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Abstract
We propose a robust estimator of the stable tail dependence function in the case 
where random covariates are recorded. Under suitable assumptions, we derive the 
finite-dimensional weak convergence of the estimator properly normalized. The per-
formance of our estimator in terms of efficiency and robustness is illustrated through 
a simulation study. Our methodology is applied on a real dataset of sale prices of 
residential properties.

Keywords  Empirical processes · Local estimation · Multivariate extreme value 
statistics · Robustness · Stable tail dependence function

1  Introduction

A topic of central interest in multivariate extreme values is to measure the strength 
of dependence in the extremes. This can be done by using some coefficients of tail 
dependence or some functions, among them the Pickands dependence function or the 
stable tail dependence function. In the present paper, we focus on this latter function 
introduced by Huang (1992), and we estimate it when the random variables of main 
interest are recorded along with random covariates, related to the target variables. 
That means that we are in the regression context where our objective is to estimate 
the stable tail dependence function between the response variables conditional on the 
covariates. This leads to the concept of conditional stable tail dependence function. 
Additionally, since in practice some outliers may occur in real datasets with a disturb-
ing effect on the estimates of dependencies, we propose an estimator which is robust 

 *	 Armelle Guillou 
	 armelle.guillou@math.unistra.fr

1	 Department of Mathematics and Computer Science, University of Southern Denmark, 
Campusvej 55, 5230 Odense M, Denmark

2	 Institut Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 
rue René Descartes, 67084 Strasbourg cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-022-00839-1&domain=pdf


202	 Y. Goegebeur et al.

1 3

against observations that are atypical for the extreme dependence structure of the mod-
els under consideration. In other words, our contribution in this paper is to introduce a 
robust estimator of the conditional stable tail dependence function. This topic has been 
only partially considered in the recent literature, e.g., by Escobar-Bach et  al. (2017, 
2018b). See also Gardes and Girard (2015), de Carvalho (2016), Castro and de Car-
valho (2017), Castro et al. (2018), Mhalla et al. (2019), or Escobar-Bach et al. (2020) 
and Goegebeur et al. (2020).

Concretely, throughout the paper, we denote by (Y (1), Y (2)) a bivariate random 
vector recorded along with a random covariate X ∈ ℝ

d . Let ‖.‖ denote some norm 
on ℝd and Bx(r) the closed ball with respect to ‖.‖ centered at x and radius r > 0 . For 
j = 1, 2 , we denote by Fj(.|x) , the continuous conditional distribution function of Y (j) 
given X = x , by fX the density function of the covariate X and by x0 a reference posi-
tion such that x0 ∈ Int(SX) , the interior of the support SX ⊂ ℝ

d , which is assumed to 
be non-empty. Our aim in this paper is to estimate the conditional stable tail depend-
ence function defined as

in a robust way, where we assume that the above limit exists for all x ∈ SX . By 
assuming continuous marginal conditional distributions for Y (1) and Y (2) , this condi-
tion is essentially a condition on the tail behavior of the copula function underlying 
the joint conditional distribution of Y (1) and Y (2) given X = x . As such, the stable tail 
dependence function contains information about the dependence in extremes.

To reach our goal, we assume that, for all x ∈ SX , our bivariate random vector 
(Y (1), Y (2)) satisfies the model

for any (y1, y2) ∈ [0, 1]2 ⧵ {(0, 0)} , where d1(x), d2(x) are positive and continu-
ous functions such that d1(x) + d2(x) = 1 , g(y1, y2|x) is continuous in (y1, y2, x) and 
homogeneous of order 0 in (y1, y2) , and �(y1, y2|x) is a function of constant sign in 
the neighborhood of zero, with |�(., .|x)| a bivariate regularly varying function, that 
is, there exists a function �(., .|x) such that

for all (y1, y2) ∈ [0,∞)2 ⧵ {(0, 0)} , where the convergence is uniform in 
(y1, y2) ∈ (0, T]2 and x ∈ Bx0

(�) , for any T > 0 and 𝜁 > 0 . Also, �(y1, y2|x) is 
assumed to be continuous in (y1, y2, x) and homogeneous of order 𝛽(x) > 0 in (y1, y2) . 
Model (1) was introduced in a simpler context without covariates in Dutang et al. 
(2014) and Escobar-Bach et al. (2017), see also Beirlant et al. (2011), and it has its 
roots in Ledford and Tawn (1997). Essentially (1) is a further assumption on the 
tail copula that underlies the joint distribution of (Y (1), Y (2)) , conditional on X = x . 
The approach followed in the present paper to the estimation of L(y1, y2|x) will be 

lim
r→∞

rℙ
(
1 − F1

(
Y (1)|X) ≤ r−1y1 or 1 − F2

(
Y (2)|X) ≤ r−1y2

|||X = x
)
= L(y1, y2|x)

(1)
ℙ

(
1 − F1

(
Y (1)|X) ≤ y1, 1 − F2

(
Y (2)|X) ≤ y2

|||X = x
)

= y
d1(x)

1
y
d2(x)

2
g(y1, y2|x)

(
1 + �(y1, y2|x)

)
,

lim
r↓0

|�|(ry1, ry2|x)
|�|(r, r|x) = �(y1, y2|x),
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nonparametric and based on local estimation of extreme value models in a neighbor-
hood of the point of interest in the covariate space.

In real data analysis, outliers appear occasionally, and in such contexts robust 
methods are crucial to avoid poor performance of the usual estimators, like the 
maximum likelihood estimator. A huge literature exists on outlier detection and 
robust estimation methods, following the seminal contributions of Huber (1981) 
and Hampel et al. (1986). In the extreme value context, Dell’Aquila and Embrechts 
(2006) discussed some methodological aspects related to robust estimation. In par-
ticular, they showed how robust methods can improve the quality of data analysis by 
providing information on the atypical observations, and on the deviation from the 
structure of the underlying model, while guaranteeing good statistical properties of 
the resulting estimators computed on the complete dataset. Our aim in this paper is 
to estimate the conditional stable tail dependence function in a robust way, to pre-
vent possible isolated outliers from completely disturbing the estimate. In the multi-
variate context, observations can be outlying with respect to the dependency struc-
ture, in the sense that they do not follow the pattern set by the majority of the data, 
and hence they disturb the estimation of the dependence structure. To achieve the 
robustness, the density power divergence criterion initially proposed by Basu et al. 
(1998) will be used. It is defined between two density functions f and h as follows

Here, f is assumed to be the true (typically unknown) density of the data, whereas 
h is a parametric model, depending on a vector of parameters which is estimated 
by minimizing the empirical version of Δ�(f , h) . This estimator is called the mini-
mum density power divergence (MDPD) estimator. Unlike existing methods such 
as minimum Hellinger distance estimation, Basu et al.’s (1998) approach avoids the 
use of nonparametric density estimation and the associated problem of bandwidth 
selection. This MDPD method only depends on a tuning parameter � which can be 
viewed as a trade-off between robustness and asymptotic efficiency of the estima-
tors. When � = 0 , the density power divergence is the Kullback–Leibler divergence 
(Kullback and Leibler 1951) and the method reduces to the maximum likelihood 
estimation. When � = 1 it corresponds to the mean squared error or L2-divergence. 
As such the minimum density power divergence represents a whole family of diver-
gences, indexed by the parameter � ≥ 0.

