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Abstract
Classical symmetric distributions like the Gaussian are widely used. However, in 
reality data often display a lack of symmetry. Multiple distributions, grouped under 
the name “skewed distributions”, have been developed to specifically cope with 
asymmetric data. In this paper, we present a broad family of flexible multivariate 
skewed distributions for which statistical inference is a feasible task. The studied 
family of multivariate skewed distributions is derived by taking affine combinations 
of independent univariate distributions. These are members of a flexible family of 
univariate asymmetric distributions and are an important basis for achieving statisti‑
cal inference. Besides basic properties of the proposed distributions, also statisti‑
cal inference based on a maximum likelihood approach is presented. We show that 
under mild conditions, weak consistency and asymptotic normality of the maximum 
likelihood estimators hold. These results are supported by a simulation study con‑
firming the developed theoretical results, and some data examples to illustrate prac‑
tical applicability.

Keywords  Affine combination · Maximum likelihood estimation · Multivariate 
skew distribution

1  Introduction

Multivariate distributions provide the necessary ingredients to model all sorts of events 
where multidimensional data occur. They have established their importance in econom‑
ics, chemistry, biology, etc. The most prominently present multivariate distribution is 
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the multivariate normal distribution, which is a member of the class of multivariate 
elliptical distributions. In general, the more widely used distributions tend to be mul‑
tivariate elliptical extensions of their univariate counterparts, thereby mimicking the 
multivariate normal distribution. The general formulation of a multivariate elliptical 
distribution generated by a univariate density generator f̃  is, according to Azzalini 
(2013),

In this, � ∈ ℝ
d is a location parameter, � ∈ ℝ

d×d is a symmetric positive definite 
matrix and f̃  is such that

However, being elliptical has one major drawback in the form of a severe degree of 
symmetry of the distribution which, in reality, is not always present.

To better model asymmetric data, many asymmetric (or skewed) distributions have 
been proposed in both univariate and multivariate settings. Examples of the latter are 
the multivariate split normal distribution (Villani and Larsson 2007), the multivariate 
slash Laplace distribution (Punathumparambath, 2012), and the bivariate alpha-skew 
normal distribution (Louzada et al. 2017), and the multivariate slash- and skew-slash 
Student’s t-distributions (Tan et al. 2015), among others. These distributions lack gen‑
erality and a unified approach concerning statistical inference. However, an exception 
to this is the family of skew-elliptical distributions. A univariate skew-elliptical distri‑
bution has as density function

In this, f is a symmetric unimodal density, G the cumulative distribution function of 
an absolutely continuous, symmetric (around zero) univariate random variable and 
(�, �, �) ∈ ℝ ×ℝ

+�{0} ×ℝ , respectively, a location, scale and skewing parameter.
In Azzalini and Dalla Valle (1996), the first multivariate extension was presented, 

the multivariate skew-normal distribution. In, among others, Azzalini and Capitanio 
(2003) and Azzalini (2013), this was generalized to the multivariate skew-elliptical dis‑
tribution, which has density function of the form

with fd an elliptical density as in (1), and G is an absolutely continuous, sym‑
metric around zero, cumulative distribution function. Further herein the function 
w ∶ ℝ

d
→ ℝ is such that w(−�) = −w(�) , for all � ∈ ℝ

d . There are ample of com‑
binations of distributions that can be made via this construction. Within this fam‑
ily, the most popular member is the multivariate skew-normal distribution, obtained 
by taking fd a standard multivariate normal density and G the univariate standard 

(1)f (�;�,�) =
�
(

d

2

)

2�
d

2 det(�)
1

2 kd

f̃
(
(� − �)T�−1(� − �)

)
� ∈ ℝ

d.

kd = ∫
∞

0

sd−1�f (s2)ds < ∞.

h(z;�, �, �) = 2�−1f
(
�−1(z − �)

)
G(��−1(z − �)) z ∈ ℝ.

(2)hd(�) = 2fd(�)G(w(�)) � ∈ ℝ
d,
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normal cumulative distribution function. If these are replaced with their Student’s 
t-counterparts, one obtains the popular skew-t distribution. Further extensions of the 
family are possible, see for example Adcock and Azzalini (2020) for the extended 
skew-elliptical distributions which incorporate an extra parameter.

There are, however, a variety of other general multivariate skewing mecha‑
nisms available. In Ley and Paindaveine (2010), a transformation approach is pro‑
posed. For a diffeomorphism � , a multivariate skewed distribution is obtained 
as the function � → f�(�)|det (∇�(�))| . Another class of distributions are the 
Transformation of Scale distributions developed in Jones (2010) (univariate) 
and Jones (2016) (bivariate). An advantage of these distributions is that they are 
closed under marginalization (i.e., the marginals have the same distributions as 
the bivariate vector). In Transformation of Scale distributions, skewness is intro‑
duced in the following way.

where g(⋅, ⋅) is a continuous bivariate density function and W−1
j

 , for j = 1, 2 is the 
inverse of an increasing (transformation) function Wj which has to satisfy certain 
properties. See Jones (2016) for more details. Besides skewed distributions obtained 
by transformations, be it in on the density or the distribution function, Arnold et al. 
(2006) constructed multivariate skewed distributions by employing the Rosenblatt 
construction. This idea was further extended in Abtahi and Towhidi (2013) by intro‑
ducing the unified skew symmetric distribution. The density of a member of this 
family is given by

with � ∈ ℝ
d , f (�) the density function of a symmetric random vector � ∈ ℝ

d (with 
this, central symmetry is meant, i.e., f (−�) = f (�) ), p(⋅) a d-variate density function 
on [0, 1]d and F(⋅|z1,… , zi−1) the distribution of Ui|U1 = z1,… ,Ui−1 = zi−1.

A point of attention for multivariate distributions should be the tail behavior 
when the distribution shows clearly distinct behavior in different directions (mar‑
ginals). This point is also mentioned in Babić et al. (2019). Skew-elliptical dis‑
tributions have a single parameter to govern tail behavior for all d dimensions, 
which can be too restrictive. Even though the skewing parameter does have an 
impact on the tail behavior, in a classical skew-t distribution, for example, it is 
still only regulated by the degrees of freedom. See also Jones (2008) and Bal‑
akrishnan and Captitanio (2008), among others. This problem is possibly shared 
with distributions obtained through transformations, depending on what transfor‑
mation was used. Our goal is to provide a unified, tractable framework for statisti‑
cal inference for the entire considered family with the added flexibility of allow‑
ing different types of behavior in different directions.

We start from the univariate quantile-based asymmetric (QBA) family of dis‑
tributions recently studied in Gijbels et al. (2019). In its simplest form, the den‑
sity function of a QBA-distribution is defined as

f̂ (x, y) = 2g(W−1
1
(x),W−1

2
(y)),

sd(�) = f (�)p
(
F(z1),F(z2|z1),… ,F(zd|z1,… , zd−1)

)
,
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with � = (�,�T )T . In this, f (.;�) is a unimodal, symmetric (around zero) continuous 
density function. The interpretation of the elements contained in the parameter vec‑
tor � is as follows. The parameter � ∈ (0, 1) governs the skewness, and � are possi‑
ble different parameters (excluding location or scale parameters) of fZ . An example 
for the latter is the degrees of freedom parameter of a Student’s t-distribution. Note 
that when � = 0.5 , then fZ = f  everywhere and hence the density fZ is symmetric. 
When � deviates from 0.5 one obtains a skewed distribution. This family of distribu‑
tions falls in the category of two-piece or split-type distributions. Note that (3) does 
not incorporates a location or scale parameter. As made clear later on, including 
them would lead to identifiability problems for the multivariate extension. A vast lit‑
erature is available on the approach of two-piece distributions, dating back as far as 
Fechner (1897). A recent review regarding two-piece distributions was provided by 
Wallis (2014). There are different ways of constructing two-piece distributions, i.e., 
different parameterizations are possible. See for example Rubio and Steel (2014). 
We opt to choose the particular parameterization as in Gijbels et al. (2019), since 
it allows to provide statistical inference for any member of the resulting family of 
asymmetric multivariate distributions.

Applying the univariate skewing mechanism to a multivariate distribution is a com‑
mon technique used to create multivariate skewed distributions. Examples can be found 
in Azzalini and Dalla Valle (1996) and Louzada et al. (2017). For two-piece distribu‑
tions in general, this is proposed in Arellano-Valle et al. (2005) and Bauwens (2005). 
The downsides of such an approach are twofold, namely loss of tractability and flex‑
ibility. A different technique in obtaining multivariate distributions is the mechanism 
used in Villani and Larsson (2007) and generally exposed in Ferreira and Steel (2007). 
Fernández and Steel (1998) introduced the renowned Fernández–Steel skew distribu‑
tion and proposed the use of an affine combination of independent univariate skewed 
distributions to construct a multivariate skewed distribution.

