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Abstract
To estimate unknown population parameters based on y , a vector of multivariate 
outcomes having nonignorable item nonresponse that directly depends on y , we 
propose an innovative inverse propensity weighting approach when the joint distri-
bution of y and associated covariate x is nonparametric and the nonresponse prob-
ability conditional on y and x has a parametric form. To deal with the identifiability 
issue, we utilize a nonresponse instrument z , an auxiliary variable related to y but 
not related to the nonresponse probability conditional on y and x . We utilize a modi-
fied generalized method of moments to obtain estimators of the parameters in the 
nonresponse probability. Simulation results are presented and an application is illus-
trated in a real data set.

Keywords  Generalized method of moments · Item nonresponse · Inverse propensity 
weighting · Multivariate outcome · Nonresponse instrument

1  Introduction

In many statistical applications, multivariate outcomes or responses are collected 
from every sampled unit in the study. For example, in health studies conducted 
by the U.S. Centers for Disease Control and Prevention, measurements of total 
cholesterol, high-density lipoprotein cholesterol, body mass index, average sag-
ittal abdominal diameter, etc. may be obtained from each sampled person in 
the non-institutionalized civilian resident population of the USA. Longitudinal 
responses are another type of multivariate outcomes, in which each sampled unit 
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is repeatedly measured over several time periods. An example is the AIDS Clini-
cal Trial Group 193A discussed in Sect. 4 for HIV-AIDS patients with advanced 
immune suppression.

Unfortunately, item nonresponse is a common phenomenon in multivariate 
responses, i.e., some of the multivariate responses, not necessarily all, may be miss-
ing with a pattern varying with sampled unit. Estimation and statistical inference 
without taking nonresponse into consideration may lead to seriously biased estima-
tors and conclusions.

Throughout this article, y denotes a k-dimensional outcome or response vector 
of interest that is subject to item nonresponse, r denotes the response indicator vec-
tor of y , i.e., the jth component of r is 1 (or 0) if the jth component of y is observed 
(or missing), j = 1, ..., k , and x denotes a p-dimensional covariate vector associated 
with y that is always observed. Statistical approaches dealing with missing data usu-
ally depend on the nonresponse propensity (or mechanism), i.e., the conditional dis-
tribution of r given (y, x) , denoted by p(r|y, x) . If p(r|y, x) = p(r|yo, x) , where yo is 
the observed part of y , then nonresponse is ignorable (Rubin 1976; Little and Rubin 
2002). Otherwise, nonresponse is nonignorable. While there is a rich literature for 
valid inference under ignorable nonresponse (Little and Rubin 2002), there are seri-
ous challenges under nonignorable nonresponse, especially for multivariate y with 
item nonresponse.

Greenlees et  al. (1982) proposed to handle nonignorable item nonresponse by 
maximum likelihood estimation, assuming parametric models on both p(r|y, x) 
and p(y|x) , the conditional density of y given x . However, a fully parametric 
approach is sensitive to the parametric model assumptions. Since the population 
p(y, r|x) = p(r|y, x)p(y|x) is not identifiable when both p(r|y, x) and p(y|x) are non-
parametric (Robins and Ritov 1997), efforts have been made in scenarios where one 
of p(r|y, x) and p(y|x) is parametric or semi-parametric. Tang et al. (2003) and Zhao 
and Shao (2015) considered the situation where p(y|x) is parametric but p(r|y, x) 
is nonparametric, whereas Wang et  al. (2014) and Shao and Wang (2016) stud-
ied a univariate response y ( k = 1 ) with a nonparametric p(y|x) and a parametric 
or semi-parametric p(r|y, x) . Under a mixed-effect model on p(y|x) , Wu and Car-
rol (1988), Xu and Shao (2009), and Shao and Zhang (2015) obtained some results 
when the dependence of r on y is through an unobserved random effect b , i.e., 
p(r|y, x) = p(r|b, x).

Under nonparametric conditional density p(y|x) and nonparametric marginal 
density p(y) , in this paper we propose an innovative inverse propensity weighting 
approach to construct valid estimators of population parameters in the presence of 
nonignorable item nonresponse in y , assuming the following two assumptions on the 
propensity: 

	(A1)	 The covariate vector x = (u, z) with a non-constant sub-vector z such that 
p(r|y, x) = p(r|y,u) and p(y|x) = p(y|u, z) depends on z.

	(A2)	 Given (y,u) , components of r are conditionally independent and, for each 
j = 1, ..., k , the probability of observing the jth component of y is �j(y, u,�j) , 
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where �j is an unknown parameter vector and �j is a known function of (y,u) 
when �j is known.

