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In this supplementary material we provide the lemmas and technical proofs for the theorems presented in the

main article. We also provide additional results for the simulations presented in Section 5 of the main paper.

S1 Introduction

This article develops a hypothesis testing framework for additive models. For a random sample {Y;, X;1, ..., X;q}ieq,
we consider

d
Yizao-i-ij(Xij)-Fei, i=1,...,n, (S1.1)

Jj=1
where {¢;,7 = 1,...,n} is a sequence of i.i.d. random variables with mean zero and finite variance o2. Bach
additive component function m;(-), j = 1,...,d, is assumed to be an unknown smooth function and identifiable

subject to the constraint, E[m;(-)] = 0. For simplicity in presentation, the following hypothesis testing problem
is considered

Hy:mg(xg) =0 vs. Hy :mg(xq) #0, (S1.2)

which tests whether the dth covariate is significant or not.

For readability, we repeat some notations and definitions that are provided in the main document. Let m; =
(mj(le), S ,mj(an))T and T; = (le, o ,an)T for j=1,...,d. Let Xj =1 x5 - .’Eﬁ”] forj=1,...,d,
and X=[1@y - xq -~ " - )], where 1 is the vector of ones. Let XE =y g e 2P xh]
which is same as X without the column of ones. For any matrix A, define A~ = I— A and P4 = A(ATA)~1AT.

The following definitions are needed for the theoretical results. Let Ml(H;J ,j) be a space spanned by the
eigenvectors of H;j _; With eigenvalue 1. It includes polynomials of x; up to p;th order because H;j J wf = m?, k=
0,1...,pj,and j = 1,...,d. Suppose G is an orthogonal projection onto the space M1 (Hp, 1)+-- '+M1(H;d,d)
and G is an orthogonal projection onto the space /\/ll(H;j ’j), j=1,...,d. Then,

G =PFPx =P+ Pp.iyio, G; = Py, (S1.3)

where Py = X(XTX)™'X and Py, Py, and PPILX[,O] are defined similarly. Let G|_g4 = Px(-a) where X[ =

lay - xg_q - - ms“i’ll] and mf = (Xf’j, .. .,X,’fj)T for k=0,1,...,p;, as in (S1.3).
Define
Loy * iR 1 py* * un -1, — —
C=PFgy yi-o+G Hy ot Hy oG~ G Hy H}, (G™ +0(n Yhytr 0T, (S1.4)
d
D=G"t —Z{H;j’jGJ‘+O(n_1hj_11+n_1J)}, (S1.5)
j=1
E=P, _o+H, ,G"+0n " 'h;'T+n'J), (S1.6)
[e7 & Pd;
0] (<[-0]T —o]\ ! o [—0" —0 ; . .
where PG[*,d]X[JO] = G[J;d]X{[i ] (Xz[i ] G[J;d]X([i ]) X([i ] G{J;d}, and X([i I _ [md...mgl]’ J is the matrix

of ones, and I is an identity matrix of size n.



S1.1 Generalized Likelihood Ratio test:

The GLR test statistic is defined as

RSSy _ n RSSo — RSS
8RSS, T2 RSS,

lo

An(Ho) = [6(H1) — ((Ho)] & (S1.7)

n
2
where RSSy and RSS; are the residual sum of squares under the null and alternative, respectively, and reject
the null hypothesis when A\, (Hp) is large. Analogously, the following F-type of test (Huang & Davidson 2010) is
also developed

T
y Cy tr(D)
Fy = 1.
A yTDy tr(C)’ (S 8)
where tr(-) denotes the trace.
S1.2 Loss Function test:
The LF test statistic is defined as
d"0)/25" (M (Xits - Xig) — D (Xins oo Xige10))? + R
an(Ho) = Qn _d'(0)/23 (M (Xi id) —my (X i(d—1))) (S1.9)

n—1RSS; ~ n—1RSS ’
where m and ﬁzs__d) are the fitted values of the models under null and alternative, respectively, RSS; is the
residual sum of squares under alternative and R is the remainder term in the Taylor expansion of d(-). We reject
the null hypothesis when ¢ (Hp) is large. The corresponding F-type of test statistic is define as

yTETEy tr(D)

F, = S1.10
1 yI'Dy tr(ETE)’ ( )

for E defined in (S1.6).

S2 Assumptions

We repeat the assumptions that are outlined in the main document.

(A.1). The densities f;(-) of X; are Lipschitz-continuous and bounded away from 0 and have bounded support
2 forj =1,...,d. The joint density of X; and X, f; ;/(-,-), for 1 <j # j' < d, is also Lipschitz continuous
and have bounded support.