Thus, we introduce a nonparametric and robust estimator for the conditional sta-
ble tail dependence function when the data come from a conditional distribution 
whose dependence structure converges to that of a conditional extreme value distri-
bution. Compared to related recent literature on estimation of extremal dependence, 
the differences are as follows. Escobar-Bach et  al. (2017) consider robust estima-
tion of the stable tail dependence function though in a context without covariates. 
Escobar-Bach et  al. (2018a) derive a robust estimator for the Pickands depend-
ence function in a context with covariates, where they assume that the underlying 

Δ𝛼(f , h) ∶=

⎧⎪⎨⎪⎩
∫
ℝ

�
h1+𝛼(y) −

�
1 +

1

𝛼

�
h𝛼(y)f (y) +

1

𝛼
f 1+𝛼(y)

�
dy, 𝛼 > 0,

∫
ℝ

log
f (y)

h(y)
f (y)dy, 𝛼 = 0.
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conditional distribution has a conditional extreme value copula. In Escobar-Bach 
et al. (2018b), an estimator for the stable tail dependence function is introduced in 
a regression context, where it is assumed that the underlying conditional distribu-
tion has a dependence function that converges to that of a conditional extreme value 
distribution, though their estimator is not robust with respect to outlying observa-
tions. Goegebeur et al. (2020) discuss a robust estimator for the coefficient of tail 
dependence in the context of random covariates. In some sense, the present paper 
can be viewed as a follow-up of the latter paper, although the problem considered 
in Goegebeur et al. (2020) is simpler than the one considered in the present paper 
since now the aim is to estimate a dependence function rather than a single param-
eter. Also, in Goegebeur et al. (2020) a deterministic, i.e., non-random, intermediate 
threshold is used, while in the present paper we consider the more realistic situation 
where the intermediate threshold is taken as an intermediate conditional quantile, 
which complicates the asymptotic analysis considerably.

Our paper is organized as follows. In Sect.  2, we assume that both conditional 
marginal distribution functions are known, and we propose a robust estimator of the 
conditional stable tail dependence function for which we establish the finite-dimen-
sional weak convergence. Then, in Sect. 3, we consider the more realistic situation 
where the conditional marginal distribution functions are unknown. We estimate 
again in a robust way the conditional stable tail dependence function and we derive 
similar results as in the previous section, under some additional assumptions. The 
finite sample performance of our estimator in terms of efficiency and robustness is 
illustrated in Sect. 4 on a simulation experiment. Finally, in Sect. 5, we apply our 
methodology to a real dataset of sale prices of residential properties. Some conclud-
ing remarks are proposed in Sect. 6. The proofs of some of the main results are post-
poned to Sect. 7, whereas the others and those of some auxiliary results are given in 
the online Supplementary Material.

2 � Estimation of L(y1, y2|x0) in case of known margins

For convenience, assume that the conditional marginal distributions F1(.|x) and 
F2(.|x) are unit Pareto and let Zt ∶= min{Y (1),

t

1−t
Y (2)} for t ∶= y1

y1+y2
 , 0 < t < 1.

Then, according to model (1), the conditional survival function of Zt given X = x , 
denoted by FZt

(.|x) , is a conditional Pareto-type model of the following form:

where

(2)FZt
(y|x) =Gt(x)y

−1
(
1 + �t(y|x)

)
,

Gt(x) ∶=
(

t

1 − t

)d2(x)

g
(
1,

t

1 − t

|||x
)
,

�t(y|x) ∶= �

(
1

y
,

t

1 − t

1

y

|||x
)
.
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Note that �t(.|x) is regularly varying at infinity with index −�(x) , i.e., 
�t(uy|x)∕ �t(u|x) → y−�(x) as u → ∞ for all y > 0 . Additionally, we assume in the 
sequel the following classical condition.

Assumption (Dt) For all x ∈ SX , the conditional survival function of Zt given by (2) 
is such that |�t(.|x)| is normalized regularly varying with index −�(x) , i.e.,

with Ct(x) ∈ ℝ and �t(y|x) → −�(x) as y → ∞ . Moreover, we assume y ↦ �t(y|x) to 
be a continuous function.

Under Assumption (Dt) , we have that �t(y|x) is differentiable and hence FZt
(.|x) 

has a density function. This condition is a restriction of the Karamata representation 
of regularly varying functions (see, e.g., Corollary 2.1 in Resnick 2007).

We now turn to the estimation of L(y1, y2|x0) . The above implies that

Thus, estimating the conditional stable tail dependence function requires the estima-
tion of G1−t(x0) . To reach this goal, note that from (2), we deduce that

where UZ1−t
(.|x0) is the conditional tail quantile function defined as 

UZ1−t
(.|x0) ∶= inf{y ∶ FZ1−t

(y|x0) ≥ 1 − 1∕.} , and k is an intermediate sequence such 
that k → ∞ and k∕n → 0 . If ÛZ1−t

(.|x0) and �̂1−t(.|x0) are estimators for UZ1−t
(.|x0) and 

�1−t(.|x0) , respectively, then by the plug-in method we derive the following estimator 
for G1−t(x0):

which yields a simple estimator for the conditional stable tail dependence function:

Recall that we want to propose a robust estimator. To this aim, we will adjust the 
MDPD criterion to the local estimation context. Remark that FZ1−t

 belongs to the 

�t(y|x) =Ct(x) exp

(
∫

y

1

�t(u|x)
u

du

)
,

L(y1, y2|x0) = lim
Δ↓0

1

Δ

{
ℙ

(
1 − F1(Y

(1)|x0) ≤ Δ y1
|||X = x0

)

+ ℙ

(
1 − F2(Y

(2)|x0) ≤ Δ y2
|||X = x0

)

−ℙ
(
1 − F1(Y

(1)|x0) ≤ Δ y1, 1 − F2(Y
(2)|x0) ≤ Δ y2

|||X = x0

)}

=y1 + y2 − lim
Δ↓0

1

Δ
ℙ

(
Z1−t ≥ 1

Δ y1

|||X = x0

)

=y1 + y2 − y1G1−t(x0).

(3)G1−t(x0) =
k

n

UZ1−t
(n∕k|x0)

1 + �1−t(UZ1−t
(n∕k|x0)|x0) ,

(4)Ĝ1−t,k(x0) ∶=
k

n

ÛZ1−t
(n∕k|x0)

1 + �̂1−t(ÛZ1−t
(n∕k|x0)|x0)

,

(5)L̂k(y1, y2|x0) ∶= y1 + y2 − y1Ĝ1−t,k(x0).



206	 Y. Goegebeur et al.

1 3

class of distribution functions of Beirlant et al. (2009). Thus, the distribution of the 
relative excesses Z1−t∕un given Z1−t > un can, for un large, be approximated by an 
extended Pareto distribution (EPD) function given by

where 𝛿1−t(un|x0) > max{−1,−1∕𝛽(x0)} . Moreover, using Proposition 2.3 in Beir-
lant et  al. (2009) the approximation error is uniformly o(�1−t(un|x0)) for un → ∞ . 
Using this property, one can estimate �1−t(un|x0) with the MDPD approach as 
follows.

