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Abstract
Random-effects meta-analysis serves to integrate the results of multiple studies with 
methods such as moment estimation and likelihood estimation duly proposed. These 
existing methods are based on asymptotic normality with respect to the number of 
studies. However, the test and interval estimation deviate from the nominal signifi-
cance level when integrating a small number of studies. Although a method for con-
structing more conservative intervals has been recently proposed, the exact distribu-
tion of test statistic for the overall treatment effect is not well known. In this paper, 
we provide an almost-exact distribution of the test statistic in random-effects meta-
analysis and propose the test and interval estimation using the almost-exact distribu-
tion. Simulations demonstrate the accuracy of estimation and application to existing 
meta-analysis using the method proposed here. With known variance parameters, 
the estimation performance using the almost-exact distribution always achieves the 
nominal significance level regardless of the number of studies and heterogeneity. 
We also propose some methods to construct a conservative interval estimation, even 
when the variance parameters are unknown, and present their performances via sim-
ulation and an application to Alzheimer’s disease meta-analysis.

Keywords  Exact distribution · Meta-analysis · Random-effects model · Test statistic

1  Introduction

A meta-analysis serves to integrate results from multiple studies to obtain more 
powerful evidence, for which the fixed- and random-effects models are available. 
The fixed-effects model assumes that the treatment effects between studies are 
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homogeneous, whereas the random-effects model assumes that there exists some 
difference in the treatment effects between studies. Although the former is then 
theoretically simpler and can be used if there is a significant between-study heter-
ogeneity (Whitehead and Whitehead 1991), we should limit it to situations where 
the assumption of equal treatment effects across studies is valid. For this reason, 
it is a standard to use the random-effects meta-analysis model, for which several 
methods exist for estimating the overall treatment effect. For instance, DerSimonian 
and Laird (1986) estimate the between-study variance based on the weighted mean 
of treatment effects of each studies, while Paule and Mandel (1982) generalize the 
moment estimation of overall treatment effect and between-study variance for vari-
ous weights. Elsewhere, DerSimonian and Kacker (2007) propose estimating the 
between-study variance through applying two-stage estimation.

All these moment estimation methods insert an estimate of the between-study 
variance as if it was the true value, whereas the maximum likelihood (ML) method 
increases its accuracy by simultaneously estimating the overall treatment effect and 
the between-study variance (Hardy and Thompson 1996). The ML method makes a 
bias in the estimator of between-study variance, so the restricted ML method ensures 
the unbiasedness of between-study variance estimator (Thompson and Sharp 1999). 
Also, the permutation method is often useful when we have a certain number of 
studies and a need to control Type I error (Follmann and Proschan 1999; Noma et al. 
2020).

If the integration of results of many studies is available in meta-analysis, these 
methods can assume asymptotic normality in the case where the number of studies 
is sufficiently large. When this does not hold, the coverage probabilities of confi-
dence intervals obtained by these methods fall below the nominal significance level 
(Michael et al. 2019) and the uncertainty in estimating the between-study heteroge-
neity increases. Because the best-known DerSimonian-Laird method has a narrow 
confidence interval when the number of studies is small, Cornell et al. (2014) sug-
gests to use another method, for example Bayesian and Knapp and Hartung (2003) 
methods.

Figure  1 shows the probability density function (PDF) of test statistics for 
meta-analysis for various numbers of studies and between-study heterogeneity. 
With a small number of studies, the standard normal PDF deviates from the simu-
lated PDF, and the t-distribution does not correspond to the case of small het-
erogeneity among studies. Table 1 supplies the 97.5% points of test statistics. We 

Table 1   97.5% points for 
the test statistic of overall 
treatment effect in random-
effects meta-analysis: the true 
value calculated by simulation 
(Simulation), the standard 
normal distribution (DL), and 
the t-distribution for K − 1 
degrees of freedom ( t

K−1)

K I
2 Simulation DL t

K−1

5 0.3 2.175 1.960 2.776
5 0.9 2.817 1.960 2.776
10 0.3 2.095 1.960 2.262
10 0.9 2.312 1.960 2.262
20 0.3 2.068 1.960 2.093
20 0.9 2.110 1.960 2.093
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observe that 97.5% points obtained from the simulation are larger than those for 
the standard normal distribution, so that the interval estimation and testing using 
the standard normal distribution is too generous. We find the t-distribution with 
K − 1 degrees of freedom is also inappropriate because it is less than the nominal 
significance level when the between-study heterogeneity is large. To deal with 
such cases, it is important to undertake estimation without the use of asymptotic 
theory.

Michael et  al. (2019) propose a conservative confidence interval when the 
number of studies is small. Hartung (1999) modifies the test statistic to a ran-
dom variable that follows an approximate t-distribution, allowing for more accu-
rate inference than the moment and ML methods using the normal approxima-
tion. Sanchez and Marin (2008) prove the accuracy of confidence intervals for 
the overall treatment effect using various estimates of the between-study variance 
by simulation. In summary, when the number of studies is small, the coverage 
probability of the confidence interval of overall treatment effect deviates from the 
nominal significance level. This is due to the insertion of between-study variance 
estimate different from the true value.

Fig. 1   From left to right, number of tests ( K = 5, 10 ), from top to bottom, the simulated histogram (Sim-
ulation, solid), the standard normal PDF (DL, dot-dash) of the test statistic for small ( I2 = 0.3 ) and large 
( I2 = 0.9 ) heterogeneity, and the PDF of t-distribution with K − 1 degrees of freedom ( t

K−1 , dashes)
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In this paper, we present an almost-exact distribution of the test statistic for the Der-
Simonian-Laird method and compare the accuracy of confidence intervals and p val-
ues with existing methods through simulation. We find our approach is always accurate 
when the true between-study variance parameter as known. We also propose a method 
conservatively to modify the confidence interval of overall treatment effect by adjust-
ing the naive estimate, even when the parameter is replaced with an estimate of the 
between-study variance.