(A.2). The kernel K(-) is a bounded symmetric density function with bounded support and satisfies Lipschitz
condition. The bandwidth h; — 0 and nh?/(ln n)2 —o00,j=1,...,d, as n — oco.

A.3). The (2p; 4+ 2)—th derivative of m;(-), 5 =1,...,d, exists.
J J J
(A.4). The error € has mean 0, variance o2, and finite fourth moment.

(A.5). The loss function d : R — R has a unique minimum at 0, and d(z) is monotonically nondecreasing as
|z| = oo. Purthermore, d(z) is twice continuously differentiable at 0 with d(0) = 0, d'(0) = 0, M = 1d"(0) €
(0,00), and |d"(z) — d"(0)| < C|z| for any z near 0.

S3 Required Lemmas and Proofs

The explicit expressions for the estimators 7n\;-, j=1,...,d are provided as follows. Let
d
-1
Aj=(I—(Hy ;- G;) '(Hy ;- Gj) and A=) A;. (S3.11)
j=1

By Proposition 3 in Buja et al. (1989), we obtain mj = A; (I + A)~1 G1y. Therefore, the fitted response under
the alternative can be written as

d d
GUH) =Y m;+Gy= > A;I+A)7'G +G|y:=wWy. (S3.12)
j=1 j=1



Analogously, the fitted response under the null can be written as
- —d
SAT+A) Gy +GLy |y=Wy (S3.13)
The following lemma simplifies the expressions for the RSSy — RSS;.

Lemma 1 Denote Ay = (I — WIENT(1 = Wl=9) and Ape = (I = W)T(I = W) where W and W4 are
defined in (S3.12) and (S3.13), respectively. If assumptions (A.1)-(A.3) hold, then

RSSy — RSS1 =y  (Ap1 — Ap2)y (S3.14)

and
Apl — Apg = P G H! H' ,G'-G'H' H* ,G*+0on ‘hilr+ntg S$3.15
nl — An2 = G[L ]Xd 0 + dd"’ Pa,d - pa,dtpg,d + (n d +n )7 ( . )
where P, G ]X[ 0 = [L—d]XE;O] (XE{O] G[ d]X[ 0]) X[ o G[ q ond XE{O] = [@q--- @b, J is the matriz

of ones, and I is an identity matriz of size n.

Proof. As shown in Huang & Yu (2019), the diagonal elements of H;j j and H;j 7jH;j »Jd=1,...,d, are of
order O(nilhj_l) and the off-diagonal elements are of order O(n~!). Similarly, the elements of H;j SH,,  are

of order O(n™1) for j # I. Since the elements of H;j _; are of smaller order, we can write

-1

Aj=[1-(Hy ;—G))|  (Hy,;—Gj)=H, ;—G;j+0n lh;11+n*1J)7
4 d (S3.16)
AT+ =[N Al [1+ Y 4] =3 {m, - 60w T D),
j=1

where I is the identity matrix and J is the matrix of 1’s of size n. Since G; € M( it follows that

H;JJGJ = G;. Therefore,

PJ)

Ner s

H, PJJ J

DjsJ G =H,

pJ’J(I G, )

Consequently, we write (S3.12) as
W=AI+A) 'G"+@G

{ H), GE 400 ' T+n ')} G 4@

M& I Mg

{H;,,6" +00 ' T+n '} 46, (83.17)

I
-

J

where the last step uses the fact that Gj‘ Gt =G*. Let G[_d] be the parametric projection matrix of the first
d — 1 components defined similar to (S1.3). Based on the properties of the projection matrices, we obtain

G=G_q+P G yxl7
G =G4 — Pgi i ($3.18)

where P G xL-0) defined in (S1.6). Combination of (S3.17) and (S3.18) and some rearrangement of terms yields
—d]

I-w=ag*— Z{ 5 iGla+0m” hj_lI+n_1J)}—|—H;d’dGL+O(n_1h;11+n_1J)

Observe that H G[ q = H G G[ ap for j = 1,...,d — 1. The elements of Gj‘H;j,jH;j’jGj‘ are of

smaller order than the elements of H;J_ g G]l since the latter has eigenvalues in [0, 1). Therefore,

I-w)'(1-w)

d—1
=Gt — [Z{G[ d] J+H ,G[L_d] G[ d] pJ,J pJ,JG[ d]+0( _1h_1I—|—n_1J)}
j=1

+GJ_H;dd+H*

Pd,

Gt -G H} JHY GO hy T+ n*lJ)] .