Due to the general applicability of the affine combinations technique and its clear 
interpretation, and the close relation between the QBA-family and the Fernández–Steel 
distributions, we opt for this technique to construct the proposed family of multivari‑
ate asymmetric distributions. In doing so, the added flexibility of different behavior in 
different directions is guaranteed. Ferreira and Steel (2007) introduced the multivari‑
ate skewing technique of affine combinations by taking, as the name suggests, affine 
combinations of (independent) univariate skewed distributions. For a random vector of 
independent univariate skewed distributions (in their example Fernández–Steel skewed 
distribution) � = (�1,… , �d)

T , a flexible multivariate distribution is thus obtained as a 
distribution of a random vector

In this, � ∈ ℝ
d×d is the mixing matrix and � ∈ ℝ

d a location shift. In Ferreira and 
Steel (2007), the density function is provided, and conditions on � for the model 
to be identifiable are described. Expressions for moments are given. Inference is 

(3)fZ(z;�) = 2𝛼(1 − 𝛼)

{
f (−(1 − 𝛼)z;�) if z ≤ 0

f (𝛼z;�) if z > 0,

� = �T� + �.
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presented in a Bayesian context. What we will present is a similar approach, using 
the family of QBA-distributions for the independent univariate skewed components 
and an alternative set of identifiability conditions to obtain a family of multivari‑
ate skewed distributions. In doing so, the added flexibility of different behavior in 
different directions is guaranteed. Statistical inference results are developed for the 
maximum likelihood estimator (MLE). The literature of the linear combinations 
technique is expanded from a Bayesian setting in Ferreira and Steel (2007), to a fre‑
quentist setting with a general (unified) approach of obtaining maximum likelihood 
inference. Although it is in a specific (family) setting, these results can be extended 
to other families of distributions and provide a way to obtain statistical inference 
results.

The outline of the paper is as follows. In Sect. 2, the quantile-based asymmetric 
family of distributions is extended to create a family of flexible asymmetric multi‑
variate distributions. Along with the formulation of the density function of the pro‑
posed family, probabilistic properties are also derived. A brief discussion on ways 
to measure asymmetry is included. In Sect. 3, the focus shifts toward the asymptotic 
distribution of maximum likelihood parameter estimates. This asymptotic behavior 
is illustrated by a simulation study, of which results are presented in Sect. 4. Before 
ending the exposition with a short conclusion in Sect.  6, some real-data applica‑
tions are presented in Sect.  5. Proofs of the main theoretical results are deferred 
to “Appendix”. A brief explanation about the relation to independence component 
analysis, and proofs of the other theoretical results, are given in the Supplementary 
Material. This material also includes an extension involving asymmetric Student’s 
t-distributions. R codes for the practical use of the methodology are available via the 
GitHub platform at https://​github.​com/​Anony​mous1​62222/​LCQBA. Furthermore, 
an R markdown document, guiding the user through some examples, is provided in 
the Supplementary Material.

2 � Family of flexible asymmetric multivariate distributions and its 
probabilistic properties

2.1 � Defining the family

Despite the wide array of available distributions that can be used in an affine combi‑
nation, in what follows, we restrict ourselves to members of the QBA-family. We opt 
to use this type of distribution with flexibility in mind, i.e., possibly different behav‑
ior with respect to asymmetry in the different directions. Starting from a family of 
univariate distributions which is in its own right flexible and contains the symmetric 
counterparts of its members, is beneficial for the obtained multivariate distributions.

Define � = (Z1,… , Zd)
T where Zj , j = 1,… , d , has a density function fZj(zj;�j) as 

in (3) with �j = (�j,�
T
j
)T and generated by a symmetric, unimodal continuous den‑

sity fj . Throughout the paper we assume that all generating densities fj are continu‑
ously differentiable almost everywhere (a.e.). Furthermore, we assume that the com‑
ponents of the random vector � are independent. Therefore � has a joint density

https://github.com/Anonymous162222/LCQBA
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in which � = (z1,… , zd)
T ∈ ℝ

d and � = (�T
1
,… , �T

d
)T . The proposed asymmetric 

multivariate density is defined as the density of a d-variate random vector �

in which �a = (�a,1,… ,�a,d)
T ∈ ℝ

d is a location shift and � ∈ ℝ
d×d , a non-singular 

matrix, governs the dependence structure. By introducing a location shift and scal‑
ing in (4), the need for a location and scale parameter in each of the components of 
� is superfluous. Therefore, location and scale parameters are not included in (3). 
By the transformation formula for affine combinations of random variables, the joint 
density of � is

where we introduced the notation that for any matrix � , �
⋅,j denotes the j-th col‑

umn of � and �i,⋅ the i-th row of � . Ferreira and Steel (2007) considered construc‑
tion (4) and densities of the form (5), using closely related two-piece distributions 
(with different parameterizations). Obviously, feasibility of statistical inference for 
the parameters �,�a and � in (5) heavily depends on the specific choice of the uni‑
variate two-piece distributions, and inference results for these.

As an illustration of what this type of distribution looks like, consider the fol‑
lowing example.

Example 1  Consider the following three models. For the first model, take as the first 
univariate component a QBA-normal distribution ( fZ1 ) and as the second component 
a QBA-logistic distribution ( fZ2 ) with the following parameters

The second model is a variation of the first one wherein � is replaced with 

� =

[
7 −6

0 3

]
 . For the third model, the QBA-logistic component of the first model 

is replaced with a QBA-Student’s t-distribution with five degrees of freedom, and � 

is replaced with � =

[
12 0

0 8

]
 . The contourplots of the densities of the resulting 

distributions are depicted in Fig. 1. As can be seen, the mixing matrix can greatly 
impact the shape and scale of the resulting distribution. Note the change of main 
directions of the contours, when comparing the plots of Fig. 1a, b. This is due to the 
change of mixing matrix from � to � . The contourplot in Fig. 1c shows the benefit 
of combining different distributions. Note the heavier tails in the X2 direction.

f�(�;�) =

d∏
j=1

fZj(zj;�j),

(4)� = �T� + �a,

(5)f�(�;�,�a, �) = |det(�)|−1
d∏
j=1

fZj((� − �a)
T (�−1)

⋅,j;�j),

� =

(
0.25

0.65

)
, �a =

(
20

20

)
, and � =

[
12 4

−5 8

]
.
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2.2 � Probabilistic properties of the family

Starting from the analytical expression for the density in (5), some of its basic 
properties can be derived. It is important to note that some of these properties, 
like moments and even the cumulative distribution function, may lack closed-
form expressions.

2.2.1 � Cumulative distribution function

The cumulative distribution function of any member of the proposed family is 
given by
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(a) First model.
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(b) Second model.

X1

X
2

 2e−05 

 4e−05 

 6e−05 

 8e−05 

 1e−04 

 0.00012 

 0.00014 

 0.00016 

 0.00018 

 2e−04 

 0.00022 

 0.00024 

0 50 100

−5
0

0
50

10
0

(c) Third model.

Fig. 1   Contour plots of the bivariate models of Example 1
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In general, no analytical expression can be obtained for (6) due to the complexity of 
the integral. There are some specific cases where it is possible to derive a closed-
form expression, for example when only QBA-Laplace distributed random variables 
are used. In general, however, numerical approximations of the cumulative distribu‑
tion function are easy to obtain via Monte Carlo simulation. This is due to the ease 
with which the target distribution can be sampled, as for each component of � the 
quantile function is available in a formulation related to the quantile function of the 
underlying symmetrical density. To obtain a sample from � , the same technique as 
the construction of (4) can be employed. Based on the sample, an approximation 
of the cumulative distribution function can then be obtained through its empirical 
counterpart.

2.2.2 � Moments and characteristic function

From the linear combination of the components of � and their independence, it is 
easy to see that the mean and variance of � are

where diag is a diagonal matrix. The expressions for E[Zj] and Var(Zj) are given by 
(see Gijbels et al. 2019)

and

with �j,r = 2 ∫ ∞

0
srfj(s)ds , r = 1, 2 . Other moments can be derived in a similar fash‑

ion. See Ferreira and Steel (2007) for similar moments expressions under different 
parameterizations.

The moments can also be calculated through the characteristic function. We 
make a distinction between the marginal characteristic functions and the joint 
characteristic function.

Proposition 1  The marginal characteristic function �Xk
(t) of Xk is given by

(6)

F�(�;�,�a, �) = ∫
y1

−∞

⋯∫
yd

−∞

d∏
j=1

1

|det(�)| fZj((� − �a)
T (�−1)

⋅,j;�j)dx1 …dxd.

(7)
E[�] = �TE[�] + �a,

Cov(�) = �TCov(�)� = �Tdiag(Var(Z1),… , Var(Zd))�,

E[Zj] =
1 − 2�j

�j(1 − �j)
�j,1,

Var(Zj) =
(1 − 2�j)

2(�j,2 − �2
j,1
) + �j(1 − �j)�j,2

�2
j
(1 − �j)

2
,
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whereas the joint characteristic function ��(�) of � is given by

In both, �+
j
(t) = ∫ ∞

0
eitsfj(s)ds.

The proof is straightforward and given in the Supplementary Material.

Example 2  An easy to calculate joint characteristic function is when all Zj are QBA-
Laplace. This leads to

This is different from the characteristic function of an elliptical multivariate 
Laplace distribution with skewing parameters � and scaling matrix � , which is 
given by ��(�) =

1

1+
1

2
�T��−i�T �

 (see Kotz et  al. 2001). Hence, applying the affine 

combination principle leads to a different, possibly non-elliptical, multivariate 
Laplace distribution.

2.2.3 � Measures of asymmetry

Measures of asymmetry for a multivariate distribution can be characterized as a 
multivariate extension of skewness measures of a univariate distribution. For a uni‑
variate random variable X with mean � and variance �2 , skewness is defined as

There is no unique equivalent of (8) for a d-variate r.v. � with mean � ∈ ℝ
d and var‑

iance–covariance matrix � ∈ ℝ
d×d . We briefly discuss three available measures of 

multivariate skewness, which resemble univariate skewness. In particular, we pro‑
vide their expressions for the considered family of multivariate distributions. Denote 
� = �

−
1

2 (� − �) , the standardized version of � , where � = �T� + �a . Recall from 
(7) that � = E[�] = �TE[�] + �a and � = �Tdiag(Var(Z1),… , Var(Zd))� . We con‑
sider the following three measures of multivariate skewness.

