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Abstract
For Gaussian stationary triangular arrays, it is well known that the extreme values 
may occur in clusters. Here we consider the joint behaviors of the point processes of 
clusters and the partial sums of bivariate stationary Gaussian triangular arrays. For a 
bivariate stationary Gaussian triangular array, we derive the asymptotic joint behav-
ior of the point processes of clusters and prove that the point processes and partial 
sums are asymptotically independent. As an immediate consequence of the results, 
one may obtain the asymptotic joint distributions of the extremes and partial sums. 
We illustrate the theoretical findings with a numeric example.

Keywords  Bivariate stationary Gaussian triangular array · Point process of clusters · 
Partial sum · Joint behavior

1  Introduction

For a centered unit-variance stationary Gaussian triangular array {Xn,s, 1 ≤ s ≤ n} , the 
distributional behavior of the maximum Mn = max1≤s≤n Xn,s has been studied exten-
sively. Under the so called Berman condition about the correlation �

�,n = �
(
Xn,sXn,s+�

)
 , 

Mn has the same asymptotic distribution as the maximum of n independent random 
variables (see e.g.,  Berman, 1964; Leadbetter et al., 1983). Mittal and Ylvisaker (1975) 
obtained the asymptotic distribution of Mn under some weaker conditions. However, 
it is not uncommon that large values may occur in clusters in practice, and as a result, 
the independence model may not be appropriate. For instance, displayed in Fig. 1 are 
the daily log returns of Amazon from October 6, 2011 to October 2, 2013. For clarity, 
we plotted the times on the horizontal axis only for those values which are greater than 
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0.01 and one observes the obvious tendency that large values occur in clusters. Hsing 
et al. (1996) first addressed the cluster issue by demonstrating that under appropriate 
conditions for the correlations, the locations of the extreme values are clustered. The 
asymptotic distribution of the extremes of a Gaussian triangular array was also devel-
oped in Hsing et al. (1996). Hashorva and Weng (2013) and Hashorva et al. (2015) 
generalized the results to bivariate and multivariate stationary Gaussian triangular 
arrays, respectively, and developed the limiting distributions with clustering informa-
tion for the extremes. Furthermore, French and Davis (2013) and Ling (2019) extended 
the results to stationary random fields. However, the joint asymptotic behavior of the 
point processes of clusters and partial sums for the stationary bivariate Gaussian trian-
gular array has not been well studied.

For the univariate standard stationary Gaussian triangular array {Xn,s, 1 ≤ s ≤ n} , 
the exceedances point process is defined by

for any real Borel set B on (0,  1], where I is the indicator function and 
un(x) = bn + x∕an with

It is well known that Nn(B) converges weakly to a Poisson process with intensity e−x 
if the Berman condition holds. In particular, this implies that the number of exceed-
ances of un(x) by Xn,s in the set In = {1, 2,… , n} will have an asymptotic Poisson 
distribution. However, for a more general stationary sequence {�n,s, 1 ≤ s ≤ n} , 
the exceedances of un(x) may tend to occur in clusters. One very simple means of 
defining the point of clusters is to take a sequence rn + �n and consider events that 

Nn(B) =
∑n

s=1
I
{
Xn,s > un(x),

s

n
∈ B

}
,

(1)an =
√
2 log n, bn =

√
2 log n −

log log n + log 4�

2
√
2 log n

.

Fig. 1   Amazon daily log returns, from October 6, 2011 to October 2, 2013
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occur within a distance of rn + �n belong to the same cluster. More precisely, for any 
positive integers rn and �n , let qn = [n∕(rn + �n)] , where [x] denotes the integer part 
of the real number x. The point processes of clusters formed by {�n,s, 1 ≤ s ≤ n} is 
defined by

where Qk = {(k − 1)(rn + 𝓁n) + 1, (k − 1)(rn + 𝓁n) + 2,⋯ , k(rn + 𝓁n)} , and Qk are 
intervals with length rn + �n . Leadbetter (1983) first studied the asymptotics of the 
point process of clusters for a stationary sequence and showed that the point process 
of clusters N̂n(B) also converges in distribution to a Poisson process. Furthermore, 
Wiśniewski (1996) considered the weak convergence of multivariate exceedances 
point processes formed by multivariate stationary Gaussian sequence and Peng et al. 
(2012) obtained the joint limiting distributions of exceedances point processes and 
partial sums of multivariate Gaussian sequences under some mild conditions.