Similar computations yield
T-wlhhT(q - wld
d—1

1 1 * * 1 1 * * 1 —1;,-1 -1
= G[—d] - [Z {G[—d]pr‘-j + HPjJ’G[—d] - G[—d]HPjJHPj»J’G[—d] +O0(n hj I+n J)} ]
j=1
Hence,
Ant = Ano = Pgu g0+ G H;, ,+H;, G~ G H;, jH;, ;G +0n "hy' T+n'J).
|

Lemma 2 If assumptions (A.1)-(A.4) hold, then under Ho : mg =0

dip = mi(Anl — Apa)m4 + 26T(An1 — Apa)mo
d d
= 0p [ 143 nn} @Y LN ymndrit ) ($3.19)
j=1 j=1

where Ap1 and Ano are defined in Lemma 1 and my =mq + ...+ my.

Proof. From Huang & Chan (2014), we have H;j’jmj =m; +1- Op(h‘?(pj_‘—l)) for p; = 0,1,2,3, and
Gjm; =1-0p(1/y/n) for j =1,...,d, where 1 is the vector of ones. The calculations analogous to Lemma 1
yield, under Hy : my = 0, that

I-Wymy = (1-G =Y {H; ;G"+ 0w 'h ' T+n D)} | my

j=1

d
=my—my+1-0, | S 2PV 1.0, (1/v0)

j=1
d 2 1
+
=10y | S0PV ) 1 1.0, (1/V). (53.20)
j=1
Consequently,
d
m (1 - W) (I - Wyms =0, [ 1+ b || (S3.21)
j=1
d—1
mT (1 - WD (1 - W ym, =0, (143 apt®+D
j=1
Moreover,
I-—W)e=€+1.0p(1)
which implies that under assumption (A.4)
d
ST -W)T(I - Wymy = 0,1+ > Va7 D), (S3.22)

j=1
Hence, the stated result (S3.19) follows from (S3.20) and (S3.22). B

Theorem 1 (GLR test) Suppose that conditions (A.1)-(A.4) hold and 0 < p; <3, j =1,...,d. Then, under
Hy for the testing problem (11)

-1 1 d
P {an ()\n(HO) — fin — ﬁczln) < t|X} 4 o(1), (93.23)
where dip, = Op (1 + Z?:l "h?(p'ﬁl) + Z?:l \/ﬁhi(p'j+1)) and ®(-) is the standard normal distribution. Pur-
thermore, ifnh?(pj-i_l)hd — 0 forj =1,...,d, conditional on the sample space X, r \n(Hpy) — X%kﬂn asn — 0o.
Stmilarly,
2An (Ho)tr(D
Fy = %C)() = Fy(0),tn(D)> (S3.24)

as n — oo, where tr(C) and tr(D) are the degrees of freedom.



Proof.: Recall that
n RSSy — RSS1

Mn(Hp) = ) RSS; (S3.25)
Proof of S3.23:
(i) Asymptotic Expression for RSSy — RSSy:
Using the notation from Lemma 1, we write
RSSo — RSS1 = y” (An1 — An2)y
— " (An1 — Anz)e + [mT (An1 = Ang)my + 267 (Any = Anz)ms ]
=€l Ce+ din, (S3.26)
where
C=A,1—Ap2
=P xi-o+ G H}, .+ H;, G~ G Hy, H G+ 00 hy' T +n7 ")
= (Cij)lgi,jgna (S3.27)

and dy, = m£ (Ap1 — Apa)my + 26T(An1 — Ap2)my. With the help of Lemma 2, we can bound the bias term
din by Op (1 + 30 ) sl \/ﬁhi“’k“)). We write

n n
el Ce = Ze%cii + Z €i€jci; = L1 + Lo. (S3.28)
i=1 i

Since the leading terms of C in (S3.27) come from H, d, we obtain ¢;; = O(n _1h71 +n~1). Combination of

Assumption (A.4) and Chebyshev inequality yields L; = 62E (> cii) + Op(1/y/n hd) After some algebra,

n

210 Pd  Pd
E(ZCi _ 2 d|(zzvl S(m+1),(14+1)

i=1 =0 m=0

Pd  Pd 2
5 J{ S wi s O ) o)

=0 m=0

where [£24] is the length of the support of the density fy(xg4) of Xg4. It remains to show that Lo converges to
normal in distribution. Note that E[Ls] = 0 and

n

Var(Lg|X) = var Z €€y | = 4040,%7

i)
where
|Q\ Pd  Pd
P > {ZZ (K o+ Km) () (=1) ™00
1<J =0 m=0
1 Pd  Pd .
1 1
5/{22 K Kon) (u -+ ) (= 1) ““]
=0 m=0

2
} du + op(hy ).