Mardia’s skewness index was proposed in Mardia (1970). With �� and �� inde‑
pendent copies of �

�Xk
(t) = E

[
eitXk

]
= 2deit�a,k

d∏
j=1

(
�j�

+
j

(
−�j,kt

1 − �j

)
+ (1 − �j)�

+
j

(
�j,kt

�j

))
,

��(�) = E
[
ei�

T�
]
= 2dei�

T�a

d∏
j=1

(
�j�

+
j

(
−�j,⋅�

1 − �j

)
+ (1 − �j)�

+
j

(
�j,⋅�

�j

))
.

��(�) = ei�
T�a

d∏
j=1

�j(1 − �j)

(�j − i�j,⋅�)(1 − �j + i�j,⋅�)
.

(8)�1(X) = E

[(
X − �

�

)3
]
.



168	 J. Baillien et al.

1 3

In this, �1(Zj) is the skewness as in (8) of the j-th component of � as given in Gijbels 
et al. (2019). Due to rotational invariance of (9), it holds that �d(�) = �d(�) = �d(�).

Móri–Rohatgi–Székely measure proposed in Móri et al. (1994). This is a vector-
valued measure of asymmetry given by

Kollo measure proposed in Kollo (2008). Like the Móri–Rohatgi–Székely measure, 
this is a vector-valued measure of asymmetry that takes into account several extra 
terms. It is given by

All three measures of multivariate skewness are related in the sense that they 
are a combination of third-order cumulants of � . Denote with �⊗ � the Kro‑
necker product of two matrices � ∈ ℝ

n×p and � ∈ ℝ
m×q . The matrix of third-order 

central moments of � is in this case equal to that of the third-order cumulants and 
given by

The vectorization operator applied to this matrix leads to

The (i,  j)-th element of �3(�) is given by E[YjYi−k∗dYk∗+1] with 
k∗ = {max

k∈ℕ
k|i − kd > 0} . In Jammalamadaka et al. (2020), it is noted that, with ‖ ⋅ ‖ 

the Euclidean norm of a vector,

(9)�d(�) = E[
(
(�� − �)T�−1(�� − �)

)3
] =

d∑
j=1

�2
1
(Zj).

(10)

�(�) = E

[(
d∑
j=1

Y2
j

)
�

]

=

d∑
i=1

d∑
j=1

(
�

−
1

2�T
)2

j,i

(
�

−
1

2�T
)
.,i
E
[
(Zi − E[Zi])

3
]
.

(11)

�(�) = E

[(
d∑
j=1

d∑
k=1

YjYk

)
�

]

=

d∑
k=1

[
d∑
j=1

d∑
i=1

(
�

−
1

2�T
)
j,k

(
�

−
1

2�T
)
i,k

](
�

−
1

2�T
)
.,k
E
[
(Zk − E[Zk])

3
]
.

�3(�) = E[�⊗ �T ⊗ �] ∈ ℝ
d2×d.

�3(�) = vec(�3(�)) ∈ ℝ
d3 .

𝛽d(�) =
‖‖�3(�)

‖‖2
�(�) = (vec(�d)

T ⊗ �d)�3(�)

�(�) = (�T
d2
⊗ �d)�3(�),
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in which �m is a vector of ones of dimension m, and �d a d-dimensional identity 
matrix. It is also clear that the Móri–Rohatgi–Székely (MRS) measure �(�) in (10) 
and the Kollo measure �(�) in (11) are very similar, the only difference being that 
the Kollo measure takes into account extra third-order cumulants. In our framework 
of linear combinations, the relation between the two measures is as follows:

The extra term in �(�) , when compared to �(�) , can cause a sign difference when 
comparing both measures, depending on the sign of elements of both E

[
(� − E[�])3

]
 

and �−
1

2�T . If � is a diagonal matrix, both measures yield the same values.
In Table 1, we list the values of these three measures of multivariate asymmetry 

for the three illustrative models in Example 1. This table illustrates the affine invari‑
ance of �d(�) (see the first row of Table 1) and that �(�) and �(�) are equal if the 
mixing matrix is diagonal (see the last column). Note the remarkable higher (abso‑
lute) values of some skewness components in the third model.

3 � Parameter estimation and asymptotic theory

A natural and efficient way of obtaining parameter estimates is through maxi‑
mum likelihood estimation. Recall that the joint density of the random vec‑
tor � is given by (5). Throughout the paper, we assume that this model 
is correctly specified. For the moment, we restrict ourselves to densities 
fj without additional parameters, i.e., for which �j is empty. Denote with 
� = (�T ,�T

a
, vec(�)T )T ∈ � = [0, 1]d ×ℝ

d(d+1) the parameter vector of dimen‑
sion d2 + 2d . The parameters that need to be estimated are the d × d matrix � , 
the d-vector �a and the d-vector of skewing parameters � . Given a realization 
�(n) = (�1,… , �n) of an i.i.d. sample �(n) = (�1,… ,�n) of size n from � , the log-
likelihood function �(�, �) is

�(�) = �(�)

+

d∑
k=1

d∑
j=1

d∑
i=1

i≠j

(
�

−
1

2�T
)
i,k

(
�

−
1

2�T
)
j,k

(
�

−
1

2�T
)
.,k
E
[
(Zk − E[Zk])

3
]
.

Table 1   Measures of asymmetry 
for the different models in 
Example 1

Model First model Second model Third model

Mardia ( �
d
(�)) 1.0440 1.0440 2.0044

MRS ( �(�))
[
0.9498

−0.3768

] [
0.2652

−0.9867

] [
0.6949

−1.2335

]

Kollo ( �(�))
[
1.1866

0.3813

] [
−0.5305

−1.2659

] [
0.6949

−1.2335

]
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where 1{B} denotes the indicator function, i.e., 1{B} = 1 if B holds and 0 otherwise. 
The finite sample version of the log-likelihood function is given by

and maximizing this log-likelihood with respect to � leads to the maximum likeli‑
hood estimator (MLE) for � , denoted by �̂

ML

n
.

The log-likelihood is continuously differentiable with respect to � , but in gen‑
eral not with respect to elements of � or �a whenever (�i − �a)

T (�−1)
⋅,j = 0 for any 

i = 1… , n . This occurs whenever the reference density fj is not continuously differ‑
entiable. The latter is the case for, for example, the Laplace distribution at its mode. 
In addition, the second-order derivative with respect to these parameters is non-
continuous for an even larger selection of reference densities. This is for example 
the case when fj is a normal density. Classical regularity conditions thus no longer 
apply. In the next section we formulate a set of conditions under which asymptotic 
theory for the MLE holds.

3.1 � Identifiability of the model and consistency of the parameter estimator

A first issue that needs to be resolved with an eye on statistical inference is identifi‑
ability, so no two sets of parameters should lead to the same distribution. First we 
give necessary and sufficient conditions to ensure that the model is indeed identi‑
fiable. For example Allman et  al. (2009) (on mixture models) and Beckmann and 
Smith (2004) (p. 140, on linear structure models) state that parameters of a random 
variable obtained from a combination of multiple univariate random variables is 
identifiable if it is unique up to a relabeling of the univariate random variables. Fol‑
lowing this, we move away from the classical definition of identifiability and impose 
a slightly weaker one where we need (classical) identifiability up to a relabeling of 
the components of � and the corresponding relabeling in both � and the rows of �.

Proposition 2  Suppose � is generated according to (4). Also assume that the vec-
tor of independent univariate random variables � is such that all univariate densi-
ties fZj , for j = 1,… , d , are known up to their parameters. If the following condi-
tions hold, the model with density function (5) is identifiable up to a permutation of 
the independent components.

(12)

𝓁(�, �) = − ln(|det(�)|) + d ln(2) +

d∑
j=1

ln
(
𝛼j(1 − 𝛼j)

)

+

d∑
j=1

[
1
{
(� − �a)

T (�−1)
⋅,j ≤ 0

}
ln
(
fj
(
−(1 − 𝛼j)(� − �a)

T (�−1)
⋅,j

))

+1
{
(� − �a)

T (�−1)
⋅,j > 0

}
ln
(
fj
(
𝛼j(� − �a)

T (�−1)
⋅,j

))]
,

�
(
�, �(n)

)
=

n∑
i=1

�
(
�, �i

)
,
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(I1)	� At most one component of � can have a symmetric standard Gaussian 
distribution.

(I2)	� The diagonal elements of �−1 or � are strictly positive.

For a square, invertible matrix, condition (I2) can always be satisfied (possibly 
after a permutation of the rows of � or columns of �−1 and a possible sign change) 
as shown in Proposition 3. However, other conditions on � or �−1 may also be 
imposed as long as they unambiguously fix the sign as mentioned above. For exam‑
ple, the condition 

(I2∗)	� The first nonzero element in each column of � (or �−1 ) is strictly positive,

 also suffices.

Proposition 3  Let � ∈ ℝ
d×d be an invertible matrix. Then there exists a permuta-

tion of the rows of � such that every diagonal element of the permuted matrix is 
nonzero.

Identifiability of the model is a key requirement in getting to statistical inference 
results. This is made clear in the following proposition, which states conditions 
under which the MLE is weakly consistent.

Proposition 4  Let �(n) be an i.i.d. sample from � with probability density as in (5). 
Assume that the following assumptions hold:

(C1)	� Assumptions (I1)–(I2) hold. In other words, the parameters are identifiable.
(C2)	� Let �R = [−�u,�u]

d × [�l, �u]
d × [Al,Au]

d2 , with ||𝜇u
|| < ∞ , 0 < 𝛼l < 𝛼u < 1 

and −∞ < Al < Au < ∞ , be a compact subset of � . Also assume that 

�0 ∈
◦

�R , with 
◦

�R the interior of �R.

