Semiparametric Modelling of Two-component Mixtures with Stochastic Dominance

Jingjing Wu¹*, Tasnima Abedin² and Qiang Zhao³

¹Department of Mathematics and Statistics, University of Calgary
2500 University Drive NW, Calgary, AB Canada T2N 1N4

²Clinical Research Unit & Translational Laboratories, Alberta Health Services
1331 29 Street NW, Calgary, AB Canada T2N 4N2

³School of Mathematics and Statistics, Shandong Normal University

No.1 University Road, Science Park, Changging District, Jinan, Shandong China 250358

Supplementary material: derivations and proofs

S.1. Derivations of the MELE.

To find the MELE, we use the Lagrange multipliers and maximize

$$\sum_{i=1}^{m+n} \log p_i + \sum_{j=1}^{n} \log \left[(1-\lambda) + \lambda e^{\alpha + \beta Y_j} \right] - t_1 \left[\sum_{i=1}^{m+n} p_i - 1 \right] - t_2 \left[\sum_{i=1}^{m+n} p_i e^{\alpha + \beta T_i} - 1 \right].$$

Taking partial derivatives gives the estimating equation system

$$\frac{1}{p_i} - t_1 - t_2 e^{\alpha + \beta T_i} = 0, \quad i = 1, ..., m + n,$$
(S.1)

$$\sum_{j=1}^{n} \frac{e^{\alpha+\beta Y_j} - 1}{(1-\lambda) + \lambda e^{\alpha+\beta Y_j}} = 0, \tag{S.2}$$

$$\sum_{j=1}^{n} \frac{\lambda e^{\alpha + \beta Y_j}}{(1-\lambda) + \lambda e^{\alpha + \beta Y_j}} - t_2 \sum_{i=1}^{m+n} p_i e^{\alpha + \beta T_i} = 0, \tag{S.3}$$

$$\sum_{j=1}^{n} \frac{Y_j \lambda e^{\alpha + \beta Y_j}}{(1-\lambda) + \lambda e^{\alpha + \beta Y_j}} - t_2 \sum_{i=1}^{m+n} p_i T_i e^{\alpha + \beta T_i} = 0,$$

^{*}Corresponding author. Email: jinwu@ucalgary.ca. Phone: 1-403-2206303. Fax: 1-403-2825150.

$$\sum_{i=1}^{m+n} p_i = 1, \quad \sum_{i=1}^{m+n} p_i e^{\alpha + \beta T_i} = 1.$$
 (S.4)

From (S.2) and $\sum_{j=1}^{n} \frac{(1-\lambda) + \lambda e^{\alpha+\beta Y_j}}{(1-\lambda) + \lambda e^{\alpha+\beta Y_j}} = n, \text{ we have } \sum_{j=1}^{n} \frac{e^{\alpha+\beta Y_j}}{(1-\lambda) + \lambda e^{\alpha+\beta Y_j}} = \sum_{j=1}^{n} \frac{1}{(1-\lambda) + \lambda e^{\alpha+\beta Y_j}} = n$ and plugging it into (S.3) gives

$$n\lambda - t_2 \sum_{i=1}^{m+n} p_i e^{\alpha + \beta T_i} = 0.$$
 (S.5)

From (S.1) we get $(m+n) - t_1 \sum_{i=1}^{m+n} p_i - t_2 \sum_{i=1}^{m+n} p_i e^{\alpha+\beta T_i} = 0$. This together with (S.4) and (S.5) gives $t_2 = n\lambda$ and $t_1 = m + n - n\lambda$. Then by (S.1) again we have

$$p_i = \frac{1}{(m+n)\left[1 + \rho_N \lambda \left(e^{\alpha + \beta T_i} - 1\right)\right]},$$

where $\rho_N = n/(m+n)$ with N = m+n.

S.2. Proof of Theorem 1.

Since we have a sample from f, as a result f is identifiable. Given this, when $h_{\theta_1} = h_{\theta_2}$, i.e.,

$$\left\{1 - \lambda_1 + \lambda_1 \exp\left[\alpha_1 + \beta_1^\top r(x)\right]\right\} f(x) = \left\{1 - \lambda_2 + \lambda_2 \exp\left[\alpha_2 + \beta_2^\top r(x)\right]\right\} f(x) \text{ for all } x,$$

we must have $\lambda_1 = \lambda_2$, $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$ by the assumption that $(1, r(y))^{\top}$ is linearly independent on the support of f. Thus h_{θ} is identifiable.

Let $s(x) = f(x) - g(x) = f(x) [1 - \exp(\alpha + \beta x)]$ and $S(x) = \int_{-\infty}^{x} s(t)dt = F(x) - G(x)$. Let x_0 denote the solution to $1 - \exp(\alpha + \beta x) = 0$. Then s(x) > 0 when $x < x_0$ and $s(x) \le 0$ when $x \ge x_0$, and hence S(x) increases for $x < x_0$ and decreases for $x \ge x_0$. If F(x') < G(x') for some x', i.e., S(x') < 0, then $x' \ge x_0$ since S(x) > 0 for all $x < x_0$. Since S(x) decreases when $x \ge x_0$, we have $S(x) \le S(x') < 0$ for all x > x' and thus $S(\infty) < 0$. However $S(\infty) = F(\infty) - G(\infty) = 1 - 1 = 0$, a contradiction. Therefore $F \ge G$.

S.3. Proof of Lemma 1.