The rest of the paper is composed as follows. We introduce the statistical model and 
reviews existing methods for random-effects meta-analysis in Sect. 2. We present the 
almost-exact distribution of the between-study variance and the test statistic and sug-
gests methods for test and interval estimation using these exact distributions in Sect. 3. 
We evaluate the proposed method using simulations and applies it to Alzheimer’s dis-
ease meta-analysis in Sect. 4, and provide the conclusion in Sect. 5.

2 � Model and existing methods

2.1 � Model

We focus on the random-effects meta-analysis model available when some between-
study heterogeneity exists. Let �k denote the true treatment effect in the k-th study 
( k = 1,… ,K ), and suppose that summary statistics (or observed treatment effect) 
𝜃̂k, k = 1,… ,K are collected for each independent K studies. We can analyze such 
meta-analysis data using the random-effects model assumed to be as follows:

where � is the true value of the overall treatment effect, �2

k
 is the within-study vari-

ance in the k-th study, and �2 is the between-study variance. Model (1) can be simply 
expressed as

If both �2 and �2

k
 , k = 1,… ,K are known, the estimator of overall treatment effect 

𝜃̂ follows a normal distribution under the null hypothesis H0 ∶ � = 0 . However, the 
between-study variance �2 is usually unknown in practice, and an exact statisti-
cal inference in the case of unknown �2 is open in terms of statistical theory and 
methodology. We discuss the problem and solution for the inference, when �2 is 
unknown, and then present an exact inference procedure for the DerSimonian-Laird 
method, where it will be assumed that the within-study variances �2

k
 , k = 1,… ,K 

are known for simplicity.

(1)𝜃̂k|𝜃k ∼ N(𝜃k, 𝜏
2
), 𝜃k ∼ N(𝜃, 𝜎2

k
), k = 1,… ,K.

𝜃̂k ∼ N(𝜃, 𝜎2

k
+ 𝜏2).



285

1 3

Inference using an exact distribution of test statistic for…

2.2 � DerSimonian‑Laird method

We briefly explain the best-known DerSimonian-Laird procedure in random-effects 
meta-analysis. Let 𝜃̂DL and 𝜏2

DL
 be the DerSimonian-Laird estimators for true overall 

treatment effect � and between-study variance �2 , which are written as

where 𝜏2
u
 is an unbiased estimator for �2

Q is a test statistic for between-study heterogeneity,

𝜃̄0 is the inverse-variance weighted average (i.e., 𝜃̄y at y = 0 ) using an extend notation

and � (r)
0

 is � (r)
y

=
∑K

k=1
(�2r

k
+ y)−1 at y = 0 (r = 1, 2) . The estimator 𝜃̂DL is unbiased 

and has asymptotic efficiency (Jackson et al. 2010), and note that 𝜃̂DL is 𝜃̄y at y = 𝜏2
DL

 
in the extend inverse-variance weighted average.

Let TDL be the test statistic of overall treatment effect for model (1), which is

We usually address TDL to be standard normally distributed under the null hypoth-
esis H0 ∶ � = 0 . Thus, as the 100(1 − �)% confidence interval for the overall treat-
ment effect � , we usually use

where z�∕2 is the 100(1 − �∕2)% point of standard normal distribution. However, the 
variance of test statistic TDL is 1 if and only if the between-study variance estimator 
𝜏2
DL

 is equal to the true value �2 . When the number of studies K is small, the asymp-
totic approximation is not valid yet; therefore, it is not appropriate to use z�∕2 as 

𝜃̂DL =

∑K

k=1

𝜃̂k

𝜎2

k
+𝜏2

DL∑K

k=1

1

𝜎2

k
+𝜏2

DL

and 𝜏2
DL

= max(0, 𝜏2
u
),

(2)𝜏2
u
=

Q − (K − 1)

𝛾
(1)

0
− 𝛾

(2)

0
∕𝛾

(1)

0

,

Q =

K∑
k=1

(𝜃̂k − 𝜃̄0)
2

𝜎2

k

,

𝜃̄y =
∑K

k=1
(𝜎2

k
+ y)−1𝜃̂k∕

∑K

k=1
(𝜎2

k
+ y)−1

TDL =
𝜃̂DL�
1∕𝛾

(1)

𝜏2
DL

=

∑K

k=1

𝜃̂k

𝜎2

k
+𝜏2

DL�∑K

k=1

1

𝜎2

k
+𝜏2

DL

.

𝜃̂DL ± z𝛼∕2

(
K∑
k=1

1

𝜎2

k
+ 𝜏2

DL

)−1

,
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the 100(1 − �∕2)% point of test statistic. Further, we should note that this procedure 
does not provide a good estimate for the nominal significance level under a small K.

Advanced methods to improve the accuracy of interval estimation and testing 
have also been proposed. The two-step method (DerSimonian and Kacker 2007) 
estimates the between-study variance �2 in two steps to improve estimation accu-
racy. Michael et al. (2019) propose a conservative interval estimation that com-
bines the ML and moment estimation methods. Hartung (1999) suggests modi-
fying the test statistic as approximated by the t-distribution with K − 1 degrees 
of freedom. This approximation is better than the normal approximation and can 
be calculated more accurately, even when the number of studies is small. How-
ever, the accuracy is compromised in situations where the within-study variances 
�2

1
,… , �2

K
 substantially differ for each study (Sanchez and Marin 2008).

3 � An exact distribution and proposed method

3.1 � Exact and almost‑exact distributions for the test statistic

We consider an exact distribution of the test statistic TDL obtained without asymp-
totic approximation which holds true under a large number of studies, and then, 
we propose an almost-exact version because the exact distribution is difficult to 
put into practice other than simulation. By the almost-exact version of the exact 
distribution, we propose a testing and interval estimation procedure to maintain 
a nominal significance level specified in advance. To start, we provide the exact 
distribution of the untruncated estimator for between-study variance �2.

Lemma 1  Suppose that the random-effects model (1) is satisfied. The untruncated 
estimator 𝜏2

u
 of between-study variance �2 is distributed as

where �
1
,… , �

R
 are nonzero eigenvalues of the matrix VW, V is the variance-covar-

iance matrix of (𝜃̂
1
− 𝜃̄

0
,… , 𝜃̂

K
− 𝜃̄

0
) , and the (k, k�) element of V is

W is a diagonal matrix with elements �−2

1
,… , �−2

K
 , and �2

1(1)
,… ,�2

R(1)
 are mutually 

independent chi-square random variables with 1 degree of freedom.