(C3)	� ∫ ∞

0

|||ln fj(s)
|||fj(s)ds < ∞ ∀j ∈ {1,… , d} , where fj(s) are the underlying uni-

variate symmetric densities.

 Then the maximum likelihood estimator �̂
ML

n
 is weakly consistent, i.e., �̂

ML

n

P
→ �0 for 

n → ∞ , with �0 the true parameter.

3.2 � Asymptotic normality

Before stating conditions under which asymptotic normality of the MLE holds, 
some matrix notations are introduced, needed in particular for providing expres‑
sions for the expected score and the Fisher information matrix. Denote with �−j;−i 
the matrix � of which the j-th row and i-th column have been removed. Similarly 
�−j,−k;−i,−l represents the matrix � in which the j- and k-th row and the i- and l-th 
column have been removed. In this, the order of the indices is of no importance as 
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they are taken with respect to the original matrix � . Should one start with a 2 × 2 
matrix, �−1,−2;−1,−2 is defined as 1.

It is important to pay attention to the indexation of the rows and columns of the 
reduced matrices compared to the original one. For example, in �−j,−k;−i,−l the r-th 
row has elements with row-index r + 2 , whereas the s-th column has elements with 
column-index s + 1 provided that r ≥ k + 2, k > j and i < s ≤ l + 2.

The next two well-known results are also used. The first is the general result [see 
for example Zhang (2011, p. 12)] that the determinant of a matrix � can be written 
as

Using (13), the determinant of a reduced matrix is

and

Note the added indicator functions in the exponent of −1 . These follow from 
the previously made remark on the indexation of the reduced matrices.

The second result follows from the fact [see for example Zhang (2011,  p. 13)] 
that it is possible to express the inverse of a matrix in terms of its adjugate matrix 
(adj(� )) and determinant as

This makes that an elements of the inverse of a matrix � can be expressed as

For notational simplicity, also define

(13)det(�) =

d∑
l=1

(−1)l+k�k,ldet(�−k;−l).

(14)det(A−k;−l) =

d∑
i=1

i≠l

(−1)i+j+1{j>k}+1{i>l}Aj,idet(A−j,−k;−i,−l)1{j ≠ k},

(15)

𝜕

𝜕�j,i

det(�−k;−l)

=

{
0 if j = k or i = l

(−1)i+j+1{j>k}+1{i>l}det(�−j,−k;−i,−l) otherwise.

adj(�)k,l = (−1)k+ldet(�−l;−k) = det(�)(�−1)k,l.

(16)(�−1)k,l =
(−1)k+ldet(�−l;−k)

det(�)
.

(17)B
k,l

h,j
=

d∑
i=1

i≠l

(−1)i+j+k+l+1{j>k}+1{i>l}Ah,idet(A−j,−k;−i,−l)

det(A)
,
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Lemma 1  Using the introduced notation and the above results on matrix algebra

The proof of Lemma 1 is given in the Supplementary material. This result is 
needed for both the expected score and the Fisher information matrix, where we 
require an expression for the left-hand side of (19). The following assumptions are 
needed: 

(N1)	� 𝛾j,r = ∫ ∞

0
sr−1

(f �
j
(s))2

fj(s)
ds < ∞ ∀j ∈ {1,… , d} and r = 1, 2, 3.

(N2)	� ∫ ∞

0
sf �
j
(s)ds = −

1

2
 or lims→∞sfj(s) = 0 ∀j ∈ {1,… , d}.

These assumptions (N1) and (N2) are quite mild. They, as well as Condition (C3) , 
are satisfied for, for example, fj standard normal, Student’s-t, logistic or Laplace 
densities [see for example Gijbels et al. (2019), as well as Example 1]. We formally 
state the results on the expected score and the Fisher information matrix in Proposi‑
tions 5 and 6, respectively.

Proposition 5  Suppose Assumption (N2) holds, then the expectation of the score 
vector for � with respect to the true underlying distribution is zero, i.e.,

Proposition 6  Suppose Assumptions (N1) and (N2) hold and denote by

for j = 1,… , d and r = 1, 2 . Then the elements of the Fisher information matrix 
�(�)i,j = E

[(
��(�;�)

��i

)(
��(�;�)

��j

)]
 , i, j = 1,… , d exist and are given by

(18)Dk,l =
(−1)k+l+1det(�−k;−l)

det(�)
.

(19)
�

�Ak,l

�
(x − �a)

T (A−1)
⋅,j

�
=

�
Dk,l(x − �a)

T (A−1)
⋅,k if j = k∑d

h=1

h≠j
B
k,l

h,j
(x − �a)

T (A−1)
⋅,h if j ≠ k.

E

[
��(�;�)

��

]

�=�0

= �.

�j,r = 2 ∫ ∞

0
srfj(s)ds �j,1 = EZj

[Zj] =
1−2�j

�j(1−�j)
�j,1

�j,2 = EZj
[Z2

j
] =

(1−�j)
3+�3

j

�2
j
(1−�j)

2
�j,2,
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The proofs of both propositions are in the Supplementary Material.

Example 3  (Example 1 continued) For the first model introduced in Example 1, the 
values of the quantities �j,r , �j,r and �j,r are given by

In this example, we have � = (�1, �2,�a,1,�a,2,�1,1,�2,1,�1,2,�2,2)
T . The inverse 

of the Fisher information matrix becomes

E

��
��(�;X)

��k

��
��(�;X)

��l

��
=

�
2(�3k+(1−�k)

3)�k,3−(1−2�k)2

�2
k
(1−�k)

2
if k = l

0 if k ≠ l,

E

��
��(�;X)

��k

��
��(�;X)

��a,l

��
= −2(A−1)l,k�k,2,

E

��
��(�;X)

��k

��
��(�;X)

�Al,m

��
=

⎧
⎪⎨⎪⎩

Dk,m(1−2�k)(2�k,3−1)

�k(1−�k)
if k = l

2�k,2
∑d

h=1

h≠k
B
l,m

h,k
�h,1 if k ≠ l,

E

��
��(�;X)

��a,k

��
��(�;X)

��a,l

��
=

d�
j=1

2�j(1 − �j)(A
−1)k,j(A

−1)l,j�j,1,

E

��
��(�;X)

��a,k

��
��(�;X)

�Al,m

��
= −2

d�
j=1

j≠l

�j(1 − �j)(A
−1)k,j�j,1

d�
h=1

h≠j

B
l,m

h,j
�h,1,

E

��
��(�;X)

�Ak,l

��
��(�;X)

�Ar,s

��

= 2

d�
j=1

j≠k,r

�j(1 − �j)�j,1

⎡⎢⎢⎢⎣

d�
m=1

m≠j

d�
h=1

h≠j,m

B
k,l

m,j
�m,1B

r,s

h,j
�n,1 +

d�
g=1

g≠j

B
k,l

g,j
B
r,s

g,j
�g,2

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣

d�
q=1

q≠k

d�
j=1

j≠q,r

B
k,l

j,q
B
r,s

q,j

⎤
⎥⎥⎥⎦
+

�
Dk,lDk,s(2�k,3 − 1) if k = r

0 if k ≠ r.

�1,1 =
1

2
�2,1 =

1

6

�1,2 =
√
2√
�

�2,2 =
1

6
+

ln(2)

3

�1,3 =
3

2
�2,3 =

2

3
+

�2

18

�1,1 =
√
2√
�
�2,1 = 2 ln(2) �1,1 = 2.1277 �2,1 = −2.8281

�1,2 = 1 �2,2 =
�2

3
�1,2 = 12.4444 �2,2 = 20.1818.
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This matrix reveals that, for MLE, the hardest parameters to estimate in 
this model are �a,1 and �a,2 . Consider as an example the parameter �2,2 , then 
�(�2,2)

−1 = 103.0884 . As is made clear in Theorem 1, this implies that for a sample 
of n observations, the asymptotic variance of �2,2 is given by 103.0884n−1.

We are now able to state the asymptotic normality result for the MLE. For com‑
pleteness, in the following (ℝd,�,P) is a probability space. Denote with

and

In this, �
+

��j
 and �

−

��j
 denote the right-hand and left-hand derivatives, respectively. 

The following two lemmas are needed. Their proofs are in the Supplementary 
Material.

Lemma 2  � (�;�) as defined in (21) is measurable.

Lemma 3  Under Assumption (N2) and continuity of both fj(x) and f �
j
(x) on ℝ�{0} , 

�(�) is continuous in a neighborhood of �0.

Theorem 1  Suppose Assumptions (C1)–(C3) and (N1)–(N2) hold. Then the maxi-
mum likelihood estimator �̂

ML

n
 is asymptotically normally distributed with mean � 

and variance–covariance �(�0)
−1 , i.e.,

where �(�0) is the Fisher information matrix with elements given in Proposition 6.

(20)

�(�)−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4134 −0.0000 42.2235 14.0745 13.2298 0.0000 4.4099 0.0000

0.0000 0.4278 −22.4351 35.8961 0.0000 2.8205 0.0000 −4.5128

42.2235 −22.4351 6786.9789 −917.4407 1286.1011 −113.9967 554.4639 247.9866

14.0745 35.8961 −917.4407 5755.6372 791.2002 523.5225 −395.1784 −283.0692

13.2298 −0.0000 1286.1011 791.2002 583.4778 66.9827 24.1203 22.3276

0.0000 2.8205 −113.9967 523.5225 66.9827 132.5992 −107.1723 −25.5543

4.4099 0.0000 554.4639 −395.1784 24.1203 −107.1723 280.6358 −35.7241

−0.0000 −4.5128 247.9866 −283.0692 22.3276 −25.5543 −35.7241 103.0884

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

� j(�;�) =

[
1

2

(
�+�(�;�)

��j
+

�−�(�;�)

��j

)]

� (�;�) =
(
� 1(�;�),… ,� d2+2d(�;�)

)T
�(�) = E[� (�;�)],

u(�;�, r) = sup
‖�∗−�‖<r

��� (�;�∗) − � (�;�)��.