Starting from (Y (1)

i
, Y

(2)

i
,Xi) , i = 1,… , n , independent copies of (Y (1), Y (2),X) , we 

obtain (Z1−t,i,Xi), i = 1,… , n, independent copies of (Z1−t,X) , and fit the density 
function h associated with H and defined for y > 1 as

locally to the relative excesses Z1−t,i∕ÛZ1−t
(n∕k|x0), i = 1,… , n, given that 

Z1−t,i > �UZ1−t
(n∕k|x0) . Here, ÛZ1−t

(n∕k|x0) is the natural estimator for UZ1−t
(n∕k|x0) 

defined as ÛZ1−t
(n∕k|x0) ∶= inf{y ∶ F̂Z1−t

(y|x0) ≥ 1 − k∕n} where, for F̂Z1−t
(y|x0) , we 

use the kernel-type estimator

with Khn
(.) ∶= K(.∕hn)∕h

d
n
 , K a joint density on ℝd and hn a positive non-random 

sequence satisfying hn → 0 as n → ∞.
This leads to the minimum density power divergence estimator, 

�̂n,1−t ∶= �̂1−t(ÛZ1−t
(n∕k|x0)|x0) , for �1−t(ÛZ1−t

(n∕k|x0)|x0) , and defined as the point 
minimizing the empirical density power divergence, that is, for 𝛼 > 0

In our proposed procedure, we only estimate �1−t(ÛZ1−t
(n∕k|x0)|x0) with the density 

power divergence criterion, while the second order rate parameter will be fixed at a 
value, denoted � , which can be either the true value or a mis-specified one. Fixing 
this second order rate parameter � at some value is quite common when fitting sec-
ond order models like (2) to data, see, e.g., Feuerverger and Hall (1999), Gomes and 
Martins (2004), Dutang et al. (2014), Escobar-Bach et al. (2017).

H(y;𝛿1−t(un|x0), 𝛽(x0)) ∶=
{

1 − y−1
[
1 + 𝛿1−t(un|x0)

(
1 − y−𝛽(x0)

)]−1
, y > 1,

0, y ≤ 1,

h
(
y;�1−t(un|x0), �(x0)

)
∶= y−2

[
1 + �1−t(un|x0)

(
1 − y−�(x0)

)]−2
×
[
1 + �1−t(un|x0)

(
1 − (1 − �(x0))y

−�(x0)
)]
,

(6)F̂Z1−t
(y�x0) ∶=

1

n

∑n

i=1
Khn

(x0 − Xi)1{Z1−t,i≤y}
1

n

∑n

i=1
Khn

(x0 − Xi)
,

�Δ𝛼,1−t(𝛿1−t|x0)

∶=
1

k

n∑
i=1

Khn
(x0 − Xi)

{
∫

∞

1

h1+𝛼(y;𝛿1−t, 𝛽)dy −
(
1 +

1

𝛼

)

× h𝛼

(
Z1−t,i

�UZ1−t
(n∕k|x0)

;𝛿1−t, 𝛽

)}
1
{Z1−t,i>�UZ1−t

(n∕k|x0)}.
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To study the asymptotic behavior of our estimator defined in (5), we need to 
assume some classical conditions due to the regression context, which are nowa-
days well-known in the conditional extreme value framework.

First, the density fX and the functions appearing in FZ1−t
(y|x) need to satisfy the 

following Hölder conditions.
Assumption (H1−t) There exist positive constants MfX

 , MG1−t
 , MC1−t

 , M�1−t
 , �fX , 

�G1−t
 , �C1−t

 and ��1−t , such that for all x, z ∈ SX:

Then, we have also to impose a condition on the kernel function K, which is a stand-
ard condition in local estimation.

Assumption (K1) K is a bounded density function on ℝd , with support SK 
included in the unit ball in ℝd.

We have now all the ingredients to state the main result of this section, namely 
the joint weak convergence of the estimators L̂k(y1,j, y2,j|x0) , j = 1,… , J , after 
proper normalization. In the sequel, weak convergence is denoted by ⇝.

Theorem  1  Assume (D1−tj
) and (H1−tj

) for j = 1,… , J, (D0.5), (H0.5), (K1), 
x0 ∈ Int(SX) with fX(x0) > 0, and y ↦ FZ1−tj

(y|x0), j = 1,… , J, are strictly increas-
ing. Consider sequences k → ∞ and hn → 0 as n → ∞ such that k∕n → 0, khd

n
→ ∞, 

h
��1−t1

∧⋯∧��1−tJ
∧��0.5

n log
n

k
→ 0, 

√
khd

n
h
�fX∧�G1−t1

∧⋯∧�G1−tJ
n → 0, √

khd
n
|�1−tj(UZ1−tj

(
n

k
|x0)|x0)| → 0, j = 1,… , J. Then, for n → ∞, we have,

where, for j = 1,… , J,

and W1−tj
(y), j = 1,… , J, are zero centered Gaussian processes with

�fX(x) − fX(z)� ≤MfX
‖x − z‖�fX ,

�G1−t(x) − G1−t(z)� ≤MG1−t
‖x − z‖�G1−t ,

�C1−t(x) − C1−t(z)� ≤MC1−t
‖x − z‖�C1−t ,

sup
y≥1

��1−t(y�x) − �1−t(y�z)� ≤M�1−t
‖x − z‖��1−t .

�
khd

n

⎛⎜⎜⎝

L̂k(y1,1, y2,1�x0) − L(y1,1, y2,1�x0)
⋮

L̂k(y1,J , y2,J�x0) − L(y1,J , y2,J�x0)

⎞⎟⎟⎠
⇝

⎛⎜⎜⎝

�1

⋮

�J

⎞⎟⎟⎠
,

�j ∶= −y1,jG1−tj
(x0)

W1−tj
(1)

fX(x0)
+ y1,jG1−tj

(x0)c

{
2� ∫

1

0

[
W1−tj

(z)

z
−W1−tj

(1)

]
z2� dz

−(1 + �)(2� + �)∫
1

0

[
W1−tj

(z)

z
−W1−tj

(1)

]
z2�+� dz

}
,

c ∶=
(1 + 2�)(1 + 2� + �)(1 + 2� + 2�)

�2(1 + � + 4�2 + 2��)

1

fX(x0)
,
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In practice, the conditional marginal distribution functions F1(.|x0) and F2(.|x0) 
are unknown. The aim of the next section is to extend our results to this new frame-
work. The proof of the new theorem will be given in the online Supplementary 
Material.

3 � Estimation of L(y1, y2|x0) in case of unknown margins

We consider the general framework where F1(.|x) and F2(.|x) are unknown condi-
tional margins. We want to mimic what has been done in the previous section by 
transforming the margins into approximate unit Pareto distributions. To this aim, we 
define

where the estimators F̂n,j , j = 1, 2, are defined as

with cn a positive non-random sequence satisfying cn → 0 as n → ∞ . Note that this 
estimator has the same form as (6) but with a bandwidth cn which needs to be differ-
ent from hn and the kernel used here is, for simplicity, the same as the one used in 
the MDPD method.

A similar estimator as the one defined in (5) can be proposed for the robust 
estimation of the conditional stable tail dependence function in case of unknown 
margins:

where

�(W1−tj
(y)W1−tj�

(y))

= ‖K‖2
2
fX(x0)

�
max

�
G1−tj

(x0)

y
,
G1−tj� (x0)

y

��−d1(x0)

×

�
max

�
tj

1 − tj

G1−tj
(x0)

y
,

tj�

1 − tj�

G1−tj�
(x0)

y

��−d2(x0)

× g

⎛⎜⎜⎜⎜⎝

1

max

�
G1−tj

(x0)

y
,
G1−t

j�
(x0)

y

� ,
1

max

�
tj

1−tj

G1−tj
(x0)

y
,

tj�

1−tj�

G1−t
j�
(x0)

y

�
���������
x0

⎞⎟⎟⎟⎟⎠
.

