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Supplementary Material

In this supplementary material we provide the lemmas and technical proofs for the theorems presented in the

main article. We also provide additional results for the simulations presented in Section 5 of the main paper.

S1 Introduction

This article develops a hypothesis testing framework for additive models. For a random sample {Yi, Xi1, . . . , Xid}ni=1,

we consider

Yi = α0 +

d∑
j=1

mj(Xij) + εi, i = 1, . . . , n, (S1.1)

where {εi, i = 1, . . . , n} is a sequence of i.i.d. random variables with mean zero and finite variance σ2. Each

additive component function mj(·), j = 1, . . . , d, is assumed to be an unknown smooth function and identifiable

subject to the constraint, E[mj(·)] = 0. For simplicity in presentation, the following hypothesis testing problem

is considered

H0 : md(xd) = 0 vs. H1 : md(xd) 6= 0, (S1.2)

which tests whether the dth covariate is significant or not.

For readability, we repeat some notations and definitions that are provided in the main document. Let mj =

(mj(X1j), . . . ,mj(Xnj))
T and xj = (X1j , . . . , Xnj)

T for j = 1, . . . , d. Let Xj = [1 xj · · · x
pj
j ] for j = 1, . . . , d,

and X = [1 x1 · · · xd · · · x
p1
1 · · · xpdd ], where 1 is the vector of ones. Let X[−0] = [x1 · · · xd · · · x

p1
1 · · · xpdd ]

which is same as X without the column of ones. For any matrix A, define A⊥ = I−A and PA = A(ATA)−1AT .

The following definitions are needed for the theoretical results. Let M1(H∗pj ,j) be a space spanned by the

eigenvectors ofH∗pj ,j with eigenvalue 1. It includes polynomials of xj up to pjth order becauseH∗pj ,jx
k
j = xkj , k =

0, 1 . . . , pj , and j = 1, . . . , d. Suppose G is an orthogonal projection onto the spaceM1(H∗p1,1)+ · · ·+M1(H∗pd,d)

and Gj is an orthogonal projection onto the space M1(H∗pj ,j), j = 1, . . . , d. Then,

G = PX = P1 + PP⊥1 X[−0] , Gj = PXj , (S1.3)

where PX = X(XTX)−1X and P1, PXj and PP⊥1 X[−0] are defined similarly. Let G[−d] = PX[−d] where X[−d] =

[1 x1 · · · xd−1 · · · x
p1
1 · · · xpd−1

d−1 ] and xkj = (Xk
1j , . . . , X

k
nj)

T for k = 0, 1, . . . , pj , as in (S1.3).

Define

C = P
G⊥

[−d]
X[−0]
d

+G⊥H∗pd,d +H∗pd,dG
⊥ −G⊥H∗pd,dH

∗
pd,dG

⊥ +O(n−1h−1d I + n−1J), (S1.4)

D = G⊥ −
d∑
j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)

}
, (S1.5)

E = P
G⊥

[−d]
X[−0]
d

+H∗pd,dG
⊥ +O(n−1h−1d I + n−1J), (S1.6)

where P
G⊥

[−d]
X[−0]
d

= G⊥[−d]X
[−0]
d

(
X[−0]T
d G⊥[−d]X

[−0]
d

)−1
X[−0]T
d G⊥[−d], and X[−0]

d = [xd · · ·x
pd
d ], J is the matrix

of ones, and I is an identity matrix of size n.
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S1.1 Generalized Likelihood Ratio test:

The GLR test statistic is defined as

λn(H0) = [`(H1)− `(H0)] u n

2
log

RSS0
RSS1

≈ n

2

RSS0 −RSS1
RSS1

, (S1.7)

where RSS0 and RSS1 are the residual sum of squares under the null and alternative, respectively, and reject

the null hypothesis when λn(H0) is large. Analogously, the following F-type of test (Huang & Davidson 2010) is

also developed

Fλ =
yTCy

yTDy

tr(D)

tr(C)
, (S1.8)

where tr(·) denotes the trace.

S1.2 Loss Function test:

The LF test statistic is defined as

qn(H0) =
Qn

n−1RSS1
≈
d′′(0)/2

∑n
i=1(m̂+(Xi1, . . . , Xid)− m̃(−d)

+ (Xi1, . . . , Xi(d−1)))
2 +R

n−1RSS1
, (S1.9)

where m̂+ and m̃
(−d)
+ are the fitted values of the models under null and alternative, respectively, RSS1 is the

residual sum of squares under alternative and R is the remainder term in the Taylor expansion of d(·). We reject

the null hypothesis when qn(H0) is large. The corresponding F-type of test statistic is define as

Fq =
yTETEy

yTDy

tr(D)

tr(ETE)
, (S1.10)

for E defined in (S1.6).

S2 Assumptions

We repeat the assumptions that are outlined in the main document.

(A.1). The densities fj(·) of Xj are Lipschitz-continuous and bounded away from 0 and have bounded support

Ωj for j = 1, . . . , d. The joint density of Xj and Xj′ , fj,j′(·, ·), for 1 ≤ j 6= j′ ≤ d, is also Lipschitz continuous

and have bounded support.

(A.2). The kernel K(·) is a bounded symmetric density function with bounded support and satisfies Lipschitz

condition. The bandwidth hj → 0 and nh2j/(lnn)2 →∞, j = 1, . . . , d, as n→∞.

