2), 0.9), ((6, 0.3), 1.2), ((1, 0.1), 0.3) be given an let 
� = (0.1, 2) be the true coefficient (wlog. let b = 0 ). Then for 𝛽 = (0.2,−1) we have 
𝛽T𝛽 < 0 , but the ordering of the predictions w.r.t. 𝛽  is still correct, making the angu-
lar BDP insufficient for ranking.

Remark 1 (Interpretation of the classical BDP) Let us additionally highlight the fact 
that one has to be very cautious in interpreting the classical BDP. Focusing on the 
values ±∞ can be highly misleading since it does not fully reflect the real meaning 
of the BDP.

Consider a least squares regression estimator. Having control over one of the 
observations allows us to produce an arbitrary estimated regression coefficient, as 
the proof of of Alfons et  al. (2013, Thm. 1) reveals. However, it is impossible to 
achieve an estimated coefficient with ||�|| = ∞ for arbitrary data. Just consider the 
case p = 1 . A breakdown can be achieved by for example letting the response of the 
mostright observation which is w.l.o.g. (Xn, Yn) grow. Clearly, the regression coef-
ficient would also grow. Now, consider the limit case that the contaminated response 
takes the value ∞ . This does not enforce “ � = ∞ ” but allows for any coefficient. For 
example, � = 0 produces an infinite loss on the n-th instance, but the same loss is 
suffered for any other finite � . The case “ � = ∞ ” would similarly lead to an infinite 
loss on any other instance, while it would be hard to meaningfully define the loss on 
the n-th instance. Therefore, this limit case would essentially make all coefficients 
equal and definitely not enforce an infinite coefficient.

Example  3 and Remark  1 motivate a new BDP notion for instance ranking 
problems.

3.2  The order‑inversal breakdown point for ranking

We have seen that reverting the sign of some components of the coefficient does 
not guarantee any effect on the ranking quality unless all coefficient components are 
sign-reverted. Even this does not guarantee an inverted ordering but guarantees that 
the predicted ordering cannot be perfect anymore. Taking all these arguments into 
account, we now state the following definition for the OIBDP for ranking.

Definition 4 (Order-inversal breakdown point for ranking)(a) The population order-
inversal breakdown point for ranking is defined by

(b) The sample order-inversal breakdown point for ranking is defined by

𝜖(𝛽, Zn) ∶= min

{
m

n

||||
𝛽(Zm

n
) ∈ S−

∩

}
, S−

∩
∶=

⋂

j∶𝛽j≠0

{𝛽j | 𝛽j𝛽j < 0}.
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One could ask why we do not include the case that the 𝛽j are zero in the definition 
of the OIBDP. The reason is that this definition should be tailored to ranking prob-
lems and their inherent property of interest which are the orderings of the instances. 
Of course, allowing several estimated coefficient components to become zero where 
the original ones are nonzero, while the others being sign-reverted also leads to 
a nonperfect ranking; however, this situation refers to model selection itself. Evi-
dently, not selecting all relevant variables leads to models without predictive power, 
but this is a topic for its own which has recently been studied in Werner (2021b).

Remark 2 (Nonlinear scoring functions) The restriction to linear scoring func-
tions (i.e., linear in x) is not necessary since sign-reverting all components of 
� would clearly also revert the ordering for any scoring function of the form 
sb,�(x) = f (x)� + b where f ∶ ℝ

p
→ ℝ

p� maps the regressors from the original 
regressor space X  to some feature space X′ ⊂ ℝ

p′ where we allow p ≠ p′ which 
refers for example to very natural situations like facing categorical regressors whose 
encoding enlarges the column number of the regressor matrix. The respective out-
lier configurations that we provide in the remainder then have to be concentrated on 
regions where the score is strictly monotonic w.r.t. the original coefficient.

The reduction to linear scoring functions is done for the sake of simplicity and 
illustrativeness and no restriction (as long as our scoring functions are still linear in 
the parameter � which evidently is the case) since one could essentially approximate 
any nonlinear scoring function by piece-wise linear scoring functions. The case of 
kernel-based scoring functions will be discussed in Sect. 9.

4  Asymptotic upper bounds for the OIBDP of the hard continuous 
ranking problem

4.1  Univariate case

Assumption 1 Let L be a continuous and strictly monotonically decreasing function 
with limu→∞(L(u)) = 0 and limu→−∞(L(u)) = ∞.

Unbounded loss functions arise once convex surrogates are used, as in RankBoost 
(Freund et al., 2003), RankingSVM (Herbrich et al., 1999a; Joachims, 2002) or the 
p-Norm-Push (Rudin, 2009).

Remark 3 (Ties) Zhao et  al. (2018) also respect the case of zero coefficients. As 
shown in Werner (2022), the case of ties has to be handled differently, but we always 
assume that ties have zero probability in continuous ranking problems in this work.

𝜖(𝛽, Zn) ∶= min

{
m

n

||||
𝛽(Zm

n
) ∈ Ŝ−

∩

}
, Ŝ−

∩
∶=

⋂

j∶𝛽j(Zn)≠0

{𝛽j | 𝛽j𝛽j(Zn) < 0}.
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Remark 4 (Nonzero assumption) We always assume that the true coefficient is never 
0p . Together with the assumption of linear rankability with the original coefficient 
that we use in the proofs, this is the counterpart of assuming that the points are in 
general position.

Remark 5 (Immunization against particular regularization terms) We will not con-
sider the regularization term directly in the following lemmas and theorems. Having 
𝜆 > 0 which defines a feasible set of the form Br,c�

∶= {� | ||�||r ≤ c�} for some 
0 < c𝜆 < ∞ and some r > 0 , we can always assume that we project the true coef-
ficient onto this set by standardizing all components uniformly (which does not alter 
the ranking) since the issue of a sign-reversal does not depend on the magnitude of 
the respective coefficient components. We will discuss to the case r = 0 in Sect. 8.

Lemma 2 Let p = 1 . For the hard ranking problem with the loss function 
L(u) = I(u < 0) , the sample and population OIBDP for ranking is

and asymptotically, the BDP is given by 1 −
√
0.5.

Proof The proof is given for the population version; the sample version is proven 
completely analogously. Assume wlog. that 𝛽 > 0 . Consider the worst-case outliers 
shown in Fig. 1.

A correct ranking of two instances does not suffer a loss, while any incorrect 
ranking suffers the same loss. This makes it impossible to achieve a breakdown 
by letting the response of one single outlier tend to −∞ for all n that are reason-
ably high ( ≥ 4 ). Observe that, due to symmetry, we have n(n − 1)∕2 effective pair-
wise comparisons and that a single outlier like the rightmost point in Fig. 1 leads 
to (n − 1) misrankings for a coefficient 𝛽 > 0 . Consider to add one outlier. Then, 
comparing each of the (n − 2) noncontaminated instances with one outlier leads to 
(n − 2) misrankings for 𝛽 > 0 , but since the ordering of the outliers is also incorrect, 
we get a total of 2(n − 2) + 1 misrankings. Now, let m ≥ 1 outliers be given. Then, 
we get a total of m(n − m) + m(m − 1)∕2 misrankings for 𝛽 > 0 , while the number 
of misrankings that we make for 𝛽 < 0 is evidently given by (n − m)(n − m − 1)∕2 
since every pair of clean observations of which we have (n − m) ones is misranked, 
so the number of outliers m̌ that we require for a breakdown is as stated in Eq. 7.