√
n(�̂

ML

n
− �0)

D

→ N
�
�, �(�0)

−1
�

as n → ∞,
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3.3 � Inclusion of other parameters

So far, it was assumed that � is empty, i.e., fj , j = 1,… , d does not come with 
extra parameters. In reality, that might not always be the case. Fortunately, when 
one or more of the univariate symmetric distributions fj , j = 1,… , d used to gen‑
erate the multivariate distribution comes with extra parameters, the obtained 
results can be directly extended. In this case the parameter vector becomes 
� = (�T ,�T

a
, vec(�)T ,�T )T , with � = (�T

1
,… ,�T

d
)T , where �j is the vector of addi‑

tional parameters from fj . The expression for the log-likelihood does not change 
much compared to (12) and is given by

This leads to the following result.

Theorem 2  If the following conditions hold

	(E1)	 Conditions (I1)–(I2) hold.
	(E2)	 Let �R be a compact subset of � , the parameter space of � . Also assume that 

�0 ∈
◦

�R , with 
◦

�R the interior of �R.
	(E3)	 ∫ ∞

0

|||ln fj(s;�j)
|||fj(s;�j)ds < ∞ ∀j ∈ {1,… , d} and all �j ∈ Kj , their parameter 

space. In this fj(s;�j) are the underlying univariate symmetric densities.
	(E4)	 E

[
��(�;�)

��

]
�=�0

= �.

	(E5)	 E
[
𝜕�(�;�)

𝜕𝜉i

𝜕�(�;�)

𝜕𝜉j

]
�=�0

< ∞     ∀i, j ∈ {1,… , d},

the maximum likelihood estimator

of the true parameter vector �0 is asymptotically normally distributed with mean � 
and variance–covariance �(�0)−1 , i.e.,

The proof of Theorem 2 is similar to that of Theorem 1 and therefore omitted. Note 
that �(�0) consists of �(�) extended with an additional block made up of the interactions 

(22)

𝓁(�, �)

= − ln(|det(�)|) + d ln(2) +

d∑
j=1

ln(𝛼j(1 − 𝛼j))

+

d∑
j=1

[
1
{
(� − �a)

T (�−1)
⋅,j ≤ 0

}
ln
(
fj
(
−(1 − 𝛼j)(� − �a)

T (�−1)
⋅,j

)
;�j

)

+1
{
(� − �a)

T (�−1)
⋅,j > 0

}
ln
(
fj
(
𝛼j(� − �a)

T (�−1)
⋅,j

)
;�j

)]
.

�̂
ML

n
=
(
(�̂

ML

n
)T , (�̂a

ML

n
)T , (vec(�̂ML

n
))T , (�̂

ML

n
)T
)T

,

√
n(�̂

ML

n
− �0)

D

→ N
�
�, �(�0)

−1
�

as n → ∞.
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between � and � . A classical example of a distribution involving other parameters is the 
Student’s t-distribution. The extra parameters are the degrees of freedom, �j , involved 
with each different Student’s t-distribution. For the Student’s t-distribution, one can 
show that the conditions are satisfied. See the Supplementary Material. In a univariate 
setting, the details can be found in Gijbels et al. (2019).

4 � Simulation study

To estimate the parameters of the proposed distributions in (5), MLE is used. In 
order to maximize the log-likelihood, we rely on optimization software. Since the 
score functions can be discontinuous at certain points, even first order optimiza‑
tion algorithms might not be appropriate as the objective function may lack the 
necessary smoothness. For that reason, derivative free optimization is resorted to.

Several derivative free optimization routines are available in the nloptr-
package (see Johnson 2018). In order to chose an algorithm, the COBYLA-, 
NEWUOA-, BOBYQA- and Nelder–Mead-algorithms were taken into consid‑
eration. After extensive testing on models of different dimensionality and for 

Table 2   First model of Example 1: empirical bias, estimated variance and asymptotic variance of param‑
eter estimates for sample size 800

Sam‑
ple 
size

Parameter �1 �2 �
a,1 �

a,2 �1,1 �2,1 �1,2 �2,2

n = 800Empirical 
bias

− 0.0026 0.0013 − 0.2691 − 0.0361 − 0.1653 0.0154 − 0.0292 − 0.0063

Estimated 
vari‑
ance

0.0006 0.0005 9.1021 7.6616 0.7676 0.1685 0.3514 0.1200

Asymp‑
totic 
vari‑
ance

0.0005 0.0005 8.4837 7.1945 0.7293 0.1657 0.3508 0.1289
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different sample sizes, the BOBYQA-algorithm (Powell 2009) was chosen to per‑
form the fitting of the models. It showed the best and most consistent conver‑
gence results paired with a competitive computation time compared to its direct 
competitors. All computations are performed using the open-source software R 
and the therein available implementations.

As a warming up, 400 independent datasets are generated from the first model in 
Example 1 with sample size 800. Results concerning empirical bias 
( empirical bias(�̂j) =

1

400

∑400

i=1
�̂i
j
− (�0)j , with �̂i

j
 the parameter estimates based on the 

i-th realized dataset), estimated variance ( estimated variance(�̂j) =
1

399

∑400

i=1
(�̂i

j
−

1

400

∑400

k=1
�̂k
j
)2 ) 

and asymptotic variance can be found in Table 2. Selected histograms for �̂2 and �̂2,2 
are shown in Fig.  2. The asymptotic variance is calculated using the expressions in 
Proposition 6, i.e., the asymptotic variance of the estimator �̂j is n−1�(�0)

−1
j,j

 . In this 
example the inverse of the Fisher information matrix is given by (20). Parameter esti‑
mates behave as expected under the developed theory. Asymptotic variance decreases at 
a n−1-rate, empirical bias is approximately zero, and the parameter estimates show clear 
normal behavior. These are thus the results expected under the presented asymptotic 
theory of Sect. 3.

4.1 � Simulations

To investigate the finite sample performance of the MLE, several models are 
considered.

Model 1: a bivariate model consisting of a QBA-normal distribution ( fZ1 ) and 
a QBA-Student’s t-distribution ( fZ2 ) with the following parameters

D
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5

(b) Â2,2.

Fig. 2   First model of Example 1: histograms of selected parameter estimates for sample size 800. The 
solid curve indicates the asymptotic normal distribution of the corresponding parameter
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A contourplot of this model is given in Fig. 3, and the corresponding measures of 
asymmetry are listed in Table 3.

Model 2: a six-dimensional model consisting of all components Zj having QBA-
Laplace distributions with the following parameters

� =

(
0.35

0.7

)
�a =

(
0

0

)
� =

[
4 1

−3 4

]
�2 = 6 .

Fig. 3   Contourplot of Model 1
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Table 3   Measures of asymmetry 
of Model 1

�
d
(�) �(�) �(�)

8.1280
[
1.7366

−2.2610

] [
0.9539

−0.0103

]

Table 4   Measures of asymmetry 
of Model 2

�
d
(�) �(�) �(�)

1.1011 ⎡⎢⎢⎢⎢⎢⎢⎣

0.5254

0.5665

0.6303

0.2338

0.2008

0.1087

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1.4178

0.4940

0.9030

0.1564

0.2899

0.1067

⎤⎥⎥⎥⎥⎥⎥⎦
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Measures of asymmetry for the second simulation model are given in Table 4. 
Note that the first components of both �(�) and �(�) show higher values.
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Fig. 4   Model 1: boxplots of parameter estimates for sample size 100, 200, 400 and 800. The horizontal 
line represents the true parameter value
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For both models, sample sizes 100, 200, 400 and 800 are considered. In each of 
these settings, 400 independent random datasets are generated, from which empiri‑
cal bias and variance of the parameter estimates are computed. The approximate 
variance is compared to the corresponding theoretical value obtained from the 
asymptotic results presented in Sect. 3.

As for the optimization software, the following settings are used. The number 
of randomly generated starting values for the parameters is 40, and the maximum 
number of iterations of the BOBYQA-algorithm is fixed at 35,000 to ensure conver‑
gence can take place. As a convergence criterion the first to occur between a relative 
change of 10−6 in the norm of the parameter values or an improvement of less than 
10−9 in the log-likelihood is used. We summarize a selection of the results. A more 
detailed presentation of all simulation results can be requested from the authors.

(a) (b)

(c)

Fig. 5   Model 1: histograms of parameter estimates for sample size 800. The solid curve indicates the 
asymptotic normal distribution of the corresponding parameter
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For Model 1, empirical bias, asymptotic variance and estimated variance are 
shown in Table 5. Boxplots of the estimates for �̂1 , �̂a,2 and �̂1,2 are shown in Fig. 4. 
As can be seen, empirical bias is almost negligible for all parameters except the 
degrees of freedom of the Student’s t-distribution. This is a problem inherent to the 
Student’s t-distribution when sample sizes are small. The transition from n = 400 
to n = 800 is an indication of the validity of the asymptotics. There is a further 
decrease in the empirical bias of the parameter estimates and estimated variances 
are much closer to their theoretical counterpart. This is most noticeable for the 
elements of the matrix � . Although for n = 400 the variance of �̂1,1 is estimated 
excellent, all others are rather poorly estimated together with the degrees of free‑
dom for the Student’s t-distribution. The problem of this, however, is that estimating 
degrees of freedom for Student’s t-distributed random variables is hard in smaller 
samples. Even in the symmetric univariate case, the degrees of freedom parameter 
is often overestimated because heavy tails are hard to grasp from finite samples. For 
n = 800 , all empirical variances except the one for the degrees of freedom approxi‑
mate the theoretical variances well. Accuracy of variance estimates can thus be quite 
bad for smaller sample sizes. However, when sufficient data points are used, here 
800, theory and reality are conform. This is nicely illustrated by Fig. 5, where a his‑
togram of the fitted parameters is plotted against the asymptotic distribution of the 
corresponding parameter.

