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Supplementary material: derivations and proofs

S.1. Derivations of the MELE.
To find the MELE, we use the Lagrange multipliers and maximize
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Taking partial derivatives gives the estimating equation system
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Zpi = 1, Zpieo‘+'3Ti = 1. (S.4)
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n and plugging 1t mto (S.3) gives
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From (S.2) and Z

= n, we have Y "

m-+n

nA — to Z pe® Pl = 0. (S.5)

i=1
From (S.1) we get (m +n) —t; > 7" pi — ta S " pie®™#Ti = 0. This together with (S.4)
and (S.5) gives to = nA and t; = m +n — nA. Then by (S.1) again we have

1
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where py = n/(m +n) with N =m + n.

S.2. Proof of Theorem 1.
Since we have a sample from f, as a result f is identifiable. Given this, when hg, = hy,,

ie.,
{1—= XN+ Aexp[ar+ B r(@)]} f(z) = {1 = Ao+ Naexp [ao + By r(2)] } f(z) for all z,

we must have A\; = Ay, oy = ay and 8; = 3, by the assumption that (1,7(y))" is linearly
independent on the support of f. Thus hy is identifiable.

Let s(z) = f(z) — g(z) = f(z)[1 — exp(a + Bz)] and S(z) = [*__ s(t)dt = F(z) — G(x).
Let zg denote the solution to 1 —exp(a+ ) = 0. Then s(z) > 0 when z < zy and s(z) <0
when z > xy, and hence S(x) increases for x < g and decreases for x > . If F(2') < G(2')
for some ', i.e., S(z’) < 0, then ' > ¢ since S(z) > 0 for all © < (. Since S(x) decreases
when x > zp, we have S(z) < S(2/) < 0 for all x > 2’ and thus S(c0) < 0. However

S(0) = F(00) — G(o0) =1 —1 =0, a contradiction. Therefore F' > G. O

S.3. Proof of Lemma 1.
Define won(y) = 1 — pyA + pN)\eO‘Jrﬁy. The second-order partial derivatives of the
empirical log-likelihood function [ in (7) are
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Straight calculation gives
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By WLLN,

(y) dy — p(1 —p)Si.

—% . g—;é L p(1—p)Si;. Similarly we have the convergence of other components

of the matrix Sy. O
S.4. Proof of Theorem 2.
Let Qn = + (% o %)T, then E[Qy] = 0. Note that as N — oo,
woel] = e B () S
= pnVar {(1 ;ﬁf%i;&; 1)} +(1— py)Var {pw(wz;ﬂ(;)— 1)}
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— p(l—p)Vir.
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Note that
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and thus as N — oo,
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N — oco. Thus by CLT, VNQy L N(0,p(1 = p)V). From Lemma 1 along with Slutsky’s

theorem, we have VN (0ypre — 0) £ N(0, X).
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Similarly we have NCOU [
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From above calculation we see that ——+—Cov|
Np(1—p)

termined by [ from relationship (3), « depends on  non-linearly. As a result the vector

-
Qn = % (%, g—i, g—é) is linearly independent. Thus C’ov[%] is positive definite, and
further so do V and Y. O

The proofs of Theorems 3-6 are similar to Wu, Karunamuni and Zhang (2010) but for a

different model. For completeness we present the proofs below.

S.5. Proof of Theorem 3.

In order to prove Theorem 3, we need the following lemma.

Lemma 2. For any ¢ € H, d(t) = ||h)/> — @2 is continuous at point t = 6.
Proof. Suppose 0, — 0 as k — oo. From Minkowski’s inequality,

1/2
hy? — ny?|| < [/|h9k(a:)—h9(a:)\dx . (S.6)

d(0) — dO) < ||l n




For any x € R, as k — o0, 0, — 6 implies

[ho () = ho(2)] = [= (A = A) () + Mo f () (€¥F — e2F5) 4 (N = N)e 7 f ()]

— 0.