Figure 2 shows the sample OIBDP for ranking for n ∈ {4, 5, ..., 500} . Note that 
the maximal sample BDP is attained for n = 4 where m̌ = 2 and the minimal sample 
BDP is attained for both n = 7 and n = 14 , namely m̌∕n = 2∕7.

As for the asymptotic setting, we set m = cn and solve the inequality given in 7 
for c.

(7)

m̌

n
, m̌ =min

{
m
||||
m(n − m)

+
m(m − 1)

2
>

(n − m)(n − m − 1)

2

}
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where the notation 
!

> 0 indicates that we search for c so that this inequality holds. 
Asymptotically, we just require that the value in the bracket of the left-hand side is 
positive. We can easily conclude that this holds for c > 1 −

√
0.5 , so this value is 

the sharp asymptotic upper bound for the OIBDP.   ◻

Remark 6 Note that this result equals the asymptotic BDP of the Hodges-Lehmann 
estimator [see Hodges Jr (1967, Sec. 11)]. This is not surprising since the Hodges-
Lehmann estimator is given as the median of the set of all possible pairs of univari-
ate samples. In order to achieve a breakdown of such an estimator, at least the half 
of the underlying observations which, in case of the Hodges-Lehmann estimator, are 
pairwise comparisons, have to be contaminated. This equals our setting since for the 
Hodges-Lehmann estimator, the sum of the outlier–outlier pairs and the outlier–non-
outlier pairs has to be more than the half number of data points.

cn2 − c2n2 +
c2n2

2
−

cn

2

!

>
(n − cn)(n − cn − 1)

2
=

n2 − 2cn2 + c2n2 + cn − n

2
n>0
⟺ n

[
−c2 + 2c −

1

2

]
+ [−c + 0.5]

!

> 0

Fig. 1  Worst-case outliers for p = 1
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We do not consider unbounded loss functions here since we cover this case with 
Theorem 1 in the next subsection. Before we proceed with bounded loss functions, we 
argue why it suffices to consider indicator functions here.

Remark 7 (Reduction to indicator loss functions) Assume that the loss function is 
bounded, i.e., limu→−∞(L(u)) = Cl < ∞ . Then, we can obviously generate losses 
w.r.t. the original coefficient on the contaminated instances which are (close to) Cl 
by using the outlier scheme introduced above. However, since BDP computations 
have to consider all possible data configurations, we also have to take into account 
that the losses w.r.t. the broken coefficients on the original instances may be simi-
larly close to Cl . Therefore, such extreme cases essentially lead to losses that are 
arbitrarily close to zero and arbitrarily close to Cl , allowing for a reduction to the 
indicator loss function case.

Fig. 2  OIBDP for hard ranking for p = 1
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4.2  Multivariate case

We considered the case p = 1 separately since the arguments and results for p > 1 
are different for ranking. Now, the question arises if a breakdown in the sense of the 
OIBDP for ranking can always be achieved, disregarding the particular configura-
tion of the original data and the dimension.

4.2.1  Unbounded loss function

Theorem 1 Let L satisfy Assumption 1. Then, the upper bound for the sample and 
population OIBDP for ranking is (p + 1)∕n provided that 1 < p < n − 1 , p/n for 
p = n − 1 , 1/n for p = 1 and not existent otherwise.

Proof Let us first illustrate our outlier configuration for p = 2 and as usual, we only 
prove the population variant. Let wlog. be 𝛽1, 𝛽2 > 0 and let the original data points 
be linearly rankable according to � . Consider X� = (maxi(Xi1), maxi(Xi2)) and let 
X(1) = (X�

1
+ 1,X�

2
) and X(2) = (X�

1
,X�

2
+ 1) . Set Y � < mini(Yi) and let Y (1) = Y (2) < Y � . 

This special configuration ensures that along each axis, any coefficient � with posi-
tive components will produce a misrankings w.r.t. the outliers and, in addition, that 
there is no consistency with the original data since it is guaranteed that the response 
for all outliers would be greater than the response for all original variables according 
to any � with positive components. Therefore, letting Y (1), Y (2)

→ −∞ , we produce 
an unlimited loss unless 𝛽1, 𝛽2 < 0 . If any component, say, the first component of the 
original coefficient is negative, use X(1) = (X�

1
− 1,X�

2
) and proceed along the same 

lines.
This strategy obviously is applicable to the general case p > 2 , requiring at most 

(p + 1) outliers. In the special case p = n − 1 , we just need p instead of p + 1 outliers 
by using the last remaining original data point as starting point for the construction 
of the p outliers. The special case p = 1 does not require a starting point.

As for the case p ≥ n , consider for simplicity again p = 2 and let 𝛽1, 𝛽2 > 0 and 
let X11 < X21 , X12 < X22 and Y1 < Y2 . Regardless of the outlier configuration, one 
can only enforce the sign-inversal of one component. Even if one modifies (X2, Y2) 
by letting Y2 → −∞ , any coefficient with 𝛽1 > 0 and 𝛽2 < 0 resp. 𝛽1 < 0 and 𝛽2 > 0 
produces a perfect ranking provided that the negative component dominates here. 
Enforcing a sign-reversal of both components stays impossible and carries over to 
higher dimensions p > 2 .   ◻

Remark 8 Note that although we cannot enforce multiple components to be sign-
reverted by a single outlier, for particular algorithms this may not hold. When com-
puting the BDPs, we considered all variables separately by our outlier schemes. This 
guarantees that our results provide conservative but valid upper bounds for the BDP 
which are sharp for the situations assumed in the respective theorems and lemmas. 
However, from an algorithmic point of view, the true BDP may be considerably 
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lower. This is true for example for gradient-based approaches which update multi-
ple coefficient components at once by a joint gradient step so that a single outlier 
in a remote location may pull the estimated coefficient toward a broken coefficient. 
However, this is a property of the numerical procedure that intends to minimize the 
corresponding objective and no general property. One may alleviate this issue by 
for example single gradient steps like in Gradient Boosting [e.g., Bühlmann and 
Hothorn (2007)].