Pa  Pd
- [Z >y Kn) (o) (— )™M D gy

=0 m=0

Application of Proposition 3.2 of de Jong (1987) yields

1
5 —sont Lol 4 N(0, 1), (S3.29)

(ii) Asymptotic Expression for RSSj/n: By the definition of RSS,
RSS| = eTAnge + mzAn2m+ + ZETAn2m+
= ETAnQG + dop -



The arguments analogous to Lemma 2 yields

T T
don = m3 Apomy +2€” Apamy

d d
_ Op (1 + Znhi(Pk"rl) + Z \/ﬁhi@k-ﬁ-l)) .

k=1 k=1

Note that, under the condition (A.2), don/n = op(1). Thus, it remains to show that n~tel A0e = 02 + op(1).
From the proof of Lemma 1, we obtain

d
n el Appe=n"tel | T-G - Z {H;j,jGJ‘ + O(nilhjflI + nilJ)} €+ op(1)
j=1
n
=n ! e+ op(1)
i=1

= 02 + Op(1)7

which follows from the Chebyshev inequality and using the arguments analogous to the derivation of variance for
(S3.28).
(iii) Conclusion : By part(i), part(ii) and definition of A, (Hp), we have

RSSy — RSSq
2RSS1/n
_dip+ L1+ Lo
B 202
_din + 0B i) + Lo
o 202
Lo

+,U/n+ﬁ,

An(Hp) =

+0p(h(;1)
d

in
202

where pn = E(31"; cii)/2. Therefore, (S3.29) implies
-1 1 d
P {an (,\n(HO) i — ﬁdln) < t|X} 4 (1),

If nh:(pk+l)hd — 0 for k = 1,...,d, then dy, = op(hgl) which is dominated by pn = O(h;l). Then
PiAn (HO)| X — X2, 0, as 1 — 0.

Proof of (S3.24):
By virtue of Lemma 1, the GLR test statistic is defined as

nyT (An1 — An2)y
2yT Anay

nyTC’y

2yT Dy’

An(Hp) =

for D =G+ — (Z;‘l:1 {H;‘J_’jGL + O(n_lhjflI + n_lJ)}) and C defined in (S3.27). As discussed in Huang

& Davidson (2010), for F'—type statistics,

_yloy/t(0)

= STDy(D)’ (S3.30)

the F'— distribution is warranted if C' and D are both projection matrices (symmetric and idempotent) and they
are orthogonal to each other. Clearly, both C and D are not projection matrices and not orthogonal to each other.
However, following Huang & Chen (2008), we show these properties hold asymptotically. It is straightforward
to show both C' and D are asymptotically idempotent. Now it remains to show that they are asymptotically
orthogonal. Observe

E{CDy|X}=C Z[O(hi(pj+l))+0p(1/\/nhj+1/\/ﬁ)} — o(1).

Jj=1



Based on the definition of asymptotic orthogonality in Huang & Chen (2008), we claim C and D are asymptot-
ically orthogonal. Therefore,

_ ¥ Cy/tx(C) _ 2\n(Ho) tr(D) _ 2Xn(Ho)
yT Dy/tr(D) n  tr(C) tr(C) ’

because tr(D)/n = Ltr (G’L - (Z?zl {H;,‘J,J-G’l + O(n_lh;11+n_1J)})) — 1 as nhg — oo and n — co.
|

Theorem 2 (LF test) Suppose that conditions (A.1)—(A.5) hold and 0 < p; <3, j =1,...,d. Then, under Hy
for the testing problem (11)

P {5;1 <% — Uy — %bln) < t|X} LN b(1), (S3.31)

J
skalqn(Ho) — XZkVn as n — oo. Similarly,

where b1y, = Op (1 + Z;l=1 nhé(ijrl)). Furthermore, if nh?(pj+l)hd — 0 for j = 1,...,d, conditional on X,

_ 4n(Ho)tr(D)

1 Mnin(BETE) L (BT E), (D) (53.32)

as n — oQ.