The same conclusions can be drawn for Model 2. For selected parameter esti‑
mates, empirical bias, estimated and asymptotic variance can be found in Table 6. 
Boxplots of the same parameter estimates for all considered sample sizes are shown 
in Fig. 6. The latter gradually center around the true parameter value as the sample 
size increases. The rate at which variance in parameter estimates drops corresponds 
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Fig. 6   Model 2: boxplots of parameter estimates for sample size 100, 200, 400 and 800. The horizontal 
line represents the true parameter value
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to the desired n−1-rate. Finite sample performance largely depends on the model con‑
sidered, specifically the dimensionality of the model. Whereas for a bivariate model, 
800 observations seem to suffice for the asymptotics to kick in, it is not enough for 
a six-dimensional model. The main reason for this is that the number of parameters, 
which is at least d2 + 2d , is 48 in the six-dimensional model. It is natural that for a 
similar accuracy, a lot more observations are required.

4.2 � Impact of sample size and dimensionality

For practitioners, fitting a model should be possible within a reasonable time-frame. 
Of course, computing time is influenced by both the dimensionality of the prob‑
lem and the sample size. To get a grasp at how these two factors impact compu‑
tation time, two separate simulation cases have been studied. The first is aimed at 
exploring the impact of the sample size on the computation time. To this extent, a 
six-dimensional model consisting of only QBA-Laplace distributed univariate com‑
ponents with parameters given in (23) is used. For this model, 100 independent sam‑
ples of size 2000, 4000, 6000, 8000 and 10,000 are generated. For each dataset, 20 
random starting points for the parameters are used. Boxplots of the resulting com‑
putation time (in seconds) are shown in Fig. 7. The median computation time for 
sample size 2000 is 410 s, whereas for sample size 10,000 it is 1793 s. It thus seems 
that sample size has a linear impact on computation time, as could be expected. All 
simulations are run on a Dell Latitude 5590 with an Intel i5-8350U CPU clocked at 
1.70 GHz.

To assess the impact of the dimensionality d of the problem, a similar strategy 
is employed for 100 independent replicates with sample size 10,000 for models 
with dimensions 2, 4, 6, 8 and 10. As for the model on the impact of the sample 
size, for these models solely QBA-Laplace univariate components are used. For 
the skewing parameters � , d equally spaced values in the interval [0.2, 0.4] are 

Fig. 7   Impact of sample size on 
computation time
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taken. The other parameter values are given by (24), with lower dimensional 
models as indicated by the dashed lines:

Each time, 20 random sets of starting values are used and the number of iterations is 
capped at 35,000 for dimensions 2, 4 and 6 and for dimensions 8 and 10 capped at 
75,000 to make sure the algorithm can converge. Boxplots of the computation time 
can be found in Fig. 8.

As expected, sample size impacts the computation time linearly. This is due 
to the log-likelihood being evaluated in more points, which doesn’t change the 
complexity of the optimization. Dimensionality is a different story. As reported 
in Powell (2009), the BOBYQA-algorithm has a theoretical complexity of 
O(m2) , with m being the number of parameters. Since the number of parameters 
( d2 + 2d ) of our model increases quadratically with the dimension d, the com‑
plexity is expected to be of order O(d4) . The numerical results of this limited 
setting, however, show a more quadratic behavior. It is also important to keep in 
mind that 20 different sets of starting values for the parameters are used.
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Fig. 8   Impact of dimensionality 
on computation time
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5 � Data applications

We present two data applications. As a benchmark, we use the current norm in mul‑
tivariate asymmetric distributions: the skew-elliptical distributions (2), in particu‑
lar the skew-normal and skew-t distribution. The comparison between our proposed 
distributions and the skew-elliptical ones is based on some goodness-of-fit criteria. 
For univariate goodness-of-fit, many test criteria are available. However, multivar‑
iate extensions of these goodness-of-fit tests are scarce. So in order to assess the 
goodness-of-fit, we rely on the Akaike’s information criterion (AIC, Akaike, 1974) 
and a graphical goodness-of-fit diagnosis based on the depth-depth plot (DD-plot). 
The former criterion can be used to compare non-nested models which are fit using 
maximum likelihood estimation. Formally, the AIC is defined as

in which �
(
�̂
ML

n
;�(n)

)
 is the log-likelihood evaluated in the MLE and k the number 

of model parameters. When fitting multiple models using MLE, the model with the 
lowest AIC is considered to be the better model among the different candidate 
models.

The DD-plot as proposed in Liu et al. (1999) can be seen as a multivariate ana‑
logue of the well-known quantile-quantile plot. As there is no unique way of defin‑
ing quantiles in higher dimensions, instead statistical depth as defined in Zuo and 
Serfling (2000) is used. This provides an outward ordering of the data based on 
some measure of centrality with respect to a distribution. In a way, statistical depth 
is thus an intuitive multivariate extension of quantiles. A DD-plot then compares the 
statistical depth of the data in the fitted distribution to that in its empirical distribu‑
tion function. As an analytical expression for the depth of data in a certain distribu‑
tion is in general not available, a numerical approximation is used. This approxima‑
tion consists of calculating the depth of the data in a sufficiently large sample (here 
10,000 observations are generated) from the fitted distribution. We then plot the 
depth of the data in itself against the depth of the data in the random sample to cre‑
ate the DD-plot. As a depth function, the halfspace depth (also called Tukey depth, 
Tukey 1975) is used. This is defined in Zuo and Serfling (2000) as

so the halfspace with the least probability mass containing � . The sample version 
of the halfspace depth DH(�, �

(n)) of a point � with respect to a sample �(n) of size 
n with empirical distribution function Pn is given by (Struyf and Rousseeuw 1999)

Halfspace depth is thus given by the minimal fraction of points of �(n) contained 
in a halfspace that contains � . Following this definition, it is clear that DH(�, �

(n)) 
can only take on values in [0, 0.5] and larger values imply that � lays closer to the 

AICn = −2�
(
�̂
ML

n
;�(n)

)
+ 2k,

DH(�|P) = inf {P(H) ∶ H a closed halfspace,� ∈ H},

DH(�, �
(n),Pn) = min

�∈ℝd ,‖�‖=1
1

n
#{i ∶ �T�i ≤ �T�}.
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center of the sample �(n) . If the fitted distribution provides a good fit, the point cloud 
of the DD-plot should be close to the 1:1 line.

As candidate models from the proposed family of distributions, we use all combi‑
nations of QBA-Laplace, QBA-normal, QBA-logistic and QBA-Student’s t univari‑
ate components. As the ordering of these components is of no importance due to the 
relabeling problem explained in Sect. 3 and univariate components are allowed to 
be of the same type of distribution (e.g., two QBA-Laplace distributions). This is a 
combination with repetition but without ordering. Hence, for a d-dimensional data‑
set with m different options for the univariate components (in our setting m = 4 ), 
this leaves a total of (m+d−1

d
) possible models to fit. These are then compared to the 

benchmark using the above two criteria.
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Fig. 9   AIS-data with contour plots of some fitted models
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5.1 � AIS‑dataset

The first data example is often encountered in papers on multivariate asymmetric 
distributions, the AIS-dataset. The data as depicted in Fig. 9 concern the body mass 
index (bmi) calculated as height (in cm) divided by squared mass (in kg) and lean 
body mass (lbm, expressed in kg), which is the body mass without fat mass, of 202 
Australian athletes. The data are freely available in the DAAG​-package in R and orig‑
inates from Cook and Weisberg (1994).

To these data, the proposed distributions as well as a bivariate skew-normal and 
skew-t distributions are fitted. Fitted parameters for a bivariate QBA normal–nor‑
mal, a QBA Student’s t-normal, a QBA logistic-normal distribution, the bivariate 
skew-normal and the bivariate skew-t distribution are given in Table  7. The esti‑
mated standard errors between brackets are obtained from the asymptotic normality 
result established in Theorem 1, the expression for the elements in the Fisher infor‑
mation matrix provided in Proposition 6, and by substituting the parameters by their 
estimates.

DD-plots of three of the five fitted distributions are shown in Fig. 10. The plots 
for the skew-t distribution are similar to these for the skew-normal and therefore 
not included. See also the estimated high value for the degrees of freedom � in 
Table 7. A direct comparison, both visual from the DD-plots and based on AIC, 
between the quantile-based and skew-elliptical models reveals that they perform 
very similar. With only small differences in AIC and almost identical DD-plots, 
both types of distributions provide a good fit to the AIS-data. It terms of distribu‑
tion itself, there are subtle differences between the quantile-based and the skew-
elliptical distributions as can be seen in Fig.  9. The skew-normal model shows 

Table 7   AIS-data

Fitted parameters for considered models. Standard deviations, based on the asymptotic normal distri‑
bution (Theorem 1) and the expression for the Fisher information matrix (Proposition 6), are between 
brackets

Quantile-based Azzalini’s bivariate

Normal–normal Student’s t-normal Logistic–normal Skew-normal Skew-t

AIC 2432.1280 2429.0070 2426.718 2440.5220 2442.2150
�̂1 0.2178 (0.0423) 0.2262 (0.0416) 0.2246 (0.0403) �̂1

5.5153 5.2424

�̂2 0.3020 (0.0480) 0.3002 (0.0479) 0.3005 (0.0479) �̂2
− 2.3022 − 2.2349

�̂
a,1 20.0532 (0.4256) 20.1088 (0.3789) 20.1003 (0.3737) �̂1

20.1355 20.1979

�̂
a,2 54.6272 (2.2599) 54.4946 (2.1948) 54.5137 (2.1986) �̂2

61.7612 61.9651

�̂1,1
0.7490 (0.1214) 0.6667 (0.1083) 0.4262 (0.0638) �̂1,1

16.116 14.8864

�̂2,1
0.6493 (0.0978) 0.6274 (0.0927) 0.6305 (0.0929) �̂2,1

35.3676 32.6333

�̂1,2
0.9029 (0.3755) 0.8514 (0.3107) 0.5402 (0.1974) �̂1,2

35.3676 32.6333

�̂2,2
5.2251 (0.5445) 5.1827 (0.5445) 5.1894 (0.5443) �̂2,2

179.6722 171.7735

�̂ 7.3017 (3.5005) �̂ 51.0020
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(a) Quantile-based
normal-normal.
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(b) Quantile based
Student’s t-normal.
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(c) Skew-normal.