𝜏2
u
∼

∑R

r=1
𝜆r𝜒

2

r(1)
− (K − 1)

𝛾
(1)

0
− 𝛾

(2)

0
∕𝛾

(1)

0

,

(3)Vkk� =

⎧
⎪⎪⎨⎪⎪⎩

�
�2

k
−

1

�
(1)

0

�
+

�
1 +

�
(2)

0

(�
(1)

0
)2

−
2

�2

k
�
(1)

0

�
�2 (k = k�)

−
1

�
(1)

0

+

�
�
(2)

0

(�
(1)

0
)2

−
1∕�2

k
+ 1∕�2

k�

�
(1)

0

�
�2 (k ≠ k�),
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This result itself is also considered elsewhere, including Biggerstaff and Jack-
son (2008). A proof of Lemma 1 is outlined as follows: by applying the theorem 
of Box (1954) to Q, we can find that the distribution of Q follows 

∑R

r=1
�r�

2

r(1)
 . 

Thus, the distribution of 𝜏2
u
 is obtained via simple variable transformation.

Using the exact distribution of 𝜏2
u
 in Lemma 1, we provide an expression of the 

exact distribution of TDL given 𝜏2
u
 in Theorem 1. Then, based on Theorem 1, we 

propose an almost-exact distribution of TDL in Theorem 2. In advance, we prepare 
a notation

required in Theorem 1, which is a quantity except the k′-th element of the sum � (r)
y

.

Theorem  1  Suppose that the random-effects model (1) is satisfied. For mutually 
independent K − 1 standard normal random numbers z1,… , zK−1 , let T1(x) and T2 be 
a linear sum statistic and weighted chi-square statistic, respectively, such that

Then, given 𝜏2
u
= x , the test statistic TDL is conditionally distributed as

where Y(T1(0), T1(x);x) and �(T1(0), T2;x) are functions of T1(x) and T2 such that

and U is a random variable which takes either 1 or -1 with equal probability 0.5. In 
particular, Y(T1(0), T1(x);x) is normally distributed with mean m−K(x) and variance 
v2
−K

(x) , where

�
(r)

y,−k�
=
∑

{k∶k≠k�}(�2r
k
+ y)−1

T1(x) =

K−1∑
k=1

{√
�2

k
+ �2∕(�2

k
+ x)

}
zk and T2 =

K−1∑
k=1

(
1 + �2∕�2

k

)
z2
k
.

(4)TDL|𝜏2
u
=x ∼ Y(T1(0), T1(x);x) + U𝜀(T1(0), T2;x),

Y(T1(0), T1(x);x) =

(
� +

T1(x)

�
(1)

x,−K

)
�
(1)

x,−K√
�
(1)
x

+

(
� +

T1(0)

�
(1)

0,−K

)
1

(�2

K
+ x)

√
�
(1)
x

,

�(T1(0), T2;x) =
1

(�2

K
+ x)

√
�
(1)
x

[(
�2

K
+

1

�
(1)

0,−K

)
T2

1(0)

�
(1)

0,−K

+ 2�

(
�2

K
+

1

�
(1)

0,−K

− �2

K
�
(1)

0

)
T1(0) − �2

K

�
(1)

0

�
(1)

0,−K

T2

+ �2

K

(
(�

(1)

0
)2 − �

(2)

0

�
(1)

0,−K

)
x + �2

K
(K − 1)

�
(1)

0

�
(1)

0,−K

] 1

2
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Remark that TDL|𝜏2
u
=x is not be generated, that is, we have fTDL|𝜏2u (t|x) = 0 if a value 

in the square root of �(T1(0), T2;x) is negative, where fTDL|𝜏2u (t|x) is the PDF of 
TDL|𝜏2

u
=x.

The proof of Theorem  1 is provided in Appendix 1. From Theorem  1, we 
observe that the conditional distribution of TDL given 𝜏2

u
= x is a symmetric but 

complicated distribution determined by three statistics (T1(0) , T1(x) , T2) which fol-
low normal and weighted chi-square distributions. Further, the exact conditional 
distribution can be constructed by a convolution of one component Y(T1(0), T1(x);x) 
normally distributed and the other random component U�(T1(0), T2;x) . Hence, the 
exact distribution of TDL implemented using this exact conditional distribution is 
difficult to put into practice other than simulation. One of reasons that the condi-
tional distribution becomes complicated is because 𝜃̂DL and 𝜏2

u
 are not statistically 

independent each other. However, the dependence between 𝜃̂DL and 𝜏2
u
 is compara-

tively mild, and the degree of dependence tends to decrease as K is larger. So, in 
Theorem 2, we propose an almost-exact distribution of TDL constructed by accept-
ing the normality of the distribution of TDL|𝜏2u.

Theorem  2  Suppose that the random-effects model (1) is satisfied. If K is not too 
small (for example, K ≥ 5 ), then the conditional distribution of TDL given 𝜏2

u
= x can 

be approximated by a normal distribution with mean �(x) and variance �2(x) , where

That is, the PDF of TDL , fTDL (t;�, �
2) can be approximated by

where �(t;�(x), �2(x)) is a normal density function with mean �(x) and variance 
�2(x) and f𝜏2

u

(x) is the PDF of 𝜏2
u
 . More precisely, as K → ∞ , the difference between 

the PDFs f̂TDL (t;𝜃, 𝜏
2) and fTDL (t;�, �

2) converges to 0.

The proof and numerical calculation for Theorem  2 are also provided in 
Appendices 2 and 3. In particular, the formula and practical calculation of 
E[𝜃̂k𝜃̂k� |𝜏2u = x] are provided in (8) and (9) of Appendices 2 and 3, respectively. 

m−K(x) =
1√
�
(1)
x

K−1∑
k=1

{
1

�2

k
+ x

+
1

�2

k
�
(1)

0,−K
(�2

K
+ x)

}
�

v2
−K

(x) =
1

�
(1)
x

K−1∑
k=1

{
1

�2

k
+ x

+
1

�2

k
�
(1)

0,−K
(�2

K
+ x)

}2

(�2

k
+ �2).

