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Abstract This document contains supplementary material for AISM paper 
“Group least squares regression for linear models with strongly correlated pre-
dictor variables”. It consists of (i) a fuller version of the remarks in Section 
2.3 of the paper on group effects t hat a re meaningful and c an b e accurately 
estimated, (ii) a simulation study on the group approach to the least squares 
regression, and (iii) a more detailed analysis of the Hald cement data. The 
simulation study examines the performance of the group approach in estima-
tion, variable selection and prediction, and compares this approach with the 
traditional non-group based variable selection and ridge regression. For sim-
plicity of presentation, we use a small model (3) for this simulation study. We 
emphasize that the good performance and advantages of the group approach 
we observe in this simulation study do not depend on the examples used; sim-
ilar results can be obtained when the group approach is applied to any linear 
model containing one or more groups of strongly correlated variables.

Notation Throughout this document, equation numbers with a “†” sign refer 
to equations in the paper “Group least squares regression for linear models 
with strongly correlated predictor variables”. Equation numbers without this 
sign, such as the (3) in the abstract, refer to equations in this document.
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1 Effects that are meaningful and can be accurately estimated

Remarks [a] and [b] in Section 2.3 of the paper discussed group effects that
are meaningful and can be accurately estimated. Here, we expand on these
remarks and also add a discussion on general linear combinations of parameters
of strongly correlated variables that can be accurately estimated.

Remark [a] For the q strongly correlated variables in APC arrangement
in X′

1 of the standardized model (8)†, let ξ′(w) = w1β
′
1 + w2β

′
2 + · · · + wqβ

′
q

be a group effect. Its minimum-variance unbiased linear estimator is

ξ̂′(w) = w1β̂
′
1 + w2β̂

′
2 + · · ·+ wqβ̂

′
q.

When the level of multicollinearity is high (rM close to 1), by Theorem 1 in the

paper, the eigen-effect ξE in (12)† is accurately estimated with var(ξ̂E) ≈ σ2/q.
The corresponding normalized eigen-effect ξ∗E is also accurately estimated with

var(ξ̂∗E) ≈ σ2/q2, and Theorem 2 implies all (normalized) effects that can be
accurately estimated are in a small neighbourhood of ξ∗E . The average group
effect ξA in (15)† has simple expression and interpretation. Since ξ∗E → ξA
as rM → 1, ξA is in general in the small neighbourhood of ξ∗E containing all

effects that can be accurately estimated and var(ξ̂A) ≈ σ2/q2. Because of this
and the simplicity of ξA, we use it as the reference point to characterize the
set of all effects that can be accurately estimated. Specifically, at high levels
of multicollinearity, such effects are in a small neighbourhood of ξA,

NA = {ξ′(w) : ||w −wa|| < δ1} (1)

where δ1 is a small positive constant and wa = 1
q1q is the weight vector of ξA.

Incidentally, there are same number of effects that can be accurately estimated
(in the sense of having a 1-to-1 correspondence) even when variables in X′

1 are
not in an APC arrangement, but these effects would be difficult to characterize.
The APC arrangement made the simple characterization (1) possible.

For the q variables in APC arrangement in X1 of the unstandardised model
(3)†, the variability weighted average ξW in (18)† is accurately estimated by

ξ̂W in (19)† as var(ξ̂W ) is substantially smaller than σ2. Other effects ξ(w) in
(4)† that can be accurately estimated are in a neighbourhood of ξW

NW = {ξ(w) : ||w −w∗|| < δ2}, (2)

where δ2 is a small positive constant. An alternative way to characterize NW

is to use NA as follows. Let ξ(w) = κ × ξ′(w′) where κ =
∑q

i=1 |wis
−1
i | and

ξ′(w′) is a group effect for X′
1 in the corresponding standardized model with

weights w′ = (w′
1, w

′
2, . . . , w

′
q)

T where w′
i = wis

−1
i /κ. Usually, κ is small as si

is in general much larger than wi. Thus, ξ(w) can be accurately estimated if
ξ′(w′) can be accurately estimated, so an alternative expression for NW is

NW = {ξ(w) : ξ(w) such that the corresponding ξ′(w′) ∈ NA}.
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Remark [b] Set NA in (1) is also the set of practically important and
meaningful group effects for variables in X′

1 in that w values in the neigh-
bourhood of wa represent the most probable changes of the variables in X′