Theorem  1 has a very interesting consequence: In a high-dimensional setting 
where p > n − 1 , it is impossible to find outlier configurations that guarantee a 
breakdown of the estimator in the sense of the OIBDP for ranking! Even if the whole 
data set would be replaced by outliers, it can only be enforced that n coefficients are 
sign-reversed. Also note that it is not unusual that the dimension enters the BDP 
which also appeared for example in the BDP of the Least Trimmed Squares (LTS) 
estimator introduced in Rousseeuw (1984), see also Rousseeuw and Van Driessen 
(2006) for its fast computation, given in Rousseeuw and Leroy (2005), where how-
ever an increasing dimension leads to a decreasing BDP. The sparse variant SLTS 
(Alfons et al., 2013) also has a dimension-independent BDP.

Going back to our ranking setting, the asymptotic case has to take the behavior of 
the predictor dimension into account. See Sect. 8 for further discussions.

Corollary 1 Asymptotically, we have to distinguish between four cases. 

(i)  If p is fixed, then the asymptotic breakdown point is zero.
(ii)  If p = p(n) = bnn such that bn → b ∈ [0, 1[ , the asymptotic breakdown point 

is b.
(iii)  If p = p(n) = bnn such that bn → b ≥ 1 , the asymptotic breakdown point does 

not exist, i.e., it is impossible to achieve a breakdown for ranking.

4.2.2  Bounded loss function

Theorem 2 Let wlog. L be the indicator loss function used in the hard ranking loss 
and let p ≥ 2 . Then, the upper bound for the OIBDP for ranking is given by

This quantity always exists for p ≤ n − 1.

Proof Let us again illustrate our idea for p = 2 . The problem is that when having 
a starting point X′ as in the proof of Theorem 1, generating one outlier by altering 
one component may not suffice to ensure a breakdown if the original data points still 

(8)

m∗

n
, m∗ = 1 + pk∗, k∗ = min

{
k
||||
k(k + 1)

2
>

(n − pk − 1)(n − pk − 2)

2

}
.
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dominate. Moreover, we have to guarantee that all components of the coefficient are 
sign-reversed. We propose the following outlier algorithm:

For illustration, let p = 2 and k = 2 . Then we generate a further outlier on each 
axis (note that “axis” has to be understood in the sense (X�

1
,ℝ) resp. (ℝ,X�

2
) here) 

by proceeding on the respective axis, i.e., if X(1) = (X�
1
+ 1,X�

2
) , the next out-

lier is X(3) = (X�
1
+ 2,X�

2
) and Y (3) = Y (4) < Y (1) = Y (2) for X(2) = (X�

1
,X�

2
+ 1) and 

X(4) = (X�
1
,X�

2
+ 2) . Applying this strategy, we get k(k + 1)∕2 comparisons along 

each axis; more precisely, in the example, we have all pair-wise comparisons of the 
points (X�, Y �),(X(2), Y (2)) , (X(4), Y (4)),… , (X(2k), Y (2k)) along the axis correspond-
ing to the first component of the coefficient vector, which are k(k + 1)∕2 in total; 
additionally, we have all pair-wise comparisons of the points (X�, Y �),(X(1), Y (1)) , 
(X(3), Y (3)),… , (X(2k−1), Y (2k−1)) along the axis corresponding to the second compo-
nent of the coefficient vector, which are again k(k + 1)∕2 . In total, keeping the origi-
nal sign of the corresponding coefficient component leads to k(k + 1)∕2 misrank-
ings. In contrast, we still have (n − 2k − 1) original data points which, in the worst 
case, cause (n − 2k − 1)(n − 2k − 2)∕2 misrankings provided that the coefficient has 
at least one component with the original sign.

Note that comparisons of original and contaminated data points are not inform-
ative. Let us elaborate this argument a bit further. By construction, the responses 
of the outliers are lower than the responses of the original data which makes their 
ranking prediction perfect if all components of the coefficient are sign-reversed. In 
this case, the loss suffered due to these (n − 2k − 1)(2k + 1) comparisons is zero, so 
such a coefficient indeed leads to k(k − 1)∕2 misrankings. On the other hand, the 
original coefficient induces (n − 2k − 1)(2k + 1) misrankings, but any other coeffi-
cient in between these two extreme cases potentially predicts the respective order-
ings perfectly, so we have to be conservative and assume this ”least favorable case” 
(from the view of the attacker) that such a coefficient also achieves a loss of zero like 
the completely sign-reverted coefficient when comparing outliers and original data 
points. Therefore, a breakdown is guaranteed once k is large enough such that

k(k + 1)

2
>

(n − 2k − 1)(n − 2k − 2)

2
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which leads to stated formula 8 for p = 2.
In the general case p > 2 , we consider at most p-chunks of k new outliers, i.e., 

m = 1 + pk , and by the same arguments, a breakdown occurs if

Clearly, there exist cases where such a k∗ does not exist. Here, we have to distin-
guish between two cases: (i) p ≥ n ; (ii) p ≤ n − 1 . 

(i)  This case is already discussed in Theorem  1 where we concluded that it is 
impossible to guarantee a breakdown in such high dimensions. This evidently 
also holds for the case of bounded loss functions.

(ii)  A breakdown may be achieved before a p-chunk is complete. In the worst case, 
we can stop once m = n − 1 since then, using the last remaining point as start-
ing point, we can generate at least one outlier along each axis. In general, pro-
vided that k∗ exists, the true upper bound BDP therefore lies in the set {

1+p(k∗−1)+1

n
, ...,

1+pk∗

n

}
 . Note that there exist configurations in which 

m∗ = 1 + pk∗ is indeed sharp which is true for example for p = n − 1 as 
already discussed.   ◻

Example 4 To illustrate the case (ii) in the proof above, consider the case p = 2 and 
n = 8 . Generating an outlying starting point and two outliers along each axis leads 
to m = 5 and k = 2 , but we have only three comparisons of outliers along each axis 
and three comparisons of original instances. The loss for each coefficient � with 
𝛽1, 𝛽2 > 0 is obviously greater than the loss for each coefficient with 𝛽1, 𝛽2 < 0 , but 
there is no guarantee that such a sign-reversed coefficient would achieve a lower 
loss than a coefficient with only one sign-reverted component. However, adding one 
additional outlier according to our outlier scheme, disregarding on which of the two 
axes, leads to a breakdown since the number of comparisons between original data 
boils down to one, leading finally to m∗ = 6 instead of m∗ = 7.

Corollary 2 The asymptotic upper bound for the OIBDP for ranking 

(i)  is given by p∕(p + 1) for fixed p,
(ii)  is given by 1 for p = p(n) = bnn with bn → b ∈]0, 1[,
(iii)  does not exist for p = p(n) = bnn with bn → b ≥ 1.

