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S.1 The forward-backward algorithm

The forward-backward algorithm for hidden Markov models (HMMs) was originally intro-
duced by Baum et al (1970) whose extended formulation for various hidden semi-Markov models
(HSMMs) can be found in Ferguson (1980), Levinson (1986), Murphy (2002), Guédon (2003),
Bulla (2006) and Yu (2010). Since, our proposed inhomogeneous hidden semi-Markov model
(IHSMM) is based on the right-censored assumption of time-spent in the last visited state pro-
posed by Guédon (2003), we extend the forward-backward algorithm with the above assumption
for the proposed IHSMM.

In HSMMs, the conditional independence assumption between past and future of the process is
satisfied at the times of a state change of the hidden semi-Markov chain. With this key assumption,
the forward-backward algorithm in HSMMs is based on the following decomposition:

Ptpjq � Pr pX1, . . . , XT , St � j, St�1 � j |Θq

� Pr pX1, . . . , Xt, St � j, St�1 � j |ΘqPr pXt�1, . . . , XT |St � j, St�1 � j, Θq

� αtpjqβtpjq, (1)

where

αtpjq � Pr pX1, . . . , Xt, St � j, St�1 � j |Θq (2)

is the forward probability which is defined as the joint probability of the occurrence of the first t
observations with the tth observation being the last of a sequence from state j given the model
parameter Θ, and

βtpjq � Pr pXt�1, . . . , XT |St � j, St�1 � j, Θq (3)

is the backward probability which is defined as the conditional probability of the partial observation
sequence Xt�1, . . . , XT given that state j ended at time t and the model parameter Θ.
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S.1.1 The forward algorithm

Borrowing the definition of the forward algorithm for an HSMM in (2), the recursive forward
variable for an IHSMM with m states is given by

αtpjq � Pr pX1, . . . , Xt; St � j , St�1 � j|Θq

� πjpjpt, 1q
t¹

l�1

fjpxlq �
m̧

i�1
i�j

t�1̧

d�1

αt�dpiqaij pjpd, t� d� 1q
t¹

l�t�d�1

fjpxlq, (4)

for t � 1, . . . , T � 1 and j � 1, . . . , m, with the second term on the right hand side being zero
when t � 1. When t � T , the sojourn time in the last visited state is right censored. Since, only
the minimum time spent in the last visited is known, the probability distribution of durations of
state j, pjpd, T q, is replaced by the corresponding survival function P̄jpd, T q �

°
k¥d pjpk, T q in

the last term of the general forward recursion formula in (4). Therefore, we have

αT pjq � Pr pX1, . . . , XT ; ST � j |Θq

� πjP̄jpT, 1q
T¹
l�1

fjpxlq �
m̧

i�1
i�j

T�1̧

d�1

αT�dpiqaij P̄jpd, T � d� 1q
T¹

l�T�d�1

fjpxlq, (5)

for j � 1, . . . , m. To reduce the computational work, the product of state-dependent probabilities
for state j can be computed by using the recursive formula proposed by Mitchell and Jamieson
(1993) as below. Let

utpj, dq �
t¹

l�t�d�1

fjpxlq, (6)

then, we can write

utpj, dq � ut�1pj, d� 1qfjpxtq, for t ¡ 1 and d ¡ 1, (7)

with utpj, 1q � fjpxtq for t � 1, . . . , T . Now we introduce a new variable α�t�1pjq which is useful
in evaluating the forward recursion, and is defined by

α�t�1pjq � PrpX1, . . . , Xt, St�1 � j, St � j |Θq

�
m̧

i�1
i�j

PrpX1, . . . , Xt, St�1 � j, St � i |Θq

�
m̧

i�1
i�j

αtpiqaij , (8)

for t � 1, . . . , T � 1 with α�1 pjq � πj . Here, α�t�1pjq expresses the joint probability of the partial
observation sequence X1:t and state j commences at time t � 1 given the model parameters Θ.
Using (8) and (6) in (4) and (5), we have

αtpjq �
ţ

d�1

α�t�d�1pjq pjpd, t� d� 1qutpj, dq, (9)
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and

αT pjq �
Ţ

d�1

α�T�d�1pjq P̄jpd, T � d� 1quT pj, dq. (10)

The likelihood function in (13) in the main manuscript can be evaluated as LpΘq �
°m

j�1 αT pjq.