Fig. 10   AIS-data. DD-plots for some fitted models

Table 8   AIS-data

AIC of seven fitted quantile-based models (not discussed)

AIC

Quantile-based:
 Logistic–logistic 2434.9500
 Normal–Laplace 2437.7540
 Logistic–Laplace 2445.4860
 Laplace–Laplace 2458.8400
 Student’s t–logistic 2429.1910
 Student’s t–Laplace 2440.0490
 Student’s t–Student’s t 2431.4830
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more elongated contours toward the lower left direction compared to the other 
two. It is also slightly more rounded at the top right of the data. Yet, despite the 
differences the quality of the fit is surprisingly similar.

As a brief mention, the best fitting QBA-distribution to the AIS-data is a QBA-
logistic–QBA-normal one. In terms of DD-plot, this gives similar results to the ones 
shown in Fig. 10, but it has an AIC of 2426.718. The AIC of the other seven models 
not mentioned here are given in Table 8.

In this paper, the focus is on a frequentist approach, allowing to establish statisti‑
cal inference for the entire family. Of course any model in this context of linear com‑
binations of QBA-distributions can also be fit using Bayesian estimation. To illus‑
trate this, we simply fit the QBA-logistic–QBA-normal model to the AIS-data using 
Bayesian techniques. As the sample size is rather low, 4 MCMC chains are run, each 
consisting of a burn-in period of 20,000 iterations and a sampling period of 20,000 
iterations. The final sample is then obtained by taking each fifth set of parameters 

Table 9   AIS-data: fitted parameters by a Bayesian approach using the previously mentioned sets of pri‑
ors

For the mean estimator, the standard deviation is mentioned in brackets

Parameter Uniform priors Normal priors

Mode estimator Mean estimator Mode estimator Mean estimator

�̂1 0.2402 0.2392 (0.0383) 0.1833 0.1870 (0.0248)
�̂2 0.2916 0.3012 (0.0475) 0.3129 0.3161 (0.0377)
�̂
a,1 20.1332 20.2139 (0.3929) 19.9272 19.9316 (0.2831)

�̂
a,2 54.7715 55.1628 (2.2670) 55.4273 55.5103 (1.5965)

�̂1,1
0.7557 0.7802 (0.1108) 0.6314 0.6256 (0.0590)

�̂2,1
0.3911 0.3921 (0.0658) 0.4142 0.4195 (0.0496)

�̂1,2
0.7280 0.7711 (0.4443) 0.5593 0.5484 (0.1659)

�̂2,2
3.0055 3.0635 (0.3422) 3.2461 3.2271 (0.2875)

AIC 2440.939 2440.703 2442.359 2442.099

Table 10   Pokémon data

AIC for the 5 best performing quantile-based models, the skew-normal and the skew-t model

Distribution AIC

Quantile-based Laplace–Laplace–logistic–logistic–logistic–t 43,867.86
Quantile-based Laplace–t–t–t–t–t 43,875.64
Quantile-based t–t–t–t–t–t 43,884.05
Quantile-based Laplace–logistic–t–t–t–t 43,903.21
Quantile-based Laplace–Laplace–Laplace–logistic–logistic–t 43,903.93
Skew-normal 44,758.60
Skew-t 44,397.44
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from the sampling period. For this, the rstan-software package Stan Development 
Team (2021) is used.

Following Rubio and Steel (2015) priors are chosen to be vague priors, more 
specifically independent uniform priors. The range is based on the MLE and the 
imposed restrictions on the parameter space. Taking these factors into account, the 
priors are U[0.05;0.95] for both �j , j = 1, 2 ; U[15;35] for �a,1 ; U[20;110] for �a,2 ; 
U[0;10] for both A1,1 and A2,2 ; and finally U[−10;10] for A1,2 and A2,1 . As final esti‑
mate, the mean (with s.d.) and mode of the posterior distribution are reported.

A second set of priors is used based on the MLE reported in Table 7. This set 
consists of independent normal priors with mean the MLE rounded to two decimals 
and standard deviation twice that of the MLE, rounded to one decimal.

The resulting posterior distributions are depicted in Figs. S.1 and S.2 in the Sup‑
plementary Material, for, respectively, the uniform and normal priors and the param‑
eter estimates in Table 9. The prior distributions have an impact on the estimates 
and their precision. In particular, the impact on the precision is very noticeable from 
Figs. S.1 and S.2. The Bayesian parameter estimates are of the same magnitude, but 
there are some striking differences between these and the MLE, mainly in the esti‑
mate for A2,2 , which is almost half as small as the MLE. This translates in a decent, 
but sub-optimal AIC value, which is still on par with skew-normal and skew-t mod‑
els; nevertheless, even though accurate MLE priors are used, the MCMC-algorithm 
still converges to a different optimum.

5.2 � Pokémon data

In this data example, the base stats of 800 existing Pokémon up to generation 7 
are used. The dataset is freely available from https://​www.​kaggle.​com/​mlomu​scio/​
pokem​on. The variables are: Hitpoints (HP), Attack, Defense, Special Attack, 
Special Defense and Speed. We thus have a six-dimensional dataset to which 
the proposed quantile-based distributions and both the skew-normal and skew-t 
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(a) Best quantile-based model.
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(b) Skew-t model.

Fig. 11   Pokémon data. DD-plots for the best quantile-based and skew-elliptical distributions

https://www.kaggle.com/mlomuscio/pokemon
https://www.kaggle.com/mlomuscio/pokemon
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distribution are fitted. For the quantile-based models, all 84 possibilities are fit‑
ted. In Table 10, the best 5 models, among the considered 84 models, according 
to AIC are presented and compared to the skew-normal and skew-t model. All 5 
best quantile-based models have a lower AIC value than the skew-elliptical mod‑
els. In fact, when we only take AIC into consideration, there are only 4 out of 84 
quantile-based models that perform worse than the skew-t model and none that 
performs worse than the skew-normal model. A visual check of the fits is also 
provided in the form of DD-plots. These are only provided for the best fitting 
(based on AIC) quantile-based model (the quantile-based Laplace–Laplace–logis‑
tic–logistic–logistic–Student’s t-model) and the skew-t model. The DD-plots can 
be found in Fig. 11. Again, the quantile-based model provides a good fit to the 
data and clearly outperforms the skew-t model.

Interesting to note is that Table  10 shows that the best performing quantile-
based models all contain at least one or more Student’s t-distributed components. 
In all these models, the degrees of freedom are low for one component (or two 
when there are multiple components). The majority of the other components are 
light tailed distributions (or Student’s t with high degrees of freedom). This pro‑
vides an explanation for the better performance of our models as some, but not 
all variables in the data have heavy tails. The skew-elliptical distributions are less 
capable of capturing this different tail behavior and therefore perform worse.

Another point of interest is the estimated dependence structure. For the quan‑
tile-based models, the correlation is based on the covariance given in (7) using 
the estimated parameters. Figure 12 shows the heatmaps of the difference between 
the estimated and empirical correlation matrix for the best fitting quantile-based 
model and the skew-t model. For most variables, correlation is estimated accu‑
rately. For the best fitting quantile-based model, the correlation between defense 
and the other variables is less accurate, whereas for the skew-t model, this is 
mainly the case for HP, but also in lesser extent for defense and special defense. 
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Fig. 12   Pokémon data. Difference of the estimated correlation structure from the model and the empiri‑
cal correlation structure
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In an attempt to represent Fig. 12 with a single number that can be used to com‑
pare performances of models, one can consider the sum of squared differences 
between the estimated and the empirical correlation matrix

For the best fitting quantile-based model, this results in a value of 0.1047, 
whereas for the skew-t model it is 0.4209. This confirms that, overall, the correla‑
tion structure estimated by the quantile-based model deviates less from the empiri‑
cal correlation than the estimated correlation structure from the skew-t model.

6 � Conclusion and discussion

In this work, we study a family of asymmetric multivariate distributions based on an 
affine transformation of members of the quantile-based asymmetric family of dis‑
tributions. The proposed family has an advantage over competing distributions in 
the form of added flexibility. This flexibility lies in the allowance of all types of 
distributions in the affine combination. This is contrary to other popular asymmetric 
multivariate distributions which rely on the skewing of a single elliptical multivari‑
ate distribution. We also show that under mild conditions, a maximum likelihood 
estimator is consistent and asymptotically normally distributed. A simulation study 
investigates the finite-sample performance of the MLE.