𝜇(x) = 𝜃

√
𝛾
(1)
x , 𝜈2(x) =

1

𝛾
(1)
x

K∑
k=1

K∑
k�=1

E[𝜃̂k𝜃̂k� |𝜏2u = x]

(𝜎2

k
+ x)(𝜎2

k�
+ x)

.

(5)f̂TDL

(
t;𝜃, 𝜏2

)
= ∫

∞

−∞

𝜙(t;𝜇(x), 𝜈2(x))f𝜏2
u

(x)dx,
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We compare the conditional distribution of TDL|𝜏2u = x in Appendix A.4, and 
hereafter, we focus the statistical inference based on TDL.

3.2 � Testing and interval estimation

Using Theorem 2, we can consider the testing and interval estimation procedure for 
the test statistic TDL to maintain a significance level specified in advance. Here, the null 
hypothesis is H0 ∶ � = 0 , and the corresponding alternative hypothesis is H1 ∶ 𝜃 > 0 . 
Even if the overall treatment effect � is a nonzero case, the zero hypothesis H0 ∶ � = 0 
is available replacing 𝜃̂k with 𝜃̂k − 𝜃, k = 1,… ,K , where each of the treatment effects 
is shifted by � . With Theorem 2, we propose that the one-sided p value is provided 
by 1 − FTDL

(T;�2) , where T is the actual value obtained for the test statistic. Similarly, 
the two-sided p value is calculated in the same manner, 2(1 − FTDL

(|T|;�2)) . The dis-
tribution of test statistic TDL is approximately symmetric under the null hypothesis 
H0 ∶ � = 0 because in the almost-exact PDF we have

The 100(1 − �)% confidence interval for the overall treatment effect � is obtained as

where tDL,�∕2(�2) is the 100(1 − �∕2)% point of test statistic TDL when the between-
study variance parameter takes the true value �2.

3.3 � Handling of the unknown parameter �2

We should remark that the true parameter �2 is required when determining the criti-
cal point, even though we derive an almost-exact confidence interval (6) for � based 
on Theorem 2. In actual data analysis, the true between-study variance �2 is usually 
unknown. The simplest solution for addressing this problem is the plug-in approach, 
which is to insert an estimator 𝜏2

DL
 of the between-study variance into �2 . However, the 

coverage probability of confidence interval is less than the nominal significance level 
when the between-study variance estimator 𝜏2

DL
 is inserted. Instead, we consider a more 

conservative solution to correct the confidence interval. We have a computational dif-
ficulty in directly handling the between-study variance �2 because the possible range of 
�2 is extensive over [0,∞) . So, we use a heterogeneity measure (Higgins and Thomp-
son 2002)

f̂TDL

(
t;0, 𝜏2

)
= ∫

∞

−∞

𝜙(−t;0, 𝜈2(x))f𝜏2
u

(x)dx

= f̂TDL

(
−t;0, 𝜏2

)
.

(6)𝜃̂DL ± tDL,𝛼∕2(𝜏
2
)

√√√√ K∑
k=1

(𝜎2

k
+ 𝜏2

DL
)−1,

I2 =
�2

�2
t + �2
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rather than directly using the between-study variance �2 , where �2
t
 is an averaging 

index for the within-study variance

The heterogeneity measure I2 ranges over [0, 1) and has a one-to-one correspond-
ence with �2 . Thus, we replace the notation of tDL,�∕2(�2) by tDL,�∕2(I2) and denote 
100(1 − �)% confidence interval (6) by CI(I2 ), respectively, as functions of the het-
erogeneity measure I2 . We may approximate the 100(1 − �∕2)% point tDL,�∕2(I2) by

using the delta method, where t�
DL,�∕2

(x) is the first derivative of t�
DL,�∕2

(x) w.r.t. x and 
Î2 is an estimator of I2 defined by Î2 = 𝜏2∕(𝜎2

t
+ 𝜏2) . However, we find that it is dif-

ficult to calculate the expected bias E[Î2 − I2] because the sample distribution of Î2 
is considerably skewed. Further, even if we could estimate the expected bias 
E[Î2 − I2] better, we had an another unbalanced problem when Î2 was estimated less 
than I2 . That is, when estimated Î2 is smaller than true I2 , the confidence interval 
constructed by the delta method-based correction fails to include the true parameter 
I2 with high frequency, so that the confidence interval could not necessarily achieve 
the nominal level. So, we consider an approach other than the plug-in method or its 
delta method-based correction. Prepare a correction value I2

c
 such that I2 ≤ I2

c
 as a 

correction value for Î2 , where the coverage probability CP(I2) of 100(1 − �)% confi-
dence interval for � is bounded as

Hence, we are able to construct a nominal or conservative significance level CI for � 
using a correction value I2

c
 instead of true I2 . Next, we propose a construction of I2

c
 . 

Given that the heterogeneity measure I2 is unknown but follows a prior distribution, 
we can consider a conditional expectation as a correction value such that

where p(I2) is a prior distribution of I2 , p(Î2|I2) is the probability of obtaining an 
estimate Î2 given the fixed value of true I2 . We choose the standard uniform distribu-
tion U(0, 1) as a vague prior distribution for p(I2) because I2 ∈ [0, 1) . Nevertheless, 
we find that a setting of the standard uniform distribution does not always construct 
a conservative confidence interval. For a more conservative correction, we recom-
mend increasing the lower limit of uniform distribution (e.g.,U(0.5, 1)). Using simu-
lation, we provide the results estimated by both prior distributions. The numerical 
calculation for I2

c
 is based on Monte Carlo integration and including the R program 

in Supplemental material Sect. 4.