Define $w_{2N}(y) = 1 - \rho_N \lambda + \rho_N \lambda e^{\alpha + \beta y}$. The second-order partial derivatives of the empirical log-likelihood function l in (7) are

$$\frac{\partial^2 l}{\partial \lambda^2} = -\sum_{j=1}^n \frac{(e^{\alpha+\beta Y_j}-1)^2}{w_1^2(Y_j)} + \sum_{i=1}^{m+n} \frac{\rho_N^2 (e^{\alpha+\beta T_i}-1)^2}{w_{2N}^2(T_i)},$$

$$\begin{split} \frac{\partial^2 l}{\partial \alpha^2} &= \sum_{j=1}^n \frac{\lambda (1-\lambda) e^{\alpha+\beta Y_j}}{w_1^2(Y_j)} - \sum_{i=1}^{m+n} \frac{\rho_N \lambda (1-\rho_N \lambda) e^{\alpha+\beta T_i}}{w_{2N}^2(T_i)}, \\ \frac{\partial^2 l}{\partial \beta^2} &= \sum_{j=1}^n \frac{\lambda (1-\lambda) Y_j^2 e^{\alpha+\beta Y_j}}{w_1^2(Y_j)} - \sum_{i=1}^{m+n} \frac{\rho_N \lambda (1-\rho_N \lambda) T_i^2 e^{\alpha+\beta T_i}}{w_{2N}^2(T_i)}, \\ \frac{\partial^2 l}{\partial \lambda \partial \alpha} &= \sum_{j=1}^n \frac{e^{\alpha+\beta Y_j}}{w_1^2(Y_j)} - \sum_{i=1}^{m+n} \frac{\rho_N e^{\alpha+\beta T_i}}{w_{2N}^2(T_i)}, \\ \frac{\partial^2 l}{\partial \lambda \partial \beta} &= \sum_{j=1}^n \frac{Y_j e^{\alpha+\beta Y_j}}{w_1^2(Y_j)} - \sum_{i=1}^{m+n} \frac{\rho_N T_i e^{\alpha+\beta T_i}}{w_{2N}^2(T_i)}, \\ \frac{\partial^2 l}{\partial \alpha \partial \beta} &= \sum_{j=1}^n \frac{\lambda (1-\lambda) Y_j e^{\alpha+\beta Y_j}}{w_1^2(Y_j)} - \sum_{i=1}^{m+n} \frac{\rho_N \lambda (1-\rho_N \lambda) T_i e^{\alpha+\beta T_i}}{w_{2N}^2(T_i)}. \end{split}$$

Straight calculation gives

$$E\left[-\frac{1}{N}\cdot\frac{\partial^2 l}{\partial\lambda^2}\right] = \rho_N(1-\rho_N)\int (e^{\alpha+\beta y}-1)^2 \frac{f}{w_1w_{2N}}(y)\ dy \longrightarrow \rho(1-\rho)S_{11}.$$

By WLLN, $-\frac{1}{N} \cdot \frac{\partial^2 l}{\partial \lambda^2} \stackrel{P}{\longrightarrow} \rho(1-\rho)S_{11}$. Similarly we have the convergence of other components of the matrix S_N .

S.4. Proof of Theorem 2.

Let $Q_N = \frac{1}{N} \left(\frac{\partial l}{\partial \lambda}, \frac{\partial l}{\partial \alpha}, \frac{\partial l}{\partial \beta} \right)^{\top}$, then $E[Q_N] = 0$. Note that as $N \to \infty$,

$$\begin{split} \frac{1}{N} Var \left[\frac{\partial l}{\partial \lambda} \right] &= \frac{1}{N} Var \left[\sum_{j=1}^{n} \left(\frac{e^{\alpha + \beta Y_{j}} - 1}{w_{1}(Y_{j})} - \frac{\rho_{N}(e^{\alpha + \beta Y_{j}} - 1)}{w_{2N}(Y_{j})} \right) - \sum_{i=1}^{m} \frac{\rho_{N}(e^{\alpha + \beta X_{i}} - 1)}{w_{2N}(X_{i})} \right] \\ &= \rho_{N} Var \left[\frac{(1 - \rho_{N})(e^{\alpha + \beta Y_{1}} - 1)}{w_{1}(Y_{1})w_{2N}(Y_{1})} \right] + (1 - \rho_{N}) Var \left[\frac{\rho_{N}(e^{\alpha + \beta X_{1}} - 1)}{w_{2N}(X_{1})} \right] \\ &= \rho_{N} (1 - \rho_{N})^{2} \left\{ \int \frac{(e^{\alpha + \beta y} - 1)^{2}}{w_{1}^{2}(y)w_{2N}^{2}(y)} w_{1}(y) f(y) dy - \left[\int \frac{e^{\alpha + \beta y} - 1}{w_{1}(y)w_{2N}(y)} w_{1}(y) f(y) dy \right]^{2} \right\} \\ &+ \rho_{N}^{2} (1 - \rho_{N}) \left\{ \int \frac{(e^{\alpha + \beta y} - 1)^{2}}{w_{2N}^{2}(y)} f(y) dy - \left[\int \frac{e^{\alpha + \beta y} - 1}{w_{2N}(y)} f(y) dy \right]^{2} \right\} \\ &= \rho_{N} (1 - \rho_{N}) \left[\int (e^{\alpha + \beta y} - 1)^{2} \frac{f}{w_{1}w_{2N}} (y) dy - \left[\int (e^{\alpha + \beta y} - 1) \frac{f}{w_{2N}} (y) dy \right]^{2} \right] \\ &\to \rho (1 - \rho) V_{11}. \end{split}$$

Similarly we have $\frac{1}{N}Var\left[\frac{\partial l}{\partial \alpha}\right] \rightarrow \rho(1-\rho)V_{22}$ and $\frac{1}{N}Var\left[\frac{\partial l}{\partial \beta}\right] \rightarrow \rho(1-\rho)V_{33}$ as $N \rightarrow \infty$.