Thus by Scheffé’s theorem we have [ |hg, (z) — ho(z)|dz — 0 as k — oo, L.e., d(0)) — d(0)

as k — oo and d(t) is continuous at point ¢ = . O

Proof of Theorem 3. (i) Let do(t) = ||hy> — ©'/2||. Suppose sequence {t,} C © such that
ty — t as k — oo. Since © is compact, t € ©. Similar to (S.6), we have

1/2
|dp () — di(1)] < { / [ Ak — A = e T NP f, (2)d

Since f,, is compactly supported, we have by (D1) and the Dominated Convergence Theorem
(DCT) that d,,(tx) — d(t) as k — oo, i.e., d,,(t) is continuous and achieves a minimum
over t € ©. Let d(t) = ||h’> = ©Y/2||. By Lemma 2, d(t) is continuous in ¢ and therefore
achieves a minimum over t € 6.

(i) Suppose [[on'> — /2| = 0 and sup,cq ||2;/> — hi"*|| = 0 as N — co. Let dy(t) =
17)"? — o2 and d(t) = ||h)"* — ©"/2(z)|. By Minkowski’s inequality,

i)~ a0 = { [ i) - o )+ ] e
< o f e - an o [ [ - o) s

and consequently sup,cg |dn(t) — d(t)] — 0 as N — oco. Thus as N — oo, dy(8) — d(0)

1/2

and dy(0y) — d(0y) — 0. If Oy - 0, then there exists a subsequence {fy,} C {0y} such
that, Oy, — 6 # 6. Since O is compact, § € O. Lemma 2 yields that d(0y,) — d(6').
From the above results we have dy, (Ay,) — dy,(0) — d(8') — d(6). By the definition of 6y,
dn,(0n,) — dn,(0) < 0. Hence, d(0") — d(f) < 0. But by the definition and uniqueness of 6,
d(6') > d(#). This is a contradiction. Therefore 6y — 6.

(iii) Since by Theorem 1 {h:},.o is identifiable, we have T'(f, hg) = 6 uniquely for any
g eo. O

S.6. Proof of Theorem 4.

In order to prove Theorem 4, we need the following lemma.
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Lemma 3. Suppose (D3) holds. Then as m — oo,

sup [ wi(a) [73@) - FP@] e L o

0co

Proof. By the continuity of the function w; in 6 and the compactness of ©, there exists
a 0, € © which maximizes [ w;(x)[ 5/2(:10) — fY2(x)]?dz. By (S.6), (S.7) and a Taylor

expansion, one has

E‘/I{xbam}wl(x)fm(x)dx

= //[{|x>am}w1(x)if(o (yb;x> f(y)dy da

= /[{m|>am}w1(l‘)/Ko(t)f(fcﬂbm)dt dx

= /I{$|>am}w1(‘r) /K0<t) {f(x) + fO ()t + %f@)(g)ﬁbfn} dt dx

1 f@(z +tb,,)
Linisanthe(z)de + =02 | Tipsa1h T O0m) e [ 2 Ko (8)d
= / {el>amtho(2)dz + 5 / (s>} ho(@) SUP 77 fv/t (20)(75) t
1 + tb,,
< zlelg/f{xbam}hg(w)dﬂﬁ—'—ibil/tZKo(t)dtzleu@)/[{m|>am}h9($) ltslgz)o %dw
— 0.
Thus as m — 00, [ Ijjz>amwi(2) fm(z)dz L5 0and
[ M on@) [£2(0) = @)
< 2 [ I, y0i@) () + f(o)] do
(S.7)
< 9 / Tnsany w1 (2) fr(2)de + 2 / Tpisanyho(2)dz
5o
On the other hand,
- 2
‘/ Istzanyun(x) [£3(x) = [P ()] da| = / Ieiamywn (@ Ef;n< e
W2 @) + 1)
< /I{|m<am}wl @) fnlx) = f(2))d

< 2 / Tatzonys (2)F () fn () — Elfon ()] 2de

2 / Loionytn (@) (1) [Elf(2)] — f()] da
2(Aym + Aop), say.