1.
Two extreme examples illustrate this point. (I) Effect β′

1 /∈ NA as its weight
vector is w1 = (1, 0, . . . , 0). It represents the group impact on response when
x′
1 increases by 1 unit but the other variables do not change. (II) Effect ξA has

wa = (1/q, 1/q, . . . , 1/q), so ξA ∈ NA. It represents the group impact when all
variables increase by (1/q)th of a unit. With strong positive correlations and in
standardized units, the variables are likely to increase at the same time and in
similar amounts. So ξA is practically important and meaningful whereas β′

1 is
not. In fact, estimating β′

1 alone amounts to extreme extrapolation and β′
1 by

itself is neither meaningful nor interpretable as one cannot just increase x′
1 by

1 unit while holding other variables constant under strong correlations among
variables. Another example showing individual parameters are not meaning-
ful is the extreme case of perfect correlation with x′

1 = · · · = x′
q = x′. Let

c = β′
1 + · · · + β′

q. Then, the collective impact of these q variables on the
response is cx′. There are infinitely many sets of β′

i that sum up to c. The
data (X′,y′) contains no information on which set is in the true model. In
this sense, it contains no information about the individual β′

i. Similarly, the
data contains little information about the individual β′

i when the level of mul-
ticollinearity is high. The large variances of the least squares estimators for β′

i

are warnings for this lack of information. As such they should not be viewed
as merely a numerical problem caused by the ill-conditioning of the X′TX′

matrix. This lack of information is always a problem regardless the method of
regression used. With this understanding, we should focus on estimating c, or
equivalently ξA = c/q, and group effects in NA, not individual β

′
i.

For the strongly correlated variables in X1 in the unstandardised model
(3)†, a group effect is meaningful if and only if the corresponding effect in the
standardized model is meaningful, so NW is the set of meaningful effects.

Remark [c] Set NA leads to the following geometric characterization of
linear combinations c1β

′
1 + c2β

′
2 + · · ·+ cqβ

′
q that can be accurately estimated

for the standardized model (8)†. A linear combination can be expressed as
ctξ

′(w) where ct =
∑q

i=1 |ci| and w = ct
−1(c1, c2, . . . , cq)

T . Its minimum-

variance unbiased linear estimator is ctξ̂
′(w), so it can be accurately estimated

when var(ctξ̂
′(w)) = c2t var(ξ̂

′(w)) is smaller than or comparable to σ2. This
happens under one of the following two conditions: (i) ξ′(w) ∈ NA and ct is not
too large, or (ii) ξ′(w) /∈ NA but ct is very small. These two conditions and NA

imply that in the 2-dimensional case where q = 2, points (c1, c2) representing
linear combinations that can be accurately estimated form a band centred
around the line c1 = c2. In higher dimensions where q > 2, they form a hyper-
cylinder centred around the line c1 = c2 = · · · = cq. This observation will be
used for discussing prediction accuracy in the next section.



4 Min Tsao

Table 1 Correlation coefficients of the 6 variables in data matrix Xd

x1 x2 x3 x4 x5 x6

x1 1.00 0.90 -0.34 -0.34 -0.06 0.14
x2 0.90 1.00 -0.27 -0.20 -0.25 0.38
x3 -0.34 -0.27 1.00 0.96 -0.41 -0.53
x4 -0.34 -0.20 0.96 1.00 -0.49 -0.44
x5 -0.06 -0.25 -0.41 -0.49 1.00 0.03
x6 0.14 0.38 -0.53 -0.44 0.03 1.00

2 Simulation study on group least squares regression

2.1 The linear model used in this study

Throughout this simulation study, we will use model (3) below with 6 predictor
variables in 4 groups X1 = [x1,x2], X2 = [x3,x4], X3 = [x5] and X4 = [x6],

y = β01n +X1β1 +X2β2 +X3β3 +X4β4 + ε, (3)

where β0 = 3, β1 = (β1, β2)
T = (0, 0)T , β2 = (β3, β4)

T = (1, 2)T , β3 = β5 = 0,
β4 = β6 = 3 and ε is the n-variate standard normal random error, so σ2 = 1.
We use 6 independent n-variate standard normal random vectors zi and three
parameters (v1, v2, γ) to generate the 6 variables as follows so that groups
X1 = [x1,x2] and X2 = [x3,x4] are, respectively, strongly correlated groups:

x1 = z1, x2 = γ[v1z1 + (1− v1)z2];

x3 = z3, x4 = γ[v2z3 + (1− v2)z4]; (4)

x5 = z5, x6 = γz6.

The theoretical non-zero correlation coefficients among the variables are:

ρ12 = ρ21 = v1[v
2
1 + (1− v1)

2]−1/2,

ρ34 = ρ43 = v2[v
2
2 + (1− v2)

2]−1/2.