Note that

$$\begin{split} \frac{1}{N}Cov\left[\frac{\partial l}{\partial \lambda},\frac{\partial l}{\partial \alpha}\right] &= \frac{1}{N}E\left[\frac{\partial l}{\partial \lambda}\cdot\frac{\partial l}{\partial \alpha}\right] \\ &= \frac{1}{N}E\left[\left\{\sum_{j=1}^{n}\left(\frac{e^{\alpha+\beta Y_{j}}-1}{w_{1}(Y_{j})}-\frac{\rho_{N}(e^{\alpha+\beta Y_{j}}-1)}{w_{2N}(Y_{j})}\right)-\sum_{i=1}^{m}\frac{\rho_{N}(e^{\alpha+\beta X_{i}}-1)}{w_{2N}(X_{i})}\right\} \\ &\cdot \left\{\sum_{j=1}^{n}\left(\frac{\lambda e^{\alpha+\beta Y_{j}}}{w_{1}(Y_{j})}-\frac{\rho_{N}\lambda e^{\alpha+\beta Y_{j}}}{w_{2N}(Y_{j})}\right)-\sum_{i=1}^{m}\frac{\rho_{N}\lambda e^{\alpha+\beta X_{i}}}{w_{2N}(X_{i})}\right\}\right] \\ &=\frac{1}{N}E\left[\left\{(1-\rho_{N})\sum_{j=1}^{n}\frac{e^{\alpha+\beta Y_{j}}-1}{w_{1}(Y_{j})w_{2N}(Y_{j})}-\rho_{N}\sum_{i=1}^{m}\frac{e^{\alpha+\beta X_{i}}-1}{w_{2N}(X_{i})}\right\}\right] \\ &\cdot \left\{(1-\rho_{N})\lambda\sum_{j=1}^{n}\frac{e^{\alpha+\beta Y_{j}}}{w_{1}(Y_{j})w_{2N}(Y_{j})}-\rho_{N}\lambda\sum_{i=1}^{m}\frac{e^{\alpha+\beta X_{i}}}{w_{2N}(X_{i})}\right\}\right] \\ &=\frac{1}{N}E\left[(A-B)(C-D)\right], \text{ say} \\ &=\frac{1}{N}\left\{E[AC]+E[BD]-E[A]E[D]-E[B]E[C]\right\}, \end{split}$$

where

$$\begin{split} E\left[AC\right] &= (1-\rho_{N})^{2}\lambda\left\{nE\left[\frac{e^{\alpha+\beta Y_{1}}(e^{\alpha+\beta Y_{1}}-1)}{w_{1}^{2}(Y_{1})w_{2N}^{2}(Y_{1})}\right] \\ &+ n(n-1)E\left[\frac{e^{\alpha+\beta Y_{1}}-1}{w_{1}(Y_{1})w_{2N}(Y_{1})}\right]E\left[\frac{e^{\alpha+\beta Y_{1}}}{w_{1}(Y_{1})w_{2N}(Y_{1})}\right]\right\} \\ &= n(1-\rho_{N})^{2}\lambda\left\{\int e^{\alpha+\beta y}(e^{\alpha+\beta y}-1)\frac{f}{w_{1}w_{2N}^{2}}(y)\;dy \\ &+ (n-1)\int(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\right\}, \end{split}$$

$$E\left[BD\right] &= m\rho_{N}^{2}\lambda\left\{\int e^{\alpha+\beta y}(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}^{2}}(y)\;dy \\ &+ (m-1)\int(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\right\}, \end{split}$$

$$E\left[A\right]E\left[D\right] &= E\left[B\right]E\left[C\right] = mn\rho_{N}(1-\rho_{N})\lambda\int(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy, \end{split}$$

and thus as $N \to \infty$,

$$\begin{split} \frac{1}{N}Cov\left[\frac{\partial l}{\partial \lambda},\frac{\partial l}{\partial \alpha}\right] &= \rho_N(1-\rho_N)^2\lambda \int e^{\alpha+\beta y}(e^{\alpha+\beta y}-1)\frac{f}{w_1w_{2N}^2}(y)\;dy\\ &+ (n-1)\rho_N(1-\rho_N)^2\lambda \int (e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\\ &+ \rho_N^2(1-\rho_N)\lambda \int e^{\alpha+\beta y}(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}^2}(y)\;dy\\ &+ (m-1)\rho_N^2(1-\rho_N)\lambda \int (e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\\ &- 2m\rho_N^2(1-\rho_N)\lambda \int (e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\\ &= \rho_N(1-\rho_N)\lambda \left[\int e^{\alpha+\beta y}(e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\right]\\ &- \int (e^{\alpha+\beta y}-1)\frac{f}{w_{2N}}(y)\;dy\int e^{\alpha+\beta y}\frac{f}{w_{2N}}(y)\;dy\right]\\ &\to \rho(1-\rho)V_{12}. \end{split}$$

Similarly we have $\frac{1}{N}Cov\left[\frac{\partial l}{\partial \lambda}, \frac{\partial l}{\partial \beta}\right] \to \rho(1-\rho)V_{13}$ and $\frac{1}{N}Cov\left[\frac{\partial l}{\partial \alpha}, \frac{\partial l}{\partial \beta}\right] \to \rho(1-\rho)V_{23}$ as $N \to \infty$. Thus by CLT, $\sqrt{N}Q_N \stackrel{L}{\longrightarrow} N(0, \rho(1-\rho)V)$. From Lemma 1 along with Slutsky's theorem, we have $\sqrt{N}(\hat{\theta}_{MELE} - \theta) \stackrel{L}{\longrightarrow} N(0, \Sigma)$.