The covariate z in (A1) is referred to as a nonresponse instrument (Wang et al. 2014; 
Zhao and Shao 2015). The existence of a nonresponse instrument that can be excluded 
from the propensity is almost necessary for handling nonignorable nonresponse (Wang 
et al. 2014; Zhao and Shao 2015; Shao and Wang 2016). Also, as discussed earlier, the 
parametric assumption on propensity is needed as p(y|x) is nonparametric. Finally, the 
conditional independence of components of r given (y,u) in (A2) is actually reasonable 
in many applications with item nonresponse, as the conditional independence is not the 
same as the unconditional independence of components of r.

Under (A2), conditioned on (y,u) , the nonresponse propensity �j(y, u,�j) not only 
directly depends on the entire y and possibly u , but also varies with j (component). No 
general result is available under this type of item nonresponse in the literature. The 
closest is Li and Shao (2022), but it assumes that given (y,u) , components of r are 
identically distributed, which may not be realistic when components of y have different 
distributions (see the real data example in Sect. 4).

Our main methodology is introduced in Sect. 2, followed by some simulation results 
in Sect. 3 and one real data example in Sect. 4.

2 � Methodology

Let (yi, xi, ri) , i = 1, ..., n , be identically distributed and independently sampled from 
the population of (y, x, r) . Values of xi are always observed and components of yi are 
observed if and only if the corresponding components of ri are equal to one. Under 
assumptions (A1)-(A2), we propose to estimate population parameters using inverse 
propensity weighting, based on observed data in (yi, xi, ri) , i = 1, ..., n.

2.1 � Estimation when �j ’s are known

To illustrate the idea, we consider estimating population mean �j = E(yj) , where yj is 
the jth component of y and j is a fixed integer between 1 and k. Estimation of other 
parameters is discussed in the end of this subsection.

In this subsection, we assume that �j ’s in (A2) are known. Estimation of �j ’s is con-
sidered in the next subsection. For ri and yi , denote their jth components by rij and yij , 
respectively. The simple inverse propensity weighting estimator,

which works for the univariate case of k = 1 , does not work because �j(yi, ui,�j) 
cannot be computed when yi has a missing component l ≠ j . Thus, we propose the 
following estimator of �j using composite inverse propensity weighting:

n∑
i=1

rij yij

�j(yi, ui,�j)

/ n∑
i=1

rij

�j(yi, ui,�j)
,
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where � is a vector with �1, ...,�k as sub-vectors assumed to be known at 
this moment. Since the product ri1 ⋯ rik is used, we must use the product 
�1(yi, ui,�1)⋯�k(yi, ui,�k) as weights, which can be computed when ri1 ⋯ rik = 1 . 
To see why �̂j(�) in (1) is asymptotically valid as n → ∞ , note that

where the third equality follows from the independence of rij ’s conditioned on (yi, ui) 
and the last equality follows from E(rij|yi, ui) = �j(yi, ui,�j) , under (A1)–(A2). The 
consistency and asymptotic normality of �̂j(�) as n → ∞ can be established by 
applying standard arguments and the central limit theorem, under some moment 
conditions, since the right hand side of (1) is a ratio of sums of independent random 
variables.

In this way, other population characteristics can be similarly estimated. For exam-
ple, if we want to estimate the distribution of the jth component of y at a point t, 
then we just need to replace yij by the indicator of yij ≤ t in the previous discussion. 
Quantiles can then be estimated. Estimators of correlation between two components 
of y and between y and x can be similarly derived. We can also estimate parameters 
defined by some estimating equations.

2.2 � Estimation of �

To complete our proposed methodology, we need to remove the assumption that � is 
known, by constructing an estimator �̂j of �j for each j under (A1)–(A2). To estimate 
�j , we follow the approach of generalized method of moments (GMM) in Wang 
et al. (2014) for the univariate response, but we need to add a novel modification to 
handle the multivariate y.

A brief description of the GMM is as follows. Let � be the parameter vector to 
estimate, which is a unique solution to E{g(�)} = 0 with an l-dimensional vector 
estimating function g whose tth component is gt(y, x, r,�) , t = 1, ..., l . The functions 
g1, ..., gl are chosen so that l is not less than the dimension of � and at the true param-
eter value � , E{�g(�)∕��} is of full rank. Let gn(�) be the l-dimensional vector 

(1)�̂j(�) =

n∑
i=1

(ri1 ⋯ rik) yij

�1(yi, ui,�1)⋯�k(yi, ui,�k)

/ n∑
i=1

ri1 ⋯ rik

�1(yi, ui,�1)⋯�k(yi, ui,�k)
,

E

{
(ri1 ⋯ rik) yij

�1(yi, ui,�1)⋯�k(yi, ui,�k)

}

= E

[
E

{
(ri1 ⋯ rik) yij

�1(yi, ui,�1)⋯�k(yi, ui,�k)

||||yi, ui
}]