We see from the above formulas that ρ12 → 1 when v1 → 1 and ρ34 → 1 when
v2 → 1, so large values of the weights v1 and v2 generate strong correlations
among variables of the two groups. For the simulation study, we need to use
observed values of xi. The sample correlation coefficients of the observed values
of xi differ somewhat from the theoretical values given by the formulas.

We set n = 12, v1 = 0.7, v2 = 0.8 and γ = 2. Matrix Xd = [x1,x2, . . . ,x6]
containing observed values of the 6 variables randomly generated using (4) is
given in “R display 1” below. The full design matrix is X = [1n,Xd]. Table
1 contains the sample correlations of the 6 variables in matrix Xd. It shows
strong within-group correlations for groups X1 and X2 but weak between-
group correlations. This simulation study involves unstandardised model (3).
A standardized example is given in the Hald cement analysis.
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R display 1: The design matrix Xd for all examples in this simulation study.

The full design matrix is X=[1,Xd].

> Xd

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.33247194 2.38707243 0.35045404 1.1355655 -1.66362725 0.82837127

[2,] 0.82081027 -0.04932373 -1.81765385 -3.3503997 1.76569602 0.43909989

[3,] -0.29595458 -0.27168960 0.04750956 0.7710956 0.50504306 -1.07289930

[4,] -0.45687467 -0.96368003 0.79497781 1.6863252 -0.22227593 -1.92318639

[5,] 0.62474607 0.01700248 1.68893821 2.4008808 -0.82581051 -2.15037060

[6,] 0.05469564 0.40265862 -0.71020015 -1.1235155 -0.80982723 1.37227484

[7,] 0.30456557 0.37345144 -1.47371005 -1.7492288 0.93406886 0.82796429

[8,] 0.48008957 1.35339554 -0.42040266 0.2643296 -0.01488494 3.73023350

[9,] -0.68291613 -0.56048771 1.58447035 2.3769584 -0.90045687 -0.57890494

[10,] 1.61956212 2.33300610 0.09129845 0.2557185 -0.36214200 0.07201769

[11,] 2.84612051 3.24706230 -0.95907566 -1.1348475 -0.31756247 -0.26719905

[12,] 0.60236279 0.73704811 0.86278183 1.0274744 1.91966047 -0.32319049

2.2 Group approach to estimation and inference

For a group of strongly correlated variables in an unstandardised model, the
group approach studies only meaningful group effects in the neighbourhood of
its variability weighted average (2). To compare such effects with effects not
in the neighbourhood, we consider the following 6 effects for model (3):

1. ξ1 = w∗
11β1 + w∗

12β2: variability weighted average for group X1.
2. ξ2 = w∗

21β3 + w∗
22β4: variability weighted average for group X2.

3. ξ3 = 1
2 (β1 − β2): half difference effect for group X1.

4. ξ4 = 1
2 (β5 − β6): half difference effect between x5 and x6.

5. ξ5 = 1
2 (β3 + β4): average group effect for group X2.

6. ξ6 = (w∗
21 − δ)β3 + (w∗

22 + δ)β4: an effect in the neighbourhood of ξ2.

Using (17)† and the data in “R display 1”, the weight vectors for ξ1 and ξ2 are
found to be (w∗

11, w
∗
12) = (0.42847, 0.57152) and (w∗

21, w
∗
22) = (0.39177, 0.60822),

respectively. The exact values of the 6 effects are 0, 1.60822, 0,−1.5, 1.5, 1.65822,
respectively. Table 2 gives the means and variances of 1000 minimum-variance
unbiased linear estimates for these group effects and the six parameters βi of
model (3). The minimum-variance unbiased linear estimates for each effect are

computed by replacing each βi in the effect with its least squares estimate β̂i;
for example, that for ξ3 is ξ̂3 = 1

2 (β̂1−β̂2). We used the same design matrix Xd

in “R display 1” and model (3) to randomly generate 1000 y’s. Each estimate
is computed by using one of the 1000 (Xd,y) pairs.

Table 2 shows ξ1 and ξ2 are accurately estimated with very small variances
relative to the error variance σ2 = 1. Effect ξ3 is the half difference effect for
X1 which is not in the neighbourhood of ξ1 as its weight vector (0.5,−0.5)
is not close to (w∗

11, w
∗
12), so it is poorly estimated with a large variance.

But since ξ3 measures the expected change in the response when x1 increases
by half a unit and x2 decreases by half a unit at the same time which is
unlikely to occur given the strong positive correlation between x1 and x2, it
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Table 2 Mean and variance of 6 estimated group effects and 6 estimated individual effects

based on 1000 simulated values.