�2

t
= (K − 1)�

(1)

0
∕(�

(1)2

0
− �

(2)

0
).

tDL,𝛼∕2(Î
2
) + t�

DL,𝛼∕2
(Î2)(Î2 − I2)

1 − � = Pr{� ∈ CI(I2)} ≤ Pr{� ∈ CI(I2
c
)}.

I2
c
= �

1

0

max{I2, Î2}p(I2|Î2)dI2 = ∫ 1

0
max{I2, Î2}p(I2)p(Î2|I2)dI2

∫ 1

0
p(I2)p(Î2|I2)dI2

,
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4 � Simulation study and application

4.1 � Simulation for exact distribution of test statistic

We verify the accuracy of the distribution of test statistic for the overall treat-
ment effect � using simulation. The 97.5% point of test statistic is given in 
Table  1. The number of studies and heterogeneity are set from small to large 
( K = 5, 10, 20, 30, I2 = 0.1, 0.3, 0.6, 0.9 ). We consistently set the true over-
all treatment effect � to 0, which is the target in the test and interval estima-
tion, because the value of � itself does not affect the accuracy in the inference. 
We use the within-study variance �2

k
 as an inconstant setting for each study, 

�2

k
= 1 + 4(k − 1)∕(K − 1), k = 1,… ,K . The number of repetitions in simulation is 

100, 000 times.
We can observe the performance of almost-exact PDF (5) from this simulation. 

Their values match to the first decimal place. The 97.5% point of almost-exact PDF 
can be calculated accurately, although it is slightly affected by numerical errors. In 
addition, the standard normal distribution used commonly has a 97.5% point of 1.96 
for any study heterogeneity. Therefore, the standard normal distribution provides a 
97.5% point different from the exact method, which causes a decrease in accuracy 
when the number of studies is small. Even when the number of studies is K = 30 , 
the 97.5% points of standard normal distribution are smaller than that of the almost-
exact PDF. Accordingly, it should be careful to blindly use the standard normal 
distribution-based method when the number of studies is small. See Supplemental 
material Sect. 2 for further simulations (Table 2). 

4.2 � Confidence interval performance when the parameter �2 is known

We here verify the accuracy in the confidence interval for the overall treatment effect 
via simulation. Equation (6) is calculated using the almost-exact distribution of test 
statistic TDL ; thus, it is theoretically accurate. We compare the numerical accuracy 
of our almost-exact distribution-based method with the DerSimonian-Laird method. 
Table 3 shows the coverage probabilities calculated by simulation for the 95% confi-
dence interval constructed by three methods based on standard normal distribution, 
t-distribution, and the almost-exact distribution. The simulation setting is the same 
as that in Sect. 4.1, but the number of repetitions in simulation is 10, 000 times. The 
critical point of standard normal distribution-based method may achieve a nominal 

Table 2   The 97.5% point of 
test statistic T

DL
 for the overall 

treatment effect in the random-
effects meta-analysis. 100, 000 
simulation-based values (SIM) 
and the almost-exact distribution 
(EX) with the proposed eq. (5)

K I
2 = 0.1 I

2 = 0.3 I
2 = 0.6 I

2 = 0.9

SIM EX SIM EX SIM EX SIM EX

5 1.946 1.948 2.178 2.156 2.546 2.525 2.827 2.829
10 1.950 1.925 2.114 2.092 2.255 2.239 2.310 2.312
20 1.942 1.950 2.062 2.042 2.106 2.107 2.122 2.123
30 1.975 1.965 2.045 2.047 2.055 2.035 2.053 2.053
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confidence level when the heterogeneity is small, but the actual coverage probabil-
ity decreases less than for the nominal level as heterogeneity increases. Further, the 
critical point of t-distribution-based method with K − 1 degrees of freedom is more 
conservative than that of standard normal distribution-based method but becomes 
too conservative when the heterogeneity is small. For our almost-exact distribution-
based method, the coverage probability is at the nominal significance level regard-
less of the number of studies and the study heterogeneity, even when affected by 
numerical errors. We remark again that the almost-exact distribution includes the 
between-study variance parameter.

4.3 � The confidence interval when the parameter �2 is unknown

We now verify the accuracy of confidence interval for the overall treatment effect 
when the parameter �2 is unknown. We construct three confidence intervals for the 
overall treatment effect based on the almost-exact distribution as follows: CI(I2 ) 
which uses the true heterogeneity measure I2 , CI(Î2 ) which uses the estimated value 
Î2 instead of the true I2 , and CI(I2

c
 ) constructed by the conservative correction I2

c
 . We 

compare the accuracy of three approaches using the coverage probabilities. Among 
the existing methods, we also compare the DerSimonian-Laird method (DL), the 
restricted ML method (REML), the Michael et al. (2019) method, which implements 
conservative inference, and the Hartung (1999) method, which corrects the test sta-
tistic for the overall treatment effect (HKSJ).

The simulation result for the coverage probability and the length of 95% confi-
dence interval is provided in Fig. 2. We compare the performances of CI(I2 ) con-
structed using the true I2 (EX(I2)), CI(Î2 ) where I2 is replaced by the estimated 
value Î2 (EX(I2hat)), CI(I2

c
 ) using conservative correction values, and the existing 

methods. The conservative correction value for CI(I2
c
 ) depends on the prior distribu-

tion. We show the case of a vague prior distribution U(0, 1) (EX(I2c1)) and more 
restricted prior U(0.5, 1) (EX(I2c2)). The simulation setup is the same as those in 
Sect. 4.2.

