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Abstract
Traditionally, the main focus of the least squares regression is to study the effects of 
individual predictor variables, but strongly correlated variables generate multicollin-
earity which makes it difficult to study their effects. To resolve the multicollinearity 
issue without abandoning the least squares regression, for situations where predic-
tor variables are in groups with strong within-group correlations but weak between-
group correlations, we propose to study the effects of the groups with a group 
approach to the least squares regression. Using an all positive correlations arrange-
ment of the strongly correlated variables, we first characterize group effects that are 
meaningful and can be accurately estimated. We then discuss the group approach to 
the least squares regression through a simulation study and demonstrate that it is an 
effective method for handling multicollinearity. We also address a common miscon-
ception about prediction accuracy of the least squares estimated model.

Keywords  Strongly correlated predictor variables · Multicollinearity · Group 
effects · Linear models · Least squares regression

1  Introduction

Multicollinearity due to strongly correlated predictor variables is a long-standing 
problem without a satisfactory solution. It arises frequently in observational studies 
in social sciences and medical research. In this paper, we show that multicollinear-
ity per se is not a problem; the problem is that what we have been trying to do with 
the strongly correlated variables are misguided and unattainable. We also present a 
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solution based on appropriate use of such variables. To introduce the problem, con-
sider multiple regression model

where � is an n-vector of response variable values, � = [�n, �1,… , �p] is a 
known n × (p + 1) design matrix with p ≥ 2 and �n being the n-vector of 1’s, 
� = (�0, �1,… , �p)

T is the unknown vector of regression parameters, and � is an 
n-vector of i.i.d. normal random errors with mean 0 and variance �2 . Throughout this 
paper, we work under the low-dimensional setting where n > p and rank(�) = p + 1 
so that the least squares estimator for �,

is available. We assume that the p predictor variables can be partitioned into k 
groups {�i}

k
i=1

 such that (i) there is at least one group with 2 or more variables, (ii) 
variables in the same group are strongly correlated, and (iii) variables from different 
groups are weakly correlated. Let � i be the parameter vector for variables in group 
�i . Model (1) may be written as

Here, � i reduces to a scalar if there is only 1 variable in group �i . Let �̂ i be the least 
squares estimator for � i . When there are 2 or more variables in �i , their strong cor-
relations generate multicollinearity which makes variances of elements of �̂ i large, 
rendering �̂ i a poor estimator for � i.

There is a large body of literature on detecting and handling the multicollin-
earity problem; see, for example,  Draper & Smith (1998),  Belsley et al. (2004),  
Montgomery et  al. (2012). Here, we only briefly discuss the main methods for 
handling the problem. The most well-known methods are the ridge regression 
(Hoerl & Kennard, 1970) and principal component regression (Jolliffe,  1986). 
There are also other methods such as latent root regression (Webster et al., 1974) 
and model respecification by eliminating some predictor variables. There have 
been a number of studies that evaluate these methods including  Hoerl et  al. 
(1975), Gunst et  al. (1976),  Gunst & Mason (1977) and  Lawless (1978). One 
of the main criteria used for evaluation is the mean squared error of an estimator 
�̃ for � , E[(�̃ − �)T (�̃ − �)] . Estimators given by these methods are biased, but 
they are capable of achieving smaller mean squared errors than the least squares 
estimator �̂ . However, except for this advantage, these estimators are difficult to 
use because their sampling properties are in general not available as they depend 
on the data in complicated ways. The ridge regression estimator, for example, 
involves a penalty parameter whose value is usually determined by cross-val-
idation. The distribution of the penalty parameter and thus that of the estima-
tor is unavailable. It is also difficult to choose among these methods as extensive 
comparisons have found no single best overall method; see  Montgomery et  al. 
(2012) for more discussion. Further, some authors such as  (Conniffe & Stone 
1973) are critical of biased estimation methods. Draper & Van Nostrand (1979) 

(1)� = �� + �,

(2)�̂ = (𝛽0, 𝛽1,… , 𝛽p)
T = (�T�)−1�T�,

� = �0�n + �1�1 + �2�2 +⋯ + �k�k + �.
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identified two cases where ridge regression may be appropriate but also recom-
mended against the use of biased estimation methods in general. Nevertheless, 
these methods are still the most used tools for handling multicollinearity.

Is multicollinearity really such an insurmountable problem for the least 
squares regression that we have to abandon this simple method of regression in 
favour of complicated alternatives? Traditionally, the focus of regression analyses 
has been on the impact of individual predictor variables. For example, in esti-
mation, the focus has been on estimating parameters of individual variables; in 
variable selection, it has been on inclusion or exclusion of individual variables. 
With this focus on individual variables, multicollinearity has been a problem for 
the least squares regression as it cannot accurately estimate parameters of the 
strongly correlated variables which in turn leads to difficulties in variable selec-
tion and prediction. Nevertheless, we argue that neither multicollinearity nor the 
least squares regression is responsible for these problems; the wrong focus on 
the impact of individual variables is the real culprit. In Remark [b] of Sect. 2.3, 
we note that estimating the parameter of a variable in a strongly correlated group 
is a form of extreme extrapolation. That it cannot be done accurately is solely 
the consequence of extrapolating far beyond the data range. Strongly correlated 
variables appear naturally in groups. Individual parameters of these variables are 
not meaningful. Instead of focusing on their individual impact, we should respect 
their group nature by handling them in groups and focusing on their collective 
impact on the response variable. To this end, we propose a group approach to 
the least squares regression which still relies on �̂ but differs from the traditional 
least squares regression in three aspects: (i) for a group �i with 2 or more vari-
ables, the group approach will not attempt to estimate or make inference about 
individual elements of � i ; instead, it will focus on estimation and inference for 
those linear combinations of the elements of � i that represent meaningful group 
effects of �i ; (ii) it will perform variable selection at the group level in that vari-
ables in a group �i are either all in or all out; and (iii) it will analyse prediction 
accuracy of the least squares estimated model through group effects. For a group 
�i with only 1 variable, its group effect is the parameter of the variable, so the 
group approach will still estimate and make inference of the parameter just like in 
the traditional least square regression.