Remark 9 We do not exclude that there may exist even more sophisticated outlier 
schemes than ours which leads to a faster breakdown. However, our outlier scheme 
guarantees a breakdown, provided than p resp. p(n) is small enough, which would be 
very hard to show for outlier schemes than are not axis-based. An intuitive alterna-
tive that however does not work is given in the supplementary file.

k(k + 1)

2
>

(n − pk − 1)(n − pk − 2)

2
.
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Summarizing, we showed under which conditions and with which outlier scheme 
a breakdown for the hard instance ranking problem can be achieved. This again 
relates to out motivating example Example 1 with continuous pseudo-responses, 
e.g., the amount of damage. If the data would be suitably perturbed, the resulting 
ranking model would suggest the tax offices to investigate essentially those income 
tax statements which lead to a negative damage, i.e., a refund to the tax payer, which 
may be undesirable for the government.

4.3  Expected OIBDP

Evidently, there are always pathological configurations of the original data that even 
immediately cause a breakdown or that hinder a breakdown but being extremely 
artificial, see the supplementary file for an example. A comparable situation has 
already been investigated in Ruckdeschel and Horbenko (2012) who consider the 
expectation of the BDP w.r.t. the ideal distribution (which the original instances are 
assumed to follow), leading to a so-called expected BDP. Their motivation was to 
account for the fact that unfavorable configurations of the original data points only 
appear with low probabilities which helped them to get nonzero expected BDPs in 
the context of heavy-tailed distributions or when only partial equivariance is valid.

However, in our setting, we have to be very cautious how to define an expected 
OIBDP. Evidently, assuming iid. instances (Xi, Yi) and computing the expectation 
w.r.t. the joint distribution would make no sense since iid. instances are all ranked 
equally in expectation. We indeed require a fixed design of the regressor matrix 
which, for every fixed n, assumes that observations Xn,i, i = 1,… , in, are given. 
Then, the responses are computed by Yn,i = Xn,i� + �n,i for �n,i ∼ F� iid. for some 
centered distribution F� . Therefore, the points (Xn,i,Xn,i�) are trivially linearly rank-
able, but the points (Xn,i, Yn,i) do not necessarily be linearly rankable since this prop-
erty depends on the realizations of the error terms. In the proofs, we always consider 
linear rankability w.r.t. the original coefficient � which can be interpreted as taking 
the expectation of the data w.r.t. F� . This motivates the following definition which 
mimicks Ruckdeschel and Horbenko (2012, Def. 3.2).

Definition 5 (Expected OIBDP for ranking) Let Zn(�) be the sample consisting of 
the data points (Xn,1, Yn,1(�n,1)),… , (Xn,in

, Yn,in (�n,in )).
(a) The expected population order-inversal breakdown point for ranking is 

defined by �𝜖[𝜖(𝛽, Zn(𝜖))]. b) The expected sample order-inversal breakdown 
point for ranking is defined by �𝜖[𝜖(𝛽, Zn(𝜖))].

Remark 10 One has to be very cautious when considering the sample OIBDP (or 
general sample BDPs). This fact has been respected by Zhao et  al. (2018, Thm. 
4) who indeed assume that the estimator does not yet break down on the original 
sample. As for ranking, our theoretical results on BDP bounds are founded on the 
expectation w.r.t. the error term, making the data linearly rankable w.rt. � . Any tie 
or other inconsistency reduces the required amount of outliers to let the estimator 
break down. This can indeed be problematic if the sample BDP is considered and if, 
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maybe due to a large error variance, the estimated coefficient is insufficiently sup-
ported by the data. Let p = 1 and let the original coefficient have a small magnitude. 
Then, a large error variance may cause the data points to oscillate with growing 
regressor value, so just imposing one outlier may already change the sign of the esti-
mated coefficient. We think that such issues are prone for a low signal-to-noise ratio 
(SNR) and that there may exist something like a ”noise gap” between the population 
and sample BDP variants.

5  Hard binary and hard d‑partite ranking problems

The goal of binary hard ranking problems is to find the correct ordering of all 
instances w.r.t. the probability to belong to class 1 for binary responses. In fact, one 
computes a real-valued scoring function so that the ordering of the scores is equiva-
lent to an ordering of the respective probabilities. In d-partite ranking problems, one 
proceeds as in ordered logit regression by binning the scores. However, while an 
ordered classification model would be perfect if all instances get a score that is con-
tained in the correct interval, hard d-partite ranking problems require that the order-
ing of all scores, and therefore also in the respective chunks, is correct.

As for the OIBDP computation, let us distinguish between two cases: (i) We have 
access to the real-valued pseudo-responses, so we are again in the usual continuous 
setting, making the results from Sect.  4 applicable; (ii) the more realistic case is 
that we indeed only observe the categorical responses and that we only can produce 
outliers with responses in the respective discrete set. The main difference to the con-
tinuous case is that the outlier configuration becomes far less flexible. Let the loss 
function operate on the score scale, i.e., we use sb,�(Xi) instead of Ŷi where the latter 
would be ±1 for binary ranking; otherwise, we were in a classification setting. All 
proofs can be found in the supplement.

Corollary 3 If the loss function satisfies Assumption 1, the upper bound of the sam-
ple and population OIBDP for ranking is (p + 1)∕n for p ≤ n − 2 , p/n for p = n − 1 , 
1/n for p = 1 and not existent otherwise.

Let us now translate Lemma 2 and Theorem 2 to the case of hard binary ranking 
with the indicator loss function. As already elaborated in the proof of Corollary 3, 
we do not have access to the true underlying real-valued scores but only to the binary 
responses which severely restricts the possible outlier configurations. Then, the idea 
is essentially the same as in AUC maximizing approaches (for example done in 
Rakotomamonjy (2004) for SVM-type and in Clémençon and Vayatis (2008), Clé-
mençon et al. (2013a) for tree-type approaches for ranking), i.e., the score for each 
instance of class 1 has to be higher than the score for each instance of class -1.

Lemma 3 Let p = 1 . For the hard binary and d-partite ranking problem with the 
loss function L(u) = I(u < 0) , the sample and population OIBDP for ranking is 
given by
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and asymptotically, the BDP is given by 1 −
√
0.5.

Now, we consider the general case p > 2.

Theorem 3 Let L be the indicator loss function and let p ≥ 2 . Then, the upper bound 
for the OIBDP for ranking for hard bipartite and hard d-partite ranking problems is 
given by

This quantity always exists for p ≤ n − 1.

Corollary 4 The asymptotic upper bound for the OIBDP for bipartite and d-partite 
ranking 

(i)  Is given by (2p2 −
√
2p)∕(2p2 + 1) for fixed p,

(ii)  Is given by 1 for p = p(n) with p(n)∕n → b ∈]0, 1[,
(iii)  Does not exist for p = p(n) with p(n)∕n → b ≥ 1.

The ranking problems considered in this section have applications for example in 
fraud detection according to Example 1 if the response is binary (fraudulent/compli-
ant), but also for example for rating (Clémençon et al., 2013b) or gene identification 
(Agarwal and Sengupta, 2009) where especially rating usually corresponds to more 
than two ordered classes, leading to a d-partite ranking problem. Note that although 
we described how the ranking model can be broken down, s� assigns a real-valued 
score to each instance, requiring a discretization step. Therefore, the effect on the 
actual binary or d-partite predictions depends on the selected discretization method; 
however, it an order-inversal BDP has occurred; one can assume that at least a sig-
nificant fraction of the instances is wrongly classified due to the inverted ranking of 
the instances w.r.t. their probabilities for the classes.