Table 3   The coverage probability of 95% confidence interval of the overall treatment effect. Standard 
normal distribution (DL), t-distribution with K − 1 degrees of freedom ( t

K−1 ) and almost-exact distribu-
tion (EX) with eq. (5)

K I
2 = 0.1 I

2 = 0.3 I
2 = 0.6 I

2 = 0.9

DL t
K−1 EX DL t

K−1 EX DL t
K−1 EX DL t

K−1 EX

5 0.955 0.994 0.954 0.926 0.983 0.949 0.887 0.962 0.948 0.875 0.943 0.950
6 0.957 0.990 0.955 0.936 0.981 0.959 0.899 0.957 0.948 0.888 0.946 0.952
7 0.950 0.986 0.949 0.930 0.976 0.952 0.906 0.952 0.947 0.897 0.944 0.949
8 0.950 0.981 0.949 0.928 0.967 0.944 0.909 0.950 0.947 0.903 0.946 0.950
9 0.951 0.978 0.947 0.931 0.967 0.950 0.914 0.951 0.946 0.910 0.948 0.952
10 0.957 0.979 0.953 0.934 0.966 0.956 0.916 0.950 0.952 0.915 0.947 0.950
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EX(I2) calculates the coverage probability at the nominal significance level 
regardless of the number of studies and the level of heterogeneity. EX(I2hat) 
provides the coverage probability at the nominal significance level when the het-
erogeneity is large. As shown, the estimation accuracy of EX(I2hat) is the same 
as or better than the DerSimonian-Laird method. Moreover, EX(I2c1) has the 
estimation performance as well as the HKSJ method when the heterogeneity is 
moderate and can estimate at the nominal significance level when the heteroge-
neity is small or large. EX(I2c2) is more conservative in the proposed methods, 
consistently constructing confidence intervals that are either at the nominal or 
conservative significance level.

Elsewhere, the Michael et  al. method results in too conservative confidence 
intervals when the heterogeneity is small, although it is useful to keep the cov-
erage probability above the nominal significance level for any heterogeneity. 
Overall, if we wish to consistently maintain some conservative inference, we can 
recommend EX(I2c2) or the Michael et al. methods as better selectable options. 
See Supplemental material Sects. 3 and 4 for R program code of the proposed 
method and further simulations.

Fig. 2   Simulation results for the coverage probability of 95% confidence interval (top) and the length 
of confidence interval (bottom). Heterogeneity is small ((I2 = 0.3 , left), medium ( I2 = 0.6 , center), and 
large ( I2 = 0.9 , right)
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4.4 � Application

Including our proposed method, we provide an application to an existing meta-
analysis data in Chen et al. (2017). Their meta-analysis highlights 11 study results 
for Alzheimer’s disease, which evaluate the treatment effect using Hedge’s g that 
is an index used when comparing two samples,

where the treatment group average effect is x̄1 , the control group average effect is x̄0 , 
and we calculate

using the sample sizes n1 , n0 and estimated standard deviations SD1 , SD0 of treat-
ment and control groups, respectively.

We apply the proposed methods to this meta-analysis data and compare the 
results for REML, DL, HKSJ, the Michael et  al. method, and the proposed 
method (EX(I2hat), EX(I2c1), EX(I2c2)). Table  4 presents the results for 95% 
confidence interval. Also, we applied the REML, DL, and HKSJ methods using 
the package “metafor” in the programming language R for statistical analysis, and 
the Michael et al. method using the package “meta.exact”.

As shown in Table 4, the REML and DL methods yield about the same con-
fidence intervals, while those for the Michael et  al. and proposed methods con-
struct more conservative intervals. The HKSJ method also provides a conserva-
tive confidence interval and the p value is smaller than the proposed methods. 
Considering the numerical experiments, we have to pay attention to the tradi-
tional methods construct narrower confidence intervals than the almost-exact dis-
tribution-based method.

g =
|x̄1 − x̄0|
SDg

,

SDg =

√
(n1 − 1)SD2

1
+ (n0 − 1)SD2

0

n1 + n0 − 2

Table 4   Results of applying each 95% confidence interval to meta-analysis of Chen et al. (2017) for Alz-
heimer’s disease

Method Mean SD 95% CI Test statistic p value

DL 0.413 0.108 0.201 0.625 3.813 0.00014
REML 0.422 0.121 0.185 0.658 3.490 0.00048
HKSJ 0.441 0.159 0.130 0.751 2.780 0.00544
Michael et al. (2019) 0.152 0.682
EX(I2hat) 0.413 0.108 0.150 0.676 3.813 0.00803
EX(I2c1) 0.413 0.108 0.155 0.671 3.813 0.00663
EX(I2c2) 0.413 0.108 0.154 0.672 3.813 0.00648
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5 � Conclusion

We construct the exact and almost-exact distribution of test statistic for the Der-
Simonian-Laird method as one of the moment estimation methods and modify 
it to compute the test and confidence interval more accurately. The almost-exact 
distribution of test statistic is calculated from the distribution of conditional test 
statistic, given an estimate and the true value of between-study variance.

Inference based on the almost-exact distribution of test statistic has the lim-
itation that it requires the between-study variance parameter to be possibly 
unknown. If we can use the true value of between-study variance, the testing and 
interval estimation can be consistently performed at the nominal significance 
level. In contrast, when we use an estimate for the between-study variance, the 
coverage probability of confidence interval deviates from the nominal signifi-
cance level, especially when there is large between-study heterogeneity and the 
number of studies is small. We propose the use of conditional expectation of the 
heterogeneity measure as an index parameter to characterize the almost-exact dis-
tribution of test statistic. We show that a conservative confidence interval for the 
overall treatment effect can be constructed by the proposed index parameter. A 
conservative inference for random-effects meta-analysis has also been proposed 
by Michael et al. (2019) and Rover et al. (2015).

Our proposed method is supported by two main assumptions. One is that the 
treatment effects for each of studies in the meta-analysis follow a normal distri-
bution, another is that the within-study variances (�2

1
,… , �2

K
) are known. The 

assumption of normality is preferably used if the treatment effect is the mean of 
continuous observations, but this is not available directly for binary or survival 
data. For noncontinuous data, the assumption of normality may be recovered via 
some transformation, such as the log-odds ratio for binary data (Stijnen 2010).

As another problem, we include the assumption that the within-study variances 
(�2

1
,… , �2

K
) are known. Although this is acceptable if the sample size in each 

study is sufficiently large, the assumption is violated if all the sample sizes are 
small. For such a solution, we need to calculate the other version of almost-exact 
distribution when the true values of within-study variances are replaced by their 
estimates. However, the integration of exact distribution for each within-study 
variance would require an integral calculation for each and the computation time 
would be many times longer than if only the between-study variance is assumed 
to be unknown.

