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Appendix B: Breakpoints in Huber regression

In this section, we give the lemma for calculating breakpoints. Let Az , SAc
z

, r̂(z), ûAz (z),
hAc

z
(z), ψ(z) and γ(z) be the same definitions as in Appendix Appendix A:. Then, the

following lemma holds:

Lemma 5 Consider a real value z. Then, Az = Az′ for any real value z′ in the interval
[z, z + tz ], where z + tz is the value of transition point,

tz = min{t1z , t2z},

t1z = min
j∈Ac

z

(
−

(SAc
z

r̂(z) − hAc
z

(z))j

(SAc
z
ψ(z))j

)
++

and t2z = min
j∈Az

(
−

(ûAz (z))j

γj(z)

)
++

.

Here, (a)++ = a if a ≥ 0, and otherwise (a)++ = +∞.

Proof We first show how to derive t1z . From (29), we have

r̂(z′) = r̂(z) + ψ(z) × (z′ − z).

Then, we need to guarantee

SAc
z

r̂(z) − hAc
z

(z) ≤ 0,

SAc
z

(r̂(z′) + ψ(z) × (z′ − z)) − hAc
z

(z) ≤ 0,

SAc
z
ψ(z) × (z′ − z) ≤ −(SAc

z
r̂(z) − hAc

z
(z)). (36)

The right hand side of (36) is positive since SAc
z

r̂(z) − hAc
z

(z) ≤ 0. Therefore, satisfying
equation (36) implies that

z′ − z ≤ min
j∈Ac

z

(
−

(SAc
z

r̂(z) − hAc
z

(z))j

(SAc
z
ψ(z))j

)
++

= t1z .

Next, we show how to derive t2z . From (30), we have

ûAz (z′) = ûAz (z) + γ(z) × (z′ − z).

Thus, noting that ûAz (z′) ≥ 0 we need guarantee

ûAz (z′) = ûAz (z) + γ(z) × (z′ − z) ≥ 0. (37)

Hence, satisfying equation (37) means that

z′ − z ≤ min
j∈Az

(
−

(ûAz (z))j

γj(z)

)
++

= t2z .
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Appendix C: Huberized Lasso

According to Equation (8) in Chen and Bien (2020), we consider the following optimization
problem

(β̂, û) = arg min
β∈Rp,u∈Rn

1
2

∥y −Xβ − u∥2
2 + λ∥u∥1, (38)

given X = (x1, ..., xn)⊤ and y = (y1, ..., yn)⊤. Following Sec 3.2 in the supplementary of
Chen and Bien (2020), the optimization in (38) can be transformed to

û = arg min
u∈Rn

1
2

∥ỹ − X̃u∥2
2 + λ∥u∥1,

where ỹ = P⊥
X y and X̃ = P⊥

X . We can obtain û in (38) by using Lasso algorithm A. Then,
the set of the observed outliers is defined as

A(y) = {j : ûj ̸= 0}.

Finally, the inference for a selected outlier is defined as follows

η⊤Y | {A(Y ) = A(y), q(Y ) = q(y)} .

Unfortunately, as pointed out in Lee et al. (2016), characterizing A(Y ) = A(y) in (39) is
computationally intractable because we have to consider 2|A(y)| possible sign vectors. As
suggested in Lee et al. (2016), we need to consider inference conditional not only on the
selected features but also on their signs to overcome the aforementioned issue. Specifically,
let s(y) denote the sign vector of the selected features when applying Lasso on y, the
conditional inference we need to focus is

η⊤Y | {A(Y ) = A(y), s(Y ) = s(y), q(Y ) = q(y)} . (39)

However, additionally considering the signs leads to low statistical power because of over-
conditioning. This is well-known as the major drawback in SI literature.