Comparing to existing methods for handling multicollinearity, the group 
approach to the least squares regression has the advantage that it is very simple in 
computation and its theories for estimation, inference and prediction are already in 
place as it is still least squares regression with only a change of focus from indi-
vidual to group effects for strongly correlated variables. In contrast, computation for 
the ridge regression and principal component regression is more complicated and 
theories for these methods are convoluted and even intractable. Additional advan-
tages of the group approach include (i) it retains the simple least squares estimators 
𝛽i ; those for variables not strongly correlated with others are good unbiased point 
estimators of their parameters we can still use; those for strongly correlated vari-
ables are only used for estimation and inference of group effects of such variables 
and making predictions, but they are not used as point estimators as parameters of 
such variables are not estimated under the group approach; (ii) the regression mean 
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squared error remains a good unbiased estimator for the error variance �2 ; and (iii) 
existing (non-group based) methods of inference, variable selection and model diag-
nosis for the least squares regression may be adopted with a minor adjustment of 
handling strongly correlated variables in groups. The ridge regression and principal 
component regression have none of these advantages.

There is a widely held view that when there is multicollinearity in the data, alter-
native regression methods in general and the ridge regression in particular give more 
accurate predictions than the least squares regression. Although there is no proof to 
support this view, it has appeared in many papers, books and internet sites. Through 
a group effect-based analysis on the prediction accuracy of the least squares esti-
mated model and a comparison with the ridge regression, we show that this is a 
misconception arising from comparing prediction accuracy at points where predic-
tions are not meaningful and should not be made. At points where predictions are 
meaningful, the least squares regression is actually more accurate than the ridge 
regression.

In Sect. 2, we discuss group effects of strongly correlated variables. We charac-
terize effects that can be accurately estimated and argue that such effects are mean-
ingful but individual parameters of these variables are not meaningful. In Sect. 3, 
we discuss estimation, variable selection and prediction under the group approach 
through results of a simulation study and apply this approach to analyse the Hald 
cement data. The full simulation study is in the Supplementary Material for this 
paper which also contains extra material for Sects. 2.3 and 3.2. We conclude with a 
few remarks in Sect. 4.

2 � Group effects of strongly correlated predictor variables

Group effects lie at the heart of the group approach to the least squares regres-
sion. Tsao (2019) studied estimation of group effects in a theoretical model con-
taining strongly correlated predictor variables with a restrictive uniform correlation 
structure. We now revisit the estimation problem without imposing any parametric 
correlation structure on the strongly correlated variables and generalize results in  
Tsao (2019) to all linear models. For this section, we let �1 = [�1, �2,… , �q] and 
�2 = [�q+1, �q+2,… , �p] , and write (1) as

where 2 ≤ q ≤ p , �1 = (�1, �2,… , �q)
T , �2 = (�q+1, �q+2,… , �p)

T , and �1 is a group 
of strongly correlated variables satisfying (i) for 1 ≤ i, j ≤ q , absolute values of 
rij = corr(�i, �j) are all above 

√
2

2
 ( ≈ 0.71 ) and (ii) variables in �1 are not strongly 

correlated with variables in �2 . Condition (i) is needed to ensure that variables in 
�1 will all have positive correlations after appropriate sign changes; see Eq. (6). For 
this section, �2 holds all variables not in �1 . There may be more strongly correlated 
groups among variables in �2 , but it suffices to study the group effects of just �1 as 
results obtained apply to all such groups. Consider the class of linear combinations 
of �1, �2,… , �q,

(3)� = �0�n + �1�1 + �2�2 + �,
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where � = (w1,w2,… ,wq)
T is any q-vector satisfying 

∑q

i=1
�wi� = 1 . Set Ξ is the 

class of normalized group effects of variables in �1 . Each �(�) in Ξ is a (normalized) 
group effect defined by its weight vector � . It has an interpretation as the expected 
change in the response variable y when the q predictor variables in �1 change by the 
amount � ; that is, x1, x2,… , xq change by the amount w1,w2,… ,wq , respectively, at 
the same time. In this sense, �(�) represents a collective impact or a group effect of 
�1 on y.

Throughout this paper, we say a group effect can be accurately estimated if the 
variance of its minimum-variance unbiased linear estimator is smaller than or com-
parable to the error variance �2 . Not all group effects can be accurately estimated 
and some group effects are not meaningful. For example, �1 is a special group effect 
with w1 = 1 and wj = 0 for j ≠ 1 , but it cannot be accurately estimated. It is also not 
a meaningful effect (see Remark [b]). We now characterize effects that can be accu-
rately estimated. To this end, we first introduce an all positive correlations arrange-
ment of the strongly correlated variables and then study the limiting properties of 
their correlation matrix.

2.1 � All positive correlations arrangement of strongly correlated variables 
and limiting properties of their correlation matrix

Let � be the full rank correlation matrix of �1, �2,… , �q,

Some of the rij may be negative but since all |rij| are above 
√
2

2
 , let sgn(r1j) be the sign 

of r1j = corr(�1, �j) for j = 2, 3,… , q , by Theorem 3.1 in Tsao (2019) the following 
signed version of the set of q variables

satisfies that all pairwise correlations are positive. We call (6) an all positive cor-
relations (APC) arrangement of �1, �2,… , �q . For the rest of this section, we assume 
that these q variables are already in an APC arrangement so that all rij in (5) are 
positive. If they are not in an APC arrangement, we can replace them with their 
APC version (6); see Sect. 3.2 for an example.