Although the proposed method can be applied even when these two assump-
tions do not hold, it should be noted that the accuracy of method cannot be 
ensured. If the model (1) assumptions are inappropriate due to publication bias, 
it is necessary to select a more appropriate method (Li et  al. 2022). Another 
important issue is that the between-study variance �2 is included as a parame-
ter to determine the exact distribution of test statistic. If we could construct a 
method which does not use the variance parameter, such as for Student’s t test, 
then we would be able to perform the meta-analysis more accurately regardless of 
the between-study heterogeneity. The method of approximating t-distribution of 
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Hartung (1999) is based on this idea, but the coverage probability varies depend-
ing on the heterogeneity. It would then be useful to have a nominal significance 
level of the coverage probability irrespective of the between-study heterogeneity, 
and it would be an interesting future research question.

6 � Supplementary material

Supplementary material available at online includes more simulation results and simu-
lation program of R.

A Theoretical details and numerical calculation

A.1 Proof of Theorem 1

First, we should note that 𝜃̂DL and 𝜏2
u
 are not mutually independent. This situation is 

quite complicated, unlike the case of sample mean and unbiased variance from normal 
data with equal error-variances, such as Student’s t test. For a such reason, in order to 
derive the distribution of TDL , we consider the marginalization

by decomposing the joint PDF of (TDL, 𝜏2u ) . Next, we discuss the mean and variance 
of TDL|𝜏2u (i.e., the conditional random variable of TDL given 𝜏2

u
 ). Given 𝜏2

u
= x , we 

have the constraint condition

imposed on 𝜃̂k , k = 1,… ,K . By solving (7) on 𝜃̂k′ ( k� = 1,… ,K ), we obtain two 
cases

where 𝜃̄y,−k� and v2
−k�

 are an extended inverse-variance weighted average and its 
square average version except the k′-th element 𝜃̂k′ , respectively, that is,

𝜉k� (𝜃̄0,−k� , v
2

−k�
;x) is a quantity written as

fTDL (t) = ∫
∞

−∞

fTDL|𝜏2u (t|x)f𝜏2u (x)dx

(7)
K∑
k=1

(𝜃̂k − 𝜃̄0)
2

𝜎2

k

=

(
𝛾
(1)

0
−

𝛾
(2)

0

𝛾
(1)

0

)
x + (K − 1)

𝜃̂k� = 𝜃̄0,−k� ± 𝜉k� (𝜃̄0,−k� , v
2

−k�
;x)

𝜃̄y,−k� =

∑
{k∶k≠k�}(𝜎2

k
+ y)−1𝜃̂k∑

{k∶k≠k�}(𝜎2

k
+ y)−1

and v2
−k�

=

∑
{k∶k≠k�} 𝜎−2

k
𝜃̂2
k∑

{k∶k≠k�} 𝜎−2

k

,
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See Supplemental material Sect. 5 for further details of solving (7).
For simplicity, let k� = K . The PDF of 𝜃̂k′ |𝜏2u can be expressed as

where Ω = {(𝜃̂1,… , 𝜃̂K) ∈ ℝ
n|𝜏2

u
= x} , z̄−(K−1) = 𝜃̄0,−(K−1)(z1,… , zK−2, zK) , 

�−(K−1)(�) = �−(K−1)(z1,… , zK−2, x, zK) and �k is the PDF of N(�, �2

k
+ �2) . See Sup-

plemental material Sect.  6 for further derivation details of f𝜃̂K |𝜏2u . We have 
E[𝜃̂K|𝜏2u ] = 𝜃 because the distribution of 𝜃̂K|𝜏2u is symmetry. That is, two cases of 𝜃̂K 
obtained under the constraint condition (7) must occur fairly in probabilistic events. 
Hence, we observe that TDL|𝜏2u can be transformed to

using U which takes either 1 or -1 with equal probability, where

The distribution of 𝜀(𝜃̄0,−k� , v2−k� ;x) is determined by two quantities 𝜃̄0,−k� and v2
−k�

 but 
cannot be expressed by some known distribution. On the other hand, because 
Y(𝜃̄x,−k� , 𝜃̄0,−k� ;x) is composed of a linear sum of 𝜃̄x,−k� and 𝜃̄0,−k� , Y(𝜃̄x,−k� , 𝜃̄0,−k� ;x) is 
normally distributed and we find that it has mean m−k� (x) and variance v2

−k�
(x) . 

Replacing 𝜃̂k with 𝜃̂k = 𝜃 +

√
𝜎2

k
+ 𝜏2zk using mutually independent random num-

bers z1 , … , zK ∼ N(0, 1) , three quantities 𝜃̄x,−k� , 𝜃̄0,−k� and v2
−k�

 to determine the distri-
bution of TDL|𝜏2

u
=x are written as

𝜉
k�
(𝜃̄

0,−k� , v
2

−k�
;x) =

√√√√√𝜃̄2
0,−k�

+ 𝜎2

k�
𝛾
(1)

0,−k�

{
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x + (K − 1)
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(1)
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)2

}
.

f𝜃̂K |𝜏2u (zK − 𝜃|x)
= ∫ ⋯∫

Ω
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2
u
,𝜃̂K
(z1 − 𝜃,… , zK−2 − 𝜃, x, zK − 𝜃)dz1 ⋯ dzK−2∕f𝜏2

u
(x)

=
𝜎2

K−1
((𝛾

(1)

0
)2 − 𝛾

(2)

0
)x

f𝜏2
u
(x) ∫ ⋯∫

Ω

(
K−2∏
k=1

𝜙k(zk − 𝜃)

)
𝜙K(zK − 𝜃)

×
{
𝜙K−1(z̄−(K−1) + 𝜉−(K−1)(�)) + 𝜙K−1(z̄−(K−1) − 𝜉−(K−1)(�))

}
𝜉−1
−(K−1)

(�)dz1 ⋯ dzK−2

=
𝜎2

K−1
((𝛾

(1)

0
)2 − 𝛾

(2)