Ž1−t ∶= min

{
1

1 − �Fn,1(Y
(1)|X)

,
1 − t

t

1

1 − �Fn,2(Y
(2)|X)

}
,

(7)F̂n,j(y�x0) ∶=
1

n

∑n

i=1
Kcn

(x0 − Xi)1{Y
(j)

i
≤y}

1

n

∑n

i=1
Kcn

(x0 − Xi)
,

Ľk(y1, y2|x0) ∶= y1 + y2 − y1Ǧ1−t,k(x0),
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with 𝛿1−t(�UŽ1−t
(n∕k|x0)|x0) the MDPD estimator based on Ž1−t.

To establish the joint weak convergence of the estimators Ľk(y1,j, y2,j|x0) , 
j = 1,… , J , after proper normalization, we need to impose again some assump-
tions, in particular a Hölder-type condition on each marginal conditional distribu-
tion function Fj , j = 1, 2.

Assumption (Fm) . There exist MFj
> 0 and 𝜂Fj

> 0 such that 
�Fj(y�x) − Fj(y�z)� ≤ MFj

‖x − z‖�Fj , for all y ∈ ℝ , all (x, z) ∈ SX × SX and j = 1, 2.
Concerning the kernel K a stronger assumption than (K1) is needed.
Assumption (K2) . K satisfies Assumption (K1) , there exists 𝛿,m > 0 such that 

B0(𝛿) ⊂ SK and K(u) ≥ m for all u ∈ B0(�) , and K belongs to the linear span (the 
set of finite linear combinations) of functions k ≥ 0 satisfying the following prop-
erty: the subgraph of k, {(s, u) ∶ k(s) ≥ u} , can be represented as a finite number 
of Boolean operations among sets of the form {(s, u) ∶ q(s, u) ≥ �(u)} , where q is 
a polynomial on ℝd ×ℝ and � is an arbitrary real function.

The latter assumption has already been used in Giné and Guillou (2002) 
or Giné et  al. (2004). As stated in these contributions, it is satisfied by 
K(x) = �{a(x)} , a being a polynomial and � a bounded real function of bounded 
variation (see, e.g., Nolan and Pollard, 1987). This is also the case, e.g., if the 
graph of K is a pyramid (truncated or not), or if K = 1[−1,1]d , etc.

The main result of the paper is given in the below theorem.

Theorem 2  Assume that there exists b > 0 such that fX(x) ≥ b,∀x ∈ SX ⊂ ℝ
d, fX is 

bounded, (D1−tj
), (H1−tj

) for j = 1,… , J, (D0.5), (H0.5), (K2), (Fm) hold, and that 
y ↦ FZ1−tj

(y|x0), j = 1,… , J, are strictly increasing at x0 ∈ Int(SX) non-empty.

Consider sequences k → ∞, hn → 0 and cn → 0 as n → ∞, such that k∕n → 0, 
khd

n
→ ∞, h

��1−t1
∧⋯∧��1−tJ

∧��0.5
n log

n

k
→ 0, 

√
khd

n
h
�fX∧�G1−t1

∧⋯∧�G1−tJ
n → 0, √

khd
n
|�1−tj(UZ1−tj

(
n

k
|x0)|x0)| → 0, j = 1,… , J. Assume also that there exists an 𝜀 > 0 

such that for n sufficiently large

where � denotes the Lebesgue measure, and for some q > 1 and 0 < 𝜂 < min(𝜂F1
, 𝜂F2

)

Then, we have

Ǧ1−t,k(x0) ∶=
k

n

�UŽ1−t
(n∕k|x0)

1 + 𝛿1−t(�UŽ1−t
(n∕k|x0)|x0)

,

(8)inf
x∈SX

𝜆
(
{u ∈ B0(1) ∶ x − cnu ∈ SX}

)
> 𝜀,

(9)n

√
hd
n

k
max

(√
| log cn|q

ncd
n

, c�
n

)
⟶ 0, as n → ∞.
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where �j, j = 1,… , J, are defined as in Theorem 1.

Note that the conditions (8) and (9) are needed to measure the discrepancy 
between the conditional distribution function Fj(y|x) and its empirical kernel version 
F̂n,j(y|x), j = 1, 2, uniformly in (x,  y), see, e.g., Lemma 3.1 in Escobar-Bach et  al. 
(2018a).

4 � Simulation study

The aim of this section is to illustrate the performance of our robust estimator 
Ľk(y1, y2|x0) with a simulation study. The two following models will be considered.

Model 1. The logistic copula model

We take X ∼ U[2, 10] , and combine this copula model with Fréchet distributions for 
Y (1) and Y (2):

We set �1 = 0.25 and �2 = 0.5 . This model corresponds to L(y1, y2|x) = (yx
1
+ yx

2
)1∕x.

Model 2. The conditional distribution of (Y (1), Y (2)) given X = x is that of

where (Z1, Z2) follow a bivariate standard Cauchy distribution with density function

We take X ∼ U[0, 1] , and set

This model corresponds to L(y1, y2|x) =
√

y2
1
+ y2

2
.

Contamination will be introduced by adding observations that follow a different 
dependency structure, namely contamination according to the following mixture 
model

�
khd

n

⎛
⎜⎜⎝

Ľk(y1,1, y2,1�x0) − L(y1,1, y2,1�x0)
⋮

Ľk(y1,J , y2,J�x0) − L(y1,J , y2,J�x0)

⎞
⎟⎟⎠
⇝

⎛
⎜⎜⎝

�1

⋮

�J

⎞
⎟⎟⎠
,

C(u1, u2|x) = e−[(− ln u1)
x+(− ln u2)

x]1∕x , u1, u2 ∈ [0, 1], x ≥ 2.

Fj(y) = e−y
−1∕𝛾j

, y > 0, j = 1, 2.

(|Z1|�1(x), |Z2|�2(x)),

f (z1, z2) =
1

2�
(1 + z2

1
+ z2

2
)−3∕2, (z1, z2) ∈ ℝ

2.

�1(x) =0.25 + 0.125 sin(2�x),

�2(x) =0.1 + 0.1x.

F�(y1, y2|x) = (1 − �)F(y1, y2|x) + �Fc(y1, y2|x),
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where � denotes the fraction of contamination, F is the distribution function of 
Model 1 or Model 2 described above, and Fc is the contamination distribution func-
tion. Given X = x , the distribution function Fc used with Model 1 is

which corresponds to a contamination on the axes, whereas for Model 2, where the 
dependence is not very strong, we propose to use a diagonal contamination to high-
light the effect of contamination. Concretely, that means a distribution function Fc of 
the following form

corresponding to the distribution function of completely dependent unit Fréchet ran-
dom variables. We want to estimate the extreme dependence structure of F(y1, y2|x) 
in presence of contamination coming from Fc(y1, y2|x).

Note that the logistic and Cauchy models have already been considered in 
Escobar-Bach et al. (2017) with a similar model (1) as ours, but in a framework 
without covariates. This model, naturally extended to the regression context in 
the present paper, is also satisfied for these two conditional models, with �(x0) = 1 
for Model 1 and �(x0) = 2 for Model 2. Additionally, we can also check that the 
Hölder-type conditions (H1−t) are satisfied. Concerning the conditional marginal 
distribution functions in the two models, they are standard heavy-tailed distribu-
tions (see, e.g., Beirlant et al., 2009), and satisfy our Assumption (Fm).