= E

[
yijE(ri1 ⋯ rik|yi, ui)

�1(yi, ui,�1)⋯�k(yi, ui,�k)

]

= E

[
yijE(ri1|yi, ui)⋯E(rik|yi, ui)
�1(yi, ui,�1)⋯�k(yi, ui,�k)

]

= E(yij) = �j,
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whose tth component is the sample average n−1
∑n

i=1
gt(yi, xi, ri,�) , t = 1, ..., l . If l 

is the same as the dimension of � , then we estimate � by �̂ such that gn(�̂) = 0 . If 
l is larger than the dimension of � , we apply the following two-step GMM (Hansen 
1982; Hall 2005): 

1.	 Obtain �̃ by minimizing {gn(�)}Tgn(�) , where aT is the transpose of column 
vector a.

2.	 Obtain �̂ by minimizing {gn(�)}TŴgn(�) , where Ŵ is the inverse of l × l matrix 
whose (t, t�) element is n−1

∑n

i=1
gt(yi, xi, ri, �̃)gt� (yi, xi, ri, �̃).

The optimization can be solved by using the MATLAB or R function fminsearch.
For our problem, it remains to specify the form of the estimating function g . 

To fix the idea, suppose first that the nonresponse instrument z is discrete and has 
s categories, say z ∈ {z1, ..., zs} . A straightforward extension of the approach in 
Wang et al. (2014) (from univariate response to multivariate y ) is using

where � = (�T
1
, ...,�T

k
)T , rj is the jth component of the vector r of response indicators 

and v is the (s + q)-dimensional vector whose first s components are indicators of 
z = zt , t = 1, ..., s , and the rest q components are the q-dimensional covariate vector 
u in (A1)–(A2). With this choice of g , E{g(�)} = 0 under (A1)–(A2).

However, there is a problem: l = s + q may be smaller than dim(�) , the dimen-
sion of � . For example, if u is continuous and

where �j is univariate, � j is k-dimensional, �j is q-dimensional, and �j = (�j, �
T
j
, �T

j
)T 

with dim(�j) = q + k + 1 , then l = s + q ≥ k(q + k + 1) = dim(�) means that 
s ≥ (k − 1)q + k(k + 1) , which may be unrealistic. For instance, when q = 0 (there is 
no u ), s ≥ k(k + 1) requires that z has at least k(k + 1) categories.

To overcome this difficulty we consider the following modification. First, 
we construct k overlapped sub-sets D1, ...,Dk of the entire data set, where 
Dh contains data from units whose yih may be missing but all other compo-
nents are observed, h = 1, ..., k . With the notation rj = the jth component of r , 
Dh = {r1 = ⋯ = rh−1 = rh+1 = ⋯ = rk = 1} . Table  1 provides an example of 
D1,D2,D3 in the case of k = 3 and n = 30.

Then, we estimate �j one at a time, j = 1, ..., k . For each j, we use data in Dj 
and estimating function

where �j is the indicator of set Dj , vj is the vector whose first s + q components are 
the same as those of v in (2), the rest k − 1 components are y1, ..., yj−1 , yj+1, ..., yk , and 

(2)g(�) =

{
r1 ⋯ rk

�1(y,u,�1)⋯�k(y,u,�k)
− 1

}
v,

(3)�j(y, u,�j) = {1 + exp(�j + �T
j
y + �T

j
u)}−1, j = 1, ..., k,

(4)g(j)(�j) =

{
rj

�j(y,u,�j)
− 1

}
�jvj,
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yt is the tth component of y . A GMM estimator �̂j of �j can be computed using the 
estimating function g(j) in (4) and data set Dj . Note that g(j)(�j) in (4) can always be 
computed, since when �j = 1 , all yt with t ≠ j are observed.

To see why the function g(j)(�j) in (4) produces asymptotically valid estimator 
of �j , note that

Table 1   Example of D1,D2,D3 when k = 3 and n = 30 ( rj is the indicator of whether yj is observed)