The importance of using the APC arrangement is twofold. Firstly, it makes it easy 
to identify important and meaningful effects; see Remarks [a] and [b]. Secondly, it 
makes it easy to measure the level of multicollinearity generated by the q variables 
and to formulate the question of interest. To see the second point, let rM = min{rij} . 
Under the APC arrangement, all rij satisfy 0 < rM ≤ rij < 1 , so when rM goes to 1, 

(4)Ξ = {�(�)|�(�) = w1�1 + w2�2 +⋯ + wq�q},

(5)� =

⎡⎢⎢⎢⎣

1 r12 ⋯ r1q
r21 1 ⋯ r2q
⋅ ⋅ ⋯ ⋅

rq1 rq2 ⋯ 1

⎤⎥⎥⎥⎦
q×q

.

(6)�1, sgn(r12)�2,… , sgn(r1q)�q



238	 M. Tsao 

1 3

all rij go to 1 which makes the multicollinearity stronger. In this sense, an increase in 
rM represents an increase in the level of multicollinearity, so we will use rM to meas-
ure this level. Our question of interest can now be formulated as that of identifying 
group effects in (4) that can be accurately estimated when rM is close to 1.

To answer the above question, we first study the limiting properties of � and �−1 
when rM goes 1. Since � is a correlation matrix, it is positive definite, so it has q 
positive eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆q > 0 . Let �1, �2,… , �q be their correspond-
ing orthonormal eigenvectors, respectively. Let �q be the q-vector whose elements 
are all 1’s. We have the following results.

Lemma 1  Correlation matrix � satisfies 

	 (i)	 �1 → q and �i → 0 for i = 2, 3,… , q as rM → 1 ; and
	 (ii)	 �1 →

1√
q
�q as rM → 1.

Lemma 2  The inverse matrix �−1 satisfies 

	 (i)	 �T
1
�−1�1 >

1

q
 ; and

	 (ii)	 �T
1
�−1�1 →

1

q
 as rM → 1.

The proofs of these lemmas are in the Appendix.

2.2 � The eigen‑effect of strongly correlated predictor variables

In this section, we identify one group effect for the standardized version of (3) that 
can be very accurately estimated at high levels of multicollinearity. It will be used to 
identify other effects that can be accurately estimated.

Let �i = (x1i, x2i,… , xni)
T , x̄i =

1

n

∑n

j=1
xji and s2

i
=
∑n

j=1
(xji − x̄i)

2 which is (n − 1) 
times the sample variance of �i . We call

the standardized variable which has mean zero and length one. Let 
� = (y1, y2,… , yn)

T , ȳ = 1

n

∑n

j=1
yj and �� = � − ȳ . We can write (3) as

where ��
1
= [��

1
, ��

2
,… , ��

q
] , ��

2
= [��

q+1
, ��

q+2
,… , ��

p
] , ��

1
= (��

1
, ��

2
,… , ��

q
)T , and 

��
2
= (��

q+1
, ��

q+2
,… , ��

p
)T . We call model (8) the standardized model. The relation-

ship between parameters in models (8) and (3) is

(7)��
i
=

�i − x̄i�n

si

(8)�� = ��
1
��
1
+ ��

2
��
2
+ �,
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Let �� = [��
1
,��

2
] . Then, ��T�� = [rij] ∈ ℝ

p×p is the correlation matrix of the p pre-

dictor variables in models (8) or (3) where rij = corr(��
i
, ��

j
) = corr(�i, �j) . Partition 

this correlation matrix as follows:

where �11 = � ∈ ℝ
q×q is the correlation matrix (5) of the q variables in �′

1
 , and �12 

is the between-group correlation matrix of �′
1
 and �′

2
 . By (10),

Let �∗ = [�11 − �12�
−1
22
�21] . Then, �∗ is a symmetric positive definite matrix as 

�∗−1 is a diagonal block of the positive definite matrix [��T��]−1 in (11). Let �∗
1
 be 

its largest eigenvalue and �∗
1
= (v∗

11
, v∗

12
,… , v∗

1q
)T be the corresponding orthonormal 

eigenvector. We call linear combination

the eigen-effect. Since ‖�∗
1
‖ = 1 , 1 ≤

∑q

i=1
�v∗

1i
� ≤ √

q and so �E may not be a nor-
malized effect. Nevertheless, for technical convenience, we will first study �E and 
will give a simple normalized representation of �E later.

Let �̂�
= (𝛽�

1
, 𝛽�

2
,… , 𝛽�

p
)T be the least squares estimator for �� = (��

1

T
, ��

2

T
)T . The 

minimum-variance unbiased linear estimator for �E is

Since 𝜉E is an unbiased estimator for �E , it is accurate if var(𝜉E) is small. Although 
none of the �′

i
 in (12) is accurately estimated by 𝛽′

i
 in (13) when rM is high, the fol-

lowing theorem shows �E is accurately estimated by 𝜉E.

Theorem 1  For the group of strongly correlated variables in �′
1
 in (8), 

	 (i)	 if they are uncorrelated with variables in �′
2
 , then ( i1 ) var(𝜉E) > 𝜎2∕q and ( i2 ) 

var(𝜉E) → 𝜎2∕q as rM → 1 ; and

(9)𝛽0 = ȳ −
∑p

i=1
x̄i𝛽

�
i
∕si and 𝛽i = 𝛽�

i
∕si for i = 1, 2,… , p.