S.1.2 The backward algorithm

From (3), the backward variable βtpjq is

βtpjq � PrpXpt�1q . . . , XT |St � j, St�1 � j; Θq,

which holds for t � 1, . . . , T � 1. We assume that the last visited state does not finish at time
t � T , therefore, for t � T � 1, . . . , 1, we have

βtpjq � Pr
�
Xpt�1q:T |St � j, St�1 � j; Θ

�
�

m̧

i�1
i�j

T�t�1¸
d�1

Pr
�
Xpt�1q:T , Spt�1q:pt�dq � i, St�d�1 � i |St � j; Θ

�

�
m̧

i�1
i�j

Pr
�
Xpt�1q:T , Spt�1q:T � i |St � j, Θ

�

�
m̧

i�1
i�j

T�t�1¸
d�1

aji pipd, t� 1q
t�d¹

l�t�1

fipxlqβt�dpiq �
m̧

i�1
i�j

aji P̄ipT � t, t� 1q
T¹

l�t�1

fipxlq

�
m̧

i�1
i�j

T�t�1¸
d�1

aji pipd, t� 1qut�dpi, dqβt�dpiq �
m̧

i�1
i�j

aji P̄ipT � t, t� 1quT pi, T � tq, (11)

where utpj, dq is defined in (6). The first term in (11) is zero when t � T � 1 and the second term
contributes to the right censoring of sojourn time in the last visited state. In the above backward
recursion, pipd, t�1q represents the probability distribution of durations for state i which depends
on time entering in that state, i.e., t� 1.

To make computational steps easier, we introduce another variable β�t�1pjq defined by

β�t�1pjq � Pr
�
Xpt�1q:T |St�1 � j, St � j

�
, (12)

which states the conditional probability of the partial observation sequence Xpt�1q:T given that
state j starts at time t� 1. By induction, we have

β�t�1pjq �
T�t�1¸
d�1

pjpd, t� 1q
t�d¹

l�t�1

fjpxlqβt�dpjq � P̄jpT � t, t� 1q
T¹

l�t�1

fjpxlq

�
T�t�1¸
d�1

βt�dpjq pjpd, t� 1qut�dpj, dq � P̄jpT � t, t� 1quT pj, T � tq. (13)
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Therefore, the relationship between βtpjq and β
�
t�1pjq for t � T � 1, . . . , 1 is

βtpiq �
m̧

j�1
i�j

aijβ
�
t�1pjq. (14)

S.2 The conditional distribution of St

The conditional probability of state j at time t given the observation sequence X1:T is also
referred to as posterior or smoothed probability. It is usually denoted by γtpjq, and is defined as

γtpjq � Pr pSt � j |X1:T ; Θq . (15)

It can be easily computed using the forward-backward algortihm. Following Guédon (2003) the
above quantity can be rewritten as follows.

γtpjq � Pr pSt � j |X1:T ; Θq

� Pr pSt�1 � j |X1:T ; Θq � Pr pSt�1 � j, St � j |X1:T ; Θq � Pr pSt�1 � j, St � j |X1:T ; Θq

� γt�1pjq � Pr pSt�1 � j, St � j |X1:T ; Θq � Pr pSt�1 � j, St � j |X1:T ; Θq . (16)

The second and third term can be evaluated as:

Pr pSt�1 � j, St � j |X1:T ; Θq �
Pr pSt�1 � j, St � j, X1:T |Θq

Pr pX1:T |Θq

�
αtpjqβtpjq

LpΘq
, (17)

Pr pSt�1 � j, St � j |X1:T ; Θq �
Pr pSt�1 � j, St � j, X1:T |Θq

Pr pX1:T |Θq

�
α�t�1pjqβ

�
t�1pjq

LpΘq
. (18)

Thus, (16) becomes

γtpjq � γt�1pjq �
αtpjqβtpjq

LpΘq
�
α�t�1pjqβ

�
t�1pjq

LpΘq
. (19)

It can be evaluated recursively along with the backward variable through the backward pass with
the initial condition at t � T given by

γT pjq �
Pr pST � j, X1:T |Θq

LpΘq
�

αT pjq°m
j�1 αT pjq

. (20)

Note that
°m

j�1 γtpjq � 1 for each t.