Entire data set D1 D2 D3

unit r1 r2 r3 unit r1 r2 r3 unit r1 r2 r3 unit r1 r2 r3

1 0 0 0 2 1 1 1 2 1 1 1 2 1 1 1
2 1 1 1 3 0 1 1 5 1 1 1 5 1 1 1
3 0 1 1 5 1 1 1 8 1 1 1 7 1 1 0
4 1 0 0 8 1 1 1 11 1 0 1 8 1 1 1
5 1 1 1 12 1 1 1 12 1 1 1 10 1 1 0
6 0 0 1 15 1 1 1 14 1 0 1 12 1 1 1
7 1 1 0 16 0 1 1 15 1 1 1 15 1 1 1
8 1 1 1 17 1 1 1 17 1 1 1 17 1 1 1
9 0 0 1 21 1 1 1 21 1 1 1 18 1 1 0
10 1 1 0 23 1 1 1 22 1 0 1 20 1 1 0
11 1 0 1 24 0 1 1 23 1 1 1 21 1 1 1
12 1 1 1 28 1 1 1 27 1 0 1 23 1 1 1
13 0 1 0 28 1 1 1 28 1 1 1
14 1 0 1 30 1 0 1 29 1 1 0
15 1 1 1
16 0 1 1
17 1 1 1
18 1 1 0
19 0 0 0
20 1 1 0
21 1 1 1
22 1 0 1
23 1 1 1
24 0 1 1
25 0 0 0
26 0 1 0
27 1 0 1
28 1 1 1
29 1 1 0
30 1 0 1



7

1 3

Multivariate outcomes with nonignroable item nonresponse

where the second equality follows from the independence between z and 
rj conditioned on (y,u, �j) and the last equality follows from E(rj|y, u, �j) 
= E(rj|y, u) = �j(y,u,�j) under (A1)–(A2).

A key difference between g and g(j) is that the observed components of y 
other than the jth component are used as “covariates” and included in the vector 
vj in (4). In this way, we not only make use of the partially observed responses 
in y (note that r1 ⋯ rk = 1 if and only if all components of y are observed), but 
also include more components in the estimating function so that l is typically 
large enough for our purpose of estimating �j . For example, in the case of (3), 
dim(�j) = q + k + 1 ; hence, l = s + q + k − 1 ≥ q + k + 1 is the same as s ≥ 2 , 
which naturally holds as long as z is not a constant. However, if we do not include 
the last k − 1 components in vj , i.e., vj in (4) is replaced by v defined in (2), then 
the dimension of g(j) is s + q , which is smaller than the dimension of �j in the case 
of (3) unless s ≥ k + 1 . Therefore, using vj instead of v ensures that our procedure 
has a larger scope in application.

Note that the estimating function g in (2) involves � = (�T
1
, ...,�T

k
)T and the 

estimating function g(j) in (4) involves �j only, i.e., we decompose the estimation 
of a parameter vector with dimension dim(�) =

∑k

j=1
dim(�j) into k estimation 

problems, each with dimension dim(�j) . Even if l ≥ dim(�) and simultaneous esti-
mation of � is possible, the large dimension of � in GMM may result in numeri-
cal unstableness or inaccuracy. Furthermore, it is clear that each Dj contains the 
set with r1 ⋯ rk = 1 used in (2) and, thus, estimating �j ’s separately utilizes more 
data, although some data are repeatedly used since Dj ’s are overlapped.

When z is continuous, we can define v in (2) to be the vector of first s moments 
of z . For example, if z = z is univariate, then we use v = (1, z)T with s = 2 ; if z is 
bivariate with components z1 and z2 , then v = (1, z1, z2)

T with s = 3 . We can also 
apply the method by discretizing z into s categories with approximately equal 
sizes and a small s.

Once �̂1, ..., �̂k are obtained, we estimate �j by �̂j(�̂) , obtained by substituting � 
in �̂j(�) in (1) with �̂ = (�̂

T

1
, ..., �̂

T

k
)T.

2.3 � Asymptotic theory

Under the same regularity conditions assumed in Wang et al. (2014), consistency 
and asymptotic normality of �̂j can be established and details are omitted. For 
the point estimator �̂j(�̂) , its consistency and asymptotic normality can be estab-
lished. We provide the main argument below and omit the details of proof. Define

E{g(j)(�j)} = E

[
E

[{
rj

�j(y, u,�j)
− 1

}
�jvj

||||y, u, �j
]]

= E

[{
E(rj|y, u, �j)
�j(y,u,�j)

− 1

}
�jE(vj|y,u, �j)

]

= 0,
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and

Then, by (1), �̂j(�̂) = �j(�̂)∕�(�̂) and

Assume that ∇�(y,u,�) = ��(y, u,�)∕�� exists and each component of 
∇�(y,u,�) − ∇�(y, u,�) is bounded in absolute value by H(y, u)‖� − �‖ with 
E{H(y, u)} < ∞ , where ‖ ⋅ ‖ is the L2 norm. This assumption holds if �j(y, u,�j) ’s 
are given by (3). Then, by the consistency of the GMM estimator �̂,

where A(�) = E{(ri1 ⋯ rik)yij∇�(yi, ui,�)} , op(1) denotes a term converging to 0 in 
probability as n → ∞ , and the last equality follows from the law of large numbers 
and the definition of �j(�) . Similarly,

�(yi, ui,�) =
1

�1(yi, ui,�1)⋯�k(yi, ui,�k)
,

�(�) =
1

n

n∑
i=1

(ri1 ⋯ rik)�(yi, ui,�),

�j(�) =
1

n

n∑
i=1

(ri1 ⋯ rik)yij �(yi, ui,�).