Asymptotic results for the maximum likelihood estimator for affine combinations 
of univariate random variables are, as far as we are aware, not published before. 
The results presented here, albeit restricted to the quantile-based asymmetric family 
of distributions, can readily be extended to incorporate other families of asymmet‑
ric univariate distributions. In doing this, a broad, general family of distributions is 
obtained. This is provided that statistical inference results for the univariate distribu‑
tions exist. Other skewed distributions, like univariate skew-symmetric distributions, 
can also be included as components for the linear combination. There is, however, 
a trade-off to be made. The affine combination has great flexibility, but remains an 
affine combination. The dependency structure thereby imposed might be too simple 
to capture the dependency of the data in its full extent. Linear approximations gener‑
ally provide decent results, but if the data are too complex, they might not suffice. So 
even though a good fit can be obtained, one has to reflect whether dependencies are 
modeled well enough.

It might be worthwhile to consider the QBA-family as margins together with a 
copula structure. Copulas provide a particular appealing flexible tool for construct‑
ing multivariate distributions, as they allow to combine, possibly in a dependent 
manner, marginals of a lower dimension (such as univariate ones). Rubio and Steel 
(2013), for example, use a Gaussian copula to model the dependence between two 
random variables. It is important, however, to go beyond Gaussian copulas, or more 
generally elliptical copulas, and general dimensions. There are ample of areas where 

6∑
i,j=1

(
Ĉorfitted(i, j) − Coremp(i, j)

)2

.
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such constructions are used. An example of this is in the construction of graphs, see 
for example Pircalabelu et al. (2017). The main challenge in such an approach in the 
context of asymmetric multivariate distributions lies again in providing theoretical 
support for statistical inference, in a unified manner, irrespectively of the specific 
lower dimensional asymmetric marginals and/or copula used. This is a topic of cur‑
rent research.

Appendix: Proofs of Propositions 2, 3 and 4, and of Theorem 1

Proof of Proposition 2  Suppose that f (�;�) = f (�;�∗) and that we know � up to its 
parameters (e.g., Z1 is of a QBA-logistic type etc.). We first prove that �a is identifi‑
able. By construction, fZj , j = 1,… , d is unimodal with mode 0. Together with (5), 
this implies

Thus, �a = �∗
a
 and |det(�)| = |det(�∗)| . Hence �a is identifiable. Without loss of 

generality, we can assume that for the remainder of the proof, �a = �.
The identifiability result we are aiming at is commonly referred to as uniqueness 

in the ICA-literature. In Eriksson and Koivunen (2004), necessary and sufficient 
conditions are provided for a noiseless ICA model ( � = �� ) to be unique. These are

•	 There are no Gaussian sources. Or,
•	 If � has full column rank, there is at most one Gaussian source.

Since � ∈ ℝ
d×d is non-singular, it has full column rank. If condition (I1) holds, the 

mixing matrix � is unique, i.e., identifiable up to a possible permutation and rescal‑
ing together with the accompanying permutation and rescaling of � . A location dif‑
ference is not possible as � does not contain a location parameter.

For, the scale ambiguity note that by (3)

By restricting the sign of a single element of (�−1)
⋅,j as in (I2) , this problem can no 

longer occur. By

with �̃j ∈ ℝ
d×d the identity matrix with −1 at (̃Ij)j,j , fixing the signs of the diagonal 

elements of � also suffices.
Since each of the Zj ’s lacks a scaling parameter and none of the other parameters 

of Zj affects the scaling in a linear way (otherwise it is considered a scaling param‑
eter), any rescaling of � cannot be compensated by rescaling the parameters of � . 
Hence, � is identifiable up to a permutation. By the identifiability of each of the Zj , 
also its parameters are uniquely determined up to the same possible permutation. 

∀�,�∗ ∈ ℝ
d×d non-singular∶ arg

�∈ℝd

maxf (�;�) = argmax
�∈ℝd

f (�;�∗) = �a.

∃j = 1,… , d ∶ �∗
j
= 1 − �j and (�

∗)−1
⋅,j

= −(�−1)
⋅,j ⇒ f (�;�) = f (�;�∗).

(̃�j�)
−1 = �−1(̃�j)

−1 = �−1�̃j,
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Thus, � = �∗ up to a possible permutation of � and � . Therefore the model is identi‑
fiable. � □

Proof of  Proposition 3  We employ a proof by induction on the dimension of the 
matrix. For d = 2 this is trivial as � is invertible and thus has a non-zero determi‑
nant. Suppose the statement holds for any invertible (d − 1) × (d − 1)-matrix. Con‑
sider the matrix

with � ∈ ℝ
(d−1)×(d−1) , �,�T ∈ ℝ

d−1 and E ∈ ℝ . Since � is invertible, it must hold 
that

where (�∗)j =

[
(�)−j,.
�

]
 , so the (d − 1) × (d − 1)-matrix where the j-th row of � is 

omitted and � is added. Now consider the following two cases. 

1.	 det(�) ≠ 0 and E ≠ 0 . By induction, the statement holds for �.
2.	 {det(�) ≠ 0 and E = 0 } or det(�) = 0 . In this case, by (25), ∃j ∈ {1,… , d − 1} 

such that det((�∗)j) ≠ 0 and Cj ≠ 0 . By swapping the j-th row of � with (�,E) , 
the resulting matrix falls into case 1. This holds because the element replacing 
E is nonzero and the new matrix that takes the place of � is invertible as it is a 
row permutation of (�∗)j , thus conserving the nonzero determinant. Hence, the 
statement holds.

This concludes the proof as the above two cases contain all possible configurations 
of � . � □

Proof of Proposition 4  The proof is largely based on similar arguments concerning 
the consistency of the maximum likelihood estimator for the univariate quantile-
based asymmetric family of distributions: Theorem  3.3 in Gijbels et  al. (2019), 
which in term uses Theorem 2.5 of Newey and McFadden (1994). The latter theo‑
rem states that under the following conditions (i) to (iv) the maximum likelihood 

estimator is weakly consistent, i.e., �̂
ML

n

P
→ �0 for n → ∞ . 

	 (i)	 If � ≠ �0 then f�(�;�) ≠ f�(�;�0).
	 (ii)	 The true parameter �0 ∈ � , with � a parameter space which is compact.
	 (iii)	 The log-likelihood function �(�;�) is continuous at each � ∈ �.
	 (iv)	 It holds that E[sup�∈�‖�(�;�)‖] < ∞ , where ‖.‖ is the Euclidean norm.

� =

[
� �

� E

]
∈ ℝ

d×d,

(25)det(�) = det(�)E +

d−1∑
j=1

(−1)d+jCj det((�
∗)j) ≠ 0,



197

1 3

Flexible asymmetric multivariate distributions

Condition (i) is fulfilled by Proposition 2, in which the identifiability of the parame‑
ters is guaranteed by assumption (C1) . Conditions (ii) and (iii) follow from respec‑
tively Assumption (C2) and the continuity of both the natural logarithm and fZj . So 
only condition (iv) remains to be checked. From (5) and (12), we have that

where boundedness follows from the invertibility of � and Assumption (C3) , as 
proven in Theorem  3.3 of Gijbels et  al. (2019). Since the inequality holds for all 
� ∈ �R , condition (iv) is satisfied and consistency of the maximum likelihood esti‑
mator holds. � □

Proof of Theorem 1  The proof is largely based on Theorem 3 in Huber (1967), which 
handles asymptotic normality of maximum likelihood estimators for non-differentia‑
ble likelihood functions when consistency has been established.

Since consistency is shown in Proposition 4, only the following four conditions 
from Huber (1967) need to be fulfilled for the theorem to hold 

	 (I)	 For each fixed � ∈ � , � (�;�) is �-measurable and � (�;�) is separable. [See 
Assumptions A-1 p. 222 of Huber (1967).]

	 (II)	 There exists a �0 ∈ � for which �(�0) = �.
	 (III)	 There are strictly positive numbers a, b, c, r0 such that 

	 (i)	 ‖�(�)‖ ≥ a��� − �0
�� for ‖‖� − �0

‖‖ ≤ r0.
	 (ii)	 E[u(�;�, r)] ≤ br for ‖‖� − �0

‖‖ + r ≤ r0, r ≥ 0.
	 (iii)	 E[(u(�;�, r))2] ≤ cr for ‖‖� − �0

‖‖ + r ≤ r0, r ≥ 0.

	 (IV)	 The expectation E[‖� (�;�)‖2] is finite.

These conditions are checked in a similar way as in the proof of Theorem  3.4 in 
Gijbels et  al. (2019), which is already quite general. We start with condition 
(I). By Lemma 2 � (�;�) is measurable. That � (�;�) is separable holds under 
the stated assumptions. Indeed, each of the component functions � j(�;�) , for 
j = 1,… , d2 + 2d , is separable, and this is a finite number of functions. That each 
component function is separable follows from its continuity, except on a set with 

E[‖𝓁(�;�)‖] = E

�������
− ln �det(�)� +

d�
j=1

ln fZj ((� − �a)
T (�−1)

⋅,j;�j)

������

�

≤ E

�
�ln �det(�)�� +

d�
j=1

���fZj ((� − �a)
T (�−1)

⋅,j;�j)
���
�

= �ln �det(�)�� +
d�
j=1

E
����fZj((� − �a)

T (�−1)
⋅,j;�j)

���
�

< ∞,
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probability measure zero. Condition (II) is met by Proposition 5, whereas for condi‑
tion (IV) we have by the definition of the Euclidean norm

where the finiteness follows from Proposition 6.
Remains to look into condition (III). The key property in this is continuity of 

�(�) in a neighborhood of �0 , which holds by Lemma 3. The proof can be com‑
pleted similarly as in Gijbels et al. (2019). For details, the reader is referred to that 
paper. � □

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00842-6.
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