S.3 Numerical issues in computing forward and backward variables

The forward and backward variables need to be scaled to address the problem of underflow
because of the multiplication of probabilities. The paradigm of the conventional scaling of the
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forward variable in HMMs is not appropriate for HSMMs. Guédon (2003) proposed a forward-
backward algorithm with an embedded scaling for the right-censored HSMMs which is free from
the numerical underflow problem and its computational complexity is quadratic in the worst case.
A similar kind of scaling approach has also been considered by Murphy (2002) and was later
proposed by Li and Yu (2015) in terms of robust scaling, coincidently. As we are using the
forward-backward definitions from Ferguson (1980) which are severely affected by the underflow
problem, we, therefore, implement the scaling procedure as proposed by Guédon (2003) and Li and
Yu (2015) to control the numerical problem. The implementation of such scaling procedure will
eventually make the scaled forward-backward algorithms equivalent to Guedon’s forward-backward
algorithm with the same amount of computational complexity, that is, O pmT pm� T qq.

For scaling purposes, we introduce two symbols ‘q ’ and ‘p ’. Let ct be the scaling factor at
time t, then the symbol ‘q ’ on a recursive variable, say qαt, means that αt is multiplied by t � 1
scaling factors, that is, qαt �

±t�1
l�1 clαt. The recursive variable with symbol ‘p’ on indicates that

αt is multiplied by t scaling factors, that is, pαt �
±t

l�1 clαt � ct qαt.

We define a variable c�1 pjq similar to α1pjq in (9) for t � 1 with the assumption that state j
does not necessarily finish at time t � 1,

c�1 pjq � Pr pX1, S1 � j |Θq

�
m̧

i�1
i�j

α�1 pjqP̄jp1, 1qu1pj, 1q. (21)

Then, the scaling factor c1 at time t � 1 is given by

c1 � 1

O
m̧

j�1

c�1 pjq ,

We assume that

pα�1 pjq � α�1 pjq � πj , (22)

then from (9), the scaled forward variable denoted by pα1pjq at t � 1 is given by

pα1pjq � c1 α1pjq � pα�1 pjqpjp1, 1q c1 u1pj, 1q
� pα�1 pjqpjp1, 1q pu1pj, 1q,

where pu1pj, 1q � c1fjpx1q is the scaled observation probability at t � 1. When c1, . . . , ct�1 are
known, then the scaling factor at time t � 2, . . . , T , can be calculated by the following variable

c�t pjq � Pr pX1:t, St � j |Θq
t�1¹
l�1

cl

�
ţ

d�1

α�t�d�1pjqP̄jpd, t� d� 1qutpj, dq
t�1¹
l�1

cl

�
ţ

d�1

t�d¹
k�1

ck α
�
t�d�1pjqP̄jpd, t� d� 1q

t�1¹
l�t�d�1

cl utpj, dq

�
ţ

d�1

pα�t�d�1pjqP̄jpd, t� d� 1qqutpj, dq, (23)
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where using (6) and (7), qutpj, dq is defined by

qutpj, dq � t�1¹
l�t�d�1

cl utpj, dq

�
t�1¹

l�t�d�1

cl ut�1pj, d� 1qfjpxtq

� ct�1

t�2¹
l�t�d�1

cl ut�1pj, d� 1qfjpxtq

� ct�1 qut�1pj, d� 1qfjpxtq for d ¡ 1, (24)

and

qutpj, dq � fjpxtq for d � 1. (25)

Thus, the scaling factor at time t � 2, . . . , T is

ct � 1

O
m̧

j�1

c�t pjq , (26)

and the scaled forward variable pαtpjq is

pαtpjq �
t¹

l�1

clαtpjq

� ct

t�1¹
l�1

clαtpjq

� ctqαtpjq, (27)

where using equations (9), (10), (23) and (26), for t � 1, . . . , T � 1, qαtpjq is given by

qαtpjq �
t�1¹
l�1

cl αtpjq �
ţ

d�1

pα�t�d�1pjq pjpd, t� d� 1qqutpj, dq, (28)

and for t � T , we have

qαT pjq �
T�1¹
l�1

cl αT pjq �
Ţ

d�1

pα�T�d�1pjqP̄jpd, t� d� 1qquT pj, dq. (29)