6  Localized ranking problems

Localized ranking problems follow two goals, i.e., identifying the top K instances 
and retrieve the ordering of the true or fitted top K instances correctly. As for 
robustness analysis, we have to consider the OIBDP for ranking instead of the angu-
lar BDP for classification from Zhao et al. (2018) since the former one is stricter, so 
letting the ranking break down directly guarantees a breakdown of the classification 

(9)

m̌

n
, m̌ = 2ǩ, ǩ = min

�
k
����
k⌊n

2
⌋ + k

�
⌈n
2
⌉ − k

�
>
�
⌈n
2
⌉ − k

��
⌊n
2
⌋ − k

��

(10)

m∗

n
, m∗ = 1 + 2pk∗, k∗ = min

{
k
||||
k(k + 1) >

(n − 2pk − 1)(n − 2pk − 2)

2

}
.
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due to the fixed number K of class 1 instances (for K < n∕2 ; the other case will also 
be discussed below). The proofs can be found in the supplementary file.

Corollary 5 If the loss function used for the ranking part satisfies Assumption 1, the 
upper bound of the sample and population OIBDP for localized ranking is (p + 1)∕n 
for p ≤ K − 2 , p/n for p = K − 1 and not existent otherwise. If the classification loss 
function satisfies Assumption 1, the BDP is (p + 1)∕n for p ≤ K − 1 , p/n for p = K 
and not existent otherwise. In either case, it is 1/n for p = 1.

As for the case of bounded loss functions, wlog. the indicator loss functions, 
we have to distinguish between a couple of cases, i.e., if K ≤ n∕2 or K > n∕2 and 
if the ranking part of the localized loss is based on BestK or on B̂estK.

In this section, we require that the ranking of the true best K instances is pre-
dicted correctly (see the discussion below Eq. 3). The case of localizing on B̂estK 
can be found in the supplementary file.

Lemma 4 Let p = 1 . For the localized continuous ranking problem optimizing

the sample and population OIBDP for ranking 

(i)  is given by 

 for K ≤ (n + m)∕2,

(ii)  is given by 

 for K ≥ (n + m)∕2 and K ≤ n − m provided that n − m ≥ (n + m)∕2,

(iii)  is given by Eq. 7 in Lemma 2 where n in the definition of m̌ is replaced by K 
for K ≥ n − m.

(11)

n − K

n

2

n

∑

i∈BestK

I( rk (s𝛽(Xi)) > K) +
2

n(n − 1)

∑∑

i<j,i,j∈BestK

I((s𝛽(Xi) − s𝛽(Xj))(Yi − Yj) < 0),

(12)

m̌

n
, m̌ = min

(
K, min

{
m
||||
n − K

n
⋅

2(K − m)

n
+

(K − m)(K − m − 1)

2n(n − 1)

<
n − K

n
⋅

2m

n
+

1

n(n − 1)

[
m(m − 1)

2
+ m(K − m)

]})
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n
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Theorem 4 Let p ≥ 2 . Then, the upper bound for the OIBDP for localized ranking 
with the optimization problem as in Eq. 11 is given by

for the case K < n − m . For K > n − m , we get the same k∗ as in Eq. 8 in Theorem 2. 
This quantity always exists for p ≤ K − 1.

See the supplementary file for the asymptotic counterparts of Lemma 4 and 
Theorem 4.

Our results can for example be applied to recommender systems [e.g., Chu et al. 
(2020), Yoganarasimhan (2020)] as their goal is indeed to identify the top products 
for the costumer and to present them in the correct order. Our results show that such 
models can indeed be perturbed, although model training mainly focuses on the 
few top instances. If the ranking model breaks down, it is expected that it promoted 
products that are very unsuitable for the respective costumer.

7  Other ranking problems

Weak ranking problems (Clémençon and Vayatis, 2007) are nothing but binary clas-
sification problems with the peculiarity that one has to predict exactly K class 1 
instances. Since a binary classification loss function is used for weak ranking prob-
lems, the notion of the angular breakdown point of Zhao et al. (2018) (resp. Zhao 
et al. (2018, Def. 2+2’) for kernel-based classification) is directly applicable, but the 
results of Zhao et al. (2018) are only valid if the loss function is a suitable surrogate 
of the 0/1-loss function since continuity is assumed there. As for the outlier scheme, 
note that the number K leads to an additional constraint in the proposed outlier set in 
the proof of Zhao et al.(2018, Thm. 2). Based on the mere classification loss, we can 
produce outliers that lead to a breakdown of the coefficient in terms of the OIBDP. 
The proofs are in the supplementary file.

Corollary 6 If the (classification) loss function satisfies Assumption  1, the upper 
bound of the sample and population OIBDP for weak continuous ranking is p/n for 
p ≤ K − 1 and not existent otherwise.

Theorem 5 For the weak continuous ranking problem with the 0/1-loss function, the 
OIBDP 

(a)  is given by m/n for m = ⌊K∕2⌋ + 1 for p = 1,

(14)

m∗

n
, m∗ = min(1 + pk∗,K), k∗ = min

{
k
||||
n − K

n

2min(K − 1 − pk, n − K)

n

+
(K − 1 − pk)(K − 2 − pk)

2n(n − 1)
<

n − K

n

2(1 + pk)

n
+

k(k + 1)

2n(n − 1)

}
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(b)  is bounded from above by K/n for 1 < p < K,
(c)  Does not exist for p ≥ K.

As for Corollary 6, note the difference to Zhao et al.(2018, Thm. 1) where an 
angular BDP of 1/n is proven, resulting from the different definitions of the angu-
lar BDP and the OIBDP. For the special case p = 1 , the definitions coincide, but 
for Theorem 5, the results would only coincide with similar results for the angular 
BDP if K equals the number of positives in the data set.

We abstain from detailing out possible results for localized binary and local-
ized d-partite ranking problems as well as for weak binary ranking problems. The 
reason is that these problems are essentially ill-posed from the perspective of the 
OIBDP. The reason is that when localizing, the top K instances may all have the 
same label which makes them indistinguishable and therefore not rankable in any 
sense. We suggest to focus only on the classification part, inevitably requiring to 
measure the robustness in terms of the angular BDP for binary (Zhao et al., 2018) 
or of the angular BDP for d-partite localized ranking (Qian et al., 2019).

8  Discussion and simulations

8.1  The nonexistence issue

Example 5 Let p > 1 and assume that Xij = 0 ∀j ≠ j0 and �j = I(j = j0) for some 
1 ≤ j0 ≤ p . Then, it suffices to use the worst-case outlier configuration from Fig. 1 
only on the j0-th axis. Although we cannot guarantee that our estimated coefficient 
maintains the zero components, but however, 𝛽j𝛽j < 0 , hence 𝛽 ∈ S−

∩
 , is clearly 

satisfied.