Proof. Proof of (S3.31):
Consider the LF test statistic in (S1.9)

On __E:zzld{E:?:1€U}3}

an(Ho) = =ToopT = n—1RSS; ’

where d(-) is the loss function defined in Assumption (A.5) and e;; is the (¢,5)th, 1 < 4,5 < n, element of

PG[J:d]X([;g] + H;d,dGJ‘ + O(nilhglI + nilJ). The arguments analogous to Lemma 1 yield that , under Hp,

n d
S i =0 (LY ) 0, (/v

j=1 k=1

Note that the dominant orders for the elements e;;’s come from H;d,d‘ Therefore, diagonal elements e;;’s are of

order O(n_lhgl +n_1) and the off-diagonal elements e;;/, i # i’, are of order O(n_l). By Taylor series expansion
of loss function d(-) in the neighborhood of 0, we obtain

d(z) &~ d(0) + d'(0)z + Mz* +1/2(d" () — d"(0))2* = M2* + R,

where d(0) = 0, d’(0) = 0, M = d”(0)/2! € (0, 0) and Z lies between 0 and z. Assumption (A.5) implies R < Cz5.
Therefore

2
n n

d
DD €Yo = Mi i eij&j | +Op (1 +> "hi(p”l)) + Xn: R, (53.33)
i=1 k=1 i=1

j=1 i=1 \j=1

where each R; < C| Z;-Lzl 6ij6j|3, The idea is to show that the first term in (S3.33) converges to normal distri-

bution and the third term is of smaller order. Using the relation Elz|> < [E|x\4]3/4, we obtain

4 3/4
n n n n n
DRSO B eyeil <CY (B eise;
i=1 i=1 j=1 i=1 j=1
3/4 3/4
n n n n
< CC* Z Z G?JE[GJ]LL + CC* Z Z 612j612j/E[€j6j/]2

-0, (n(1/n3h§) +n(n(n — 1)/n4h3)3/4)

= 0p(n"2h; %) 4+ Op(1/hgr/nhq) = Op(1/hg\/nhg), (S3.34)



where C* is some positive constant and the exact value of it can be calculated using the expression in page 101
of Lin & Bai (2010). Note that, the first term in (S3.33) can be written as

2

n n n n n n
MZ Zeijej = MZZ@%&? + MZ Z €ij€ij/ €5j€51 = Th1+ Tha. (S3.35)

i=1 \j=1 i=1j=1 i=1j£j

After some algebra, we obtain

|Q| Pd  Pd 2
612.] 4 {ZZ K * Km)(u)(— )mS(m+1)’(l+1)} du—!—o(h;l).

(2%} =0 m=0
Application of Chebyshev inequality yields that T,,; = Mo?vn 4+ Op(1/+/nhg) where vy, = E(Zm ;). Now it
remains to show that 7,2 converges to normal in distribution. Observe that F(T,2) = 0 and
2
var(Tp2|X) = Z (Zeijeij’) = M2t Z 6] ej)” = 2045,21,
J#5’ J#5’
where e, = (e1, ..., enk)T and 62 = Zﬁé] (eTeJ ) . We note that the leading terms of
|Q | Pd  Pd
"= e {/ [Z D (K K (w4 v)(=1)" s DD
=0 m=0
Pd  Pd 2
x [Z D+ Kom) (@) (1) dv} du+op(hy"):
=0 m=0
Therefore, application of Proposition 3.2 of de Jong (1987) yields
L s\ Tl % N(0,1 $3.36
Mo2'm n2‘ - ( ) ) (S3. )
By plugging (S3.34) and (S3.35) in (S3.33), we obtain
n d
Qn=Tu + T2+ » Ri+0p (1 +y nhi(mﬂ)) _
=1 k=1
Since nT'RSS; = 0% + op(1) and gn = Qn/rflRSSl, we have,
an(Ho) b1 —1y  Tn2
nM — Uy — 7;1+ P(hd )2 MT;-2’ (8337)

where b1, = Op (1 + Zzzl nhi(pk—H)). Therefore, combination of (S3.36) and (S3.37) yields

-1 QR(HO) _ _ i d
P{én <7M Vn = —3 bln) < t|X} — D(t).

It nhi(p’“q)hd — 0 for k=1,...,d, then by, = op(hy 1) which is dominated by vp. Then s, M~ gn(Ho)|X —
X2, 0, 8s T — 0.

Proof of (S3.32): Recall

Qn iz d {Z?:l eijyj}
n~1SSR1 n~1RSS; ‘

qn(Hop) =

By Taylor’s expansion, as in part(a), the numerator can be written as MyTETEy—i—Rn where Ry, is the remainder
term which is of order op(hgl). As in part (b) of Theorem 1, we show that ET E is asymptotically an idempotent

matrix and ETE and D are asymptotically orthogonal. Hence, the LFT statistic is

My"ETEy _ Mtr(ETE)

H =
an(Ho) n~lyT Dy n=ltr(D) "’

12

(S3.38)



which implies that, as in part(b) of Theorem 1, we have

gn(Ho)
m — Fy(ETE) te(D)>

as nhg — oo and n — oo.
|

For the following theorem, we consider the contiguous alternative of the form
Hy, :mg(Xg) = Mn(Xy), (S3.39)

where Mp(Xy) — 0 and My € My (p;n).