Also

pα�t�1pjq �
m̧

i�1

pαtpiqaij . (30)

Note that the recursion formula for the variable c�t pjq uses the same arguments leading to the
forward recursion in (9) and (10), calculating the survival function of state duration probability
distributions at each time t, instead. Computations of the scaling factor ct and variable c�t pjq can
be performed while doing the forward recursion because they do not require an extra loop in the
algorithm. Also, their computations do not change the order of the forward algorithm with the
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same computational complexity of the forward algorithm proposed by Guédon (2003). However,
as compared to the forward algorithm of Guédon (2003), we introduced two new variables c�t pjq
and utpj, dq for the ease of expressions and computations.

Note that the above scaling procedure satisfies the relation
°m

j�1 Pr pSt � j |X1:t, Θq �
°m

j�1 ctc
�
j ptq �

1 at each time step t. It does not make the condition that
°m

j�1 pαtpjq � 1 for t � 1, . . . , T � 1
because of the boundry condition that state j must end at time t. However, we have pαT pjq � 1
for the last visited state not finishing at time t � T . It is important to note that

ct � 1

O
m̧

j�1

c�t pjq ,

ct � 1

O
PrpX1:t |Θq

t�1¹
l�1

cl ,

t¹
l�1

cl � 1 {Pr pX1:t |Θq , (31)

and

t�1¹
l�1

cl � 1
L
Pr

�
X1:pt�1q |Θ

�
. (32)

Dividing (31) by (32), we have

c�1
t � Pr

�
Xt |X1:pt�1q

�
.

Whence, the scaling factor ct at time t defines the likelihood of an observation Xt conditionally on
the past observations X1:pt�1q as is the case for HMMs. This scaling procedure transforms αtpjq
from a joint probability to a conditional probability (Li and Yu, 2015). That is,

pαtpjq �
t¹

l�1

clαtpjq

�
Pr pX1:t, St � j, St�1 � j |Θq

Pr pX1:t |Θq

� Pr pSt � j, St�1 � j |X1:t, Θq , (33)

which is equivalent to the forward variable proposed by Guédon (2003). Using the scaling factors,
the log-likelihood function can be obtained as we do in HMMs. Thus, we have

logLpΘq � �
Ţ

t�1

log ct. (34)

The pseudo code for the forward recursion along with the calculation of the log-likelihood function
is outlined in Algorithm 1.

The backward variable can be scaled by the scaling factor ct computed for the forward variable.
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From (11), the scaled backward variable pβtpjq for t � T � 1, . . . , 1 is obtained as

pβtpjq � T¹
l�t�1

cl βtpjq

�
m̧

i�1
i�j

T�t�1¸
d�1

ajipipd, t� 1q
t�d¹

k�t�1

ck ut�dpi, dq
T¹

h�t�d�1

ch βt�dpiq

�
m̧

i�1
i�j

ajiP̄ipT � t, t� 1q
T¹

l�t�1

cl uT pi, T � tq

�
m̧

i�1
i�j

T�t�1¸
d�1

ajipipd, t� 1qput�dpi, dqpβt�dpiq �
m̧

i�1
i�j

ajiP̄ipT � t, t� 1qpuT pi, T � tq, (35)

where putpj, dq are the scaled observation probabilities which can be obtained from (24) by the
following relation

putpj, dq � ct qutpj, dq. (36)

Also, from (13) and (14) for t � T � 1, . . . , 1, we have

pβtpiq � m̧

j�1
i�j

aij pβ�t�1pjq, (37)

and

pβ�t�1pjq �
T�t�1¸
d�1

pβt�dpjqpjpd, t� 1q put�dpj, dq � P̄jpT � t, t� 1q puT pj, T � tq. (38)

Note that the scaled backward variable becomes the ratio of two probabilities and does not seem
to have any natural interpretation. That is,

pβtpjq � T¹
l�t�1

clβtpjq

�
Pr

�
Xpt�1q:T |St � j, St�1 � j, Θ

�
Pr

�
Xpt�1q:T |X1:t, Θ

� . (39)