Effect Mean Variance Effect Mean Variance

ξ1 0.01009 0.02643 β1 0.01604 2.16007

ξ2 1.61319 0.03534 β2 0.00526 1.37544

ξ3 0.05936 1.68234 β3 1.01535 1.66295

ξ4 -1.49600 0.08343 β4 1.98636 0.82435

ξ5 1.50585 0.06974 β5 0.00688 0.13240

ξ6 1.66424 0.05442 β6 3.00181 0.14773

is not a practically meaningful effect, so we are not interested in ξ3 and thus
not concerned that it cannot be accurately estimated. Effect ξ4 is also a half
difference effect but for weakly correlated x5 and x6. It is accurately estimated.
Effect ξ5 is the average group effect of X2. It is accurately estimated as it is
in the neighbourhood of the variability weighted average effect ξ2. Effect ξ6 of
X2 will be in the neighbourhood of ξ2 when δ is small. For the ξ6 in Table 2,
δ = 0.05, so it is accurately estimated. Parameters β1, β2, β3 and β4 for the two
strongly correlated groups are poorly estimated but β5 and β6 are accurately
estimated. In real applications, there is only one response vector y and thus
only one estimated value ξ̂(w) = w1β̂1 +w2β̂2 + · · ·+w6β̂6 for an effect ξ(w).

To assess whether ξ̂(w) is accurate, we may use the estimated variance v̂ar(ξ̂)
which can be computed by using (14) with x+ = (0, w1, . . . , w6).

To test hypotheses or construct confidence intervals for ξ(w), we use

T =
ξ̂(w)− ξ(w)√

v̂ar(ξ̂)
(5)

which has a tn−7 distribution under the null hypothesis. To summarize, for
strongly correlated variables in an unstandardised model, meaningful group
effects in the neighbourhood of the variability weighted average are accurately
estimated. For variables not strongly correlated with other variables, least
squares estimates for their parameters and effects are not affected by multi-
collinearity and are accurate. Hypothesis test and confidence interval for group
effects can be conducted/constructed by using the t statistic in (5).

2.3 Group approach to variable/model selection

Traditional methods of variable selection such as all subsets regression and
stepwise selection allow variables to be selected one at a time. Multicollinearity
creates problems for these methods as often only one variable from a strongly
correlated group is selected and different methods may choose very different
models. The group approach does variable selection at the group level so that
variables in a group are either all in or all out. We now illustrate this through all
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subsets regression for model (3). Recall that β0 = 2, β1 = (0, 0)T , β2 = (1, 2)T ,
β3 = 0 and β4 = 3, so the “true model” is the 3-variable model:

y = β01n + β3x3 + β4x4 + β6x6 + ε.

There are 26 − 1 = 63 non-empty models with at least one variable. Among
these, 15 are what we call “group models” where x1 and x2 are in or out at
the same time, and x3 and x4 are in or out at the same time. Using R package
“leaps” by Lumley and Miller (2017), we performed all subsets regression
with the adjusted R2 criterion 100 times using 100 sets of simulated data from
model (3). In each run, the model with the highest adjusted R2 value among
all 63 models is the choice of the traditional all subsets regression and that
among the 15 group models is the choice of the group approach to all subsets
regression. Table 3 summarizes the results of the 100 runs. It contains the 21
models that had been chosen at least once by either method. We make the
following observations based on results of these 100 runs:

Table 3 Percentage of times a model is chosen by the traditional all subsets regression
(Pct1) and group approach to all subsets regression (Pct2). Only the 21 models that were
chosen at least once by either method are listed in this table.

Model Group model? Pct1 Pct2
x3, x4, x6 Yes 14% 45%

x3, x4, x5, x6 Yes 3% 22%
x1, x2, x3, x4, x6 Yes 2% 18%

x1, x2, x3, x4, x5, x6 Yes 5% 15%
x4, x6 No 18% 0%

x4, x5, x6 No 11% 0%
x1, x5, x6 No 4% 0%

x1, x3, x4, x6 No 2% 0%
x1, x2, x4, x6 No 8% 0%
x2, x4, x6 No 2% 0%

x2, x3, x4, x6 No 6% 0%
x1, x2, x4, x5, x6 No 4% 0%
x1, x3, x4, x5, x6 No 5% 0%
x1, x4, x5, x6 No 1% 0%

x2, x3, x4, x5, x6 No 1% 0%
x2, x4, x5, x6 No 5% 0%
x1, x2, x3, x6 No 1% 0%

x1, x2, x3, x5, x6 No 3% 0%
x3, x6 No 1% 0%

x3, x5, x6 No 3% 0%
x2, x3, x6 No 1% 0%

1. In the 100 simulation runs, 4 of the 15 group models (roughly 1/4) were
chosen at least once by the group approach, but 21 of 63 models (or 1/3)
were chosen by the traditional method, so the group approach is more
stable in its selection. The true model containing {x3, x4, x6} was chosen
45% of the time by the group approach but only 14% of the time by the
traditional method, so the group approach is also more accurate.
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2. When the traditional and group approach picked two different models, their
adjusted R2 values typically differ by less than 1%. This shows the group
approach is competitive in terms of the adjusted R2 of the chosen model.