The computed breakdown points depend on the dimension p and generally 
grow with p. Even worse, if p is at least as large as n resp. K, a breakdown can no 
longer be achieved. However, the tides turn once sparsity of the true underlying 
model is assumed as the example above showed.

Definition 6 The linear model Y = X� is called sparse with true dimension q if 
||�||0 = q . In this setting, denote the set of the q relevant variables by S0.

If the outlier scheme exactly knows which q predictors are relevant (we may 
call the outliers ”oracle outliers” here), the outlier scheme is only applied to the 
corresponding q axes.

Corollary 7 Let n be fixed and let q ≤ n − 1 resp. q ≤ K − 1 be the true dimension of 
the linear model, i.e., ||�||0 = q . Then the order-inversal breakdown point for every 
ranking problem that we considered in this work exists.



358 T. Werner 

1 3

Corollary 8 Let q = q(n) = bnn such that bn ∈]0, 1[ ∀n . Then the asymptotic order-
inversal breakdown point for all nonlocalized ranking problems considered in this 
work exists. For localized ranking problems with K = K(n) with K(n)∕n → d ∈]0, 1] , 
we have to assume that bn → b < d.

We are aware of the fact that very high-dimensional true models for which q ≥ n 
holds cannot break down in the sense of the OIBDP. In many situations, one can 
reduce this dimension to q′ < n by only considering the most relevant predictors 
(e.g., Meinshausen and Bühlmann (2010)), although there are situations in which 
more than n selected predictors are desired [e.g., Wang et  al. (2011)]. We do not 
think of this issue as being a weakness of our OIBDP notion since the OIBDP is 
quite intuitive and since the global nature of ranking problems that take at least pairs 
of instances into account and no single instances defines a significantly different set-
ting than for example regression for which higher dimensions generally reduce the 
BDP. The OIBDP can still be used to compare the robustness of competing algo-
rithms by considering the q < n case which identifies which algorithm is more 
robust.

Remark 11 One could ask why one cannot just multiply the responses with (−1) 
in order to achieve a breakdown which also holds for SVR-type ranking estima-
tors below in Lemma  5. Honestly speaking, from an algorithmic perspective, we 
believe that one can indeed let the ranking estimator break down for any reasonable 
algorithm using this outlier scheme, making the OIBDP indeed existent for any true 
dimension q (and therefore, letting it also exists for nonsparse true models). How-
ever, from a theoretical perspective, there is no evidence that one cannot result in a 
nonbroken coefficient since the solution set, i.e., the set of all coefficients that opti-
mize a ranking loss for the data set with the negated responses, does not only consist 
of broken coefficients but also of nonbroken ones. The argument is the same as in 
Theorem 1 that sign-inverting some but not all coefficient components may already 
lead to a perfect ranking prediction on the contaminated sample, so there is no guar-
antee that all components would be enforced to be sign-inverted.

8.2  Lower bounds for the OIBDP

Lower bounds for the OIBDP in the sense that one asks for example in the situation 
of Lemma 2 where we assumed that the original data points supply nonbroken coef-
ficients most (i.e., that the data are linearly rankable) if there is any lower OIBDP 
value that holds with high probability on real data (where linear rankability may not 
hold) cannot be computed universally due to numerous reasons.

First, the original data contain some noise so even if they would follow some 
linear model with some true � , the observed response values would differ from the 
ideal response values so that linear inrankability can occur by chance. However, if 
one had a model Yi = sb,�(Xi) + �i for some stochastic error term �i , the probability 
that linear inrankability occurs does not only depend on the error distribution but 
also on the Xi and on � . For example for p = 1 , if 𝛽 > 0 is very large, the probability 
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that the errors make the data points linearly inrankable would be smaller than for 
some smaller 𝛽 > 0 if the predictors are kept fixed. For a fixed � , the probability that 
linear inrankability occurs would also be lower if there are large distances between 
the predictors since the expected responses then would be better separated.

We also already mentioned in Remark 8 that the underlying numerical algorithm 
itself may affect the OIBDP. Due to these reasons, we think that if one had a con-
crete algorithm, a given data set and a good intuition of the error distribution and the 
true coefficient, one may would be able to compute lower bounds for the OIBDP, but 
evidently, there is no chance to provide universal results.

Example 6 Consider a very simple artificial situation with p = 1 where one has 
the predictors Xi = i , i = 1,… , 5 , the true coefficient � = 1 and Yi = Xi� + �i with 
�i ∼ N(0, 1) i.i.d.. It can clearly happen that Y1 ≥ Y2 ≥ Y3 ≥ Y4 ≥ Y5 . In this case, an 
immediate breakdown is suffered, so the OIBDP is zero on this particular data set. 
In contrast, if the error distribution is bounded, e.g., a truncated normal distribution 
on the interval [−1.1, 1.1] , it is impossible that this situation occurs. The worst case 
would be Y4 > Y5 > Y1 > Y2 > Y3 (alternatively, Y3 > Y4 > Y5 > Y1 > Y2 ). Here, 
one would not have an immediate breakdown as a positive coefficient would make 4 
misrankings, while a negative coefficient would make 6 misrankings, but modifying 
Y5 so that Y5 < Y3 would already lead to a breakdown. Here, the lower bound of zero 
cannot be attained, but only an OIBDP of 0.2 is attainable.

8.3  Practical implications

The results from this work indicate that bounded loss functions lead to more robust 
ranking problems than unbounded loss functions. This is not surprising and coin-
cides with the well-known results from robust regression and robust classification 
where redescenders, i.e., loss functions whose gradient in absolute value redescends 
to zero so that the loss functions asymptotically grow until reaching a constant, are 
proposed [e.g., Huber and Ronchetti (2009)].

As for ranking losses, we always assumed that limu→∞(L(u)) = 0 . Therefore, 
bounded loss functions with limu→−∞(L(u)) = Cl < ∞ as we assumed in several 
theorems are in fact redescenders. The problem is that redescenders are nonconvex 
which makes numerical optimization difficult. In fact, almost every existing rank-
ing algorithm works with convex and therefore unbounded surrogate loss functions. 
Nevertheless, nonconvex optimization has already been addressed in for example 
robust regression, so developing a robust ranking algorithm is definitely possible, 
although, due to the global nature of ranking loss functions, the computational com-
plexity can be assumed to be very high. Therefore, providing a robust ranking algo-
rithm is beyond the scope of this work.

On the other hand, a standard robustification technique is trimming on which 
many successful machine learning algorithms are based, most prominently the 
LTS (Rousseeuw, 1984) or the SLTS (Alfons et al., 2013). These trimming tech-
niques are based on the in-sample losses, i.e., one iteratively identifies the relative 
(1 − �)-fraction of instances with the lowest in-sample loss, updates the model by 
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fitting it on these instances, checks again which instances provide the lowest loss 
and so forth. We want to point out why this trimming technique is not trivially 
applicable to ranking.