√
n{�̂j(�̂) − �j} =

1

�(�̂)

�√
n{�j(�̂) − �j} − �j

√
n{�(�̂) − 1}

�
.

√
n{�j(�̂) − �j} =

√
n{�j(�) − �j} +

√
n{�j(�̂) − �j(�)}

=
√
n{�j(�) − �j} +

1√
n

n�
i=1

(ri1 ⋯ rik)yij

�
�(yi, ui, �̂) − �(yi, ui,�)

�

=
√
n{�j(�) − �j} +

1√
n

n�
i=1

(ri1 ⋯ rik)yij∇�(yi, ui,�)(�̂ − �) + op(1)

=
√
n{�j(�) − �j} +

�
1

n

n�
i=1

(ri1 ⋯ rik)yij∇�(yi, ui,�)

�√
n(�̂ − �) + op(1)

=
√
n

�
1

n

n�
i=1

(ri1 ⋯ rik)yij �(yi, ui,�) − �j

�
+ A(�)

√
n(�̂ − �) + op(1),
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where B(�) = E{(ri1 ⋯ rik)∇�(yi, ui,�)} . From the theory in Wang et al. (2014), the 
GMM estimator �̂ has the property that

where � is an unknown vector function with E{�(y, x)} = 0 and a finite positive def-
inite matrix E{�(y, x)�(y, x)T} . Then, the asymptotic normality of 

√
n{�̂j(�̂) − �j} 

with asymptotic mean 0 follows from the joint asymptotic normality of the follow-
ing vector,

However, the asymptotic variance of 
√
n{�̂j(�̂) − �j} is very complicated, because it 

involves not only the asymptotic variances of the three components in (6), but also 
their asymptotic covariances, and the form of function � in (5) is complicated (Wang 
et al. 2014). Thus, we do not try to obtain an explicit form of the asymptotic vari-
ance of �̂j(�̂) . Instead, we recommend the bootstrap method for variance estimation 
or inference. Using the previous arguments, we can show that the bootstrap analog 
�̂∗
j
(�̂

∗
) is asymptotically normal and the general bootstrap theory (Shao and Tu 

1995) ensures that the bootstrap variance estimators are consistent. Applying the 
bootstrap effectively avoids the complicated derivation of asymptotic variances, at 
the expense of a large amount of computations. In Sect. 3, the performance of boot-
strap standard error (squared root of variance estimator) is evaluated by simulations.

2.4 � Discussion

Although our proposed estimators are asymptotically valid, the form of v in (2) is 
not unique. An interesting but difficult research problem is whether there exists a 
choice of v optimal in some sense. Another discussion is whether there are sub-sets 
of data other than D1, ...,Dk for the purpose of estimating �j’s. There are two key 
issues. First, the estimating function g(j)(�j) in (4) needs to be computed based on 

√
n{�(�̂) − 1} =

√
n{�(�) − 1} +

√
n{�(�̂) − �(�)}

=
√
n{�(�) − 1} +

1√
n

n�
i=1

(ri1 ⋯ rik)
�
�(yi, ui, �̂) − �(yi, ui,�)

�

=
√
n{�(�) − 1} +

�
1

n

n�
i=1

(ri1 ⋯ rik)∇�(yi, ui,�)

�√
n(�̂ − �) + op(1)

=
√
n

�
1

n

n�
i=1

(ri1 ⋯ rik)�(yi, ui,�) − 1

�
+ B(�)

√
n(�̂ − �) + op(1),

(5)
√
n(�̂ − �) =

1√
n

n�
i=1

�(yi, xi) + op(1),

(6)
1√
n

n�
i=1

⎛⎜⎜⎝

(ri1 ⋯ rik)yij �(yi, ui,�) − �j

(ri1 ⋯ rik)�(yi, ui,�) − 1

�(yi, xi)

⎞⎟⎟⎠
.
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the sub-sets, which is not simple because �j(y, u,�j) in (4) depends on the entire y 
whose components may be missing. Second, the estimating function should satisfy 
E{g(j)(�j)} = 0 , as we show in Sect. 2.2 for our suggested Dj . This makes the choice 
of sub-sets very limited due to the nonignorable item nonresponse.

3 � Simulation results

We carry out a simulation study under three settings to investigate the finite sam-
ple performance of our proposed �̂j(�̂) given by (1) as an estimator of the marginal 
population mean �j = E(yj) , j = 1, ..., k , with � estimated by the GMM estimator �̂ 
derived in Sect. 2.2.