3. All 4 models picked by the group approach at least once contain all relevant
variables (variables with βi ̸= 0). In contrast, 80% of the models picked by
the traditional method have missed at least one relevant variable.

The above example involves all subsets regression with the adjusted R2

criterion. We may apply the group approach to all subsets regression with the
Akaike Information Criterion or to the forward selection. Numerical results
show that under the group approach, different model selection methods are
more consistent in that they are more likely to select the same model.

2.4 Group approach to prediction accuracy analysis

Multicollinearity often leads to poor predictions, but it is known that accurate
predictions may be achieved in an area of the predictor variable space. This
area is usually expressed through an approximate linear constraint involving
all predictor variables; see for example (9.1) on page 286 and remarks about
prediction accuracy on page 290 in Montgomery, Peck and Vining (2012).
However, such a constraint provides only a vague description of the area where
accurate predictions can be achieved. We now take the group approach to
characterize this area and also address the misconception about prediction
accuracy of the least squares estimated model mentioned in the paper.

Consider the expected response at x = (x1, . . . , x6) under model (3),

E(y|x) = β0 + x1β1 + x2β2 + x3β3 + x4β4 + x5β5 + x6β6, (6)

where βj are the unknown parameters and x is a row vector containing values
of the 6 predictor variables. The predicted value for E(y|x) by the least squares
estimated model is

ŷ = β̂0 + x1β̂1 + x2β̂2 + x3β̂3 + x4β̂4 + x5β̂5 + x6β̂6, (7)

where β̂j are the least squares estimates of βj . Let y
′ = y − ȳ be the centred

version of y and x′
i be the standardized version of xi in model (3). Then,

y′ = x′
1β

′
1 + x′

2β
′
2 + x′

3β
′
3 + x′

4β
′
4 + x′

5β
′
5 + x′

6β
′
6 + ε (8)

is the standardized version of model (3). Let β̂′
i be the least squares estimates

for parameters of (8). They are related to β̂j in (7) as follows,

β̂0 = ȳ −
6∑

i=1

x̄iβ̂
′
i/si and β̂i = β̂′

i/si for i = 1, 2, . . . , 6, (9)

where x̄i and si are defined above equation (7)† in the paper. By (7) and (9),

ŷ = (ȳ −
6∑

i=0

x̄iβ̂
′
i/si) + x1(β̂

′
1/s1) + · · ·+ x6(β̂

′
6/s6). (10)
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Define the “standardized” version of x, x′ = (x′
1, x

′
2, . . . , x

′
6), as

x′
i =

xi − x̄i

si
for i = 1, 2, . . . , 6. (11)

Using (10) and (11), we obtain an expression of ŷ in terms of β̂′
i and x′

i,

ŷ = ȳ + (x′
1β̂

′
1 + x′

2β̂
′
2) + (x′

3β̂
′
3 + x′

4β̂
′
4) + (x′

5β̂
′
5) + (x′

6β̂
′
6). (12)

Since ŷ is unbiased for E(y|x), taking expectation on both sides of (12) shows
that E(y|x) is the sum of the expectations of the 5 terms in the right-hand
side of (12). Thus, if all 5 terms accurately estimate their respective expec-
tations, then ŷ is an accurate estimate of E(y|x). As a sample mean, the ȳ

accurately estimates E(y). Also, β̂′
5 and β̂′

6 are accurate estimators as they are

for parameters of variables not strongly correlated with others, so x′
5β̂

′
5 and

x′
6β̂

′
6 accurately estimate their expected values. Since x′

1 and x′
2 are strongly

correlated, by Remark [c] in Section 1, (x′
1β̂

′
1 + x′

2β̂
′
2) accurately estimates its

expectation (x′
1β

′
1 + x′

2β
′
2) if (x

′
1, x

′
2) ∈ C′

1 where C′
1 is a band centred around

the line x′
1 = x′

2. Similarly, (x′
3β̂

′
3 + x′

4β̂
′
4) accurately estimates (x′

3β
′
3 + x′

4β
′
4)

if (x′
3, x

′
4) ∈ C′

2 where C′
2 is a band centred around the line x′

3 = x′
4. Thus, the

region of x′ over which ŷ is an accurate estimation for E(y|x) is

R′
FP = C′

1 × C′
2 × R2 (13)

where the R2 represents no restrictions on variables x′
5 and x′

6 as they are not
strongly correlated with other variables. We call the region in (13) the feasible
prediction region for the least squares estimated model (7). In terms of the
unstandardised variable x, the feasible prediction region is

RFP = {x : x such that its corresponding x′ ∈ R′
FP }.