To compute our estimates Ľk(y1, y2|x0) , first, we have to transform the margins 
into approximate unit Pareto distributions using the kernel-type empirical distri-
bution functions given in (7). To this aim, we need to choose a kernel K and to 
select the bandwidths cn for each of the margins. Since the kernel has almost no 
impact on the results, we use in (7) and also in our MDPD procedure, the same 
biquadratic function

which satisfies our Assumption (K2) . Concerning the bandwidth cn , a cross-valida-
tion criterion, already used in an extreme value context by Daouia et al. (2011), is 
performed, where

where C is a grid of values of c̃j and F̃n,−i,j(y�x) ∶=
∑n

k=1,k≠i Kc̃j
(x − Xk)1{Y

(j)

k
≤y}∑n

k=1,k≠i Kc̃j
(x − Xk)

.

The bandwidth hn is taken as hn = min(cn,1, cn,2)
(

k

n

)1∕d| log[min(cn,1, cn,2)]|−� , 
where 𝜉d > q , in order to satisfy the condition:

Fc(y1, y2|x) = 1

2

{
e−y

−1
1 + e−y

−1
2

}
1{y1≥0,y2≥0},

Fc(y1, y2|x) = e−{min(y1,y2)}
−1

, y1, y2 > 0,

K(x) ∶=
15

16
(1 − x2)21{x∈[−1,1]},

cn,j ∶= argmin
c̃j∈C

n∑
i=1

n∑
k=1

[
1{

Y
(j)

i
≤Y (j)

k

} − F̃n,−i,j(Y
(j)

k
|Xi)

]2
, j = 1, 2,
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coming from (9) in our main theorem.
In the minimization of the empirical density power divergence, we fix � at 

the value 1, i.e., the true value for Model 1 and a mis-specified value for Model 
2. The parameter k which determines the threshold �UŽ1−t

(n∕k|x0) is selected by 
an automated procedure based on minimizing the standard deviation of the esti-
mates Ľk(y1, y2|x0) computed in a moving window over the range for k, see, e.g., 
Goegebeur et al. (2019).

In all the settings, C = RX × {0.05, 0.075,… , 0.3} , where RX is the 
range of the covariate X, and � = 1.1 . Figures  1, 2, 3 illustrate the box-
plots of the estimates Ľk(y1, y2|x0) based on 500 samples of size n = 1 000 for 
(y1, y2) ∈ {(l∕10, 1 − l∕10), l = 1,… , 9} and for three values of the covariate: 
x0 = 3 , 5 and 9, in case of Model 1. The columns of the figures represent the 
two fractions of contamination: � = 0% (left) and � = 10% (right), and the rows 
the three values of � , namely, from the top to the bottom, � = 0.1, 0.5 and 1. 
Figures 4, 5 and 6 are constructed similarly for Model 2 and the three covariate 
values: x0 = 0.2 , 0.5 and 0.8. Each time, the true function L(y1, y2|x0) is com-
puted at the same positions {(l∕10, 1 − l∕10), l = 1,… , 9} and connected with a 
blue line.

Based on these simulations, we can draw the following conclusions:

•	 Overall, our robust estimator performs quite well, but of course, the results 
depend on the model, the covariate position and the fraction of contamina-
tion. In Model 1, L(y1, y2|x0) depends on the covariate, but the marginal dis-
tributions do not. On the contrary, for Model 2, L(y1, y2|x0) does not depend 
on the value of x0 but the marginal distributions do;

•	 For all models, when � = 0 , the best results are obtained when � = 0.1 . This 
result was expected since this value is close to 0, the value which leads to 
the maximum likelihood estimator, which is efficient (but not robust). On the 
contrary, in case of contamination, increasing � is crucial to get more robust-
ness, the central box remaining closer to the true value for large values of � 
compared to � = 0.1;

•	 For Model 1, the contamination on the axes pulls slightly the estimates up, 
whereas, on the contrary, for Model 2, the diagonal contamination pulls the 
estimates a bit down, as expected. The estimation results are good for all 
covariate positions but exhibit more variability at (y1, y2) close to (1/2, 1/2).

•	 We have also considered data with 20% contamination but for such a high 
percentage of contamination the estimation procedure did not perform well 
anymore.

n

√
hd
n

k

√
| log cn|q

ncd
n

→ 0,
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5 � Real data analysis

In this section, we illustrate the robust estimator for L(y1, y2|x0) on the Ames hous-
ing dataset (De Cock 2011), which is publicly available at https://​www.​kaggle.​
com/c/​house-​prices-​advan​ced-​regre​ssion-​techn​iques.

Fig. 1   Logistic model, x0 = 3 : no contamination (left) and 10% axis contamination (right), and � = 0.1 
(first row), � = 0.5 (second row) and � = 1 (third row)

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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This dataset contains information on the sale of individual residential prop-
erty in Ames, Iowa, from 2006 to 2010. The dataset has n = 2930 observations 
on a large number of variables (23 nominal, 23 ordinal, 14 discrete and 20 con-
tinuous) involved in assessing home values. We estimate the conditional stable tail 

Fig. 2   Logistic model, x0 = 5 : no contamination (left) and 10% axis contamination (right), and � = 0.1 
(first row), � = 0.5 (second row) and � = 1 (third row)
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dependence function of the variables sale price ( Y (1) ) and above grade living area in 
square feet ( Y (2) ) conditional on the original construction year of the property (X). 
When estimating a residential property’s market value, living area is an important 

Fig. 3   Logistic model, x0 = 9 : no contamination (left) and 10% axis contamination (right), and � = 0.1 
(first row), � = 0.5 (second row) and � = 1 (third row)
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element to consider, since a bigger property will positively impact its valuation. 
Indeed, many buyers look at the sales price divided by the square footage of a prop-
erty, which is a usual indicator of the value of a property. This thus motivates the 
study of the measure of dependence between the sale price of a residential property 

Fig. 4   Cauchy model, x0 = 0.2 : no contamination (left) and 10% diagonal contamination (right), and 
� = 0.1 (first row), � = 0.5 (second row) and � = 1 (third row)
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and the above grade living area in square feet. In Fig.  7, we show the scatterplot of 
sale price versus above grade living area. The scatterplot shows overall a positive 
association between the two variables, though there are also some observations that 
are atypical for the dependence structure and hence may disturb the estimation of 
the extremal dependence. One knows that properties that are newer often appraise 

Fig. 5   Cauchy model, x0 = 0.5 : no contamination (left) and 10% diagonal contamination (right), and 
� = 0.1 (first row), � = 0.5 (second row) and � = 1 (third row)
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at a higher value. Indeed, the fact that some parts of the property, like the plumbing, 
the electrical installations, and the roof are newer can generate savings for a buyer. 
For example, if a roof has a 20-year warranty, then that is money an owner will 
save over the next two decades, compared to an older home that may need a roof 
replaced in just a few years. This is illustrated in Fig.  9 where the sale prices tend 

Fig. 6   Cauchy model, x0 = 0.8 : no contamination (left) and 10% diagonal contamination (right), and 
� = 0.1 (first row), � = 0.5 (second row) and � = 1 (third row)
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to be larger in case of an original construction year in 2004 (right panel) compared 
to 1946 (left panel) for a given living area. Thus, the original construction year is an 
important covariate which should be taken into account when estimating the meas-
ure of dependence between Y (1) and Y (2).