Theorem 3 Suppose E{Mn(Xq)|X1,...,Xq—1} =0 and hg- Y i, M2(X;q) £, Cyr for some constant Cyy.
Suppose 0 < p; <3, forj=1,...,d.

(i) [GLR test] Suppose that conditions (A.1)-(A.4) hold. Under Hy,, for the testing problem (11),

_ din +d d
P {anl ()\n(HO) — pn — %) < t|X} % B(t),

where n, di, and on are same as those in Theorem 1 and

don =Y MF(Xia)(1+ op(1)).
i=1

(i) [LF test] Suppose that conditions (A.1)-(A.5) hold. Under Hy,, for the testing problem (11),
_ H
pls tm(Ho) _ ~ bin +bon <t b s,
M o2
where vy, b1, and 0n are same as those in Theorem 2 and

bon = > My (X;q)(1 + 0p(1)).
=1

Proof. Part (i): Under Hy, (S3.39), the arguments analogous to Lemma 1 yields,

(I-W)my =(G" =Y Hy ;GT)(my+...+mg_1+ My)+o0p(1)
j=1
d
~1.0 (Z hi“’k*”) +1-0, (1/vA).
k=1

where My (2g) = (Mn(X14q), - - -» Mn(Xpa))T, My € Mn(p;n) defined in (26) and 1 is the vector of ones of size
n. Similarly,

d—1 d—1
I -WwEDmy = [ Gy - Y Hy, jGiy | Ma+1-0 (Z hi(pkﬂ)) +1-0p(1/vn).
= k=1

Observe that, same set of arguments yield (I — W)e = € + op(1) and (I — W[fd])e = €+ 0p(1). Consider,

RSSo — RSS1 =y (An1 — An2)y
= €' (An1 — Ap2)e+m7 (An1 — Ap2)my +2€” (An1 — Apa)mo
= Ip1 + Ing + Ins. (53.40)

straightforward computations yield

d
Ing = My, My, + Op (1 +3° nhi(p””) and
k=1

d
I3 = "' M, + Op (1 + Z \/ﬁhi(mﬂ)) )

k=1



10

Plugging the above results and the I,; value from Theorem 1 in (S3.40), we obtain
RSSy — RSS1 = L1+ Lo + Cn + doy, + din, (S3.41)
where L1, Lo, di,, are same as defined in Theorem 1,
n
dop = Mj(Xig) +op(hy')  and
i=1
n
Cn = Z €iMn(Xia)-
=1

The proof follows by proceeding similar to Theorem 1.
Part (ii): The arguments analogous to Lemma 1 yield that, under Hy,

W —whhym, = (P,

cor + Hy, gGH)(my 4. 4+ mg_y + My) + 0p(1)
d

d
=M, +1-0 <Z hi“””‘*”) +1-0p (1/v/n).

k=1
Similarly, (W — W=d)e = (Z;”Zl e1j€j, .-, Z?Zl enjEj)T where e;; is the (4,5)th 1 < 4,5 < n, element in the
matrix {PGi g0 + H;d dGl + O(n—lhglI + n—lJ)}. Note that the leading terms of e;;’s are of the same
[—d]d ’

order as the elements in H;d,d' By Taylor expansion,

2

n n n n n
S S ey = [Sew | 4y azov)
i=1 |j=1 i=1 \j=1 i=1
d n
+0, (1 +3 nhi(karl)) +3 R, (S3.42)
k=1 i=1

where each R; < C| Z?Zl eijej|3. The proof follows by proceeding similar to Theorem 2. ll

Theorem 4 Under conditions (A.1)-(A.5), if hi(p’“Jrl) = O(hz(p‘frl)) and 0 < p,, < 3, fork = 1(7 . 7)d -1,
_ 4(pg+1
then for the testing problem (11), both GLR and LF tests can detect alternatives with rate pnp, =n  32dt9 when
2

hq = can” 8249 for some constant cx.