Also, note that once the scaled observation probabilities and their products are stored during
the forward recursion in (24), we can use them directly for the backward recursion instead of
computing them again. The probability γtpjq in (19) can be computed using the scaled forward
and backward variables during the backward recursion. When we use the scaled forward variable,
we have

LpΘq �
m̧

j�1

pαT pjq � 1. (40)
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Thus, the recursive formula for γtpjq in (19) reduces to

γtpjq � γt�1pjq � pαtpjqpβtpjq � pα�t�1pjq
pβ�t�1pjq, (41)

with the initial condition

γT pjq � pαT pjq. (42)

The pseudo code for the backward recursion along with the computation of γtpjq is outlined in
Algorithm 2.

Algorithm 1 The forward algorithm for an m�state IHSMM

1: for j � 1 to m do
2: pα�1 pjq � πj (22)
3: end for
4: for t � 1 to T do
5: for j � 1 to m do
6: qαtpjq � 0, c�t pjq � 0 and pα�t�1pjq � 0
7: if t   T then
8: for d � 1 to t do
9: if d � 1 then

10: qutpj, dq � fjpxtq (25)
11: else
12: qutpj, dq � ct�1 qut�1pj, d� 1qfjpxtq (24)qαtpjq � qαtpjq � pα�t�d�1pjqpjpd, t� d� 1qqutpj, dq (28)

c�t pjq � c�t pjq � pα�t�d�1pjqP̄jpd, t� d� 1qqutpj, dq (23)
13: end if
14: end for
15: else
16: for d � 1 to t do
17: if d � 1 then
18: quT pj, dq � fjpxT q (25)
19: else
20: quT pj, dq � cT�1 quT�1pj, d� 1qfjpxT q (24)qαT pjq � qαT pjq � pα�T�d�1pjqP̄jpd, T � d� 1qquT pj, dq (29)

c�T pjq � c�T pjq � pα�T�d�1pjqP̄jpd, T � d� 1qquT pj, dq (23)
21: end if
22: end for
23: end if
24: end for

25: ct � 1
M°m

j�1 c
�
t pjq (26)

26: for j � 1 to m do
27: pαtpjq � ctqαtpjq (27)
28: for i � 1 to m do
29: if pt   T q then
30: pα�t�1pjq � pα�t�1pjq � pαtpiq aij (30)
31: end if
32: end for
33: end for
34: end for
35: The log-likelihood is logLpΘq � �

°T
t�1 logpctq. (34)



10 A. Shahzadi, T. Wang, M. Bebbington and M. Parry

Algorithm 2 The backward algorithm and calculation of γtpjq for an m� state IHSMM

1: for t � T , j � 1 to m do
2: γT pjq � pαT pjq (42)
3: end for
4: for t � T � 1 to 1 do
5: pβ�t�1pjq � 0
6: for j � 1 to m do
7: for d � 1 to T � t do
8: if pd   T � tq then
9: put�dpj, dq � ct�d qut�dpj, dq (36)pβ�t�1pjq �

pβ�t�1pjq �
pβt�dpjq pjpd, t� 1q put�dpj, dq (38)

10: else
11: puT pj, T � tq � cT quT pj, T � tq (36)pβ�t�1pjq �

pβ�t�1pjq � P̄jpT � t, t� 1q puT pj, T � tq (38)
12: end if
13: end for
14: end for
15: for j � 1 to m do

16: pβtpjq � 0 and γtpjq � 0
17: for i � 1 to m do
18: pβtpjq � pβtpjq � ajipβ�t�1piq (37)

γtpjq � γt�1pjq � pαtpjqpβtpjq - pα�t�1pjq
pβ�t�1pjq (41)

19: end for
20: end for
21: end for

S.4 The Viterbi path

The Viterbi algorithm is a dynamic programming algorithm for obtaining the most probable
sequence of hidden states, called as Viterbi path, in the context of HMM (Viterbi, 1967). To find
the most optimal state sequence S� given an observed sequence X is one of the primary objectives
after the estimation of parameters of HMMs, i.e.

S� � argmax
S

Pr pS |X, Θq ,

where

max
S

Pr pS |X, Θq � max
S

Pr pS, X |Θq

Pr pXq
.