(10)��T�� =

[
�11 �12

�21 �22

]

p×p

,

(11)

[��T��]−1 =

[
[�11 − �12�

−1
22
�21]

−1 �−1
11
�12[�21�

−1
11
�12 − �22]

−1

[�21�
−1
11
�12 − �22]

−1�21�
−1
11

[�22 − �21�
−1
11
�12]

−1

]
.

(12)�E = �∗
1

T
��
1
= v∗

11
��
1
+ v∗

12
��
2
+⋯ + v∗

1q
��
q

(13)𝜉E = �∗
1

T
�̂
�

1
= v∗

11
𝛽�
1
+ v∗

12
𝛽�
2
+⋯ + v∗

1q
𝛽�
q
.
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	 (ii)	 if they are correlated with variables in �′
2
 but the between-group correlation 

matrix �12 → � as rM → 1 , then var(𝜉E) → 𝜎2∕q as rM → 1.1

To interpret Theorem 1, when variables in �′
1
 are uncorrelated with those in �′

2
 , 

result ( i1 ) gives a lower bound on var(𝜉E) and result ( i2 ) shows var(𝜉E) approaches 
this lower bound as rM approaches its upper bound 1. Thus, �E is more accurately 
estimated by 𝜉E at higher levels of multicollinearity. Result (ii) gives the asymptotic 
behaviour of var(𝜉E) when rM goes to 1 and correlations between variables in �′

1
 and 

�′
2
 go to zero ( �12 → � ). It implies that when such correlations are weak and the 

level of multicollinearity is high, var(𝜉E) is approximately �2∕q . The proof of Theo-
rem 1 is in the Appendix.

Theorem 1 does not cover the case where some variables in �′
1
 are strongly corre-

lated with some variables in �′
2
 . We are not interested in this case as it weakens the 

notion of �′
1
 being a (stand-alone) group of strongly correlated variables which ren-

ders its group effects not meaningful. Turning now to other effects defined by unit 
vectors that may be accurately estimated when rM is high, the following result shows 
where such effects may be found.

Theorem 2  For 𝛿 > 0 , define a neighbourhood of �∗
1
 on the unit sphere

Suppose the between-group correlation matrix �12 → � as rM → 1 . If a unit vector 
� ∉ N� , then var(�T �̂

�

1
) → ∞ as rM → 1.

2.3 � Characterization of group effects that can be accurately estimated

Theorem  2 implies that all �T�′
1
 that can be accurately estimated at high rM lev-

els are given by � ∈ N� . Let s(�) be the sum of absolute values of elements of � . 
Then, 1 ≤ s(�) ≤

√
q and � = �∕s(�) is a bijection that maps N� into a small open 

neighbourhood of the normalized eigenvector �∗
1
∕s(�∗

1
) on the simplex 

∑q

i=1
wi = 1 . 

Weight � of group effects that can be accurately estimated are in this open neigh-
bourhood. In this sense, such effects are in a neighbourhood of the normalized 
eigen-effect �∗

E
= �E∕s(�

∗
1
).

To identify a simpler effect to represent �∗
E
 and its neighbourhood, when variables 

in �′
1
 are uncorrelated with variables in �′

2
 , �12 = � and �∗ = � , so �∗

1
= �1 and 

�∗
1
= �1 . By Lemma 1, �1 →

1√
q
�q as rM → 1 , which implies s(�1) →

√
q and 

�1∕s(�1) →
1

q
�q . When variables in �′

1
 and �′

2
 are correlated, �∗

1
→

1√
q
�q and thus 

(14)N𝛿 = {� ∈ ℝ
q ∶ ‖�‖ = 1 and

√
1 − 𝛿 < � ⋅ �∗

1
≤ 1}.

1  �
12

→ � denotes element-wise convergence of �
12

 to zero. It implies �
12
�−1

22
�

21
→ � under general 

conditions such as ‖�−1
22
‖
max

 is bounded or (‖�
12
‖
max

)2(‖�−1
22
‖
max

) = o(1) . This observation will be used 
in the proof of (ii) which requires �

12
�−1

22
�

21
→ �.
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�∗
1
∕s(�∗

1
) →

1

q
�q also hold under general conditions (see proof of Theorem  1(ii)). 

Thus, �∗
E
→ �A as rM → 1 where

We call �A the average group effect of the q strongly correlated variables in �′
1
 . The 

minimum-variance unbiased linear estimator for �A is

When rM is close to 1, 𝜉A ≈ 𝜉∗
E
 and so var(𝜉A) ≈ var(𝜉∗

E
) = var(𝜉E)∕[s(�

∗
1
)]2 . Theo-

rem 1 and s(�∗
1
) →

√
q then imply that var(𝜉A) ≈ 𝜎2∕q2 . On the other hand, when 

all variables are uncorrelated, var(𝜉A) = 𝜎2∕q . This shows that the estimation of �A 
benefits from a high level of multicollinearity in that it makes var(𝜉A) approximately 
q times smaller. Our subsequent discussions will be centred on �A as it has simpler 
expression and interpretation than �∗

E
.

For the unstandardised model (3) where �1, �2,⋯ , �q are parameters of the strongly 
correlated variables in �1 , let �∗ = (w∗

1
,w∗

2
,… ,w∗

q
)T where

for i = 1, 2,… , q . We call the following weighted average

the variability weighted average effect of the variables in �1 as w∗
i
 is proportional 

to the variability (measured by si ) of �i . Using the least squares estimator in (2), the 
minimum-variance unbiased linear estimator for �W is

Noting that relationship (9) between the coefficients of the original and standardized 
models also applies to their respective least squares estimates, 𝜉W can be expressed 
in terms of 𝜉A as

When rM is close to 1, since var(𝜉A) is approximately �2∕q2 , (20) implies

(15)�A =
1

q
�T
q
��
1
=

1

q
(��

1
+ ��

2
+⋯ + ��

q
).