In this paper we consider 
{(

X(1)
n,s
,X(2)

n,s

)
, 1 ≤ s ≤ n

}
 , which is a centered bivariate 

stationary Gaussian triangular array with �[X(1)
n,s
] = �[X(2)

n,s
] = 0 , 

Var[X(1)
n,s
] = Var[X(2)

n,s
] = 1 . Let �ij(|k − �|, n) denote the correlation of 

(
X
(i)

n,k
,X

(j)

n,�

)
 for 

i, j = 1, 2 . Suppose that the correlation satisfies (�ii(0) = 0)

Under appropriate conditions for correlations, Hashorva et al. (2015) proved that for 
all x1, x2 ∈ R,

where

and

�Nn(B) =
∑qn

k=1
I
{
∪s∈Qk

𝜁n,s > un(x),
s

n
∈ B

}
,

(2)
{

limn→∞(1 − �ij(s, n)) log n = �ij(s) ∈ (0,∞] , for i, j = 1, 2, s = 1, 2…

limn→∞(1 − �ij(0, n)) log n = �ij(0) ∈ (0,∞], for i, j = 1, 2, i ≠ j.

(3)
lim
n→∞

ℙ

(
max
1≤s≤n X

(1)
n,s

≤ un(x1), max
1≤s≤n X

(2)
n,s

≤ un(x2)

)

= exp
(
−�1(x1, x2)e

−x1 − �2(x1, x2)e
−x2

)
,

(4)

𝜗1(x1, x2) = ℙ

�
E∕2 +

√
𝛿11(s − 1)W

(1)

s,1
≤ 𝛿11(s − 1),E∕2

+
√
𝛿21(s − 1)W

(2)

s,1
≤ 𝛿21(s − 1) +

x2 − x1

2
,

𝛿11(s − 1) < ∞, 𝛿21(s − 1) < ∞, for all s ≥ 2
�
,
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Here E is a standard exponential random variable and {
W

(t)

s,i
, t = 1, 2, 𝛿ti(s − 1) < ∞, s ≥ 1

}
 are independent of E and jointly normal with 

zero means and correlation

where j, t = 1, 2 and s,� ≥ 1 if i ≠ j and i ≠ t , and s,� ≥ 2 for i = j or i = t . The 
results in Hsing et al. (1996) is a direct corollary by taking x2 → ∞ in (3), that is

where

Note that x2−x1
2

→ ∞ as x2 → ∞ for any x1 , thus � does not depend on x1 . Further-
more, we focus on the joint asymptotic behavior of the point processes of clusters 
formed by 

{(
X(1)
n,s
,X(2)

n,s

)
, 1 ≤ s ≤ n

}
 as well as their joint behavior with the partial 

sums under certain weak dependence conditions motivated by Leadbetter (1983) 
and Peng et al. (2012). As an immediate consequence of our results, one may obtain 
the asymptotic joint distributions of the extremes and partial sums for the univariate 
standard stationary Gaussian triangular arrays.

It is worth mentioning that the study of the joint behavior of the extremes 
and partial sums from a sequence of random variables has a long history, and 
recently there is renewed interest in it because of the increasing volume of envi-
ronmental data with averages and extremes that are available to researchers. Ran-
dom sums and maxima also arise naturally in different subjects such as finance, 
insurance, engineering, and energy modeling (see e.g.,  Kozubowski et al, 2011; 
Biondi et al, 2005 and Kozubowski and Panorska, 2005), and the use of partial 
sums is critical in the famous Hill estimator (see e.g.,  Hill, 1975 and Buitendag 
et al, 2020). Thus, studying of the joint behavior of extremes and partial sums is 
of both practical and theoretical significance. An early influential work is Chow 
and Teugels (1978), which focused on a sequence of independent and identically 