From above calculation we see that $\frac{1}{N\rho(1-\rho)}Cov[\frac{\partial l}{\partial \theta}] \to V$. Though α is uniquely determined by β from relationship (3), α depends on β non-linearly. As a result the vector $Q_N = \frac{1}{N} \left(\frac{\partial l}{\partial \lambda}, \frac{\partial l}{\partial \alpha}, \frac{\partial l}{\partial \beta} \right)^{\top}$ is linearly independent. Thus $Cov[\frac{\partial l}{\partial \theta}]$ is positive definite, and further so do V and Σ .

The proofs of Theorems 3-6 are similar to Wu, Karunamuni and Zhang (2010) but for a different model. For completeness we present the proofs below.

S.5. Proof of Theorem 3.

In order to prove Theorem 3, we need the following lemma.

Lemma 2. For any $\varphi \in \mathcal{H}$, $d(t) = \|h_t^{1/2} - \varphi^{1/2}\|$ is continuous at point $t = \theta$.

Proof. Suppose $\theta_k \to \theta$ as $k \to \infty$. From Minkowski's inequality,

$$|d(\theta_k) - d(\theta)| \le \|h_{\theta_k}^{1/2} - h_{\theta}^{1/2}\| \le \left[\int |h_{\theta_k}(x) - h_{\theta}(x)| dx \right]^{1/2}.$$
 (S.6)

For any $x \in \mathbb{R}$, as $k \to \infty$, $\theta_k \to \theta$ implies

$$|h_{\theta_k}(x) - h_{\theta}(x)| = \left| -(\lambda_k - \lambda)f(x) + \lambda_k f(x) (e^{\alpha_k + \beta_k x} - e^{\alpha + \beta x}) + (\lambda_k - \lambda)e^{\alpha + \beta x} f(x) \right|$$

$$\to 0.$$

Thus by Scheffé's theorem we have $\int |h_{\theta_k}(x) - h_{\theta}(x)| dx \to 0$ as $k \to \infty$, i.e., $d(\theta_k) \to d(\theta)$ as $k \to \infty$ and d(t) is continuous at point $t = \theta$.

Proof of Theorem 3. (i) Let $d_m(t) = \|\hat{h}_t^{1/2} - \varphi^{1/2}\|$. Suppose sequence $\{t_k\} \subset \Theta$ such that $t_k \to t$ as $k \to \infty$. Since Θ is compact, $t \in \Theta$. Similar to (S.6), we have

$$|d_m(t_k) - d_m(t)| \le \left[\int |\lambda_k - \lambda - \lambda_k e^{\alpha_k + \beta_k x} + \lambda e^{\alpha + \beta x} |f_m(x) dx \right]^{1/2}.$$

Since f_m is compactly supported, we have by (D1) and the Dominated Convergence Theorem (DCT) that $d_m(t_k) \to d_m(t)$ as $k \to \infty$, i.e., $d_m(t)$ is continuous and achieves a minimum over $t \in \Theta$. Let $d(t) = ||h_t^{1/2} - \varphi^{1/2}||$. By Lemma 2, d(t) is continuous in t and therefore achieves a minimum over $t \in \Theta$.

(ii) Suppose $\|\varphi_n^{1/2} - \varphi^{1/2}\| \to 0$ and $\sup_{t \in \Theta} \|\hat{h}_t^{1/2} - h_t^{1/2}\| \to 0$ as $N \to \infty$. Let $d_N(t) = \|\hat{h}_t^{1/2} - \varphi_n^{1/2}\|$ and $d(t) = \|h_t^{1/2} - \varphi^{1/2}(x)\|$. By Minkowski's inequality,

$$|d_N(t) - d(t)| \leq \left\{ \int \left[\hat{h}_t^{1/2}(x) - \varphi_n^{1/2}(x) - h_t^{1/2}(x) + \varphi^{1/2}(x) \right]^2 dx \right\}^{1/2}$$

$$\leq \left\{ 2 \int \left[\hat{h}_t^{1/2}(x) - h_t^{1/2} \right]^2 dx + 2 \int \left[\varphi_n^{1/2} - \varphi^{1/2}(x) \right]^2 dx \right\}^{1/2}$$

and consequently $\sup_{t\in\Theta}|d_N(t)-d(t)|\to 0$ as $N\to\infty$. Thus as $N\to\infty$, $d_N(\theta)\to d(\theta)$ and $d_N(\theta_N)-d(\theta_N)\to 0$. If $\theta_N\to\theta$, then there exists a subsequence $\{\theta_{N_i}\}\subseteq\{\theta_N\}$ such that, $\theta_{N_i}\to\theta'\neq\theta$. Since Θ is compact, $\theta'\in\Theta$. Lemma 2 yields that $d(\theta_{N_i})\to d(\theta')$. From the above results we have $d_{N_i}(\theta_{N_i})-d_{N_i}(\theta)\to d(\theta')-d(\theta)$. By the definition of θ_{N_i} , $d_{N_i}(\theta_{N_i})-d_{N_i}(\theta)\leq 0$. Hence, $d(\theta')-d(\theta)\leq 0$. But by the definition and uniqueness of θ , $d(\theta')>d(\theta)$. This is a contradiction. Therefore $\theta_N\to\theta$.