(16)𝜉A =
1

q
�T
q
�̂
�

1
=

1

q

(
𝛽�
1
+ 𝛽�

2
+⋯ + 𝛽�

q

)
.

(17)w∗
i
=

si∑q

j=1
sj

(18)�W = w∗
1
�1 + w∗

2
�2 +⋯ + w∗

p
�q

(19)𝜉W = w∗
1
𝛽1 + w∗

2
𝛽2 +⋯ + w∗

p
𝛽q.

(20)𝜉W =
1∑q

j=1
sj

�q

i=1
si𝛽i =

1∑q

j=1
sj

��q

i=1
𝛽�
i

�
=

q∑q

j=1
sj
𝜉A.

var(𝜉W ) =

�
q∑q

j=1
sj

�2

var(𝜉A) ≈
𝜎2

�∑q

i=1
si
�2 .
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In practice, (
∑q

i=1
si)

2 is usually large, so var(𝜉W ) is much smaller than �2 . Using �A 
and �W as reference points, we now characterize the set of effects that are meaning-
ful and can be accurately estimated in the following remarks. The Supplementary 
Material has an expanded version of these remarks.

Remark [a] For the q variables in APC arrangement in �′
1
 of the standardized model 

(8), effects ��(�) = w1�
�
1
+ w2�

�
2
+⋯ + wq�

�
q
 that can be accurately estimated at a 

given high rM level are in a small neighbourhood of �A,

where �1 is a small positive constant that depends on rM and �a =
1

q
�q is the weight 

vector of �A . Similarly, for the q variables in APC arrangement in �1 of the unstand-
ardised model (3), group effects �(�) = w1�1 + w2�2 +⋯ + wq�q that can be accu-
rately estimated are in a neighbourhood of �W,

where �2 is a small positive constant. An alternative characterization of NW is 
NW = {�(�) ∶ �(�) such that the corresponding ��(��) ∈ NA}.

Remark [b] Set NA in (21) is also the set of practically important and meaning-
ful group effects for variables in �′

1
 in that � values in the neighbourhood of �a 

represent the most probable changes of the variables in �′
1
 . Two extreme exam-

ples illustrate this point. (i) Effect ��
1
∉ NA as its weight vector is �1 = (1, 0,… , 0) . 

It represents the group impact on response when x′
1
 increases by 1 unit but the 

other variables do not change. (ii) Effect �A has �a =
1

q
�q , so �A ∈ NA . It repre-

sents the group impact when all variables increase by (1/q)th of a unit. With 
strong positive correlations and in standardized units, the variables are likely to 
increase at the same time and in similar amounts. So �A is practically important 
and meaningful, whereas �′

1
 is not. In fact, estimating �′

1
 alone amounts to extreme 

extrapolation and �′
1
 by itself is neither meaningful nor interpretable as one can-

not just increase x′
1
 by 1 unit while holding other variables constant under strong 

correlations among variables. Another example showing individual parameters 
are not meaningful is the extreme case of perfect correlation with 
x�
1
= ⋯ = x�

q
= x� . Let c = ��

1
+⋯ + ��

q
 . Then, the collective impact of these q 

variables on the response is cx′ . There are infinitely many sets of �′
i
 that sum up to 

c. The data (��, ��) contain no information on which set is in the true model. In 
this sense, the data contain no information about the individual �′

i
 . Similarly, the 

data contain little information about the individual �′
i
 when the level of multicol-

linearity is high. The large variances of the least squares estimators for �′
i
 are 

warnings for this lack of information which is always a problem regardless the 
method of regression used. With this understanding, we should focus on estimat-
ing c, or equivalently �A = c∕q , and group effects in NA . For the strongly corre-
lated variables in �1 in the unstandardised model, a group effect is meaningful if 
and only if the corresponding effect in the standardized model is meaningful. 
Thus, NW is the set of meaningful group effects for these variables.

(21)NA = {𝜉�(�) ∶ ||� − �a|| < 𝛿1}

(22)NW = {𝜉(�) ∶ ||� − �∗|| < 𝛿2},
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3 � Group approach to the least squares regression

The performance and advantages of the group approach to the least squares 
regression are demonstrated in a small simulation study in the Supplementary 
Material. In this section, we summarize this simulation study. We also apply the 
group approach to analyse the Hald cement data and illustrate the APC arrange-
ment as well as Theorem 1(ii) with this example.

3.1 � Estimation, variable selection and prediction under the group approach

We examined three aspects of the group approach, estimation, variable selection and 
prediction, in the simulation study. Our results are as follows. 

(a)	 Estimation. For strongly correctly variables, we demonstrated that group effects 
in the neighbourhood of the variability weighted average effect (22) are accu-
rately estimated, confirming theoretical results in Sect. 2. Group effects not in 
this neighbourhood are poorly estimated, but these are not meaningful effects. 
Parameters of variables not strongly correlated with other variables and linear 
combinations of these parameters are accurately estimated, showing that the 
impact of multicollinearity due to strongly correlated variables is only limited 
to parameters and group effects of such variables. We also gave a t statistic for 
the group effect.

(b)	 Variable selection. Under the group approach, strongly correlated variables 
are all in or all out at the same time in the variable selection process. For all 
subsets regression, the number of models needed to be examined under the 
group approach is much smaller than that under the traditional non-group-based 
approach. Simulation results showed that the group approach is more accurate 
and more stable than the traditional approach.