(A.3). The (2pj + 2)−th derivative of mj(·), j = 1, . . . , d, exists.

(A.4). The error ε has mean 0, variance σ2, and finite fourth moment.

(A.5). The loss function d : R → R+ has a unique minimum at 0, and d(z) is monotonically nondecreasing as

|z| → ∞. Furthermore, d(z) is twice continuously differentiable at 0 with d(0) = 0, d′(0) = 0, M = 1
2d
′′(0) ∈

(0,∞), and |d′′(z)− d′′(0)| ≤ C|z| for any z near 0.

S3 Required Lemmas and Proofs

The explicit expressions for the estimators m̂∗j , j = 1, . . . , d are provided as follows. Let

Aj = (I − (H∗pj ,j −Gj))
−1(H∗pj ,j −Gj) and A =

d∑
j=1

Aj . (S3.11)

By Proposition 3 in Buja et al. (1989), we obtain m̂∗j = Aj (I +A)−1G⊥y. Therefore, the fitted response under

the alternative can be written as

ŷ(H1) =

d∑
j=1

m̂∗j +Gy =

 d∑
j=1

Aj (I +A)−1G⊥ +G

y := Wy. (S3.12)
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Analogously, the fitted response under the null can be written as

ŷ(H0) =

d−1∑
j=1

Aj (I +A)−1G⊥[−d] +G[−d]

y := W [−d]y. (S3.13)

The following lemma simplifies the expressions for the RSS0 −RSS1.

Lemma 1 Denote An1 = (I −W [−d])T (I −W [−d]) and An2 = (I −W )T (I −W ) where W and W [−d] are

defined in (S3.12) and (S3.13), respectively. If assumptions (A.1)–(A.3) hold, then

RSS0 −RSS1 = yT (An1 −An2)y (S3.14)

and

An1 −An2 = P
G⊥

[−d]
X[−0]
d

+G⊥H∗pd,d +H∗pd,dG
⊥ −G⊥H∗pd,dH

∗
pd,dG

⊥ +O(n−1h−1d I + n−1J), (S3.15)

where P
G⊥

[−d]
X[−0]
d

= G⊥[−d]X
[−0]
d

(
X[−0]T
d G⊥[−d]X

[−0]
d

)−1
X[−0]T
d G⊥[−d], and X[−0]

d = [xd · · ·x
pd
d ], J is the matrix

of ones, and I is an identity matrix of size n.

Proof. As shown in Huang & Yu (2019), the diagonal elements of H∗pj ,j and H∗pj ,jH
∗
pj ,j , j = 1, . . . , d, are of

order O(n−1h−1j ) and the off-diagonal elements are of order O(n−1). Similarly, the elements of H∗pj ,jH
∗
pl,l

are

of order O(n−1) for j 6= l. Since the elements of H∗pj ,j are of smaller order, we can write

Aj =
[
I − (H∗pj ,j −Gj)

]−1
(H∗pj ,j −Gj) = H∗pj ,j −Gj +O(n−1h−1j I + n−1J),

A(I +A)−1 =
[∑

Aj

] [
I +

∑
Aj

]−1
=

d∑
j=1

{
H∗pj ,j −Gj +O(n−1h−1j I + n−1J)

}
,

(S3.16)

where I is the identity matrix and J is the matrix of 1’s of size n. Since Gj ∈ M1(H∗pj ,j), it follows that

H∗pj ,jGj = Gj . Therefore,

H∗pj ,j −Gj = H∗pj ,j(I −Gj) = H∗pj ,jG
⊥
j .

Consequently, we write (S3.12) as

W = A(I +A)−1G⊥ +G

=

d∑
j=1

{
H∗pj ,jG

⊥
j +O(n−1h−1j I + n−1J)

}
G⊥ +G

=

d∑
j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)
}

+G, (S3.17)

where the last step uses the fact that G⊥j G
⊥ = G⊥. Let G[−d] be the parametric projection matrix of the first

d− 1 components defined similar to (S1.3). Based on the properties of the projection matrices, we obtain

G = G[−d] + P
G⊥

[−d]
X[−0]
d

,

G⊥ = G⊥[−d] − PG⊥
[−d]

X[−0]
d

, (S3.18)

where P
G⊥

[−d]
X[−0]
d

defined in (S1.6). Combination of (S3.17) and (S3.18) and some rearrangement of terms yields

I −W = G⊥ −

d−1∑
j=1

{
H∗pj ,jG

⊥
[−d] +O(n−1h−1j I + n−1J)

}
+H∗pd,dG

⊥ +O(n−1h−1d I + n−1J)

 .
Observe that H∗pj ,jG

⊥
[−d] = H∗pj ,jG

⊥
j G
⊥
[−d], for j = 1, . . . , d − 1. The elements of G⊥j H

∗
pj ,jH

∗
pj ,jG

⊥
j are of

smaller order than the elements of H∗pj ,jG
⊥
j since the latter has eigenvalues in [0, 1). Therefore,

(I −W )T (I −W )

= G⊥ −
[ d−1∑
j=1

{
G⊥[−d]H

∗
pj ,j +H∗pj ,jG

⊥
[−d] −G

⊥
[−d]H

∗
pj ,jH

∗
pj ,jG

⊥
[−d] +O(n−1h−1j I + n−1J)

}
+G⊥H∗pd,d +H∗pd,dG

⊥ −G⊥H∗pd,dH
∗
pd,dG

⊥ +O(n−1h−1d I + n−1J)

]
.
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Similar computations yield

(I−W [−d])T (I −W [−d])

= G⊥[−d] −
[ d−1∑
j=1

{
G⊥[−d]H

∗
pj ,j +H∗pj ,jG

⊥
[−d] −G

⊥
[−d]H

∗
pj ,jH

∗
pj ,jG

⊥
[−d] +O(n−1h−1j I + n−1J)

}]
.