Now by (A.3) as m — oo
Bldin] = [ Hicanyor()f @) Elfu(o) — Elfn(@)da
= /1{|x|<am}w1(I)f_l($)m22 /K§ <%) Fly)dyda

— / Loy () K201 (0 4 th) - (@)dbda

—ag

@0 tb
m_lb;f/ Kg(t)dtsup/I{|$|<am}h9(x) sup —f@:_ m)dac
—ag 0co h [t|<ao f (.T)

IN

— 0,

ie, A, L 0asm— . By a Taylor expansion and (A.4),

2
|Aom| = /[{|:p<am}UJ1 [/ Ko(t :r+tbm)—f(a:))dt] dx
ao 2
< it [ Heiconi@f (@) Lsup 7D + thy)| m(t)] dr
t|<ag —ag
2
< —b4 {/ Ko tht} Sup/[{x|sam}h9(m) sup {M} dr
0co It|<ao f(x)
— 0

Therefore, /I{|x§am}w1(:v)[f7}1/2($) — Y2 (2))2dx L 0as m — co. This combined with (S.7)

gives /wl(x)[f%ﬂ(x) — Y2 (2)]2da L 0 for any 6 € ©. By the continuity of the function in
0 and the compactness of @, hence the result. n

1/2 1/2

Proof of Theorem /. If we can prove that ||hs, 2 _ h1/2

|5 0and Suptee i 150
as N — oo, then by Theorem 3 (iii) and then (ii) we have Oy pp L 0as N = .

It is known that fm L fand hy B has N = oo (see Rao, 1983). Since [ hy(zx)dx =
[ hul@)dz = 1, [lho(w) — ha(a)]*da = [lho(w) — hu(a)]~dw and [ — BY2P < [ holz) -

ho(z)|dz = 2 [[ho(z) — hn(z)]Tde. Since, [ho(z) — hy(z)]T < hy(x), by the DCT it follows
that [|hs/* — h1/2|| 50 as n — oo. Similarly || fal> — f1/2| 5 0 as m — oo.

Note that [[hy*(x) — hy*(@)Pde = [wi(@)[fal* (@) = f2(2)2de < [wi(@)]f(z) —
f(z)|dz. If (D2) holds then f,, — f will have a compact support on which w;(z) is bounded.
Therefore, [[hy*(z) — hy*(x)]2dx < Cy [|fm(x) = f(2)|dz = 2C [[f(x) — fm(2)]"dz for
some positive number C;. Since f,, = f, by the DCT we have SUDgeco ||ﬁé/2 - hé/2|| Lo 1t

(D3) holds then Lemma 3 gives supgeg ||h1/2 - h1/2|| Zo. O



S.7. Proof of Theorem 5.
From Theorem 4 we have éMHDE £ 0as N = co. Since t = éMHDE € O minimizes the
Hellinger distance between h; and N, Oy pp Maximizes 2 i lAztl/ 2(x)h71/ 2(:c)d:c —f izt(x)da:.

Also since Ky has compact support, we have

/% [2%/2(x)h,11/2(a:)dx— ﬂt(x)] de = 0.

t=0yupE

For notation simplicity we use 0 to denote éMHDE and use w; to denote wy in (10) with
replaced by Oy ppe. Let Myp(z) = 2]3;/2(x)hi/2(x)dx — he(z), then by a Taylor expansion
of § at 6 it follows that

/8M9(m)dx+ { aQMH(I)dx+RN} , (x_A7@_a,B—5)T — 0, (S8)

06 00007

where Ry is a 3 X 3 matrix with elements tending to zero in probability as N — oco. Direct

calculation gives

OMy(x) e nl hal®
o (e*tP" —1) lw(@ - fm(‘T)] :

1

8]\/[9(&:) _ a+fx 7}1/2}#/2
da = Ae wi/g (SL’)—fm(Qf) )