(iii) Since by Theorem 1 $\{h_t\}_{t\in\Theta}$ is identifiable, we have $T(f,h_\theta)=\theta$ uniquely for any $\theta\in\Theta$.

S.6. Proof of Theorem 4.

In order to prove Theorem 4, we need the following lemma.

Lemma 3. Suppose (D3) holds. Then as $m \to \infty$,

$$\sup_{\theta \in \Theta} \int w_1(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right]^2 dx \stackrel{P}{\longrightarrow} 0.$$

Proof. By the continuity of the function w_1 in θ and the compactness of Θ , there exists a $\theta_m \in \Theta$ which maximizes $\int w_1(x) [f_m^{1/2}(x) - f^{1/2}(x)]^2 dx$. By (S.6), (S.7) and a Taylor expansion, one has

$$E\left|\int I_{\{|x|>\alpha_{m}\}}w_{1}(x)f_{m}(x)dx\right|$$

$$= \int \int I_{\{|x|>\alpha_{m}\}}w_{1}(x)\frac{1}{b_{m}}K_{0}\left(\frac{y-x}{b_{m}}\right)f(y)dy\,dx$$

$$= \int I_{\{|x|>\alpha_{m}\}}w_{1}(x)\int K_{0}(t)f(x+tb_{m})dt\,dx$$

$$= \int I_{\{|x|>\alpha_{m}\}}w_{1}(x)\int K_{0}(t)\left[f(x)+f^{(1)}(x)tb_{m}+\frac{1}{2}f^{(2)}(\xi)t^{2}b_{m}^{2}\right]dt\,dx$$

$$\leq \int I_{\{|x|>\alpha_{m}\}}h_{\theta}(x)dx+\frac{1}{2}b_{m}^{2}\int I_{\{|x|>\alpha_{m}\}}h_{\theta}(x)\sup_{|t|\leq a_{0}}\frac{f^{(2)}(x+tb_{m})}{f(x)}dx\int t^{2}K_{0}(t)dt$$

$$\leq \sup_{\theta\in\Theta}\int I_{\{|x|>\alpha_{m}\}}h_{\theta}(x)dx+\frac{1}{2}b_{m}^{2}\int t^{2}K_{0}(t)dt\sup_{\theta\in\Theta}\int I_{\{|x|>\alpha_{m}\}}h_{\theta}(x)\sup_{|t|\leq a_{0}}\frac{f^{(2)}(x+tb_{m})}{f(x)}dx$$

$$\to 0.$$

Thus as $m \to \infty$, $\int I_{\{|x| > \alpha_m\}} w_1(x) f_m(x) dx \stackrel{P}{\longrightarrow} 0$ and

$$\int I_{\{|x| > \alpha_m\}} w_1(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right]^2 dx$$

$$\leq 2 \int I_{\{|x| > \alpha_m\}} w_1(x) \left[f_m(x) + f(x) \right] dx$$

$$\leq 2 \int I_{\{|x| > \alpha_m\}} w_1(x) f_m(x) dx + 2 \int I_{\{|x| > \alpha_m\}} h_{\theta}(x) dx$$

$$\stackrel{P}{\to} 0. \tag{S.7}$$

On the other hand,

$$\left| \int I_{\{|x| \le \alpha_m\}} w_1(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right]^2 dx \right| = \int I_{\{|x| \le \alpha_m\}} w_1(x) \frac{\left[f_m(x) - f(x) \right]^2}{\left[f_m^{1/2}(x) + f^{1/2}(x) \right]^2} dx$$

$$\le \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \left[f_m(x) - f(x) \right]^2 dx$$

$$\le 2 \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \left[f_m(x) - E[f_m(x)] \right]^2 dx$$

$$+ 2 \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \left[E[f_m(x)] - f(x) \right]^2 dx$$

$$= 2(A_{1m} + A_{2m}), \text{ say.}$$

Now by (A.3) as $m \to \infty$

$$E[A_{1m}] = \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) E[f_m(x) - E[f_m(x)]]^2 dx$$

$$\leq \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \frac{1}{m b_m^2} \int K_0^2 \left(\frac{y - x}{b_m}\right) f(y) dy dx$$

$$= m^{-1} b_m^{-1} \int I_{\{|x| \le \alpha_m\}} w_1(x) \int_{-a_0}^{a_0} K_0^2(t) f(x + t b_m) f^{-1}(x) dt dx$$

$$\leq m^{-1} b_m^{-1} \int_{-a_0}^{a_0} K_0^2(t) dt \sup_{\theta \in \Theta} \int I_{\{|x| \le \alpha_m\}} h_{\theta}(x) \sup_{|t| \le a_0} \frac{f(x + t b_m)}{f^2(x)} dx$$

$$\to 0,$$

i.e, $A_{1m} \stackrel{P}{\to} 0$ as $m \to \infty$. By a Taylor expansion and (A.4),