In the first two settings, we consider a panel size k = 4 and sample size 
n = 1, 200 , reflexing the panel and sample sizes in the real data AIDS Clini-
cal Trial Group 193A example presented in Sect.  4. A univariate and continuous 
covariate z is considered with log z ∼ N(2.9, 1) . Given z, yj ’s are conditionally 
independent, log y1 ∼ N(0.4 + 0.9 log z, 0.82) , log y2 ∼ N(0.6 + 0.8 log z, 0.82) , 
log y3 ∼ N(0.8 + 0.7 log z, 0.82) , and log y4 ∼ N(0.9 + 0.6 log z, 0.82) . The true mar-
ginal means are �1 = 41.89 , �2 = 35.16 , �3 = 29.81 , and �4 = 23.10 . These �j ’s are 
chosen to match the estimated values in the real data example considered in Sect. 4.

Table 2   Simulation results for the estimation of �j in setting 1 ( n = 1, 200 , bootstrap size = 200, simula-
tion runs = 1,000)

�j(y,�j) = {1 + exp(�j + �T

j
y)}−1 , j = 1, ..., 4

�1 = −1.2 , �T

1
= (0.1, 0.01, 0.01, 0.01)

�2 = −1.5 , �T

2
= (0.01, 0.1, 0.01, 0.01)

�3 = −0.5 , �T

3
= (0.01, 0.01, 0.1, 0.01)

�4 = −0.8 , �T

4
= (0.01, 0.01, 0.01, 0.1)

j % of Missing Method Estimate Bias Bias % Standard 
deviation

Standard error Coverage prob.

1 30.75 Proposed 42.44 0.552 0.013 7.705 7.896 0.932
Naive 39.76 −2.129 -0.051 2.448 2.441 0.784
Full data 41.92 0.034 0.001 2.180 2.150 0.936

2 24.57 Proposed 35.76 0.599 0.017 6.246 6.223 0.934
Naive 33.92 −1.241 −0.035 1.836 1.792 0.827
Full data 35.21 0.048 0.001 1.636 1.628 0.943

3 46.66 Proposed 30.75 0.933 0.031 6.035 5.911 0.956
Naive 28.09 −1.720 −0.058 1.582 1.583 0.747
Full data 29.91 0.095 0.003 1.236 1.245 0.948

4 39.03 Proposed 23.65 0.543 0.024 4.355 4.317 0.956
Naive 22.06 −1.040 −0.045 1.079 1.053 0.780
Full data 23.06 −0.048 −0.002 0.908 0.861 0.932
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The nonresponse propensity is given by (3) with u = 0 , �j ’s and � j ’s shown in 
Tables 2 and 3 for settings 1–2, respectively. The parameter values �j and � j are cho-
sen so that the unconditional nonresponse probability matches the observed propor-
tion in the real data example for every j. The difference between two settings is that 
all coefficients in front of yj ’s in the propensity (3) are positive in setting 1 so that 
larger values of yj have a higher probability to be nonresponse, whereas in setting 2, 
the coefficients may be positive or negative. The covariate z in the real data example 
is the baseline response and is used as nonresponse instrument in the estimation.

In setting 3, we consider a discrete instrument z with three categories, 
P(z = 1) = 0.4 , P(z = 2) = 0.3 , and P(z = 3) = 0.3 , an additional continuous covari-
ate u ∼ N(2, 1) , and larger panel and sample sizes, k = 6 and n = 2, 000 . Given z 
and u, yj ’s are conditionally independent, y1 ∼ N(1 + z + u, 1) , y2 ∼ N(z + 2u, 1) , 
y3 ∼ N(1 + 2z + u, 1) , y4 ∼ N(1 + 2z + 2u, 1) , y5 ∼ N(3 + 3z + u, 1) , and 
y6 ∼ N(3 + 3z + 2u, 1) . The true marginal means are �1 = 4.9 , �2 = 5.9 , �3 = 6.8 , 
�4 = 8.8 and �5 = 10.7 , and �6 = 12.7 . The nonresponse propensity is given by (3) 
with �j , � j , and �j specified in Table 4.

To evaluate the performance, we include two other estimators, the naive estima-
tor = the sample mean of observed values of yj and the sample mean of yj with 
full data (no nonresponse) available in the simulation as nonresponse is constructed. 
The naive estimator is theoretically biased due to nonignorable nonresponse and is 
included to see the effect of bias; the full data sample mean is used as a standard.