Hence,

An1 −An2 = P
G⊥

[−d]
X[−0]
d

+G⊥H∗pd,d +H∗pd,dG
⊥ −G⊥H∗pd,dH

∗
pd,dG

⊥ +O(n−1h−1d I + n−1J).

�

Lemma 2 If assumptions (A.1)–(A.4) hold, then under H0 : md = 0

d1n ≡mT
+(An1 −An2)m+ + 2εT (An1 −An2)m+

= Op

1 +

d∑
j=1

nh
4(pj+1)
j +

d∑
j=1

√
nh

2(pj+1)
j

 , (S3.19)

where An1 and An2 are defined in Lemma 1 and m+ = m1 + . . .+md.

Proof. From Huang & Chan (2014), we have H∗pj ,jmj = mj + 1 · Op(h
2(pj+1)
j ) for pj = 0, 1, 2, 3, and

Gjmj = 1 · Op(1/
√
n) for j = 1, . . . , d, where 1 is the vector of ones. The calculations analogous to Lemma 1

yield, under H0 : md = 0, that

(I −W )m+ =

I −G− d∑
j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)
}m+

= m+ −m+ + 1 ·Op

 d∑
j=1

h
2(pj+1)
j

+ 1 ·Op
(
1/
√
n
)

= 1 ·Op

 d∑
j=1

h
2(pj+1)
j

+ 1 ·Op
(
1/
√
n
)
. (S3.20)

Consequently,

mT
+(I −W )T (I −W )m+ = Op

1 +

d∑
j=1

nh
4(pj+1)
j

 , (S3.21)

mT
+(I −W [−d])T (I −W [−d])m+ = Op

1 +

d−1∑
j=1

nh
4(pj+1)
j

 .

Moreover,

(I −W )ε = ε+ 1.op (1)

which implies that under assumption (A.4)

εT (I −W )T (I −W )m+ = Op(1 +

d∑
j=1

√
nh

2(pj+1)
j ). (S3.22)

Hence, the stated result (S3.19) follows from (S3.20) and (S3.22). �

Theorem 1 (GLR test) Suppose that conditions (A.1)–(A.4) hold and 0 ≤ pj ≤ 3, j = 1, . . . , d. Then, under

H0 for the testing problem (11)

P
{
σ−1n

(
λn(H0)− µn −

1

2σ2
d1n

)
< t|X

}
d−→ Φ(t), (S3.23)

where d1n = Op

(
1 +

∑d
j=1 nh

4(pj+1)
j +

∑d
j=1

√
nh

2(pj+1)
j

)
and Φ(·) is the standard normal distribution. Fur-

thermore, if nh
4(pj+1)
j hd → 0 for j = 1, . . . , d, conditional on the sample space X , rkλn(H0) −→ χ2rkµn

as n→∞.

Similarly,

Fλ =
2λn(H0)tr(D)

ntr(C)
−→ Ftr(C),tr(D), (S3.24)

as n→∞, where tr(C) and tr(D) are the degrees of freedom.
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Proof.: Recall that

λn(H0) ≈ n

2

RSS0 −RSS1
RSS1

. (S3.25)

Proof of S3.23:

(i) Asymptotic Expression for RSS0 −RSS1:
Using the notation from Lemma 1, we write

RSS0 −RSS1 = yT (An1 −An2)y

= εT (An1 −An2)ε+
[
mT

+(An1 −An2)m+ + 2εT (An1 −An2)m+

]
= εTCε+ d1n, (S3.26)

where

C = An1 −An2
= P

G⊥
[−d]

X[−0]
d

+G⊥H∗pd,d +H∗pd,dG
⊥ −G⊥H∗pd,dH

∗
pd,dG

⊥ +O(n−1h−1d I + n−1J)

= (cij)1≤i,j≤n, (S3.27)

and d1n = mT
+(An1 −An2)m+ + 2εT (An1 −An2)m+. With the help of Lemma 2, we can bound the bias term

d1n by Op

(
1 +

∑d
k=1 nh

4(pk+1)
k +

∑d
k=1

√
nh

2(pk+1)
k

)
. We write

εTCε =

n∑
i=1

ε2i cii +

n∑
i6=j

εiεjcij = L1 + L2. (S3.28)

Since the leading terms of C in (S3.27) come from H∗pd,d, we obtain cii = O(n−1h−1d + n−1). Combination of

Assumption (A.4) and Chebyshev inequality yields L1 = σ2E(
∑n
i=1 cii) +Op(1/

√
nhd). After some algebra,

E(

n∑
i=1

cii) =
2|Ωd|
hd

( pd∑
l=0

pd∑
m=0

vl+ms
(m+1),(l+1)

− 1

2

∫ { pd∑
l=0

pd∑
m=0

(Kl ∗Km)(u)(−1)ms(m+1),(l+1)