In simple terms, the feasible prediction region is the region in the predictor
variable space where each group of strongly correlated variables in their APC
arrangement are approximately equal after standardization (11). The least
squares estimated model gives accurate predictions over this region.

The variance of a predicted value var(ŷ) is estimated by

v̂ar(ŷ) = σ̂2x+(X
TX)−1xT

+, (14)

where x+ = (1,x) = (1, x1, . . . , x6) and σ̂2 is the mean squared error. The
accuracy of v̂ar(ŷ) depends only on the accuracy of σ̂2 as an estimator for σ2

which is known to be good and unaffected by multicollinearity. Thus, v̂ar(ŷ)
is in general accurate and unaffected by the multicollinearity in the data.

To illustrate RFP , we make predictions using the least squares estimated
model (7) and the ridge regression at the following three points:

x1 = (0.60413, 0.75045, 0.00328, 0.21336, 1, 2),
x2 = (0.93025, 1.27245, 0.75025, 1.48901, 1, 2),
x3 = (1.58247, 1.18545, 0.75025, 3.11257, 1, 2).
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Table 4 Comparison of the least squares predictor and Ridge regression predictor for E(y)
at predictor vector values x1, x2 and x3 in terms of estimated bias (in absolute value) and
MSE based on 1000 simulated values of each predictor.

x Exact Least squares Ridge regression
values E(y) Bias MSE Bias MSE
x1 9.43000 0.02184 0.78324 0.29714 0.83051
x2 12.72829 0.03562 1.41920 0.42563 1.55798
x3 15.97541 0.10922 9.91271 1.02438 7.84208

Using (11) and Xd in “R display 1” in Section 1 of this document, we can find
the standardized versions of the three points, and they are

x′
1 = (0, 0, 0, 0, ∗, ∗),

x′
2 = (0.10, 0.12, 0.20, 0.22, ∗, ∗),

x′
3 = (0.30, 0.10, 0.20, 0.50, ∗, ∗),

where the standardized values of x5 and x6 are not shown as they are irrele-
vant for the present discussion. From the standardized values of the first four
variables which are in strongly correlated groups, we see that x1 is at the
centre of RFP as x′

1 is at the centre of R′
FP ; x2 is also in RFP as x′

2 is in
R′

FP (0.10 ≈ 0.12 and 0.20 ≈ 0.22), but x3 is not in RFP as x′
3 is not in R′

FP

(0.30 ̸≈ 0.10 and 0.20 ̸≈ 0.50).

Table 4 contains the bias and MSE of the least squares predictor (7) and the
ridge regression predictor based on 1000 simulated values of the two predictors
computed by using the same design matrix Xd but 1000 different y values
simulated using model (3). The least squares predictor has small bias at all
three xi points as it is unbiased. Its MSE is small at x1 and x2 but large
at x3 because x1 and x2 are in RFP but x3 is not. The ridge regression
predictions were computed by using R package “glmnet” by Friedman et al.
(2017) with the optimal λ value in (0.01, 1000). It has bigger biases than the
least squares predictor at all three points. At x1 and x2, its MSE is larger
than that of the least squares predictor. At x3, its MSE is smaller but is still
large in absolute terms. We have compared the two predictors using other
examples and observed the same behaviour: at an x ∈ RFP , both predictors
are accurate but the least squares predictor is more accurate with smaller bias
and smaller MSE. Outside RFP , the ridge regression predictor has a smaller
MSE but a larger bias, and neither estimator is very accurate.