There exists many variants of the Viterbi path for HSMMs in the literature. Following Guédon
(2003) and Yu (2010), we extend the Viterbi algorithm for our proposed IHSMM. To find the
optimal state sequence for an m�state IHSMM, we define a forward variable representing the
maximum likelihood that the partial state sequence ending at time t in state j for duration d by

δtpj, dq � max
S1:pt�dq

Pr
�
S1:pt�dq, Spt�d�1q:t � j, St�1 � j, X1:t |Θ

�
� max

i�j
max
h

max
S1:pt�d�hq

Pr

�
S1:pt�d�hq, Spt�d�h�1q:pt�dq � i, Spt�d�1q:t � j, St�1 � j, X1:t |Θ



� max

i�j
max
h

 
δt�dpi, hqaijpjpd, t� d� 1qfjpxpt�d�1q:tq

(
, (43)
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for 2 ¤ t ¤ T � 1 , j � 1, . . . ,m and d � 1, . . . , t� 1, with the initial condition given by

δtpj, dq � πjpjpd, 1qfjpxpt�d�1q:tq, (44)

for t � d � 1, . . . , T � 1 and j � 1, . . . ,m. And for right censored sojourn time in the last visited
state at t � T , we have

δT pj, dq � max
S1:pT�dq

Pr
�
S1:pT�dq, SpT�d�1q:T � j, X1:T |Θ

�
� max

i�j
max
h

max
S1:pT�d�hq

Pr

�
S1:pT�d�hq, SpT�d�h�1q:pT�dq � i, SpT�d�1q:T � j, X1:T |Θ



� max

i�j
max
h

 
δT�dpi, hqaij P̄jpd, T � d� 1qfjpxpT�d�1q:T q

(
, (45)

with the initial condition

δT pj, dq � πj P̄jpT, 1qfjpxpT�d�1q:T q, (46)

for d � 1, . . . , T . We record the previous state i� and its sojourn h� selected by δt�dpj, dq in the
following array

ψpt, j, dq � pt� d, i�, h�q, (47)

where pt� dq is the ending time of most probable state i� having duration h� and

pi�, h�q � argmax
i�j

max
h

 
δt�dpi, hqaijpjpd, t� d� 1qfjpxpt�d�1q:tq

(
. (48)

Finally, overall global optimal state sequence probabilities are in δT pj, dq, j ¥ 1 and d ¥ 1, which
can be traced back as for t�0 � T

pj�0 , d
�
1 q � argmax

j
max

d
δT pj, dq, (49)

and for t�1 , . . . , t
�
n

pt�1 , j
�
1 , d

�
2 q � ψpt�0 , j

�
0 , d

�
1 q

...

pt�npT q, j
�
npT q, d

�
npT q�1q � ψpt�npT q�1, j

�
npT q�1, d

�
npT qq, (50)

where S1 � j�npT q is the first visited state and SnpT q � j�0 is the last visited state. Thus,

pj�npT q, d
�
npT q�1q . . . pj

�
0 , d

�
1 q is the most likely occurred state sequence given observed data for

an IHSMM. Note that d�1 is the minimum time spent in the last visited state. We outline the
above procedure to find the Viterbi path for an IHSMM in the following Algorithm 3. In order to
avoid the underflow problem of multiplied probabilities, the logarithm of the probabilities can be
used.

S.5 Supplement to data analysis

In the main manuscript, we analyzed a global volcanic eruption catalogue by fitting different
types of HMMs. The supporting tables and figures are provided in this Supplementary file.
The number of parameters pkq, maximum log-likelihood (MLL) and Akaike Information Criterion



12 A. Shahzadi, T. Wang, M. Bebbington and M. Parry

Algorithm 3 The Viterbi path algorithm for an m�state IHSMM

1: for j � 1 to m and t � d � 1 to T do
2: if t   T then
3: δtpj, dq � πj pjpd, 1qfjpxpt�d�1q:tq (44)
4: else
5: δT pj, dq � πj P̄jpT, 1qfjpxpT�d�1q:T q (46)
6: end if
7: end for
8: for t � 2 to T do
9: if t   T then