}2

du

)
+ op(h−1d ),

where |Ωd| is the length of the support of the density fd(xd) of Xd. It remains to show that L2 converges to

normal in distribution. Note that E[L2] = 0 and

Var(L2|X ) = var

 n∑
i6=j

εiεjcij

 = 4σ4σ2n,

where

σ2n =
∑
i<j

c2ij =
|Ωd|
hd

∫ { pd∑
l=0

pd∑
m=0

(Kl ∗Km)(u)(−1)ms(m+1),(l+1)

− 1

2

∫ [ pd∑
l=0

pd∑
m=0

(Kl ∗Km)(u+ v)(−1)ms(m+1),(l+1)

]

×
[ pd∑
l=0

pd∑
m=0

(Kl ∗Km)(v)(−1)ms(m+1),(l+1)

]
dv

}2

du+ op(h−1d ).

Application of Proposition 3.2 of de Jong (1987) yields

1

2σ2
σ−1n L2|X

d−→ N(0, 1). (S3.29)

(ii) Asymptotic Expression for RSS1/n: By the definition of RSS!,

RSS1 = εTAn2ε+mT
+An2m+ + 2εTAn2m+

= εTAn2ε+ d0n.
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The arguments analogous to Lemma 2 yields

d0n = mT
+An2m+ + 2εTAn2m+

= Op

(
1 +

d∑
k=1

nh
4(pk+1)
k +

d∑
k=1

√
nh

2(pk+1)
k

)
.

Note that, under the condition (A.2), d0n/n = op(1). Thus, it remains to show that n−1εTAn2ε = σ2 + op(1).

From the proof of Lemma 1, we obtain

n−1εTAn2ε = n−1εT

I −G−
 d∑
j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)
} ε+ op(1)

= n−1
n∑
i=1

ε2i + op(1)

= σ2 + op(1),

which follows from the Chebyshev inequality and using the arguments analogous to the derivation of variance for

(S3.28).

(iii) Conclusion : By part(i), part(ii) and definition of λn(H0), we have

λn(H0) u RSS0 −RSS1
2RSS1/n

=
d1n + L1 + L2

2σ2

=
d1n + σ2E(

∑n
i=1 cii) + L2

2σ2
+ op(h−1d )

u d1n
2σ2

+ µn +
L2

2σ2
,

where µn = E(
∑n
i=1 cii)/2. Therefore, (S3.29) implies

P
{
σ−1n

(
λn(H0)− µn −

1

2σ2
d1n

)
< t|X

}
d−→ Φ(t).

If nh
4(pk+1)
k hd → 0 for k = 1, . . . , d, then d1n = op(h−1d ) which is dominated by µn = O(h−1d ). Then

rkλn(H0)|X −→ χ2rkµn
as n→∞.

Proof of (S3.24):

By virtue of Lemma 1, the GLR test statistic is defined as

λn(H0) u nyT (An1 −An2)y

2yTAn2y

=
nyTCy

2yTDy
,

for D = G⊥ −
(∑d

j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)
})

and C defined in (S3.27). As discussed in Huang

& Davidson (2010), for F−type statistics,

F =
yTCy/tr(C)

yTDy/tr(D)
, (S3.30)

the F− distribution is warranted if C and D are both projection matrices (symmetric and idempotent) and they

are orthogonal to each other. Clearly, both C andD are not projection matrices and not orthogonal to each other.

However, following Huang & Chen (2008), we show these properties hold asymptotically. It is straightforward

to show both C and D are asymptotically idempotent. Now it remains to show that they are asymptotically

orthogonal. Observe

E{CDy|X} = C

 d∑
j=1

[
O(h

2(pj+1)
j ) +Op(1/

√
nhj + 1/

√
n)
] = o(1).
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Based on the definition of asymptotic orthogonality in Huang & Chen (2008), we claim C and D are asymptot-

ically orthogonal. Therefore,

F =
yTCy/tr(C)

yTDy/tr(D)
=

2λn(H0)

n

tr(D)

tr(C)
=

2λn(H0)

tr(C)
,

because tr(D)/n = 1
n tr
(
G⊥ −

(∑d
j=1

{
H∗pj ,jG

⊥ +O(n−1h−1j I + n−1J)
}))

−→ 1 as nhd → ∞ and n → ∞.

�

Theorem 2 (LF test) Suppose that conditions (A.1)–(A.5) hold and 0 ≤ pj ≤ 3, j = 1, . . . , d. Then, under H0

for the testing problem (11)

P

{
δ−1n

(
qn(H0)

M
− νn −

1

σ2
b1n

)
< t|X

}
d−→ Φ(t), (S3.31)

where b1n = Op

(
1 +

∑d
j=1 nh

4(pj+1)
j

)
. Furthermore, if nh

4(pj+1)
j hd → 0 for j = 1, . . . , d, conditional on X ,

skM
−1qn(H0) −→ χ2skνn as n→∞. Similarly,

Fq =
qn(H0)tr(D)

Mntr(ETE)
−→ Ftr(ETE),tr(D), (S3.32)

as n→∞.