@ﬂg;@) — Ageotis [%() - fm(fv)] ,
T = e, (89)
S = RPN - ), (510
- Zﬁi; D pe@naa) — aet g, @), ()
T - MO LN ) e g, (12
PA) e LN i e e, (19
a2g452(:c) _ A:cha+5;§Uu%1/ga(:l)+ L= 120012 () - aa2eotBe g, (1), (S.14)



For (S.9) we have by Theorem 4 that

/ T Z;i? i—) @ @) = P @)k (@) de

< C [ / Fil (@) |2 (@) = 1y (@) | da + / hy*() | 13 () - f1/2<x>|dx]
< C [ hy? hé/Q n Hfrln/2 B f1/2H]
50
Thus for (S.9),
a-l—,Bx _ OH‘ﬁI _
- [T T L —%? £ @)y ) do
_ _%/( a+pr _ 1)2wi1($)dl‘ (815)
= —%An(@).
For (S.10), similarly we have
a+px a+Bz
[ i £ [ DD oy
L[,
2w1(xg
1 1 [extPr
2 * §/w1(x)f(x)dw
and
‘/ea—i-ﬁm [fm<17> i f(x)] dr| < /} 1/2 1/2 } [f}n/Q(x) —|—f1/2(x)”dx
< Cff- f1/2|| Ll + 772
< 20| - 17
50,

ie. /ea+5xfm(:c)dm L /ea+’8$f(x)dx. Thus for (S.10),
[y

Fal2@)h/? (@) — 19 £ (2) dee

2u?(z) 1 X (S.16)
i> _5)\/€a+ﬁx(€a+53¢ _ 1)wi<x>dx = —§A12<9)
Similarly for (S.11)-(S.14),
/xea—i-zw(g/);g i )fl/z(l‘) 1/2( ) :L‘eaJrﬁmfm(:C)d:C
wy' " (x (S.17)
L _%)\/xea-ﬁ-ﬁx(eoﬁ-ﬁx _ 1)wil(l»)dg; = —%Alg(e),
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/ AP ELZ ) priayna) — At f (a)ie

3/2
2w (Px) Lo [ e f . (S.18)
_ - a+20x J - __
s /e L)z = -5 20(0),
a+px o
[ R e (w) — A o)
2wy () (S.19)
P 1.y 2042z / 1 '
— —§>\ /376 w—l(fﬁ)d{lf = —§A23(0),
2 a+px _
[ I i) — X o)
2wy (x) X ; ) (S.20)
P 1y2 2 20+20z _ _ =
£ -2 / Lo = ~34(0).
Now together with (S.9)-(S.20), (S.8) is reduced to
1 A
An(8) + {—EA(H) + RN] (9 - 9) —0,
where, A(f) and Ay(6) are given in (19) and (20) respectively. Hence the result. O

S.8. Proof of Theorem 6.
We give here the sketch of the proof and readers are referred to Abedin (2018) for details.
In order to find the asymptotic distribution of 0 vapE — 0, by (21) we only need to find
the asymptotic distribution of v/NAy(6). Note that by (20),

w0
ave) = % <x>[ " <x>—fm<x>] i

8w1 %/2 8w1

= | T @5EE [ -1 @] dr - [ ZE @R (5w - 1) ds
- [ Yid s [h}/?(@ 1) do

awl 1/2 1/2 1/2 1/2
50 @) 1/2( | [fY2(z) — fY2(a)] [hn/ (z) — hY (x)] s

— [ S ) ) [£20) - )] de

8w1

= [ g @ (@) = £ @] [ (@) = f72(@)] da

We can prove that as N — oo,

m

VR [ = @) = PP) [l - @) e - 0
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V[0 (12w - £2w) [ - £7%0)] da

Thus we only need to give the asymptotic distribution of

wy o S 1/2 1/2
and
a’lUl 1/9 1o o
—g @@ [£ @) = (@) do

separately as they are independent.
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