(5)

𝜗2(x1, x2) = ℙ

�
E∕2 +

√
𝛿12(0)W

(1)

1,2
≤ 𝛿12(0) +

x1 − x2

2
,E∕2

+
√
𝛿12(s − 1)W

(1)

s,2
≤ 𝛿12(s − 1) +

x1 − x2

2
,

E∕2 +
√
𝛿22(s − 1)W

(2)

s,2
≤ 𝛿22(s − 1),

𝛿12(0) < ∞, 𝛿12(s − 1) < ∞, 𝛿22(s − 1) < ∞,

for all s ≥ 2}.

�

(
W

(j)

s,i
W

(t)

�,i

)
=

�ji(s − 1) + �ti(� − 1) − �jt(|s − �|)

2
√

�ji(s − 1)�ti(� − 1)

, i = 1, 2,

limn→∞ ℙ

(
max
1≤s≤n X

(1)
n,s

≤ un(x1)

)
= exp (−�e−x1 ),

(6)

𝜗 = limx2→+∞ 𝜗1(x1, x2)

= ℙ

�
E∕2 +

√
𝛿11(s − 1)W

(1)

s,1
≤ 𝛿11(s − 1), 𝛿11(s − 1) < ∞, for all s ≥ 2

�
.
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distributed random variables. Anderson and Turkman (1991, 1993, 1995) gener-
alized the results to strong mixing sequences. For stationary Gaussian sequences, 
Ho and Hsing (1996), Ho and McCormick (1999), McCormick and Qi (2000) 
and Peng and Nadarajah (2003) showed that the maxima and partial sums are 
asymptotically independent (or dependent) if the Gaussian sequences are weakly 
(or strongly) dependent. James et  al. (2007) considered the problem for multi-
variate stationary Gaussian sequences and Hu et al. (2009) extended the problem 
to the asymptotics of the point process of exceedances and the partial sum for a 
Gaussian triangular array.

The paper is organized as follows. We present the main results in Sect. 2, and 
an illustrative numerical example in Sect. 3. Auxiliay results and the proofs are 
included in Sects. 4 and  5, respectively.

2 � Main results

For a centered bivariate Gaussian triangular array 
{(

X(1)
n,s
,X(2)

n,s

)
, 1 ≤ s ≤ n

}
 , we 

are interested in the joint asymptotic behavior of the point process of clusters. In 
particular, under the same conditions as that in Hashorva et  al. (2015), we first 
establish the joint limiting generating function of the numbers of cluster exceed-
ances of un(xi) , i = 1, 2 , defined by

where Qk = {(k − 1)(rn + 𝓁n) + 1, (k − 1)(rn + 𝓁n) + 2,⋯ , k(rn + 𝓁n)} and 
qn = [n∕(rn + �n)] for some positive integers rn and �n . Here [x] denotes the integer 
part of the real number x. A direct consequence of the result is that N(1)

n
 and N(2)

n
 are 

asymptotic dependent. The asymptotic distribution of the extreme values in Hsing 
et al. (1996) is also a direct corollary of the result. Based on the limiting distribu-
tion, we further study the joint behavior of the point processes of clusters and the 
partial sums of the stationary bivariate Gaussian triangular array. Throughout this 
paper, un(x) = bn + x∕an with an , bn are given in (1).

Theorem 1  Let 
{(

X(1)
n,s
,X(2)

n,s

)
, 1 ≤ s ≤ n

}
 be a centered bivariate stationary Gauss-

ian triangular array with �[X(1)
n,s
] = �[X(2)

n,s
] = 0 , Var[X(1)

n,s
] = Var[X(2)

n,s
] = 1 . Suppose 

that the correlation functions �
(
X
(i)

n,k
X
(j)

n,�

)
= �ij(|k − �|, n) , i, j = 1, 2 , satisfy (2), 

and there exist positive integers rn , �n such that

N(1)
n

=
∑qn

k=1
I(∪s∈Qk

X(1)
n,s

> un(x1)),

N(2)
n

=
∑qn

k=1
I(∪s∈Qk

X(2)
n,s

> un(x2)),

(7)
�n

rn
→ 0 ,

rn

n
→ 0,
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and

Then the limiting generating function of N(1)
n

 and N(2)
n

 is

for 0 < 𝜔 < 1 and 0 < z < 1 , where �1(x1, x2) , �2(x1, x2) and � are given in (4), (5) 
and (6), respectively.