Proof. Proof of (S3.31):

Consider the LF test statistic in (S1.9)

qn(H0) =
Qn

n−1SSR1
=

∑n
i=1 d

{∑n
j=1 eijYj

}
n−1RSS1

,

where d(·) is the loss function defined in Assumption (A.5) and eij is the (i, j)th, 1 ≤ i, j ≤ n, element of

P
G⊥

[−d]
X[−0]
d

+H∗pd,dG
⊥ +O(n−1h−1d I + n−1J). The arguments analogous to Lemma 1 yield that , under H0,

n∑
j=1

eijm+j = O

(
d∑
k=1

h
2(pk+1)
k

)
+Op

(
1/
√
n
)
.

Note that the dominant orders for the elements eij ’s come from H∗pd,d. Therefore, diagonal elements eii’s are of

order O(n−1h−1d +n−1) and the off-diagonal elements eii′ , i 6= i′, are of order O(n−1). By Taylor series expansion

of loss function d(·) in the neighborhood of 0, we obtain

d(z) ≈ d(0) + d′(0)z +Mz2 + 1/2(d′′(z̄)− d′′(0))z2 = Mz2 +R,

where d(0) = 0, d′(0) = 0, M = d′′(0)/2! ∈ (0,∞) and z̄ lies between 0 and z. Assumption (A.5) implies R ≤ Cz3.

Therefore

n∑
i=1

d


n∑
j=1

eijYj

 = M

n∑
i=1

 n∑
j=1

eijεj

2

+Op

(
1 +

d∑
k=1

nh
4(pk+1)
k

)
+

n∑
i=1

Ri, (S3.33)

where each Ri ≤ C|
∑n
j=1 eijεj |

3. The idea is to show that the first term in (S3.33) converges to normal distri-

bution and the third term is of smaller order. Using the relation E|x|3 ≤ [E|x|4]3/4, we obtain

n∑
i=1

Ri ≤ C
n∑
i=1

E|
n∑
j=1

eijεj |3 ≤ C
n∑
i=1

E
∣∣∣∣∣∣
n∑
j=1

eijεj

∣∣∣∣∣∣
4


3/4

≤ CC∗
n∑
i=1


n∑
j=1

e4ijE[εj ]
4


3/4

+ CC∗
n∑
i=1


n∑

j 6=j′
e2ije

2
ij′E[εjεj′ ]

2


3/4

= Op

(
n(1/n3h3d) + n(n(n− 1)/n4h2d)3/4

)
= Op(n−2h−3d ) +Op(1/hd

√
nhd) = Op(1/hd

√
nhd), (S3.34)
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where C∗ is some positive constant and the exact value of it can be calculated using the expression in page 101

of Lin & Bai (2010). Note that, the first term in (S3.33) can be written as

M

n∑
i=1

 n∑
j=1

eijεj

2

= M

n∑
i=1

n∑
j=1

e2ijε
2
j +M

n∑
i=1

n∑
j 6=j′

eijeij′εjεj′ = Tn1 + Tn2. (S3.35)

After some algebra, we obtain

∑
i,j

e2ij =
|Ωd|
hd

∫ { pd∑
l=0

pd∑
m=0

(Kl ∗Km)(u)(−1)ms(m+1),(l+1)

}2

du+ o(h−1d ).

Application of Chebyshev inequality yields that Tn1 = Mσ2νn + Op(1/
√
nhd) where νn = E(

∑
i,j e

2
ij). Now it

remains to show that Tn2 converges to normal in distribution. Observe that E(Tn2) = 0 and

var(Tn2|X ) = M2σ4
∑
j 6=j′

(
n∑
i=1

eijeij′

)2

= M2σ4
∑
j 6=j′

(eTj ej′)
2 = M2σ4δ2n,

where ek = (e1k, . . . , enk)T and δ2n =
∑
j 6=j′(e

T
j ej′)

2. We note that the leading terms of

δ2n =
|Ωd|
hd

∫ {∫ [ pd∑
l=0

pd∑
m=0

(Kl ∗Km)(u+ v)(−1)ms(m+1),(l+1)

]

×
[ pd∑
l=0

pd∑
m=0

(Kl ∗Km)(v)(−1)ms(m+1),(l+1)

]
dv

}2

du+ op(h−1d ).

Therefore, application of Proposition 3.2 of de Jong (1987) yields

1

Mσ2
δ−1n Tn2|X

d−→ N(0, 1). (S3.36)

By plugging (S3.34) and (S3.35) in (S3.33), we obtain

Qn = Tn1 + Tn2 +

n∑
i=1

Ri +Op

(
1 +

d∑
k=1

nh
4(pk+1)
k

)
.

Since n−1RSS1 = σ2 + op(1) and qn = Qn/n
−1RSS1, we have,

qn(H0)

M
− νn −

b1n
σ2

+ op(h−1d ) u Tn2
Mσ2

, (S3.37)

where b1n = Op

(
1 +

∑d
k=1 nh

4(pk+1)
k

)
. Therefore, combination of (S3.36) and (S3.37) yields

P

{
δ−1n

(
qn(H0)

M
− νn −

1

σ2
b1n

)
< t|X

}
d−→ Φ(t).

If nh
4(pk+1)
k hd → 0 for k = 1, . . . , d, then b1n = op(h−1d ) which is dominated by νn. Then skM

−1qn(H0)|X −→
χ2skνn as n→∞.

Proof of (S3.32): Recall

qn(H0) =
Qn

n−1SSR1
=

∑n
i=1 d

{∑n
j=1 eijYj

}
n−1RSS1

.