$$|A_{2m}| = \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \left[\int_{-a_0}^{a_0} K_0(t) (f(x+tb_m) - f(x)) dt \right]^2 dx$$

$$\leq \frac{1}{4} b_m^4 \int I_{\{|x| \le \alpha_m\}} w_1(x) f^{-1}(x) \left[\sup_{|t| \le a_0} |f^{(2)}(x+tb_m)| \int_{-a_0}^{a_0} t^2 K_0(t) \right]^2 dx$$

$$\leq \frac{1}{4} b_m^4 \left[\int_{-a_0}^{a_0} K_0(t) t^2 dt \right]^2 \sup_{\theta \in \Theta} \int I_{\{|x| \le \alpha_m\}} h_{\theta}(x) \sup_{|t| \le a_0} \left[\frac{f^{(2)}(x+tb_m)}{f(x)} \right]^2 dx$$

$$\to 0$$

Therefore, $\int I_{\{|x| \leq \alpha_m\}} w_1(x) [f_m^{1/2}(x) - f^{1/2}(x)]^2 dx \xrightarrow{P} 0$ as $m \to \infty$. This combined with (S.7) gives $\int w_1(x) [f_m^{1/2}(x) - f^{1/2}(x)]^2 dx \xrightarrow{P} 0$ for any $\theta \in \Theta$. By the continuity of the function in θ and the compactness of Θ , hence the result.

Proof of Theorem 4. If we can prove that $\|h_n^{1/2} - h_\theta^{1/2}\| \stackrel{P}{\to} 0$ and $\sup_{t \in \Theta} \|\hat{h}_t^{1/2} - h_t^{1/2}\| \stackrel{P}{\to} 0$ as $N \to \infty$, then by Theorem 3 (iii) and then (ii) we have $\hat{\theta}_{MHDE} \stackrel{P}{\to} \theta$ as $N \to \infty$.

It is known that $f_m \stackrel{P}{\to} f$ and $h_n \stackrel{P}{\to} h$ as $N \to \infty$ (see Rao, 1983). Since $\int h_{\theta}(x) dx = \int h_n(x) dx = 1$, $\int [h_{\theta}(x) - h_n(x)]^+ dx = \int [h_{\theta}(x) - h_n(x)]^- dx$ and $||h_n^{1/2} - h_{\theta}^{1/2}||^2 \le \int |h_{\theta}(x) - h_n(x)| dx = 2 \int [h_{\theta}(x) - h_n(x)]^+ dx$. Since, $[h_{\theta}(x) - h_n(x)]^+ < h_{\theta}(x)$, by the DCT it follows that $||h_n^{1/2} - h_{\theta}^{1/2}|| \stackrel{P}{\to} 0$ as $n \to \infty$. Similarly $||f_m^{1/2} - f^{1/2}|| \stackrel{P}{\to} 0$ as $m \to \infty$.

Note that $\int [\hat{h}_{\theta}^{1/2}(x) - h_{\theta}^{1/2}(x)]^2 dx = \int w_1(x) [f_m^{1/2}(x) - f^{1/2}(x)]^2 dx \leq \int w_1(x) |f_m(x) - f(x)| dx$. If (D2) holds then $f_m - f$ will have a compact support on which $w_1(x)$ is bounded. Therefore, $\int [\hat{h}_{\theta}^{1/2}(x) - h_{\theta}^{1/2}(x)]^2 dx \leq C_1 \int |f_m(x) - f(x)| dx = 2C_1 \int [f(x) - f_m(x)]^+ dx$ for some positive number C_1 . Since $f_m \stackrel{P}{\to} f$, by the DCT we have $\sup_{\theta \in \Theta} \|\hat{h}_{\theta}^{1/2} - h_{\theta}^{1/2}\| \stackrel{P}{\to} 0$. If (D3) holds then Lemma 3 gives $\sup_{\theta \in \Theta} \|\hat{h}_{\theta}^{1/2} - h_{\theta}^{1/2}\| \stackrel{P}{\to} 0$.

S.7. Proof of Theorem 5.

From Theorem 4 we have $\hat{\theta}_{MHDE} \stackrel{P}{\to} \theta$ as $N \to \infty$. Since $t = \hat{\theta}_{MHDE} \in \Theta$ minimizes the Hellinger distance between \hat{h}_t and h_n , $\hat{\theta}_{MHDE}$ maximizes $2 \int \hat{h}_t^{1/2}(x) h_n^{1/2}(x) dx - \int \hat{h}_t(x) dx$. Also since K_0 has compact support, we have

$$\int \frac{\partial}{\partial t} \left[2\hat{h}_t^{1/2}(x)h_n^{1/2}(x)dx - \hat{h}_t(x) \right] \Big|_{t=\hat{\theta}_{MHDE}} dx = 0.$$