The misconception that the ridge regression gives more accurate predic-
tions than the least squares regression was based on comparing prediction
accuracy outside RFP which was unknowingly done as the concept of fea-
sible prediction region RFP was previously unavailable. From (12), we see
that making a prediction amounts to estimating a set of group effects. Making
predictions over RFP involves estimating meaningful effects, but doing so out-
side RFP involves estimating effects that are not meaningful (see Remarks [a]
and [b] in Section 1). Thus, predictions outside RFP are also not meaningful,
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Table 5 Correlations of original Hald cement data (left) and renamed data (right)

x1 x2 x3 x4 x1 x2 x3 x4

x1 1.00 0.22 -0.82 -0.24 x1 1.00 0.82 0.22 0.24
x2 0.22 1.00 -0.13 -0.97 x2 0.82 1.00 0.13 0.02
x3 -0.82 -0.13 1.00 0.02 x3 0.22 0.13 1.00 0.97
x4 -0.24 -0.97 0.02 1.00 x4 0.24 0.02 0.97 1.00

and they should not be used for comparison. When we compare meaningful
predictions over RFP , the least squares predictor is more accurate.

Finally, as an example of estimating the variance of the least squares pre-
dictor with formula (14), for the 3 points in Table 4, the average of 1000
estimates by (14) are 0.72335, 1.38200 and 9.21323, respectively, which match
the MSE’s in Table 4 closely. On the other hand, there is no simple formula for
estimating the variance of the ridge regression predictor when λ is optimized
through cross-validation. There is also no formula for estimating its bias.

3 The Hald cement data analysis

The Hald cement data has been widely used in the literature to illustrate
multicollinearity; see, for example, Draper and Smith (1998). The data set
contains 13 observations with 4 predictor variables and a response y:

y = heat evolved in calories per gram of cement;
x1 = amount of tricalcium aluminate;
x2 = amount of tricalcium silicate;
x3 = amount of tetracalcium alumino ferrite;
x4 = amount of dicalcium silicate.

The Hald cement data set is available from various public sources. For conve-
nience, we give this data set in “R display 2” at the end of this section.

We first illustrate the APC arrangement of a group of strongly correlated
variables using this data set. In Table 5, the correlation matrix on the left
is that of the four predictor variables. It shows that there are two strongly
correlated groups {x1, x3} and {x2, x4} with negative correlation within each
group, so {x1,−x3} and {x2,−x4} are their APC arrangements. For conve-
nience, we rename the variables so that x1 is still the same but the old −x3 is
now called x2, the old x2 now called x3, and the old −x4 now called x4. The
renamed data is in “R display 3” at the end of this section. The correlation
matrix of the renamed variables is on the right of Table 5. The strongly corre-
lated groups are now {x1, x2} and {x3, x4}, both in APC arrangement. There
are no strong correlations between variables from different groups.

For model (8)† with the standardized renamed variables, the matrix X′TX′

in (10)† is just the correlation matrix on the right of Table 5. Matrix R11 in
(10)† is the upper-left quarter of this correlation matrix, R22 is the lower-right
quarter, and R12 the upper-right quarter. For i ̸= j, rij in R11 are close to 1.
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Table 6 Estimated parameter values and average group effects for the standardized model
(8)†; ξ1A is the average group effect for group {x′

1, x
′
2}, and ξ2A is that for {x′

3, x
′
4}.

Estimate Std. Error t value Pr(> |t|)
β′
1 31.607 14.308 2.209 0.055

β′
2 -2.261 15.788 -0.143 0.889

β′
3 27.500 36.784 0.748 0.473

β′
4 8.353 38.762 0.215 0.834

ξ1A 14.673 1.456 10.072 0.000
ξ2A 17.927 1.571 11.409 0.000

Also, elements in R12 are all small, and this leads to small elements in

R12R
−1
22 R21 =

(
0.06 −0.01
−0.01 0.22

)
.

Thus, Theorem 1(ii) applies to group {x′
1, x

′
2} in that var(ξ̂E) ≈ σ2/2 and

consequently var(ξ̂A) ≈ σ2/22. Similarly, it also applies to group {x′
3, x

′
4}.

Table 6 shows the estimated values of the 4 parameters β′
i and the 2 aver-

age group effects ξiA in (15)†. The β′
i are poorly estimated with large standard

errors due to multicollinearity generated by the two groups of strongly corre-
lated variables. The t-test shows they are not significantly different from zero
at the 5% level. The average group effects, on the other hand, are very ac-
curately estimated with small standard errors and are highly significant. The
estimated error variance is σ̂2 = 2.3062, so the estimated standard errors of
the two average group effects based on Theorem 1(ii) is σ̂/2 = 1.153. We see
from Table 6 that the standard errors of the two estimated group effects are
indeed close to this value. We write the least squares estimated model as

ŷ′ = (31.607x′
1 − 2.261x′

2)G + (27.500x′
3 + 8.353x′

4)G, (15)

where the (. . . )G notation indicates that variables inside each (. . . )G are
strongly correlated. Individual estimated parameter values such as 31.607 and
−2.261 inside such brackets should not be used as point estimates as the un-
derlying parameters are not meaningful and thus not estimated; they should
only be used to estimate or make inference on meaningful group effects, such
as ξ1A and ξ2A, or make predictions over the feasible prediction region.