By Taylor’s expansion, as in part(a), the numerator can be written as MyTETEy+Rn where Rn is the remainder

term which is of order op(h−1d ). As in part (b) of Theorem 1, we show that ETE is asymptotically an idempotent

matrix and ETE and D are asymptotically orthogonal. Hence, the LFT statistic is

qn(H0) u MyTETEy

n−1yTDy
= F

Mtr(ETE)

n−1tr(D)
, (S3.38)
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which implies that, as in part(b) of Theorem 1, we have

qn(H0)

Mtr(ETE)
−→ Ftr(ETE),tr(D),

as nhd →∞ and n→∞.

�
For the following theorem, we consider the contiguous alternative of the form

H1n : md(Xd) = Mn(Xd), (S3.39)

where Mn(Xd)→ 0 and Mn ∈Mn(ρ; η).

Theorem 3 Suppose E{Mn(Xd)|X1, . . . , Xd−1} = 0 and hd ·
∑n
i=1M

2
n(Xid)

P−→ CM for some constant CM .

Suppose 0 ≤ pj ≤ 3, for j = 1, . . . , d.

(i) [GLR test] Suppose that conditions (A.1)-(A.4) hold. Under H1n for the testing problem (11),

P

{
σ−1n

(
λn(H0)− µn −

d1n + d2n
2σ2

)
< t|X

}
d−→ Φ(t),

where µn, d1n and σn are same as those in Theorem 1 and

d2n =

n∑
i=1

M2
n(Xid)(1 + op(1)).

(ii) [LF test] Suppose that conditions (A.1)-(A.5) hold. Under H1n for the testing problem (11),

P

{
δ−1n

(
qn(H0)

M
− νn −

b1n + b2n
σ2

)
< t|X

}
d−→ Φ(t),

where νn, b1n and δn are same as those in Theorem 2 and

b2n =

n∑
i=1

M2
n(Xid)(1 + op(1)).

Proof. Part (i): Under H1n (S3.39), the arguments analogous to Lemma 1 yields,

(I −W )m+ = (G⊥ −
d∑
j=1

H∗pj ,jG
⊥)(m1 + . . .+md−1 +Mn) + op(1)

= 1 ·O

(
d∑
k=1

h
2(pk+1)
k

)
+ 1 ·Op

(
1/
√
n
)
,

where Mn(xd) = (Mn(X1d), . . . ,Mn(Xnd))T , Mn ∈Mn(ρ; η) defined in (26) and 1 is the vector of ones of size

n. Similarly,

(I −W [−d])m+ =

G⊥[−d] − d−1∑
j=1

H∗pj ,jG
⊥
[−d]

Mn + 1 ·O

(
d−1∑
k=1

h
2(pk+1)
k

)
+ 1 ·Op

(
1/
√
n
)
.

Observe that, same set of arguments yield (I −W )ε = ε+ op(1) and (I −W [−d])ε = ε+ op(1). Consider,

RSS0 −RSS1 = yT (An1 −An2)y

= εT (An1 −An2)ε+mT
+(An1 −An2)m+ + 2εT (An1 −An2)m+

= In1 + In2 + In3. (S3.40)

straightforward computations yield

In2 = MT
nMn +Op

(
1 +

d∑
k=1

nh
4(pk+1)
k

)
and

In3 = εTMn +Op

(
1 +

d∑
k=1

√
nh

2(pk+1)
k

)
.
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Plugging the above results and the In1 value from Theorem 1 in (S3.40), we obtain

RSS0 −RSS1 = L1 + L2 + Cn + d2n + d1n, (S3.41)

where L1, L2, d1n are same as defined in Theorem 1,

d2n =

n∑
i=1

M2
n(Xid) + op(h−1d ) and

Cn =

n∑
i=1

εiMn(Xid).

The proof follows by proceeding similar to Theorem 1.

Part (ii): The arguments analogous to Lemma 1 yield that, under H1,

(W −W [−d])m+ = (P
G⊥

[−d]
X[−0]
d

+H∗pd,dG
⊥)(m1 + . . .+md−1 +Mn) + op(1)

= Mn + 1 ·O

(
d∑
k=1

h
2(pk+1)
k

)
+ 1 ·Op

(
1/
√
n
)
.

Similarly, (W −W [−d])ε = (
∑n
j=1 e1jεj , . . . ,

∑n
j=1 enjεj)

T where eij is the (i, j)th 1 ≤ i, j ≤ n, element in the

matrix

{
P
G⊥

[−d]
X[−0]
d

+H∗pd,dG
⊥ +O(n−1h−1d I + n−1J)

}
. Note that the leading terms of eij ’s are of the same

order as the elements in H∗pd,d. By Taylor expansion,

n∑
i=1

d


n∑
j=1

eijYj

 = M

n∑
i=1

 n∑
j=1

eijεj

2

+M

n∑
i=1

M2
n(Xid)

+Op

(
1 +

d∑
k=1

nh
4(pk+1)
k

)
+

n∑
i=1

Ri, (S3.42)

where each Ri ≤ C|
∑n
j=1 eijεj |

3. The proof follows by proceeding similar to Theorem 2. �

Theorem 4 Under conditions (A.1)-(A.5), if h
2(pk+1)
k = O(h

2(pd+1)
d ) and 0 ≤ pk ≤ 3, for k = 1, . . . , d − 1,

then for the testing problem (11), both GLR and LF tests can detect alternatives with rate ρn = n
− 4(pd+1)

8pd+9 when

hd = c∗n
− 2

8pd+9 for some constant c∗.