We estimate L(y1, y2|x0) in a robust way with the proposed local mini-
mum density power divergence method. The estimation is implemented with 
the biquadratic kernel function and the same cross-validation criterion for c1 and 
c2 as described in the simulation section. Also the bandwidth hn is here deter-
mined by cross-validation. In Fig.  8, we show the estimates Ľk(y1, y2|x0) with 
(y1, y2) ∈ (l∕20, 1 − l∕20), l = 1,… , 19 , for � = 0.1 (blue), 0.5 (black) and 1 
(green), for the years of original construction 1946 (left) and 2004 (right). For the 

Fig. 7   Ames housing dataset: 
scatterplot of sale price versus 
above grade living area

Fig. 8   Ames housing dataset: estimates of L(y1, y2|x0) with x0 = 1946 (left) and x0 = 2004 (right) for 
� = 0.1 (blue), 0.5 (black) and 1 (green)
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construction year 1946, we see that the non-robust estimates, corresponding to 
� = 0.1 , are in line with the robust estimates obtained with � = 0.5 and � = 1 , which 
indicates that the data used for the estimation did not contain disturbing observa-
tions. For the construction year 2004, the non-robust estimates with � = 0.1 are 
somehow different from those obtained with � = 0.5 and � = 1 , where the latter two 
are similar, which indicates potential outliers in the data used for the estimation. 
This is confirmed by the scatterplots of the data used in the local estimation, given 
in Fig.  9. Indeed, for construction year 2004, there are two observations with an 
above grade living area greater than 4000 square feet (which is very high) for a cor-
responding sale price lower than 200 000 dollars (which is not credible). These two 
observations are clearly outliers, and since they are far away from the main cloud, 
that are atypical for the dependence structure, while the scatterplot of the data used 
for estimation at x0 = 1946 does not indicate outliers. For x0 = 2004 , these two 
outlying observations were removed and the estimates for L(y1, y2|x0) were calcu-
lated again. The result of this is shown in Fig. 10, where we see that the estimates 
obtained with the three values of � are now closer together, as expected.

6 � Concluding remarks

In this paper, we introduced a robust nonparametric estimator for the stable tail 
dependence function when next to the variables of main interest, Y (1) and Y (2) , there 
is also a random covariate, X. The work proposed here provides a series of interest-
ing open questions which will lead to further investigations, among them:

•	 Outlier detection. To reach the goal of robustness, we adapted the idea of MDPD 
estimation to our context. As illustrated in the original Basu et al. (1998) paper, 
in the density power divergence criterion, the estimating equations consist gener-
ally of likelihood score functions with a relative-to-the model down-weighting 
for outlying observations. Thus, if an observation is unusual relative to the pro-

Fig. 9   Ames housing dataset: scatterplot of data used for local estimation at x0 = 1946 (left) and 
x0 = 2004 (right)
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posed model then its contribution to the estimating equations gets less weight 
and as such its influence on the estimation results becomes dampened. However, 
although the methodology avoids that possible isolated outliers can completely 
disturb the estimation, it does not allow to identify which observations are the 
outliers in the dataset. In other words, the takeaway message of our paper is to 
compute our estimator for several values of � , among them some small � like 
� = 0.1 . If there is almost no difference in the estimates, that means that there 
are no outliers in the dataset and in that case maximum likelihood method should 
be used since it is efficient. On the contrary, if there are differences, that means 
that we have to take care because of the presence of outliers. If we want to know 
which observation is an outlier, a heuristic approach would be to draw the scat-
terplot of the data and to try to visualize the observations which seem to be far 
away from the main cloud. Then, we could remove them one after one, and com-
pute again our estimator for different values of � . If the estimates become this 
time close to each other, that means that the observations removed were indeed 
outliers. This is the strategy used in our real dataset for the year 2004. As an 
alternative to this heuristic approach, we could investigate in future research out-
lier detection on the basis of the empirical influence function of a robust estima-
tor for tail dependence (like the one introduced in the present paper). This was 
pursued in Hubert et al. (2013) in the context of identifying influential observa-
tions for the Hill estimator in univariate extreme value statistics.

•	 Change-points. In some applications, we are faced with events that can cause 
structural changes in the underlying model. The statistical analysis for detecting 
such changes is referred to as change-point analysis. It has been recently consid-
ered in the multivariate extreme value framework, see, e.g., de Carvalho et al. 
(2020) or Drees (2022). Since the traditional methods for identifying change-
points can struggle with the presence of outliers, robust methods should be 

Fig. 10   Ames housing dataset: 
estimates of L(y1, y2|x0) with 
x0 = 2004 for � = 0.1 (blue), 
0.5 (black) and 1 (green) after 
removal of the two outlying 
observations
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developed in that context, based on, e.g., the MDPD method used in this paper. 
A starting point for this new topic of research might be the recent paper of Song 
(2021) to be adapted to the context of extreme values.

•	 Parametric models. In the present paper, we have applied the MDPD estimation 
method locally in order to obtain a nonparametric estimator for tail dependence. 
The MDPD method can also be used for fitting completely parametric extreme 
value models to data. In the nonparametric approach, one lets ‘the data speak for 
themselves’ and as such we get a preview of the extreme dependence structure. 
This nonparametric estimate could also be useful to evaluate the fit of parametric 
models.

•	 Other types of divergences. In the paper, we used the density power divergence 
method of Basu et al. (1998) to obtain a robust estimate. The basic idea of the 
density power divergence is to introduce a density power weight in the estimation 
procedure. This idea is also at the basis of other robust methods like those based 
on the � divergence (Fujisawa and Eguchi 2008) and the � divergence (Minami 
and Eguchi 2002). The development of estimation procedures for extreme value 
problems based on the latter types of divergences, and a comparison of their per-
formance with that of estimators based on the density power divergence is a topic 
of future research.

Appendix

The minimization of the empirical density power divergence Δ̂�,1−t(�1−t|x0) is based 
on its derivative. Direct computations show that all the terms appearing in this 
derivative have the following form

for s < 0.
Assuming FZ1−t

(y|x0) is strictly increasing in y, we can rewrite this main statistic 
as follows:

Sn,1−t(s|x0) ∶= 1

k

n∑
i=1

Khn
(x0 − Xi)

(
Z1−t,i

�UZ1−t
(n∕k|x0)

)s

1
{Z1−t,i>�UZ1−t

(n∕k|x0)}
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where

Thus, we start this appendix with some auxiliary results allowing us to study the 
statistic Tn,1−t(y|x0) and subsequently in Section 7.2 we establish the weak conver-
gence of Sn,1−t(s|x0) . Finally, in Sect. 7.3, Theorem 1 will be established. The proof 
of Theorem 2 from Sect. 3 is deferred to the online Supplementary Material.
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Auxiliary results in case of known margins

First, we establish the joint weak convergence of processes 
Wn,1−tj

∶= {
√

khd
n
[Tn,1−tj (y|x0) − yfX(x0)];y ∈ (0, T]} , j = 1,… , J.

Lemma 1  Assume (D1−tj
) and (H1−tj

) for j = 1,… , J, (D0.5), (H0.5), (K1), 
x0 ∈ Int(SX) with fX(x0) > 0, and y ↦ FZ1−tj

(y|x0), j = 1,… , J, are strictly increas-
ing. Consider sequences k → ∞ and hn → 0 as n → ∞ such that k∕n → 0, khd

n
→ ∞, 

h
��1−t1

∧⋯∧��1−tJ
∧��0.5

n log
n

k
→ 0, 

√
khd

n
h
�fX∧�G1−t1

∧⋯∧�G1−tJ
n → 0, and for j = 1,… , J, √

khd
n
|�1−tj(UZ1−tj

(
n

k
|x0)|x0)|h

�C1−tj
n → 0 and √

khd
n
|�1−tj(UZ1−tj

(
n

k
|x0)|x0)|h

��1−tj
n log

n

k
→ 0 . Then, for n → ∞, we have

in �J((0, T]), for any T > 0.