Proof. The proof uses arguments analogous to Theorem 5 in Fan & Jiang (2005). We provide proof only
for the GLR test and similar arguments can be used to prove the LF test. Under the contiguous alternative
Hin : mg(Xy) = Mn(Xy), it follows from (i) of Theorem 3,

d d
Ly | don+Chp 4(pr+1) 2(pr+1)
)\n(HO) = pn + 952 + nZT + Op (1 + kil nhk k + kil \/ﬁhk k R (S3.43)

where do;, = Y1, M2(X;q) and Cp = S €iMn(X;q). Since the probability of the type II error at Hyj is
defined as B(a, Mn) = P(¢p, = 0lmg = Mp), it implies that

Bla, M) = P{oy ' (—=An(Ho) + pin) > zal X}

d d
_ L don + C
~ple (-5 - s o (14 i s vt ) ) > s

k=1 k=1
- Pln + P2n7
with
_ L 4pa+5)/2 8 9)/2
Py, = P{anl(—ﬁ) RSP 2y nEP N2 Shatan > za |tin] < M, |tan| < M|X

_ L 4 2 8 9)/2
Py, = P{onl(*ﬁ) RSP 2y nSP N2 Shatan > 2o |tin] > M, |tan| > M|X

)

¥
|
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and
1 d
tin = (Vi 2e,) 0y (1 +y \/ﬁhi"”““)) — 0,(1),
k=1
-1 d
ton = (nhffp”g)/%n) 0p(3_ kD) = 0,(1),
11
t3n = (\/ hdgza"ﬂ) li[dQn + C’ﬂ}
2 —
Note that E[Cy|X] = 0 and var(Cpn|X) = O(>_"_ | M7 (X;q)) and hence Cp, = Op(v/d2y,). Analogous arguments

to Lemma B.7 of Fan & Jiang (2005) lead to
v/ hgtsn — o0 only when n\/hdp2 — 0.

B
We choose hy < ¢ 2(PatD) "I+ | This implies, \/ﬁh((i4pd+5)/2 > conh&8pd+9)/2, \/ﬁh24pd+5)/2 — 0, and

nh&gp‘ﬁg)/2 — 0. Hence, for hg — 0 and nhg — oo, it follows that 8(a, p) — 0 only when ny/hgp® — 4oco. This

1/2 . - o L T8padtD) 4(pa+1)
and the possible minimum value of py, in this setting is n '6a*+1 . When nh,, — 00,

implies pn = nilh
for any 6 > 0, there exists a constant M > 0 such that Pa, < g uniformly in M, € Mun(p;n). Then

)
ﬂ(OQP) < 5 +P17l

We note that sup Pi, — 0 only when B(hy) = nh&gpd+9)/2M — nh(l/Qp2 — —o0. The function B(hg) attains
Mo (pin)
the minimum value

8(pa +1) SGaFD 1y 1Ty
_7[M(8pd + 9)} 3(P¢+1) np4(Pd+1)
8pg +9
) 1
4 1
at hg = [m} et With simple algebra, in this setting, we obtain the corresponding minimum value of
_ 4A(pg+1)

pn=n BPat% at hy = c«n 8I’d*"" for some constant c.. B

Theorem 5 [Relative efficiency] Suppose Conditions (A.1)-(A.5) hold, h x n=% for w € (0,1/(4pq + b)) and
pj =0 for j =1,...,d. Then Pitman’s relative efficiency of the LF test over the GLR test under Hyn in (29) is
given by

ARE(qn, An)

f{2 Ko * Ko)(u) — f(KO*KO)(U+’U)(K0*Ko)(v)dv}Zdu 1/(2-3)

[ (Ko * Ko)(u + ) (Ko * Ko)(v)dv}” du

The asymptotic relative efficiency ARE(qn, \n) s larger than 1 for any kernel satisfying Condition (A.2) and
K()<1.

Proof. Pitman’s asymptotic relative efficiency of the LF test over the GLR test is the limit of the ratio of the
sample sizes required by the two tests to have the same asymptotic power at the same significance level, under
the same local alternative [Pitman (2018), Chapter 7]. Suppose n1 and ng are the sample sizes required for the
LF test and the GLR test, respectively. The Pitman’s asymptotic relative efficiency of g, to A\, is defined as

ARE(gn,An) = lim "L,

ni,n2—>00 N

under the condition that A, and gn, have the same asymptotic power under the same local alternatives nl_l/Qh;f/le (zq) ~
—1/2,-1/2
h

N, g2(zq) in the sense that

—-1/2,—-1/2
lim mhg, g1(va) _
n1,ma—00 n;1/2hd 1/29 (z4) -
2

Given hg, = cn; ¥, 4= 1,2, we have n; st S 93 (X ai) ~ ny . S g5(X 4;), where v = (1 — w)/2. Hence,

2 2
I ni\7 i 91 (Xa)
im =S o
n1,n2—ro0 \ N2 > i1 95 (Xai)

(S3.44)
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From Theorem 3(i), we have

Any (Ho) = ping 4,

On,

N(€7 1)7

—1/2 1/2

under Hp, : mg(zq) =ny ' “h; ' “gi1(zq), where £ = [}1" 93 (X )]/ (20%00,) with oy, is defined in Theorem
1. Also, from Theorem 3(ii), we "have