10: for j � 1 to m do
11: for d � 1 to t� 1 do
12: δtpj, dq � maxi�j maxh

 
δt�dpi, hqaij pjpd, t� d� 1qfjpxpt�d�1q:tq

(
(43)

pi�, h�q � argmaxi�j maxh
 
δt�dpi, hqaij pjpd, t� d� 1qfjpxpt�d�1q:tq

(
(48)

ψpt, j, dq � pt� d, i�, h�q (47)
13: end for
14: end for
15: else
16: for j � 1 to m do
17: for d � 1 to t� 1 do
18: δT pj, dq � maxi�j maxh

 
δT�dpi, hqaij P̄jpd, T � d� 1qfjpxpT�d�1q:T q

(
(45)

pi�, h�q � argmaxi�j maxh
 
δT�dpi, hqaij P̄jpd, T � d� 1qfjpxpT�d�1q:T q

(
(48)

ψpT, j, dq � pT � d, i�, h�q (47)
19: end for
20: end for
21: end if
22: end for
23: Trace back letting t�0 � T , pj�0 , d

�
1 q � argmaxj maxd δT pj, dq. (49)

24: for npT q � 1, 2, 3, . . . do
25: pt�npT q, j

�
npT q, d

�
npT q�1q � ψpt�npT q�1, j

�
npT q�1, d

�
npT qq (50)

continue the tracing back until t�npT q � d�npT q�1   1.

26: end for
27: The required most probable state sequence for an m�state IHSMM is

pj�npT q, d
�
npT q�1q . . . pj

�
0 , d

�
1 q.

(AIC) values for the fitted models in Case I in Section 8.2 of the main manuscript are listed in
Table S.1. The Viterbi paths for the 4�state and 5�state IHSMMs in Case I suggested by AIC
are shown in Figure S.1. The residual analyses for each of the fitted HMMs, HSMMs and IHSMMs
in case I are provided in Figure S.2. The results in these figures have been discussed in Section 8.2
of the main manuscript.

Looking at Cases II and IV individually in Table 4 of the main manuscript, we observe that
in Case II the 4�state IHSMM appears to be the best fitted model with the smallest AIC value
along with the 5�state IHSMM as another possible suitable model for the data based on the AIC
difference being less than 2. In Case IV, the 5�state and 6�state IHSMMs have AIC values 0.20
apart and can be considered as suitable models for further selection. However, Case III provides
the 4�state IHSMM with the smallest AIC as the best fit model.

The residual analysis for each of the fitted models in all cases in Table 4 of the main manuscript
are given in Figures S.3 to S.5. From these figures, we observe that for the IHSMMs selected by
AIC except for the 4�state IHSMM in Case II, the residual processes seem to be well approximated
by a stationary Poisson process with unit rate. The residual process for other higher state IHSMMs
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Table S.1: No. of parameters (k), MLL and AIC in Case I

HMM HSMM IHSMM
Model k MLL AIC k MLL AIC k MLL AIC
3�state 9 -791.41 1600.83 9 -799.37 1616.73 18 -769.94 1575.88
4�state 16 -777.06 1586.11 26 -790.14 1612.29 28 -750.74 1557.48
5�state 25 -764.11 1578.22 25 -777.83 1605.65 40 -738.41 1556.81
6�state 36 -751.51 1575.03 36 -767.56 1607.12 54 -728.65 1565.30
7�state 49 -741.76 1581.53 49 -758.35 1614.71 70 -723.50 1587.00
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Figure S.1: (a) The observed interevent times, (b) The Viterbi path for the 4�state IHSMM and
(c) The Viterbi path for the 5�state IHSMM in Case 1.

in these cases do not improve by much. Also, the residual process for HMMs and HSMMs do not
appear to be well approximated by a stationary Poisson process in all cases. Since none of these
HMMs and HSMMs have AIC values close to the smallest AIC value in each case individually and
in all cases collectively, we do not consider these models for further analysis.