(c)	 Prediction. Using the group approach, we obtained a more precise characteriza-
tion of the region in the predictor variable space over which the least squares 
estimated model gives accurate predictions. We call this region the feasible pre-
diction region and denote it by RFP . We argued that only predictions made over 
RFP are meaningful. Further, simulation results showed that the least squares 
predictor is more accurate than the ridge regression predictor over RFP , demon-
strating that the commonly held view that the ridge regression predictor is more 
accurate is a misconception.

Table 1   Correlations of original 
Hald cement data (left) and 
renamed data (right)

�
1

�
2

�
3

�
4

�
1

�
2

�
3

�
4

�
1

1.00 0.22 −0.82 −0.24 �
1

1.00 0.82 0.22 0.24
�
2

0.22 1.00 −0.13 −0.97 �
2

0.82 1.00 0.13 0.02
�
3

−0.82 −0.13 1.00 0.02 �
3

0.22 0.13 1.00 0.97
�
4

−0.24 −0.97 0.02 1.00 �
4

0.24 0.02 0.97 1.00
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3.2 � Application to Hald cement data

The Hald cement data have been widely used in the literature to illustrate multicol-
linearity; see, for example, Draper & Smith (1998). The data set contains 13 obser-
vations on 4 predictor variables and 1 response: heat evolved in calories per gram of 
cement (y), amount of tricalcium aluminate ( x1 ), amount of tricalcium silicate ( x2 ), 
amount of tetracalcium alumino ferrite ( x3 ), and amount of dicalcium silicate ( x4 ). 
The data set is given in the Supplementary Material which also contains a more 
detailed analysis of this data.

We first illustrate the APC arrangement of a group of strongly correlated vari-
ables with these data. In Table 1, the correlation matrix on the left is that of the 4 
predictor variables. It shows that there are 2 strongly correlated groups {x1, x3} and 
{x2, x4} with negative correlation within each group, so {x1,−x3} and {x2,−x4} are 
their APC arrangements. For convenience, we rename the variables so that x1 is still 
the same, but the old −x3 is now called x2 , the old x2 now called x3 , and the old −x4 
now called x4 . The correlation matrix of the renamed variables is on the right of 
Table 1. The strongly correlated groups are now {x1, x2} and {x3, x4} , both in APC 
arrangement, and there are no strong correlations between variables from different 
groups.

For model (8) with the standardized renamed variables, the matrix �′T�′ in (10) 
is just the correlation matrix on the right of Table 1. Matrix �11 in (10) is the upper-
left quarter of this correlation matrix, �22 is the lower-right quarter, and �12 is the 
upper-right quarter. For i ≠ j , the rij in �11 are close to 1, and the rij in �12 = �T

21
 are 

small. The latter leads to, as an example illustrating footnote 1 for Theorem 1(ii), 
small elements in

Thus, Theorem  1(ii) applies to group {x�
1
, x�

2
} in that var(𝜉E) ≈ 𝜎2∕2 and conse-

quently var(𝜉A) ≈ 𝜎2∕22 . Similarly, it also applies to group {x�
3
, x�

4
}.

�12�
−1
22
�21 =

(
0.06 − 0.01

−0.01 0.22

)
.

Table 2   Estimated parameter 
values and average group effects 
for the standardized model (8); 
�1
A
 is the average group effect for 

group {x�
1
, x

�
2
} and �2

A
 is that for 

{x�
3
, x

�
4
}

Estimate Std. Error t value Pr(> |t|)
�′
1

31.607 14.308 2.209 0.055
�′
2

−2.261 15.788 −0.143 0.889
�′
3

27.500 36.784 0.748 0.473
�′
4

8.353 38.762 0.215 0.834
�1
A

14.673 1.456 10.072 0.000

�2
A

17.927 1.571 11.409 0.000
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Table 2 shows the estimated values of the 4 parameters �′
i
 and the 2 average group 

effects �i
A
 in (15). The �′

i
 are poorly estimated with large standard errors due to mul-

ticollinearity generated by the two groups of strongly correlated variables. The t-test 
shows they are not significantly different from zero at the 5% level. The average 
group effects, on the other hand, are very accurately estimated with small standard 
errors and are highly significant. The estimated error variance is 𝜎̂2 = 2.3062 , so the 
estimated standard errors of the two average group effects based on Theorem 1(ii) 
are 𝜎̂∕2 = 1.153 . It can be seen from Table  2 that the standard errors of the two 
estimated group effects are indeed close to this value. We write the least squares 
estimated model (8) as

where the (… )G notation indicates that variables inside each (… )G are strongly cor-
related. Individual estimated parameter values such as 31.607 and −2.261 inside 
such brackets should not be used as point estimates as the underlying parameters are 
not meaningful and thus not estimated; they should only be used to estimate or make 
inference on meaningful group effects, such as �1

A
 and �2

A
 , or make predictions over 

the feasible prediction region.
Finally, we demonstrate that the least squares estimated model gives accurate pre-

dictions over the feasible prediction region RFP , and accurate extrapolation is also 
possible with this estimated model. Consider 5 points

In the more detailed Hald cement data analysis in the Supplementary Material, we 
showed that x1 , x2 , x3 and x4 are in RFP , but x5 is not. Plotting (x1, x2) of the 5 points 
and the 13 points in the Hald cement data in Fig. 1 finds x4 and x5 outside the data 
hull of the 13 points, so making predictions at x4 and x5 is extrapolation. Table 3 
gives the predicted values and their estimated variances at the 5 points. The predic-
tions at x1 , x2 and x3 are accurate with small variances as these points are in both the 
data hull and RFP . Point x5 is not in RFP , so extrapolation at x5 is inaccurate with a 

(23)ŷ� = (31.607x�
1
− 2.261x�

2
)G + (27.500x�

3
+ 8.353x�

4
)G,

x1 = (7.46153,−11.76923, 48.15385,−30.00000),

x2 = (3.18232,−15.98495, 64.86423,−10.86569),

x3 = (7.25776,−11.10359, 46.53671,−28.84034),

x4 = (−4.76478,−25.08204, 75.10608,−1.00862),

x5 = (13.57470,−18.42563, 75.10608,−47.39482).