Corollary 1  Let {X(1)
n,s
, 1 ≤ s ≤ n} be a centered stationary Gaussian triangular array 

with variance one and define the cluster point process

for any real Borel set B on (0, 1]. Under the conditions of Theorem 1, the cluster 
point process N(1)

n
(B) converges to N in distribution, where N is a Poisson process 

with intensity �e−x1.

Remark 1  Hsing et al. (1996) proved that if (2) holds, then the conditions (7), (8) 
and (9) are satisfied if

and

Next, we study the relation between the point process of clusters and the partial 
sum. The point process of clusters formed by the bivariate stationary Gaussian trian-
gular array 

{(
X(1)
n,s
,X(2)

n,s

)
, 1 ≤ s ≤ n

}
 is defined by

for � ∈ R2 , � = ∪2
i=1

(Bi × {i}) where Bi are Borel sets on (0, 1].

(8)limn→∞

n2

rn

∑2

i,j=1

∑n

s=�n

|�ij(s, n)| exp
{
−
2 log n − log log n

1 + |�ij(s, n)|

}
= 0,

(9)limm→∞ lim supn→∞

∑n

i,j=1

∑rn

s=m
n
−

1−�ij (s,n)

1+�ij (s,n)
) (log n)−�ij(s,n)∕(1+�ij(s,n))

√
1 − �2

ij
(s, n)

= 0.

(10)

limn→∞ �

(
�N

(1)
n zN

(2)
n

)
= exp {−(1 − �)�e−x1 − (1 − z)�e−x2 + (1 − �)(1 − z)

[
�e−x1 − �1(x1, x2)e

−x1 + �e−x2 − �2(x1, x2)e
−x2

]}
,

N(1)
n
(B) =

∑qn

k=1
I
{
∪s∈Qk

,X(1)
n,s

> un(x1),
s

n
∈ B

}
,

(11)limn→∞

∑
1≤i,j≤2 max

�n≤s≤n
|||�ij(s, n)

||| log n = 0 for some �n = o(n)

(12)limm→∞ lim supn→∞

∑2

i,j=1

∑�n

s=m
n
−

1−�ij(s,n)

1+�ij (s,n)
(log n)−�ij(s,n)∕(1+�ij(s,n))

√
1 − �2

ij
(s, n)

= 0.

�n(�, �) =
∑2

i=1

∑qn

k=1
I
{
Us∈Qk

X(i)
n,s

> un(xi),
s

n
∈ Bi

}
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Theorem 2  Let 
{
(X(1)

n,s
,X(2)

n,s
), 1 ≤ s ≤ n

}
 be a centered bivariate stationary Gaussian 

triangular array with variance one and �
�
= (Sn1, Sn2) with Sni =

∑n

s=1
X(i)
n,s

 , i = 1, 2 . 
Assume that the correlation �ij(|s − �|, n) = �

(
X(i)
n,s
X
(j)

n,�

)
 satisfies

for i, j = 1, 2 . Then �n(�, �) and �
�
 are asymptotically independent.

Based on the asymptotic distribution in the Corollary 1, we can easily obtain the 
asymptotic joint behavior of the extremes and partial sums. For example, the follow-
ing corollary is an immediate consequence of the Corollary 1 and Theorem 2.

Corollary 2  Let {X(1)
n,s
, 1 ≤ s ≤ n} be a centered stationary Gaussian triangular 

array with variance one and Mn1 = max{X
(1)

n,1
,X

(1)

n,2
,… ,X(1)

n,n
} , Sn1 =

∑n

s=1
X(1)
n,s

 , 
�2
n
= Var(Sn1) . Under the conditions of Theorem 1 and Theorem 2, we have

where � is given in (6) and Φ(y) is the cumulative distribution function of a standard 
normal random variable.