0
)x

f𝜏2
u
(x) ∫ ⋯∫

Ω

(
K−2∏
k=1

𝜙k(−zk − 𝜃)

)
𝜙K(−zK − 𝜃)

×
{
𝜙K−1(z̄−(K−1) + 𝜉−(K−1)(�)) + 𝜙K−1(z̄−(K−1) − 𝜉−(K−1)(�))

}
𝜉−1
−(K−1)

(�)dz1 ⋯ dzK−2

= f𝜃̂K |𝜏2u (−zK − 𝜃|x),
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u
=x = Y(𝜃̄x,−k� , 𝜃̄0,−k� ;x) + U𝜀(𝜃̄0,−k� , v

2
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;x)
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We obtain the result of this theorem by replacing 𝜃̄0,−k� and v2
−k�

 in 𝜉k� (𝜃̄0,−k� , v2−k� ;x) 
with

for k� = K and using the relation � (1)
0

− �
(1)

0,−K
= �−2

K
 . 	�  ◻

A.2 Proof of Theorem 2

An idea of Theorem 2 is to approximate the distribution of TDL|𝜏2
u
=x by a normal distri-

bution, because the exact conditional distribution is a complicated but symmetric distri-
bution. Concretely, the mean and variance of TDL|𝜏2

u
=x are, respectively, obtained as

and

where the form of E[𝜃̂i𝜃̂j|𝜏2u = x] is

and the joint PDF of (𝜃̂1,… , 𝜃̂K−1, 𝜏
2
u
) is written as

𝜃̄x,−k� =𝜃 + 𝛾 (1)
x

−1 ∑
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where t̄−K =

�∑K−1

k=1
tk∕𝜎

2

k

�
∕𝛾

(1)

0,−K
 and t2−K =

�∑K−1

k=1
t2
k
∕�2

k

�
∕�

(1)

0,−K
 Thus, the condi-

tional mean �(x) and variance �2(x) in Theorem 2 are obtained in this manner.
Finally, we show that the distribution of TDL|𝜏2u can be approximated by normal dis-

tribution. For simplicity, assume �2

1
≤ ⋯ ≤ �2

K
 , so that we have ∑2

k
(�2

k
+ x)−1 ≥ K(�2

K
+ x)−1 . Denote a sum of normally distributed random variables 

as an approximate value of TDL|𝜏2
u
=x by

Then, we have

where c is a constant. In Euclidean distance, TDL|𝜏2
u

 converges to T̃DL|𝜏2
u

 (as K → ∞ ). 
This means that limK→∞ |fTDL|𝜏2u (t|x) − fT̃DL|𝜏2u

(t|x)| = 0 in the PDFs of two random 
variables by the continuity of the function fTDL|𝜏2u

(t|x) . Also, it is clear that fT̃DL|𝜏2u
(t|x) 

and �(t;�(x), �2(x)) are equivalent for sufficiently large K by showing that they have 
identical mean and variance. Therefore, the proof of Theorem 2 is complete. 	�  ◻

A.3 Numerical calculation for Theorem 2

We have two problems in numerical calculation for Theorem 2. One is to calculate the 
PDF of between-study variance 𝜏2

u
 , and another is to calculate the variance of TDL|𝜏2u . 

The estimate of between-study variance, 𝜏2
u
 , is the sum of weighted chi-square distribu-

tion, as shown by Lemma 1. The numerical calculation of the PDF of weighted chi-
square distribution is proposed by many authors, for example, Imhof (1961), Akkouchi 
(2005), and so on. However, these methods are not necessarily accurate when the num-
ber of studies K is small. Therefore, we calculate the PDF by generating random num-
bers that follow the chi-square distribution with 1 degree of freedom using simulation. 
That is, if xk(�), k = 1,… ,K,� = 1,… , L are random numbers that independently 
follow a chi-square distribution with 1 degree of freedom, then the random number 
y1,… , yL of L estimates of the between-study variance represents

Thus, the cumulative distribution function of the between-study variance estimate 
𝜏2
u
 is
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.
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The PDF f𝜏2
u

 is also calculated using the numerical differentiation, 
f𝜏2

u

(x) = (F𝜏2
u

(x + h) − F𝜏2
u

(x))∕h , where h is a sufficiently small constant. In our sim-
ulation, we set L = 100, 000 for calculating f𝜏2

u

.
In the numerical calculation of the variance of TDL|𝜏2u , Monte Carlo integration 

with importance sampling is quite useful and a handy tool in this case. That is, if 
z
(�)

k
,� = 1,… , L, k = 1,… ,K − 1 are random numbers sampled from standard nor-

mal distribution N(0, 1), the mean of 𝜃̂i𝜃̂j|𝜏2u can be approximated as

where

Thus, the conditional variance �2(x) is calculated based on (9) given sufficiently 
large L. In our simulation, we set L = 10, 000 for calculating E[𝜃̂i𝜃̂j|𝜏2u = x] . Using 
the two PDFs f𝜏2

u

 and fTDL|𝜏2u , the PDF (5) of test statistic TDL can be calculated, where 
the trapezoidal or Simpson’s rules are useful for numerical integration using these 
PDFs.

A.4 Simulation of conditional test statistic T
DL
|�̂2

u
= x

We compare the difference between the exact conditional distribution of TDL|𝜏2u = x 
and its normal approximation under some x. The setting of � and �2

k
 are the same 

as Sect. 4.2. The number of study is set to small case K = 5 and the heterogeneity 
is set to small and large I2 = 0.3, 0.9 . x is set to (1, 2) for comparing various situa-
tions. We sample 100,000 data of (z1,… , zk−1) from standard normal distribution 
and calculate the exact distribution of TDL|𝜏2u = x . The almost-exact distribution of 
TDL|𝜏2u = x can be calculated by the method in Appendix A.3.
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We show the simulation histogram based on the exact conditional distribution 
and the corresponding almost-exact PDF in Fig. 3. The almost-exact distribution of 
TDL|𝜏2u = x approximates its exact distribution well in the small number of studies. 
This provides that it is reasonable to use the almost-exact distribution of TDL|𝜏2u = x 
for our simulations.
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