Table 3   Simulation results for the estimation of �j in setting 2 ( n = 1, 200 , bootstrap size = 200, simula-
tion runs = 1,000)

�j(y,�j) = {1 + exp(�j + �T

j
y)}−1 , j = 1, ..., 4

�1 = −1.3 , �T

1
= (0.1, 0.02, 0.02, 0.02)

�2 = −1.1 , �T

2
= (0.02,−0.1, 0.02, 0.02)

�3 = −0.3 , �T

3
= (−0.02, 0.02, 0.1,−0.02)

�4 = −0.2 , �T

4
= (0.02, 0.02,−0.02,−0.1)

j % of Missing Method Estimate Bias Bias % Standard 
deviation

Standard error Coverage prob.

1 30.47 Proposed 42.26 0.375 0.009 6.979 7.176 0.941
Naive 39.58 −2.310 −0.055 2.464 2.382 0.769
Full data 41.98 0.090 0.002 2.138 2.145 0.943

2 22.79 Proposed 35.63 0.471 0.013 4.891 5.498 0.961
Naive 35.96 0.796 0.023 1.916 1.857 0.946
Full data 35.18 0.017 0.001 1.682 1.604 0.929

3 48.19 Proposed 30.14 0.324 0.011 4.699 5.292 0.960
Naive 28.40 −1.413 −0.047 1.656 1.598 0.797
Full data 29.87 0.052 0.002 1.264 1.227 0.935

4 40.08 Proposed 23.53 0.426 0.018 3.734 3.989 0.951
Naive 22.96 0.854 0.037 1.154 1.150 0.926
Full data 23.12 0.019 0.001 0.879 0.862 0.946
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Based on 1000 simulation runs, Tables 2, 3 and 4 report, for settings 1–3, respec-
tively, simulation average of estimates of �j , bias, bias in percentage, standard devia-
tion of the estimate, average of the standard error obtained by bootstrapping, and 
coverage probability of the approximate 95% confidence interval with limits = esti-
mate ± 1.96(bootstrap standard error). Results are given for j = 1, ..., k and three 
estimators, based on the proposed, naive, and full data methods. In the calculation of 
the proposed estimator given by (1), the GMM estimator �̂j is calculated using the 
MATLAB or R function fminsearch with initial value �j = 0 . In settings 1–2, z 
is continuous and we use (1, z)T as the first two components of vj in (4). In setting 3, 
z is discrete and we use the indicators of three categories of z as the first three com-
ponents of vj.

From the simulation results in Tables 2, 3 and 4, the performance of proposed 
estimator (1) can be summarized as follows. It has negligible bias: the largest biases 

Table 4   Simulation results for the estimation of �j in setting 3 ( n = 2, 000 , bootstrap size = 200, simula-
tion runs = 1,000)

�j(y,�j) = {1 + exp(�j + �T

j
y + �ju)}

−1 , j = 1, ..., 6

�1 = −2.8 , �T

1
= (0.1,−0.02, 0.02, 0.02, 0.02, 0.02) , �1 = 0.01

�2 = −2.8 , �T

2
= (0.02, 0.1,−0.02, 0.02,−0.02, 0.02) , �2 = 0.02

�3 = −2.8 , �T

3
= (0.02, 0.02, 0.1,−0.02, 0.02,−0.02) , �3 = 0.03

�4 = −2.8 , �T

4
= (0.02,−0.02, 0.02, 0.1,−0.02, 0.02) , �4 = 0.04

�5 = −2.8 , �T

5
= (0.02,−0.02, 0.02, 0.02, 0.1,−0.02) , �5 = 0.05

�6 = −2.8 , �T

6
= (0.02,−0.02,−0.02, 0.02, 0.02, 0.1) , �6 = 0.05

j % of Missing Method Estimate Bias Bias % Standard 
deviation

Standard error Coverage prob.

1 16.87 Proposed 4.857 −0.043 −0.009 0.132 0.148 0.959
Naive 4.817 −0.083 −0.017 0.039 0.040 0.453
Full data 4.898 −0.002 −0.000 0.036 0.037 0.946

2 12.44 Proposed 5.887 −0.013 −0.002 0.133 0.147 0.955
Naive 5.808 −0.092 −0.016 0.057 0.056 0.604
Full data 5.899 −0.000 −0.000 0.054 0.053 0.950

3 11.49 Proposed 6.803 0.003 0.000 0.129 0.143 0.969
Naive 6.740 −0.060 −0.009 0.051 0.052 0.795
Full data 6.798 −0.002 −0.000 0.049 0.049 0.945

4 16.21 Proposed 8.780 −0.020 −0.002 0.184 0.196 0.963
Naive 8.647 −0.153 −0.017 0.069 0.067 0.360
Full data 8.798 −0.002 −0.000 0.063 0.062 0.942

5 17.36 Proposed 10.68 −0.024 −0.002 0.168 0.189 0.963
Naive 10.54 −0.161 −0.015 0.070 0.070 0.359
Full data 10.80 −0.003 −0.000 0.064 0.064 0.952