Lemma 2  Under the assumptions of Lemma 1, for any sequence u(j)n  satisfying

as n → ∞, j = 1,… , J, we have

Lemma 3  Assume (D1−tj
) and (H1−tj

) for j = 1,… , J, (D0.5), (H0.5), (K1), 
x0 ∈ Int(SX) with fX(x0) > 0, and y ↦ FZ1−tj

(y|x0), j = 1,… , J, are strictly increas-
ing. Consider sequences k → ∞ and hn → 0 as n → ∞ such that k∕n → 0, khd

n
→ ∞, 

h
��1−t1

∧⋯∧��1−tJ
∧��0.5

n log
n

k
→ 0, 

√
khd

n
h
�fX∧�G1−t1

∧⋯∧�G1−tJ
n → 0, 

√
khd

n
|�1−tj(UZ1−tj

(
n

k
|x0)|x0)| → 0

, j = 1,… , J. Then, we have

(Wn,1−t1
,… ,Wn,1−tJ

) ⇝ (W1−t1
,… ,W1−tJ

),

�
khd

n

⎛⎜⎜⎝

FZ1−tj
(UZ1−tj

(n∕k�x0)�x0)
FZ1−tj

(u
(j)
n �x0)

− 1

⎞⎟⎟⎠
→ cj ∈ ℝ,

⎛⎜⎜⎜⎜⎜⎜⎝

�
nhd

n
FZ1−t1

(u
(1)
n �x0)

�
̂
FZ1−t1

(u
(1)
n �x0)

FZ1−t1
(u

(1)
n �x0)

− 1

�

⋮

�
nhd

n
FZ1−tJ

(u
(J)
n �x0)

�
̂
FZ1−tJ

(u
(J)
n �x0)

FZ1−tJ
(u

(J)
n �x0)

− 1

�

⎞
⎟⎟⎟⎟⎟⎟⎠

⇝
1

fX(x0)

⎛⎜⎜⎝

W1−t1
(1)

⋮

W1−tJ
(1)

⎞⎟⎟⎠
.

�
khd

n

⎛
⎜⎜⎜⎜⎜⎝

ÛZ1−t1
(n∕k�x0)

UZ1−t1
(n∕k�x0) − 1

⋮

ÛZ1−tJ
(n∕k�x0)

UZ1−tJ
(n∕k�x0) − 1

⎞
⎟⎟⎟⎟⎟⎠

⇝
1

fX(x0)

⎛⎜⎜⎝

W1−t1
(1)

⋮

W1−tJ
(1)

⎞⎟⎟⎠
.
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Joint weak convergence of Sn,1−tj (sj|x0), j = 1,… ,M

We have now all the ingredients to state the joint weak convergence of Sn,1−tj (sj|x0) , 
j = 1,… ,M . Note that we allow for the possibility that tj = tj� for j ≠ j′ , but of 
course the statistics Sn,1−tj (sj|x0) , j = 1,… ,M , must be different. This is due to the 
fact that, for a given value of t, the study of the MDPD estimator �̂n,1−t requires the 
joint convergence in distribution of several statistics Sn,1−t(s|x0) , with different val-
ues of s.

Theorem 3  Under the conditions of Theorem 1, we have, for s1,… , sM < 0,

To prove this Theorem 3, we start to establish the weak convergence of an individ-
ual statistic Sn,1−t(s|x0) , properly normalized. We have the following decomposition

We study the terms separately. Clearly, using Lemma 5.2 from Goegebeur et  al. 
(2021) we have that for n large, with arbitrary large probability,

�
khd

n

⎛
⎜⎜⎜⎝

Sn,1−t1 (s1�x0) − 1

1−s1
fX(x0)

⋮

Sn,1−tM (sM�x0) − 1

1−sM
fX(x0)

⎞
⎟⎟⎟⎠
⇝

⎛
⎜⎜⎜⎝

s1 ∫ 1

0

�
W1−t1

(z)

z
−W1−t1

(1)
�
z−s1dz

⋮

sM ∫ 1

0

�
W1−tM

(z)

z
−W1−tM

(1)
�
z−sMdz

⎞
⎟⎟⎟⎠
.

(11)

√

khdn
(

Sn,1−t(s|x0) −
1

1 − s
fX(x0)

)

= ∫

1

0
[W1−t(z) −W1−t(1)] s z−1−sdz

+
{

√

khdn
[

Tn,1−t(sn,1−t(1|x0)|x0) − sn,1−t(1|x0)fX(x0)
]

−W1−t
(

sn,1−t(1|x0)
)

}

+
{

W1−t
(

sn,1−t(1|x0)
)

−W1−t(1)
}

+
√

khdn
(

sn,1−t(1|x0) − 1
)

fX(x0)

+ ∫

1

0

{

√

khdn
[

Tn,1−t(sn,1−t(z|x0)|x0) − sn,1−t(z|x0)fX(x0)
]

−W1−t
(

sn,1−t(z|x0)
)

}

s z−1−s dz

+ ∫

1

0

[

W1−t
(

sn,1−t(z|x0)
)

−W1−t(z)
]

s z−1−s dz

(12)

+ fX(x0)

√
khd

n ∫
1

0

[
sn,1−t(z|x0) − z

]
s z−1−s dz

=∶ ∫
1

0

[W1−t(z) −W1−t(1)] s z
−1−sdz +

6∑
i=1

Ti,k.

(13)|T1,k| ≤ sup
y∈(0,2]

||||
√

khd
n

[
Tn,1−t(y|x0) − yfX(x0)

]
−W1−t(y)

||||,
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and hence, by Lemma  1 combined with the Skorohod construction we obtain 
T1,k = o

ℙ
(1) and T4,k = o

ℙ
(1).

Using again Lemma 5.2 in Goegebeur et al. (2021) with continuity, we have

Concerning T3,k , we can use the following decomposition:

By Proposition B.1.10 in de Haan and Ferreira (2006), for n large, with arbitrary 
large probability, we have for 𝜀, 𝜉 > 0

(14)

and |T4,k| ≤ sup
y∈(0,2]

||||
√

khd
n

[
Tn,1−t(y|x0) − yfX(x0)

]
−W1−t(y)

||||
|||||�

1

0

s z−1−sdz
|||||
,

(15)|T2,k| =oℙ(1).

T3,k =

�
khd

n

�
FZ1−t

(ÛZ1−t
(n∕k�x0)�x0)

FZ1−t
(UZ1−t

(n∕k�x0)�x0)
− 1

�
fX(x0)

=

�
khd

n

⎡
⎢⎢⎣

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−1

− 1

⎤
⎥⎥⎦
1 + �1−t(ÛZ1−t

(n∕k�x0)�x0)
1 + �1−t(UZ1−t

(n∕k�x0)�x0) fX(x0)

+

�
khd

n

�
1 + �1−t(ÛZ1−t

(n∕k�x0)�x0)
1 + �1−t(UZ1−t

(n∕k�x0)�x0) − 1

�
fX(x0)

=

�
khd

n

⎡⎢⎢⎣

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−1

− 1

⎤⎥⎥⎦
1 + �1−t(ÛZ1−t

(n∕k�x0)�x0)
1 + �1−t(UZ1−t

(n∕k�x0)�x0) fX(x0)

+

�
khd

n

�1−t(UZ1−t
(n∕k�x0)�x0)

1 + �1−t(UZ1−t
(n∕k�x0)�x0)

×

⎧⎪⎨⎪⎩

⎡⎢⎢⎣
�1−t(ÛZ1−t

(n∕k�x0)�x0)
�1−t(UZ1−t

(n∕k�x0)�x0) −
�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−�(x0)⎤⎥⎥⎦

+

⎡⎢⎢⎣

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−�(x0)

− 1

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
.