Finally, we demonstrate that the least squares estimated model gives ac-
curate predictions over the feasible prediction region RFP , and accurate ex-
trapolation is also possible with this estimated model. Consider 5 points

x1 = (7.46153,−11.76923, 48.15385,−30.00000),
x2 = (3.18232,−15.98495, 64.86423,−10.86569),
x3 = (7.25776,−11.10359, 46.53671,−28.84034),
x4 = (−4.76478,−25.08204, 75.10608,−1.00862),
x5 = (13.57470,−18.42563, 75.10608,−47.39482).

Using formula (11) and the renamed Hald cement data in “R display 3”, the
standardized values of these 5 points are found to be:
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Fig. 1 Points representing (x1, x2) of the 13 observations in the Hald cement data are in
circles. The “⋆” symbol represents the mean of the 13 points. Points representing the 5
prediction points are in red dots. Points x4 and x5 are the two red dots outside the circle
data hull, and x4 is the one in the lower left corner which is still inside the feasible prediction
region. A plot of (x3, x4) of these points (not included) gives similar observations.

x′
1 = (0.00, 0.00, 0.00, 0.00),

x′
2 = (−0.21,−0.19, 0.31, 0.33),

x′
3 = (−0.01, 0.03,−0.03, 0.02),

x′
4 = (−0.60,−0.60, 0.50, 0.50),

x′
5 = (0.30,−0.30, 0.50,−0.30).

Since the strongly correlated groups in APC arrangement are {x1, x2} and
{x3, x4}, an xi is in RFP if its standardized version x′

i = (x′
1, x

′
2, x

′
3, x

′
4) is

in R′
FP ; that is, if x′

i satisfies x′
1 ≈ x′

2 and x′
3 ≈ x′

4. Thus, points x1, x2,
x3 and x4 are in RFP . Plotting (x1, x2) of the 5 points and the 13 points in
the renamed Hald cement data in Figure 1 finds x4 and x5 outside the data
hull of the 13 points, so making predictions at x4 and x5 is extrapolation.
Table 7 gives the predicted values given by the least squares estimated model
(for the renamed but unstandardised variables) and their estimated variances
(14) at the 5 points. The predictions at x1, x2 and x3 are accurate with
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Table 7 Predicted values and their estimated variances at 5 points

Predicted value Estimated variance
x1 95.423 0.460
x2 100.496 3.706
x3 94.381 7.359
x4 95.742 5.285
x5 116.827 1689.129

small variances as these points are in both the data hull and RFP . Point x5

is not in RFP as it violated the strong positive correlation of the data (its
x′
1 = 0.3 but x′

2 = −0.3, and its x′
3 = 0.5 but x′

4 = −0.3), so extrapolation
at x5 is highly inaccurate with a large variance. In contrast, extrapolation at
x4 is accurate with a small variance as x4 is in RFP . This shows accurate
extrapolation with the least squares estimated model is possible, even when
there is multicollinearity, provided it is done within RFP .

R display 2: The original Hald cement data.

> hald.data

y x1 x2 x3 x4

[1,] 78.5 7 26 6 60

[2,] 74.3 1 29 15 52

[3,] 104.3 11 56 8 20

[4,] 87.6 11 31 8 47

[5,] 95.9 7 52 6 33

[6,] 109.2 11 55 9 22

[7,] 102.7 3 71 17 6

[8,] 72.5 1 31 22 44

[9,] 93.1 2 54 18 22

[10,] 115.9 21 47 4 26

[11,] 83.8 1 40 23 34

[12,] 113.3 11 66 9 12

[13,] 109.4 10 68 8 12

R display 3: Renamed Hald cement data where the two groups of strongly correlated

predictor variables {x1, x2} and {x3, x4} are in APC arrangement.

> renamed.data

y x1 x2 x3 x4

[1,] 78.5 7 -6 26 -60

[2,] 74.3 1 -15 29 -52

[3,] 104.3 11 -8 56 -20

[4,] 87.6 11 -8 31 -47

[5,] 95.9 7 -6 52 -33

[6,] 109.2 11 -9 55 -22

[7,] 102.7 3 -17 71 -6

[8,] 72.5 1 -22 31 -44

[9,] 93.1 2 -18 54 -22

[10,] 115.9 21 -4 47 -26

[11,] 83.8 1 -23 40 -34

[12,] 113.3 11 -9 66 -12

[13,] 109.4 10 -8 68 -12
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