Based on AIC values and Figures S.3 to S.5, we consider the 4�state IHSMM in Case III and
the 5�state IHSMMs in Cases II and IV. Since the 4�state IHSMM has been selected and discussed
in Sections 8.2 and 8.3, respectively, of the main manuscript, we check the further assumptions of
a stationary Poisson process for the 5�state IHSMMs in Cases II and IV in this supplementary
file. Using the KS test of uniformity, the empirical distributions of Uk from these two models are
plotted in Figures S.6 and S.7, which shows uniformity of Uk. Hence, there is no evidence to assert
that the transformed interevent times, Ek, are not exponentially distributed. Also, in Figures S.6
and S.7, the scatter plots of Ek�1 against Ek and Uk�1 against Uk for the two 5�state models
show no particular pattern of points for any association, suggesting the independence of Ek from
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(a) HMM (b) HSMM (c) IHSMM
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Figure S.2: Case I: The deviated cumulative number of events in the residual process from the
stationary process versus the transformed times for HMMs, HSMMs and IHSMMs with 3, 4, 5,
6 and 7 hidden states fitted to the global volcanic eruption catalogue. The central line at zero is
the theoretical curve under the null hypothesis of stationary process. The dotted and dashed lines
represent the two-sided 95% and 99% confidence limits of the Kolmogrov-Smirnov (KS) statistic,
respectively.
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(a) HMM (b) HSMM (c) IHSMM
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Figure S.3: Case II: The deviated cumulative number of events in the residual process from the
stationary process versus the transformed times for HMMs, HSMMs and IHSMMs with 3, 4, 5,
6 and 7 hidden states fitted to the global volcanic eruption catalogue. The central line at zero
is the theoretical curve under the null hypothesis of stationary process. The dotted and dashed
lines represent the two-sided 95% and 99% confidence limits of the KS statistic, respectively.
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(a) HMM (b) HSMM (c) IHSMM
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Figure S.4: Case III: The deviated cumulative number of events in the residual process from the
stationary process versus the transformed times for HMMs, HSMMs and IHSMMs with 3, 4, 5,
6 and 7 hidden states fitted to the global volcanic eruption catalogue. The central line at zero
is the theoretical curve under the null hypothesis of stationary process. The dotted and dashed
lines represent the two-sided 95% and 99% confidence limits of the KS statistic, respectively.
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(a) HMM (b) HSMM (c) IHSMM
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Figure S.5: Case IV: The deviated cumulative number of events in the residual process from the
stationary process versus the transformed times for HMMs, HSMMs and IHSMMs with 3, 4, 5,
6 and 7 hidden states fitted to the global volcanic eruption catalogue. The central line at zero
is the theoretical curve under the null hypothesis of stationary process. The dotted and dashed
lines represent the two-sided 95% and 99% confidence limits of the KS statistic, respectively.
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the two 5�state models in Cases II and IV. The t-test for the null hypothesis of zero correlation
between Ek�1 and Ek in these models produces P�values of 0.421 and 0.533, further confirming
that there is no evidence to reject the hypothesis that Ek are independent. We conclude that the
residual processes for the the two 5�state IHSMMs in Cases II and IV follow a stationary Poisson
process with unit rate satisfying the assumptions of independence and exponentiality.

We note that the 5�state IHSMMs in Cases II and IV represent a maximum number of missing
events up to 8 and 10 between a pair of consecutively observed events in the record, respectively
and have 40 parameters. The selected 4�state IHSMM in Case III models a maximum number of
missing events up to 9 (the average of the maximum number of missing events of 8 and 10 in the
above 5�state models) between a pair of consecutively observed events with 28 parameters. Also,
the 4�state IHSMM has the lowest AIC value among all models in all cases. Thus, the overall
analysis suggested the 4�state IHSMM in Case III as the best approximation of the given global
volcanic eruption record in terms of the number of parameters, AIC, residual analysis and the
number of missing events represented by each state.

Empirical distribution of Uk Ek�1 versus Ek Uk�1 versus Uk
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Figure S.6: Residual check for the 5�state IHSMM in Case II. Left: Empirical distribution of Uk,
with the dotted and dashed lines indicating 95% and 99% confidence intervals of the KS statistic,
assuming uniform distribution. Middle: Scatter plot of Ek�1 versus Ek. Right: Scatter plot of
Uk�1 versus Uk.
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Figure S.7: Residual check for the 5�state IHSMM in Case IV. Left: Empirical distribution of Uk,
with the dotted and dashed lines indicating 95% and 99% confidence intervals of the KS statistic,
assuming uniform distribution. Middle: Scatter plot of Ek�1 versus Ek. Right: Scatter plot of
Uk�1 versus Uk.
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