=∶ −

�
khd

n

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0) − 1

�
fX(x0)(1 + o

ℙ
(1))

+

�
khd

n

�1−t(UZ1−t
(n∕k�x0)�x0)

1 + �1−t(UZ1−t
(n∕k�x0)�x0)T

(1)

3,k
.
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In the above, the notation a±∙ means a∙ if a ≥ 1 and a−∙ if a < 1 . This implies by 
Lemma 3 and our conditions that

Concerning now T5,k , we have for any � ∈ (0, 1) small

Finally, concerning T6,k , we have

with

(16)|T (1)

3,k
| ≤ �

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0)

)−�(x0)±�

+

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0)

)−�(x0)

+ 1.

(17)T3,k ⇝ −W1−t(1).

(18)

|T5,k| ≤�
�

0

|||W1−t

(
sn,1−t(z|x0)

)
−W1−t(z)

||| |s| z
−1−s dz

+ �
1

�

|||W1−t

(
sn,1−t(z|x0)

)
−W1−t(z)

||| |s| z
−1−s dz

≤|s|
{

sup
z∈(0,�]

|||W1−t

(
sn,1−t(z|x0)

)||| + sup
z∈(0,�]

|W1−t(z)|
}

�
�

0

z−1−s dz

+ |s| sup
z∈(�,1]

|||W1−t

(
sn,1−t(z|x0)

)
−W1−t(z)

|||�
1

�

z−1−s dz

=o
ℙ
(1).

T6,k = fX(x0)

�
khd

n ∫
1

0

�
FZ1−t

(z−1ÛZ1−t
(n∕k�x0)�x0)

FZ1−t
(UZ1−t

(n∕k�x0)�x0)
− z

�
s z−1−s dz

= fX(x0)

�
khd

n

⎧⎪⎨⎪⎩

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−1

− 1

⎫⎪⎬⎪⎭
s ∫

1

0

z−sdz

+ fX(x0)

�
khd

n

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−1

× ∫
1

0

�
1 + �1−t(z

−1ÛZ1−t
(n∕k�x0)�x0)

1 + �1−t(UZ1−t
(n∕k�x0)�x0) − 1

�
s z−sdz

=∶ −fX(x0)
s

1 − s

�
khd

n

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0) − 1

�
(1 + o

ℙ
(1))

+ fX(x0)

�
khd

n

�
ÛZ1−t

(n∕k�x0)
UZ1−t

(n∕k�x0)

�−1
�1−t(UZ1−t

(n∕k�x0)�x0)
1 + �1−t(UZ1−t

(n∕k�x0)�x0) T
(1)

6,k
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using arguments similar to those for T (1)

3,k
 . Consequently, using again Lemma 3, we 

deduce that

Combining decomposition (12) with (13)–(19), the proof of the marginal weak con-
vergence of Sn,1−t(s|x0) , properly normalized, is achieved.

The joint weak convergence of (
√

khd
n
[Sn,1−tj (sj|x0) − fX(x0)∕(1 − sj)], j = 1,… ,M) 

follows from Lemmas 1 and 3, respectively. 	� ◻

Proof of Theorem 1

Again we first consider the case of a single estimator L̂k(y1, y2|x0) . From (3), (4) and 
(5), we deduce that

Now remark that

|T (1)

6,k
| ≤|s|�

1

0

|||||||

�1−t(z
−1ÛZ1−t

(n∕k|x0)|x0)
�1−t(UZ1−t

(n∕k|x0)|x0) −

(
z−1

ÛZ1−t
(n∕k|x0)

UZ1−t
(n∕k|x0)

)−�(x0)|||||||
z−sdz

+ |s|�
1

0

|||||||

(
z−1

ÛZ1−t
(n∕k|x0)

UZ1−t
(n∕k|x0)

)−�(x0)

− 1

|||||||
z−sdz

=O
ℙ
(1),

(19)T6,k ⇝ −
s

1 − s
W1−t(1).

√
khd

n

(
L̂k(y1, y2|x0) − L(y1, y2|x0)

)

= −y1

√
khd

n

(
Ĝ1−t,k(x0) − G1−t(x0)

)

= −y1

√
khd

n

(
k

n

ÛZ1−t
(n∕k|x0)

1 + �̂n,1−t

− G1−t(x0)

)

= −y1G1−t(x0)

√
khd

n

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0)
1 + �1−t(UZ1−t

(n∕k|x0)|x0)
1 + �̂n,1−t

− 1

)

= −y1G1−t(x0)

√
khd

n

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0) − 1

)

+ y1G1−t(x0)

√
khd

n

(
�̂n,1−t − �1−t(UZ1−t

(n∕k|x0)|x0)
)

1

1 + �̂n,1−t

+ y1G1−t(x0)
�̂n,1−t − �1−t(UZ1−t

(n∕k|x0)|x0)
1 + �̂n,1−t

√
khd

n

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0) − 1

)
.
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by (16). This implies that

Using the fact that

we can deduce that

Now, concerning the finite-dimensional convergence, it follows from Lemma 3 com-
bined with the following theorem which states the joint behavior of the MDPD esti-
mator �̂n,1−tj , j = 1,… , J , and whose proof is deferred to the online Supplementary 
Material:

Theorem  4  Under the conditions of Theorem  1, with probability tending to one, 
there exists sequences of solutions (�̂n,1−tj )n≥1, j = 1,… , J, to the MDPD estimating 
equations such that

√
khd

n

|||�1−t(ÛZ1−t
(n∕k|x0)|x0) − �1−t(UZ1−t

(n∕k|x0)|x0)|||
=

√
khd

n

|||�1−t(UZ1−t
(n∕k|x0)|x0)|||

||||||
�1−t(ÛZ1−t

(n∕k|x0)|x0)
�1−t(UZ1−t

(n∕k|x0)|x0) − 1

||||||
= o

ℙ
(1),

√
khd

n

(
L̂k(y1, y2|x0) − L(y1, y2|x0)

)

= −y1G1−t(x0)

√
khd

n

(
ÛZ1−t

(n∕k|x0)
UZ1−t

(n∕k|x0) − 1

)

+ y1G1−t(x0)

√
khd

n

(
�̂n,1−t − �1−t(ÛZ1−t

(n∕k|x0)|x0)
)
+ o

ℙ
(1).

�
khd

n

⎛
⎜⎜⎝

ÛZ1−t
(n∕k�x0)

UZ1−t
(n∕k�x0) − 1

�̂n,1−t − �1−t(ÛZ1−t
(n∕k�x0)�x0)

⎞
⎟⎟⎠

⇝

⎛⎜⎜⎝

W1−t(1)

fX (x0)

c
�
2� ∫ 1

0

�
W1−t(z)

z
−W1−t(1)

�
z2� dz − (1 + �)(2� + �) ∫ 1

0

�
W1−t(z)

z
−W1−t(1)

�
z2�+� dz

� ⎞⎟⎟⎠
,

√
khd

n

(
L̂k(y1, y2|x0) − L(y1, y2|x0)

)

⇝ −y1G1−t(x0)
W1−t(1)

fX(x0)
+ y1G1−t(x0)c

{
2� ∫

1

0

[
W1−t(z)

z
−W1−t(1)

]
z2� dz

−(1 + �)(2� + �)∫
1

0

[
W1−t(z)

z
−W1−t(1)

]
z2�+� dz

}
.
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Moreover, for the consistent solution sequences one has that

where c is defined in Theorem 1. 	�  ◻

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00839-1.
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