Table 3   Predicted values and 
their estimated variances at 5 
points

Predicted value Estimated variance

x
1

95.423 0.460
x
2

100.496 3.706
x
3

94.381 7.359
x
4

95.742 5.285
x
5

116.827 1689.129
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large variance. In contrast, extrapolation at x4 is accurate as x4 is in RFP . This shows 
accurate extrapolation with the least squares estimated model is still possible when 
there is multicollinearity, provided it is done within RFP.

4 � Concluding remarks

Multicollinearity due to strongly correlated predictor variables manifests in two 
ways. Numerically, it manifests through the ill-conditioning of the �T� matrix and 
ultimately the large variances of the least squares estimators for parameters of the 
strongly correlated variables. Geometrically, it manifests as a tight spatial constraint 
on the strongly correlated variables in that their data points are clustered tightly 
around a line.2 Making predictions outside a narrow band around this line, including 
estimating parameters of these variables, is extreme extrapolation that may be mean-
ingless and highly inaccurate.

�

�
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�
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�
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Fig. 1   Points representing ( x
1
, x

2
) of the 13 observations in the Hald cement data are in circles. The “ ⋆ ” 

symbol represents the mean of the 13 points. Points representing the 5 prediction points are in red dots. 
Points x

4
 and x

5
 are the two red dots outside the circle data hull, and x

4
 is the one in the lower left corner 

which is still inside the feasible prediction region. A plot of ( x
3
, x

4
) of these points (not included) gives 

similar observations

2  For unstandardised variables and/or variables not in an APC arrangement, this line is difficult to char-
acterize. But for standardized variables in APC arrangement, this line is easy to describe; e.g. for the q 
variable in �′

1
 of (8), this line is x�

1
= x

�
2
= ⋯ = x

�
q
.
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Existing methods for dealing with multicollinearity such as ridge regression 
and principal component regression all focus on overcoming the numerical ill-con-
ditioning aspect of multicollinearity in order to produce more accurate estimators 
for parameters of the strongly correlated variables. They overlooked the geometric 
implication of multicollinearity which renders these parameters meaningless (see 
Remark [b] of Sect. 2.3). They may produce estimators with smaller variances than 
the least squares estimators, but this does not make the parameters they are try-
ing to estimate more meaningful. Indeed, trying to accurately estimate parameters 
of strongly correlated variables is misguided. It also cannot be done in general as 
strongly correlated data contain little information about the individual parameters. 
With the misconception of their having more accurate predictions dispelled, there 
is little reason for abandoning the simple least squares regression in favour of these 
methods.

The group approach to the least squares regression respects the group nature of 
the strongly correlated predictor variables. It studies their group impact and is free 
of the multicollinearity problem. With the aid of the APC arrangement, it works 
effectively in estimation, inference, variable selection and prediction. We did not 
discuss model checking, but on this point, the group approach also has a clear 
advantage over the ridge regression and principal component regression as various 
residuals and residual plots for the least squares regression can be directly employed 
by the group approach with well-understood usages and interpretations, whereas 
the same cannot be said about the ridge regression and principal component regres-
sion. To conclude, we recommend the group approach to the least squares regression 
over existing methods for handling multicollinearity because of its simplicity and 
effectiveness.

Appendix

Proof of Lemma 1  Let � be the q × q matrix whose elements are all 1. Then, � has 

two distinct eigenvalues, �A
1
= q and �A

2
= 0 . Eigenvalue �A

1
 has multiplicity 1, and �A

2
 

has multiplicity (q − 1) . The orthonormal eigenvector of �A
1
 is 1√

q
�q . Here, we ignore 

the other orthonormal eigenvector of �A
1
 , − 1√

q
�q , which differs only in sign from 

1√
q
�q.
Let � = [pij] be a perturbation matrix of � defined by

Then, � is real and symmetric and pij = 1 − rij . When rM → 1 , since 

pij = (1 − rij) → 0 , we have ‖�‖2 → 0 . It follows from this and � = � − � (so � 

is a perturbed version of � ) that �1 → �A
1
= q and �i → �A

2
= 0 for i = 2, 3,… , q as 

rM → 1 (Horn and Johnson, 1985; page 367).