Looking at Fig. 3, there are three instances that contradict a positive ranking 
coefficient, colored in red. If one would apply trimming with a trimming rate of 
� = 0.2 , the first question that arises is which of the three red points should be 
discarded since the indicator loss would make them indistinguishable in terms of 
the loss, so one would have to pick two of them randomly. Usually, one considers 
a surrogate of the indicator loss which would clearly discard the points (6,3) and 
(10,6) because the loss when comparing these instances with their left neighbors 
leads to the values (3 − 4)(6� − 5�) = −� resp. (6 − 11)(10� − 9�) = −5� as input 
for the surrogate loss which is negative for all 𝛽 > 0 , so due to the monotonic-
ity assumption, these pairs lead to the highest losses. Since the comparison of 
the points (5,4) and (9,11) with their left neighbors does not produce a loss, one 
would learn that indeed the points (6,3) and (10,6) are problematic from the per-
spective of ranking. If the trimming rate would be � = 0.3 , one would discard all 
three red points.

Fig. 3  Example where trimming would be difficult
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Although this argumentation seems to be logical, it is in fact highly misleading. 
Regarding the points themselves, all of them except for (9,11) are likely to have 
been created by a linear model, so (9,11) would appear as a regression outlier. From 
the perspective of ranking, this outlier lets however the point (10,6) appear as an 
outlier which can be interpreted as a swamping effect [see, e.g., Rousseeuw 
and Hubert (2011)]. Therefore, in contrast to regression or classification problems 
where each instance can be treated individually and where the in-sample losses 
are instance-specific, the globality of ranking prevents from applying trimming 
techniques in the usual way.

One possible remedy, although not very popular in the ranking community, is to 
use a plug-in approach, i.e., one applies a regression algorithm and uses the regres-
sion predictions for the ranking prediction; in other words, the regression function 
serves as scoring function. Approaches in this direction have been proposed by Scul-
ley (2010) who however combines a regression and a ranking loss, while Mohan 
et al. (2011) solely consider the squared loss. In this spirit, robust ranking may be 
achievable by robust regression, i.e., one could perform algorithms like SLTS and 
use its predictions for the ranking prediction. This will be an interesting topic for 
future work.

8.4  Simulations

For the hard continuous ranking problem, we generated B data sets for each of 
the different configurations of p, n and the signal-to-noise ratio SNR specified in 
Table 4. We set B = 100 if p = 10 and n = 1000 resp. if p = 20 and n ≥ 400 due 
to the vast computational complexity, otherwise, B = 1000 . In the linear model 
Yi = Xi� + �i , the Xi i.i.d. follow a Np(1p, Ip)-distribution and �j ∼ U([1, 2]) i.i.d., 
while the errors �i are i.i.d. Gaussian so that the respective SNR is attained.

For the hard bipartite ranking problem, we generate the Xi as before, the �j from 
uniform distributions according to Table 5a where larger coefficients essentially cor-
respond to stronger signals, although we are not aware of a method how to target-
edly attain some SNR in binary settings. We compute Xi� ∶= Xi� − mean (Xi�) and 

Fig. 4  Empirical lower bounds (upper rows), averages (middle rows) and upper bounds for different p 
and n for the hard continuous ranking problem
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generate Yi ∼ B(1, �i) for �i ∶= exp(Xi�)∕(1 + exp(Xi�)) . Here, we set B = 1000 for 
p ≤ 4 and B = 100 otherwise.

We further investigate all sub data sets of the iris data set, disregarding the 
Species column, as specified in Table 5, for the hard continuous ranking problem. 
Lastly, we consider the bodyfat data set from the �-package TH.data (Hothorn, 
2019) for the hard continuous ranking problem where the variable DEXfat is used 
as response variable. We first applied a best subset regression and used the optimal 
model suggested by this method for each p in Table 5b.

We want to highlight that we do not want to analyze one specific ranking algo-
rithm from a vast variety of existing ones but try to replicate our universal theo-
retical findings. Therefore, we approximated the argmin of the loss in Eq. 1 by dis-
cretizing the space [−1, 1]p (note again that scaling the coefficients does not affect 
the ranking). For each �j , we discretize the corresponding interval using 50, 20, 10, 
10, 6, 4, 4, 4, 2 equidistant points, respectively, for p = 2, 3, 4, 5, 6, 7, 8, 10, 20 . Of 
course, this leads to a discretization error; however, there is no ranking algorithm yet 
that is able to optimize the indicator losses; therefore, this strategy is reasonable in 
order to empirically check our results that correspond to the indicator function case.

Our results, shown in Tables 4, 5a, 5 and 5b are not surprising as they confirm 
that the OIBDP grows with the dimension p and with the SNR . For p = 1 , the results 
for SNR = ∞ exactly reproduce our theoretical results, up to rounding issues as, 
e.g., for n = 100 , a breakdown is achieved for 30 outliers since the theoretical num-
ber 100(1 −

√
0.5) is not attainable. For p ≥ 2 , note that we assumed in the Proof 

of Theorem 2 the worst case that comparisons of original points and outliers do not 
contribute to the breakdown which however does not need to hold. Therefore, even 

Fig. 5  Empirical lower bounds (upper rows), averages (middle rows) and upper bounds for different p 
and n for the hard continuous ranking problem on the iris data set without the Species column. a, 
b, c and d are acronyms for Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, ab 
indicates the a is the response and b the regressor, abc that a is the response and b and c are the regres-
sors, and a indicates that a is the response and all other variables are the regressors
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noiseless cases lead to smaller OIBDPs since there are such pairs that indeed con-
tribute. Further note that the empirical OIBDP generally decreases with increasing 
n due to more crowded data points as discussed in Sect. 8.2. Cases with low n but 
high p only allow for little variation as we generate chunks of p outliers, leading to 
cases where the minimum empirical OIBDP equals the maximum one. Note that on 
the real data, the only variation comes from randomly picking original instances for 
contamination for p ≥ 2.

9  Outlook: SVM‑type approaches

A large class of ranking algorithms are of SVM-type which potentially operate in 
infinite-dimensional reproducing kernel Hilbert spaces (RKHS). At the first glance, 
such methods would be problematic for a ranking BDP since even finite-dimensional 
RKHSs like the ones induced by polynomial kernels would seemingly be prone to 
hurt the condition p < n − 1 . The angular BDP from Zhao et al. (2018) has already 
been extended to kernel-based classification methods where they require the angle 
between the linear expansion [due to the representer theorem, e.g., Schölkopf et al. 
(2001)] of the true function resp. the solution computed on the contaminated data 
set, measured by the norm in the corresponding RKHS, to be nonpositive. Similarly, 
due to the component-wise nature of our OIBDP and the representer theorem, we 
can propose a reasonable definition of a BDP for kernel-based ranking estimators 
which is similar as the angular BDP from Zhao et al.(2018, Def. 2+2’).