Proof. The proof uses arguments analogous to Theorem 5 in Fan & Jiang (2005). We provide proof only

for the GLR test and similar arguments can be used to prove the LF test. Under the contiguous alternative

H1n : md(Xd) = Mn(Xd), it follows from (i) of Theorem 3,

λn(H0) = µn +
L2

2σ2
+
d2n + Cn

2σ2
+Op

(
1 +

d∑
k=1

nh
4(pk+1)
k +

d∑
k=1

√
nh

2(pk+1)
k

)
, (S3.43)

where d2n =
∑n
i=1M

2
n(Xid) and Cn =

∑n
i=1 εiMn(Xid). Since the probability of the type II error at H1n is

defined as β(α,Mn) = P (φh = 0|md = Mn), it implies that

β(α,Mn) = P{σ−1n (−λn(H0) + µn) ≥ zα|X}

= P

{
σ−1n

(
− L2

2σ2
− d2n + Cn

2σ2
+Op

(
1 +

d∑
k=1

nh
4(pk+1)
k +

d∑
k=1

√
nh

2(pk+1)
k

))
≥ zα|X

}
= P1n + P2n,

with

P1n = P

{
σ−1n (− L2

2σ2
) +
√
nh

(4pd+5)/2
d t1n + nh

(8pd+9)/2
d t2n −

√
hdt3n ≥ zα, |t1n| ≤M, |t2n| ≤M |X

}
,

P2n = P

{
σ−1n (− L2

2σ2
) +
√
nh

(4pd+5)/2
d t1n + nh

(8pd+9)/2
d t2n −

√
hdt3n ≥ zα, |t1n| ≥M, |t2n| ≥M |X

}
,
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and

t1n =
(√

nh
(4pd+5)/2
d σn

)−1
Op

(
1 +

d∑
k=1

√
nh

2(pk+1)
k

)
= Op(1),

t2n =
(
nh

(8pd+9)/2
d σn

)−1
Op(

d∑
k=1

nh
4(pk+1)
k ) = Op(1),

t3n = (
√
hdσ

2σn)−1
1

2
[d2n + Cn].

Note that E[Cn|X ] = 0 and var(Cn|X ) = O(
∑n
i=1M

2
n(Xid)) and hence Cn = Op(

√
d2n). Analogous arguments

to Lemma B.7 of Fan & Jiang (2005) lead to√
hdt3n →∞ only when n

√
hdρ

2 →∞.

We choose hd ≤ c
− 1

2(pd+1)

0 n
− 1

4(pd+1) . This implies,
√
nh

(4pd+5)/2
d ≥ c0nh

(8pd+9)/2
d ,

√
nh

(4pd+5)/2
d → 0, and

nh
(8pd+9)/2
d → 0. Hence, for hd → 0 and nhd →∞, it follows that β(α, ρ)→ 0 only when n

√
hdρ

2 → +∞. This

implies ρ2n = n−1h
−1/2
d and the possible minimum value of ρn in this setting is n

−(8pd+7)

16(pd+1) . When nh
4(pd+1)
d →∞,

for any δ > 0, there exists a constant M > 0 such that P2n <
δ
2 uniformly in Mn ∈Mn(ρ; η). Then

β(α, ρ) ≤ δ

2
+ P1n.

We note that sup
Mn(ρ;η)

P1n → 0 only when B(hd) ≡ nh(8pd+9)/2
d M −nh1/2d ρ2 → −∞. The function B(hd) attains

the minimum value

−8(pd + 1)

8pd + 9
[M(8pd + 9)]

− 1
8(pd+1) nρ

8pd+9

4(pd+1)

at hd =
[

ρ2

M(8pd+9)

] 1
4(pd+1)

. With simple algebra, in this setting, we obtain the corresponding minimum value of

ρn = n
− 4(pd+1)

8pd+9 at hd = c∗n
− 2

8pd+9 for some constant c∗. �

Theorem 5 [Relative efficiency] Suppose Conditions (A.1)–(A.5) hold, h ∝ n−ω for ω ∈ (0, 1/(4pd + 5)) and

pj = 0 for j = 1, . . . , d. Then Pitman’s relative efficiency of the LF test over the GLR test under Hn in (29) is

given by

ARE(qn, λn)

=

[∫ {
2(K0 ∗K0)(u)−

∫
(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2
du∫ {∫

(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv
}2
du

]1/(2−3ω)
.

The asymptotic relative efficiency ARE(qn, λn) is larger than 1 for any kernel satisfying Condition (A.2) and

K(·) ≤ 1.

Proof. Pitman’s asymptotic relative efficiency of the LF test over the GLR test is the limit of the ratio of the

sample sizes required by the two tests to have the same asymptotic power at the same significance level, under

the same local alternative [Pitman (2018), Chapter 7]. Suppose n1 and n2 are the sample sizes required for the

LF test and the GLR test, respectively. The Pitman’s asymptotic relative efficiency of qn to λn is defined as

ARE(qn, λn) = lim
n1,n2→∞

n1
n2
,

under the condition that λn and qn have the same asymptotic power under the same local alternatives n
−1/2
1 h

−1/2
d1

g1(xd) ∼

n
−1/2
2 h

−1/2
d2

g2(xd) in the sense that

lim
n1,n2→∞

n
−1/2
1 h

−1/2
d1

g1(xd)

n
−1/2
2 h

−1/2
d2

g2(xd)
= 1.