For notation simplicity we use $\hat{\theta}$ to denote $\hat{\theta}_{MHDE}$ and use \hat{w}_1 to denote w_1 in (10) with θ replaced by $\hat{\theta}_{MHDE}$. Let $M_{\theta}(x) = 2\hat{h}_{\theta}^{1/2}(x)h_n^{1/2}(x)dx - \hat{h}_{\theta}(x)$, then by a Taylor expansion of $\hat{\theta}$ at θ it follows that

$$\int \frac{\partial M_{\theta}(x)}{\partial \theta} dx + \left[\int \frac{\partial^2 M_{\theta}(x)}{\partial \theta \partial \theta^{\top}} dx + R_N \right] \cdot \left(\hat{\lambda} - \lambda, \hat{\alpha} - \alpha, \hat{\beta} - \beta \right)^{\top} = 0, \quad (S.8)$$

where R_N is a 3×3 matrix with elements tending to zero in probability as $N \to \infty$. Direct calculation gives

$$\frac{\partial M_{\theta}(x)}{\partial \lambda} = (e^{\alpha + \beta x} - 1) \left[\frac{f_m^{1/2} h_n^{1/2}}{w_1^{1/2}} (x) - f_m(x) \right],$$

$$\frac{\partial M_{\theta}(x)}{\partial \alpha} = \lambda e^{\alpha + \beta x} \left[\frac{f_m^{1/2} h_n^{1/2}}{w_1^{1/2}} (x) - f_m(x) \right],$$

$$\frac{\partial M_{\theta}(x)}{\partial \beta} = \lambda x e^{\alpha + \beta x} \left[\frac{f_m^{1/2} h_n^{1/2}}{w_1^{1/2}} (x) - f_m(x) \right],$$

$$\frac{\partial^2 M_{\theta}(x)}{\partial \lambda^2} = -\frac{(e^{\alpha + \beta x} - 1)^2}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x),$$
(S.9)

$$\frac{\partial^2 M_{\theta}(x)}{\partial \lambda \partial \alpha} = \frac{e^{\alpha + \beta x} (w_1(x) + 1)}{2w_1^{3/2}} f_m^{1/2}(x) h_n^{1/2}(x) - e^{\alpha + \beta x} f_m(x), \tag{S.10}$$

$$\frac{\partial^2 M_{\theta}(x)}{\partial \lambda \partial \beta} = \frac{x e^{\alpha + \beta x} (w_1(x) + 1)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - x e^{\alpha + \beta x} f_m(x), \tag{S.11}$$

$$\frac{\partial^2 M_{\theta}(x)}{\partial \alpha^2} = \frac{\lambda e^{\alpha + \beta x} (w_1(x) + 1 - \lambda)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - \lambda e^{\alpha + \beta x} f_m(x), \tag{S.12}$$

$$\frac{\partial^2 M_{\theta}(x)}{\partial \alpha \partial \beta} = \frac{\lambda x e^{\alpha + \beta x} (w_1(x) + 1 - \lambda)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - \lambda x e^{\alpha + \beta x} f_m(x), \tag{S.13}$$

$$\frac{\partial^2 M_{\theta}(x)}{\partial \beta^2} = \frac{\lambda x^2 e^{\alpha + \beta x} (w_1(x) + 1 - \lambda)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - \lambda x^2 e^{\alpha + \beta x} f_m(x). \tag{S.14}$$

For (S.9) we have by Theorem 4 that

$$\begin{split} & \left| \int \frac{(e^{\alpha + \beta x} - 1)^2}{2w_1^{3/2}(x)} \left[f_m^{1/2}(x) h_n^{1/2}(x) - f^{1/2}(x) h_\theta^{1/2}(x) \right] dx \right| \\ \leq & C \left[\int f_m^{1/2}(x) \left| h_n^{1/2}(x) - h_\theta^{1/2}(x) \right| dx + \int h_\theta^{1/2}(x) \left| f_m^{1/2}(x) - f^{1/2}(x) \right| dx \right] \\ \leq & C \left[\left\| h_n^{1/2} - h_\theta^{1/2} \right\| + \left\| f_m^{1/2} - f^{1/2} \right\| \right] \\ \stackrel{P}{\to} & 0. \end{split}$$

Thus for (S.9),

$$-\int \frac{(e^{\alpha+\beta x}-1)^2}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) \xrightarrow{P} -\int \frac{(e^{\alpha+\beta x}-1)^2}{2w_1^{3/2}(x)} f^{1/2}(x) h_{\theta}^{1/2}(x) dx$$

$$= -\frac{1}{2} \int (e^{\alpha+\beta x}-1)^2 \frac{f}{w_1}(x) dx$$

$$= -\frac{1}{2} \Delta_{11}(\theta). \tag{S.15}$$

For (S.10), similarly we have

$$\int \frac{e^{\alpha+\beta x}(w_1(x)+1)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) dx \quad \xrightarrow{P} \quad \int \frac{e^{\alpha+\beta x}(w_1(x)+1)}{2w_1^{3/2}(x)} f^{1/2}(x) h_{\theta}^{1/2}(x) dx
= \int \frac{g(x)(w_1(x)+1)}{2w_1(x)} dx
= \int \frac{1}{2} + \frac{1}{2} \int \frac{e^{\alpha+\beta x}}{w_1(x)} f(x) dx$$

and

$$\left| \int e^{\alpha + \beta x} \left[f_m(x) - f(x) \right] dx \right| \leq C \int \left| \left[f_m^{1/2}(x) - f^{1/2}(x) \right] \left[f_m^{1/2}(x) + f^{1/2}(x) \right] \right| dx$$

$$\leq C \left\| f_m^{1/2} - f^{1/2} \right\| \cdot \left\| f_m^{1/2} + f^{1/2} \right\|$$

$$\leq 2C \left\| f_m^{1/2} - f^{1/2} \right\|$$

$$\stackrel{P}{\to} 0,$$

i.e. $\int e^{\alpha+\beta x} f_m(x) dx \xrightarrow{P} \int e^{\alpha+\beta x} f(x) dx$. Thus for (S.10),

$$\int \frac{e^{\alpha+\beta x}(w_1(x)+1)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - e^{\alpha+\beta x} f_m(x) dx
\xrightarrow{P} -\frac{1}{2} \lambda \int e^{\alpha+\beta x} (e^{\alpha+\beta x} - 1) \frac{f}{w_1}(x) dx = -\frac{1}{2} \Delta_{12}(\theta).$$
(S.16)