Mﬁlqnz (Ho) — vn
61’L2

4 N, 1),

under Hn, : mg(zq) = n2_1/2h;21/2gg(md), where 1 = [}, 93(X 4:)]/(026n,) with 6y, is defined in Theorem 2.
To have the same asymptotic power, the noncentrality parameters must be equal which means £ = 1 or

S 9i(Xai) _ 20m,
Z?:l g% (Xdi) Onsy

Combination of (S3.44) and (S3.45) yields, for p; =0, j =1,...,d,

B1/2
ARE(gn, An) = [1/25 ]
2

(S3.45)

2/(2—3w) s
N [4hdlail]l/(2 5

hq,0%,

[f {2(Ko * Ko)(u) — [ (Ko * Ko)(u + v)(Ko * Ko)(v)dv}” du

1/(2—3w)
f{f(Ko*KO)(u+v)(K0*Ko)('u)dv}zdu :|

Now, we show ARE(gn,An) > 1 for any positive kernels with K (-) < 1. It is sufficient to show that
2
/ {Z(KO * Ko)(u) — /(Ko * Ko)(u+ v) (Ko * Ko)(v)dv} du

> / {/(KO + Ko)(u + v) (Ko * Ko)(v)dv}2du.
From Jensen’s inequality and Fubini’s theorem we obtain
/ { /(KO % Ko)(u + v) (Ko * Ko)(v)dv}Qdu
< //(KO « K0)2(u + v) (Ko = Ko)(v)dvdu
= / (Ko * Ko)*(u)du. (S3.46)

Triangle inequality and (S3.46) yields that

2 y1/2
{ / {2<Ko Ko)w) — [ (o Ko+ ) *Koxv)dv} du}

1/2 2 1/2
2{ /(KO*KO)Q(u)du} - {/{/(Ko*KO)(quv)(KO*KO)(v)dv} du}
1/2 1/2
2{ /(KO*KO)Q(u)du} —{/(KO*KO)z(u)du}

1/2
= {/(Ko *K0)2(u)du} . (S3.47)

Combination of (S3.47) and (S3.46) yields

Y

A\

H2(K0 * Ko)(u) — /(Ko * Ko)(u+ v) (Ko * Ko)(v)dv

2

(KO *K())(u) (K(] *Ko)(u+1))(K() *K())(’l))d’u

2 2

Hence, the LF test is asymptotically more efficient than the GLR test.
|
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S4 Numerical Comparison- Extra results

S4

(a

g

.1 Conditional Bootstrap

Fix the bandwidths at their estimated values (’;1,/];2,/]’;3,/};4) and then obtain the estimates of additive func-
tions under both null and unrestricted additive models.

Compute An, gn, A (FJ), F), Fy, Sn and the residuals €;, i = 1,...,n, from the unrestricted model.

For each (X14, X2, X34, X4i), draw a bootstrap residual €/ from the centered empirical distribution of
€ and compute Yz* = mg + 7711(X1i) + T/T\lg(Xgi) + ’fV\L4(X4i) -I—/e\;-K, where m1, m3 and my4 are the esti-
mated additive functions under the restricted model in step (a). This forms a conditional bootstrap sample
(Y7, X145 X4, X33, Xa4) 71

Using the bootstrap sample in step (c) and bandwidths in step (a), obtain A}, gn, Ay (FJ), Fx, Fy, 5.
Repeat steps (c) and (d) for a total of B times, where B is large number. We then obtain a sample of statistics.
Compute the bootstrap P values Py = B! Zlil 1(An < A};) for all the statistics. Reject Hy at a prespecified
significance level « if and only if Py < «. Repeat this process for the all the above statistics.

A 1 F F,
oou An 008 s Mg, 0.04 A 0.04 <
— M0, 1) — M0, 1) — M0, 1) — M0, 1)
15 15 15 15
x43) x43) n x43) x43)
N - (0 - (0 A - (0 - (0
0.03 ;\\ 0.03 0.03 i 0.03
i 4
]
0.02 | 0.02 0.02 j \‘ 0.02
i

\ [

| I ’\

Hy 1
0.01 A 0.01 4 \ 0.01 j \ 0.01

\ J A\ \
\ /N I
/ p j \
\¥ J N\ i \ N
0.00 . N 00 U . LSSm0 000 S . 000 N . )
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 150 200

100

Fig. S4.1 Estimated densities for scaled GLR and LF test statistics, and F statistics, among 1000 simulations under

different errors (— normal; — — —¢(5); - -- x2(5); — - —x2(10) ). Here, the errors except normal are scaled to have mean 0
and variance 1.
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