Given hdi = cn−ωi , i = 1, 2, we have n−2γ1

∑n
i=1 g

2
1(Xdi) ∼ n

−2γ
2

∑n
i=1 g

2
2(Xdi), where γ = (1− ω)/2. Hence,

lim
n1,n2→∞

(
n1
n2

)2γ

=

∑n
i=1 g

2
1(Xdi)∑n

i=1 g
2
2(Xdi)

. (S3.44)
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From Theorem 3(i), we have

λn1(H0)− µn1

σn1

d−→ N(ξ, 1),

under Hn1 : md(xd) = n
−1/2
1 h

−1/2
d1

g1(xd), where ξ = [
∑n
i=1 g

2
1(Xdi)]/(2σ

2σn1) with σn1 is defined in Theorem

1. Also, from Theorem 3(ii), we have

M−1qn2(H0)− νn2

δn2

d−→ N(ψ, 1),

under Hn2 : md(xd) = n
−1/2
2 h

−1/2
d2

g2(xd), where ψ = [
∑n
i=1 g

2
2(Xdi)]/(σ

2δn2) with δn2 is defined in Theorem 2.

To have the same asymptotic power, the noncentrality parameters must be equal which means ξ = ψ or∑n
i=1 g

2
1(Xdi)∑n

i=1 g
2
2(Xdi)

=
2σn1

δn2

. (S3.45)

Combination of (S3.44) and (S3.45) yields, for pj = 0, j = 1, . . . , d,

ARE(qn, λn) =

[
2h

1/2
d1

σn1

h
1/2
d2

δn2

]2/(2−3ω)
=

[
4hd1σ

2
n1

hd2δ
2
n2

]1/(2−3ω)

=

[∫ {
2(K0 ∗K0)(u)−

∫
(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2
du∫ {∫

(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv
}2
du

]1/(2−3ω)
.

Now, we show ARE(qn, λn) ≥ 1 for any positive kernels with K(·) ≤ 1. It is sufficient to show that∫ {
2(K0 ∗K0)(u)−

∫
(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2

du

≥
∫ {∫

(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2

du.

From Jensen’s inequality and Fubini’s theorem we obtain∫ {∫
(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2

du

≤
∫ ∫

(K0 ∗K0)2(u+ v)(K0 ∗K0)(v)dvdu

=

∫
(K0 ∗K0)2(u)du. (S3.46)

Triangle inequality and (S3.46) yields that{∫ {
2(K0 ∗K0)(u)−

∫
(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2

du

}1/2

≥ 2

{∫
(K0 ∗K0)2(u)du

}1/2

−
{∫ {∫

(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

}2

du

}1/2

≥ 2

{∫
(K0 ∗K0)2(u)du

}1/2

−
{∫

(K0 ∗K0)2(u)du

}1/2

=

{∫
(K0 ∗K0)2(u)du

}1/2

. (S3.47)

Combination of (S3.47) and (S3.46) yields∥∥∥∥2(K0 ∗K0)(u)−
∫

(K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

∥∥∥∥
2

≥
∥∥∥∥(K0 ∗K0)(u)

∥∥∥∥
2

≥
∥∥∥∥∫ (K0 ∗K0)(u+ v)(K0 ∗K0)(v)dv

∥∥∥∥
2

.

Hence, the LF test is asymptotically more efficient than the GLR test.

�
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S4 Numerical Comparison- Extra results

S4.1 Conditional Bootstrap

(a) Fix the bandwidths at their estimated values (ĥ1, ĥ2, ĥ3, ĥ4) and then obtain the estimates of additive func-

tions under both null and unrestricted additive models.

(b) Compute λn, qn, λn(FJ), Fλ, Fq, Sn and the residuals ε̂i, i = 1, . . . , n, from the unrestricted model.

(c) For each (X1i, X2i, X3i, X4i), draw a bootstrap residual ε̂∗i from the centered empirical distribution of

ε̂i and compute Y ∗i = m̂0 + m̂1(X1i) + m̂3(X3i) + m̂4(X4i) + ε̂∗i , where m̂1, m̂3 and m̂4 are the esti-

mated additive functions under the restricted model in step (a). This forms a conditional bootstrap sample

(Y ∗i , X1i, X2i, X3i, X4i)
n
i=1.

(d) Using the bootstrap sample in step (c) and bandwidths in step (a), obtain λ∗n, q∗n, λ∗n(FJ), F ∗λ , F ∗q , S∗n.

(e) Repeat steps (c) and (d) for a total of B times, where B is large number. We then obtain a sample of statistics.

(f) Compute the bootstrap P values P ∗λ = B−1
∑B
l=1 1(λn < λ∗nl) for all the statistics. RejectH0 at a prespecified

significance level α if and only if P ∗λ < α. Repeat this process for the all the above statistics.

Fig. S4.1 Estimated densities for scaled GLR and LF test statistics, and F statistics, among 1000 simulations under
different errors (— normal; −−−t(5); · · ·χ2(5); − · −χ2(10) ). Here, the errors except normal are scaled to have mean 0
and variance 1.
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