Similarly for (S.11)-(S.14)

$$\int \frac{xe^{\alpha+\beta x}(w_1(x)+1)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - xe^{\alpha+\beta x} f_m(x) dx
\xrightarrow{P} -\frac{1}{2}\lambda \int xe^{\alpha+\beta x} (e^{\alpha+\beta x} - 1) \frac{f}{w_1}(x) dx = -\frac{1}{2}\Delta_{13}(\theta),$$
(S.17)

$$\int \frac{\lambda e^{\alpha + \beta x} (w_1(x) + 1 - \lambda)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - \lambda e^{\alpha + \beta x} f_m(x) dx
\xrightarrow{P} -\frac{1}{2} \lambda^2 \int e^{2\alpha + 2\beta x} \frac{f}{w_1}(x) dx = -\frac{1}{2} \Delta_{22}(\theta),$$
(S.18)

$$\int \frac{\lambda x e^{\alpha + \beta x} (w_1(x) + 1 - \lambda)}{2w_1^{3/2}(x)} f_m^{1/2}(x) h_n^{1/2}(x) - \lambda x e^{\alpha + \beta x} f_m(x) dx
\xrightarrow{P} -\frac{1}{2} \lambda^2 \int x e^{2\alpha + 2\beta x} \frac{f}{w_1}(x) dx = -\frac{1}{2} \Delta_{23}(\theta),$$
(S.19)

$$\int \frac{\lambda x^{2} e^{\alpha + \beta x} (w_{1}(x) + 1 - \lambda)}{2w_{1}^{3/2}(x)} f_{m}^{1/2}(x) h_{n}^{1/2}(x) - \lambda x^{2} e^{\alpha + \beta x} f_{m}(x) dx
\xrightarrow{P} -\frac{1}{2} \lambda^{2} \int x^{2} e^{2\alpha + 2\beta x} \frac{f}{w_{1}}(x) dx = -\frac{1}{2} \Delta_{33}(\theta).$$
(S.20)

Now together with (S.9)-(S.20), (S.8) is reduced to

$$A_N(\theta) + \left[-\frac{1}{2}\Delta(\theta) + R_N \right] \left(\hat{\theta} - \theta \right) = 0,$$

where, $\Delta(\theta)$ and $A_N(\theta)$ are given in (19) and (20) respectively. Hence the result.

S.8. Proof of Theorem 6.

We give here the sketch of the proof and readers are referred to Abedin (2018) for details.

In order to find the asymptotic distribution of $\hat{\theta}_{MHDE} - \theta$, by (21) we only need to find the asymptotic distribution of $\sqrt{N}A_N(\theta)$. Note that by (20),

$$\begin{split} A_N(\theta) &= \int \frac{\partial w_1}{\partial \theta}(x) \left[\frac{f_m^{1/2} h_n^{1/2}}{w_1^{1/2}}(x) - f_m(x) \right] \, dx \\ &= \int \frac{\partial w_1}{\partial \theta}(x) \frac{f_m^{1/2}}{w_1^{1/2}}(x) \left[h_n^{1/2}(x) - h_\theta^{1/2}(x) \right] dx - \int \frac{\partial w_1}{\partial \theta}(x) f_m^{1/2}(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right] dx \\ &= \int \frac{\partial w_1}{\partial \theta}(x) \frac{f^{1/2}}{w_1^{1/2}}(x) \left[h_n^{1/2}(x) - h_\theta^{1/2}(x) \right] dx \\ &+ \int \frac{\partial w_1}{\partial \theta}(x) \frac{1}{w_1^{1/2}(x)} \left[f_m^{1/2}(x) - f^{1/2}(x) \right] \left[h_n^{1/2}(x) - h_\theta^{1/2}(x) \right] dx \\ &- \int \frac{\partial w_1}{\partial \theta}(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right] \left[f_m^{1/2}(x) - f^{1/2}(x) \right] dx. \end{split}$$

We can prove that as $N \to \infty$,

$$\sqrt{N} \int \frac{\partial w_1}{\partial \theta}(x) \frac{1}{w_1^{1/2}(x)} \left[f_m^{1/2}(x) - f^{1/2}(x) \right] \left[h_n^{1/2}(x) - h_\theta^{1/2}(x) \right] dx \stackrel{P}{\longrightarrow} 0,$$

$$\sqrt{N} \int \frac{\partial w_1}{\partial \theta}(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right] \left[f_m^{1/2}(x) - f^{1/2}(x) \right] dx \stackrel{P}{\longrightarrow} 0.$$

Thus we only need to give the asymptotic distribution of

$$\int \frac{\partial w_1}{\partial \theta}(x) \frac{f^{1/2}}{w_1^{1/2}}(x) \left[h_n^{1/2}(x) - h_{\theta}^{1/2}(x) \right] dx$$

and

$$\int \frac{\partial w_1}{\partial \theta}(x) f^{1/2}(x) \left[f_m^{1/2}(x) - f^{1/2}(x) \right] dx$$

separately as they are independent.