(24)� = � − �.
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To show that �1 →
1√
q
�q as rM → 1 , since ��1 = �1�1 , we have

for i = 1, 2,… , q , where (ri1, ri2,… , riq) is the ith row of � and v1i is the ith element 

of �1 . All v1i are bounded between −1 and 1 since v2
1i
≤ ‖�1‖2 = 1 . When rM → 1 , all 

rij → 1 , so (rijv1j − v1j) → 0 for j = 1, 2,… , q . Thus,

as rM → 1 . By (25) and (26), �1v1i − (v11 + v12 +⋯ + v1q) → 0 which implies 
�2
1
v2
1i
− (v11 + v12 +⋯ + v1q)

2
→ 0 for i = 1, 2,… , q . It follows that

Since v2
11
+ v2

12
+⋯ + v2

1q
= ‖�1‖2 = 1 and �1 → q , (27) implies that 

(v11 + v12 +⋯ + v1q) →
√
q . This and (26) imply that

for i = 1, 2,… , q . By (25), we also have �1v1i →
√
q . This and �1 → q imply that 

v1i → 1∕
√
q for i = 1, 2,… , q , that is, �1 →

1√
q
�q . 	�  ◻

Proof of Lemma 2  Since � is positive definite, �−1 is also positive definite. Let 

𝜆′
1
≥ 𝜆′

2
≥ ⋯ ≥ 𝜆′

q
> 0 be the eigenvalues of �−1 . Then, ��

i
= �−1

q−i+1
 and its eigen-

vector is ��
i
= �q−i+1 for i = 1, 2,… , q . In particular, ��

q
= �−1

1
 and ��

q
= �1 . Since all 

𝜆i > 0 and trace(�) = q =
∑q

i=1
�i , we have 0 < 𝜆1 < q . Also, �T

1
�1 = 1 as �1 is 

orthonormal. It follows from these that

which proves (i). By Lemma 1, �1 → q as rM → 1 . Thus, by (28)

as rM → 1 , which proves (ii). 	�  ◻

Proof of Theorem 1  For any constant vector � ∈ ℝ
p , we have

Let �E = (�∗
1

T , 0,… , 0)T . Then, �E = �T
E
�� and 𝜉E = �T

E
�̂
�
 . By (11) and (29),

(25)ri1v11 + ri2v12 +⋯ + riqv1q = �1v1i

(26)(ri1v11 + ri2v12 +⋯ + riqv1q) − (v11 + v12 +⋯ + v1q) → 0

(27)�2
1
(v2

11
+ v2

12
+⋯ + v2

1q
) − q(v11 + v12 +⋯ + v1q)

2
→ 0.

(ri1v11 + ri2v12 +⋯ + riqv1q) →
√
q

(28)�T
1
�−1�1 = ��T

q
�−1��

q
= ��T

q
𝜆�
q
��
q
=

�T
1
�1

𝜆1
=

1

𝜆1
>

1

q
,

�T
1
�−1�1 =

1

�1
→

1

q
,

(29)var(�T �̂
�
) = 𝜎2�T [��T��]−1�.
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To show (i), when variables in �′
1
 are uncorrelated with variables in �′

2
 , �12 = � and 

so �∗ = � and �∗
1
= �1 . By (30),

Applying Lemma 2 to the right-hand side of (31), we obtain ( i1 ) and ( i2).
To show (ii), for simplicity, we assume general conditions discussed in footnote 

1 hold so that �12�
−1
22
�21 → � when �12 → � . It follows from this and conditions 

in Theorem 1(ii) that �11 and �∗ will both converge to matrix � in (24). We again 
define a perturbation matrix of � as

like what we did in (24). By following steps similar to those in the proofs of Lemma 
1 and Lemma 2, we can show that �∗ also has the two properties in Lemma 1 and 
property (ii) in Lemma 2. The latter and (30) imply (ii). 	�  ◻

Proof of Theorem  2  Since � ⋅ �∗
1
= ‖�‖‖�∗

1
‖cos(�) = cos(�) where � is the angle 

between � and �∗
1
 , 
√
1 − 𝛿 < � ⋅ �∗

1
≤ 1 is equivalent to 

√
1 − 𝛿 < cos(𝜃) ≤ 1 or 

0 ≤ 𝜃 < 𝜃𝛿 for some small fixed 𝜃𝛿 > 0 . Thus, N� in (14) represents a small open 
circular region centred on �∗

1
 on the surface of the unit sphere.

Similar to var(𝜉E) in (30), var(�T �̂�

1
) = 𝜎2�T�∗−1� . Since �∗−1 is real symmetric 

positive definite, it has eigendecomposition ���T where � is the matrix of ortho-
normal eigenvectors including �∗

1
 and � is the diagonal matrix of eigenvalues. The 

smallest eigenvalue of �∗−1 is 1∕�∗
1
 which converges to 1/q under the condition of 

Theorem 2 as rM goes to 1. The other eigenvalues of �∗−1 all go to infinity as rM 
goes to 1. For any unit vector �,

where �̃ is the matrix containing all columns of � but �∗
1
 . If � ∉ N� , then 

(�T�∗
1
)2 ≤ 1 − � . This and (32) imply that 1 ≤ �T�̃�̃T� + (1 − 𝛿) , that is, 

�T�̃�̃T� ≥ 𝛿 . This leads to the following lower bound on var(�T �̂�

1
),

where �̃ is the diagonal matrix of all eigenvalues of �∗−1 except the smallest one 

1∕�∗
1
 , and 1∕�∗

2
 is the second smallest eigenvalue of �∗−1 . Since 1∕�∗

2
→ ∞ as 

rM → 1 , (33) implies that var(�T �̂�

1
) → ∞ as rM → 1 if � ∉ N� . 	�  ◻

(30)var(𝜉E) = 𝜎2�∗
1

T [�11 − �12�
−1
22
�21]

−1�∗
1
= 𝜎2�∗

1

T
�∗−1�∗

1
.

(31)var(𝜉E) = 𝜎2�T
1
�−1�1.

�∗ = � − �∗

(32)1 = �T� = �T��T� = �T [�̃, �∗
1
][�̃, �∗

1
]T� = �T�̃�̃T� + (�T�∗

1
)2

(33)var(�T �̂
�

1
) = 𝜎2�T�∗−1� = 𝜎2�T���T� ≥ 𝜎2�T�̃�̃�̃T� ≥

𝜎2𝛿

𝜆∗
2

,
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Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00841-7.
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