Definition 7 (Order-inversal breakdown point for kernel-based ranking) Assume 
that the true model has the form

for some kernel K, an intercept term b with |b| < ∞ and coefficients �i,j, �∗
i,j
≥ 0 . The 

population order-inversal breakdown point for kernel-based ranking is defined 
by

where H is the RKHS corresponding to K and where fk is the k-th component of f.

Standard SVM classification solutions do not invoke the �∗-coefficients. For 
ranking algorithms that solely invoke �-coefficients, w.l.o.g. set �∗

i,j
= 0 for all i to 

consistently cover both cases with the definition of the OIBDP for kernel-based 
ranking. This general assumption covers the SVM-type ranking approaches like 
(Joachims, 2002; Cao et  al., 2006; Brefeld and Scheffer, 2005; Pahikkala et  al., 
2007; Tian et al., 2011) where for example Herbrich et al. (1999a) let the class 
label enter as factor and Rakotomamonjy (2004) let the indices i and j run through 

(15)f (x) =

n∑

i=1

n∑

j=1

(�i,j − �∗
i,j
)(K(Xi, x) − K(Xj, x)) + b

𝜖(f , Zn) ∶= min

�
m

n

����
f̂ (Zm

n
) ∈ S−

∩

�
, S−

∩
∶=

�

k∶fk≠0

{f̃k � ⟨f̃k, fk⟩H < 0}
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all positive resp. negative instances. Additional constraints for the coefficients 
like upper bounds as considered in Rakotomamonjy (2004) are not relevant in our 
BDP setting, while particular index sets are covered by setting the coefficients of 
the remaining summands to zero. As for the �∗-coefficients, many of the existing 
ranking algorithms are tailored to bipartite ranking and essentially approximate 
the conditional probability �(x) ∶= P(Y = 1|X = x) which relates ranking prob-
lems and regression algorithm like support vector regression (SVR).

There already exist sparse SVMs for ranking, see Tian et al. (2011), Pahikkala et al. 
(2010), Lai et al. (2013) and Laporte et al. (2014), but there is no guarantee that the 
selected number of features would be smaller than n. However, considering SVR tech-
niques, due to the requirement that the coefficients �i and �∗

i
 have to be nonnegative, 

we can conclude that for SVR-type algorithms, we need to enforce that sign (�i − �∗
i
) 

switches for every i = 1,… , n while preserving the sign of the differences of the 
features or kernelized features or vice versa. Studying the quantitative robustness of 
SVMs and SVRs in terms of the OIBDP which requires a thorough investigation of 
the corresponding dual problems for the � - (and �∗-)coefficients would exceed the 
scope of this work. However, we can state an enlightening result regarding standard 
SVR. Note that the proposed outlier scheme is the same as in Zhao et al. (2018).

Lemma 5 If (�̂�, �̂�∗) is the solution to the standard SVR problem (see. e.g. Friedman 
et al. (2001))

for some cost parameter C and the cutoff � from the �-insensitive loss function, (�̂�∗, �̂�) 
is the solution of the SVR problem on the data where the signs of all responses were 
switched.

This statement is of major importance since it already proves the astounding fact 
that there is no ”blessing of dimensionality” for support vector regression regard-
ing our OIBDP since the same statement is true when ⟨Xi,Xj⟩ is replaced by K(Xi,Xj) , 
so even infinite-dimensional feature spaces do not prevent the OIBDP from existing. 
This is no contradiction to Remark 11 since Lemma 5 is tailored to the special case of 
SVR, so the statement does not transfer to other machine learning algorithms. We will 
not extensively study all existing SVM-type ranking algorithms, but we state the fol-
lowing for one of the most important and pioneering ranking algorithms.

Corollary 9 The OIBDP of the ranking SVM algorithm from Herbrich et al. (1999a), 
Herbrich et al. (1999b) always exists.

As for a general statement of the OIBDP for kernel-based ranking, we refer to the 
results from Zhao et al. (2018, Thm. 3+Prop. 3+Prop. 4) who proved upper bounds 
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for their angular BDP for kernel-based classification if unbounded loss functions 
and unbounded kernels are considered. Although their angular BDP is not identi-
cal to our OIBDP, they essentially sign-revert every summand in the correspond-
ing representer theorem expansion by keeping the predictor values but by switching 
the sign of the respective responses. Interestingly, they derive very similar results 
as we did for the linear ranking setting for unbounded loss functions, i.e., the upper 
bound for the BDP is given by p̃∕n if p̃ is the dimension of the RKHS induced by 
the kernel, so the same problems concerning BDPs greater than 0.5 or even nonex-
istent BDPs occur here. As for unbounded RKHS’s, the idea of Zhao et al. (2018) 
is to consider the effective dimension, i.e., the dimension of the finite-dimensional 
subspace of the RKHS in which the true scoring function f can be represented. The 
resulting upper bound is then again given by this number divided by n.

We postulate that the OIBDP for the SVM-type ranking algorithms always exists 
and takes a value lower than 1. This assumption is motivated by the results in Zhao 
et al. (2018, Ch. 4) and by Lemma 5. However, due to the huge variety of SVM-type 
ranking algorithms, we leave rigorous results about their OIBDPs, both regarding 
upper and possible lower bounds and for bounded resp. unbounded kernels, open for 
future research.

10  Conclusion

We introduced the order-inversal breakdown point for ranking and argued why neither 
the classical regression breakdown point nor the angular breakdown point for clas-
sification is appropriate for this setting. We then systematically studied the breakdown 
points for different types of ranking problems that we carefully distinguished. Our con-
tribution includes least favorable outlier configurations and corresponding characteri-
zations of the OIBDP as well as sharp asymptotic upper bounds, respecting all types 
of ranking problems that are appropriate for this setting combined with the extreme 
cases of unbounded loss functions and noncontinuous indicator loss functions. Our 
results are illustrated by empirical evaluations on simulated and real data.

One could argue that our BDPs may not be reasonable since cases with asymp-
totic BDPs of 1 or even cases where the BDP does not even exist arise. However, 
these problems are directly related to the sparsity of the underlying true model. Since a 
sparsity assumption is always encouraged in high-dimensional settings, relatively mild 
conditions on the growing behavior of the predictor dimension allow for an OIBDP 
smaller than 1.

Our results imply that robust ranking can be achieved by optimizing (nonconvex) 
redescending surrogate losses, but we leave the derivation of a concrete algorithm 
of this type as well as studying the plug-in approach based on robust regression 
open for future research. We also shortly discussed an extension of our OIBDP for 
ranking for the case of SVM-type scoring functions and proved the existence of this 
BDP, even for infinite-dimensional feature spaces.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 022- 00847-1.
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