6 24.06 Proposed 12.60 −0.101 −0.008 0.218 0.243 0.946
Naive 12.37 −0.329 −0.026 0.085 0.084 0.031
Full data 12.70 −0.002 −0.000 0.076 0.075 0.939
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are 3.1% and 2.4% and the rest of biases are all smaller than 2%, in absolute value. 
The coverage probability of the related confidence interval is close to 95%; the worst 
cases are in setting 1: 0.932 when j = 1 and 0.934 when j = 2 , but even the full 
data approach may also have coverage probabilities 0.932 and 0.936. The bootstrap 
standard error for the proposed method performs well in general, and is sometimes a 
little bit conservative, which results in slightly conservative coverage probability of 
the confidence interval.

In setting 1 where larger yj values have higher probability to be missing data, the 
naive estimator has a negative bias. Although the bias is often small, it still affects 
considerably the coverage probability of the related confidence interval. In setting 2, 
when smaller yj values have higher probability to be missing data ( j = 2 or 4), the 
naive estimator has a small positive bias = 2.3% and 3.7% so that its coverage prob-
ability is acceptable. This appears by luck but cannot support the naive approach of 
ignoring nonignorable nonresponse.

4 � A real data example

For illustration, we apply our proposed estimation method to the AIDS Clinical 
Trial Group 193A data set, which can be found at https://www.hsph.harvard.edu/
fitzmaur/ala/cd4.txt. Longitudinal responses, the CD4 cell counts, were collected 
from HIV-AIDS patients with advanced immune suppression. After removing some 

Table 5   Nonresponse pattern of 
y in the example

Nonresponse pattern Number of

r1 r2 r3 r4
∑

j rj observations

0 0 0 0 0 121
1 0 0 0 1 82
0 1 0 0 1 57
0 0 1 0 1 11
0 0 0 1 1 7
1 1 0 0 2 69
1 0 1 0 2 37
1 0 0 1 2 11
0 1 1 0 2 41
0 1 0 1 2 119
0 0 1 1 2 2
1 1 1 0 3 94
1 1 0 1 3 118
1 0 1 1 3 34
0 1 1 1 3 31
1 1 1 1 4 437
Total 1271
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patients with abnormal data, we focus on 1,271 patients with responses in four time 
intervals, (4,12], (12,20], (20,28], (28,36], denoted as y1, y2, y3, y4.

The longitudinal response y = (y1, ..., y4)
T has item nonresponse, as summa-

rized in Table 5. The item nonresponse is due to adverse events, low-grade toxic 
reactions, the desire to seek other therapies, death, and some other reasons. Pre-
vious experiences from doctors and Cho et al. (2016) found that a steep decline 
in the CD4 cell count indicates the disease progression, and patients with low 
CD4 cell counts are more likely to miss the scheduled study visits as compared to 
patients with normal CD4. Therefore, nonresponse of the CD4 cell count is likely 
related to itself and is nonignorable (Cho et al. 2016; Yuan and Yin 2010).

We apply our proposed method in Sect.  2 to estimate �j = E(yj) , j = 1, ..., 4 , 
with the always observed z = the baseline CD4 measurement as the instrument 
described in (A1). Since z is the baseline CD4 cell count and y is the after-base-
line CD4 cell count vector, based on the reason of nonresponse described previ-
ously, it is reasonable to assume that the item nonresponse of y is unrelated with 
the baseline z once we conditioned on y , i.e., (A1) holds with z as an instrument. 
To apply the proposed method, we assume model (3) with x = z , i.e., there is no 
other covariate.

The proposed estimates for j = 1, ..., 4 are shown in Table  6, together with 
their bootstrap standard errors with bootstrap size 200. For comparison, we also 
include in Table  6 the sample mean of observed values of yj (naive estimate 
ignoring nonresponse), the differences between the proposed and naive estimates, 
and the bootstrap standard errors for differences.

From Table 6, the proposed estimates show a more serious decline in CD4 cell 
count over the time than naive estimates, although naive estimates also indicate 
the decline. Compared with 2 times the standard error, the difference between the 
proposed and naive estimates is significant at j = 4.

Table 6   Estimates and standard 
errors of �j ’s in the example

† difference = proposed − naive

j % of Missing Method Estimate Standard error

1 30.61 Proposed 38.09 2.670
Naive 35.70 1.416
Difference† 2.395 2.158

2 24.00 Proposed 32.21 2.132
Naive 34.68 1.490
Difference −2.468 1.779

3 45.95 Proposed 27.44 2.653
Naive 27.68 1.366
Difference −0.236 2.540

4 40.28 Proposed 24.42 1.687
Naive 28.51 1.435
Difference −4.085 1.667
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