3 � An illustrative example

In this section, a numeric example is provided to illustrate our results. We compare 
the distributions of the point process of clusters N(1)

n
(B) with the Poisson process N 

due to Corollary 1, and the empirical distribution with the asymptotic distribution of 
the joint probability of maximum and partial sum based on Corollary 2.

Similar to Hsing et al. (1996), for each n let 
{
Zi
}n

i=0
 be independent and identi-

cally distributed standard normal random variables, �0,n = Z0 , and for 1 ≤ i ≤ n,

Then, the stationary AR(1) process {�i,n, 1 ≤ i ≤ n} forms a Gaussian triangular 
array with mean zero and variance one. Let

Then, the correlation function of {�i,n, 1 ≤ i ≤ n} is �j,n = �
(
�0,n�j,n

)
= (1 − �∕ log n)j 

and (2) holds with �ii(j) = �j = j� . Let �n = (log n)(log log n)2 , then conditions (11) 
and (12) are satisfied. Hence, Corollary 1 holds with rn =

√
n�n, as the conditions 

(13)limn→∞

log n

n2

∑n

s=1

∑n

�=1
|�ij(|s − �|, n)| = 0,

limn→∞ ℙ

{
Mn1 ≤ un(x1),

Sn1

�n
≤ y

}
= exp(−�e−x1 )Φ(y),

�i,n = dn�i−1,n +

√
1 − d2

n
Zi.

(14)dn = 1 −
�

log n
for some � ∈ (0,∞).
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in Remark 1 are satisfied. Now, we present some numerical analysis regarding the 
stationary process. Let d = 0.7 , then �̃ = (1 − d) log n and

Here, W (1)

s,1
 in (6) is replaced by s−1∕2

∑s

i=1
Zi , where E denotes a standard exponen-

tial random variable independent of Zi and 
{
Zi
}n

i=1
 are independent and identically 

distributed standard normal random variables as before. The distributions of the 
point process of clusters N(1)

n
(B) and the Poisson process N for different sample size 

n when x1 = 0 are displayed in Fig. 2. From the figure, we can see that distribution 
of N(1)

n
(B) approximates that of N better as n becomes larger.

To show that the point process of clusters N(1)
n
(B) and the partial sum Sn1 are 

asymptotically independent in this example, it is sufficient to show (13) because of 
Theorem 2. From the definition of �n = (log n)(log log n)2 and (11), we have

which implies the condition (13).

�̃ = ℙ

(
E∕2 +

√
�̃
∑s

i=1
Zi ≤ s�̃ for all s ≥ 1

)
.

log n

n2

∑n

s=1

∑n

�=1
|�s−�,n|

≤ 2

n

∑n

l=0
|�l,n| log n =

2

n

∑�n

l=0
|�l,n| log n +

2

n

∑n

l=�n+1
|�l,n| log n

≤ 2 log n

n

(
log n(log log n)2 + 1

)
+

2

n

∑n

l=�n+1
|�l,n| log n

→ 0 as n → ∞,

Fig. 2   Solid lines are for the distributions of N(1)
n
(B) based on the observed frequencies; dotted lines are 

for the distribution of the Poisson process N; n represents different sample sizes
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Thus, the point process of clusters N(1)
n
(B) and the partial sum Sn1 are indeed asymp-

totically independent. Combining with Theorem 1, the maximum Mn1 and the partial 
sum Sn1 are also asymptotically independent and their asymptotic joint distribution 
is provided by Corollary 2. We calculate the joint empirical distribution of Mn1 and 
Sn1 using 1000 groups of generated data as well as their asymptotic limiting function 
exp(−�̃)Φ(y) ( � = �̃ and x1 = 0).

Displayed in Fig. 3 are the empirical and asymptotic distributions based on different 
lengths of sequences. From the figure, we can see that the differences in the empirical 
distribution (red lines) and the asymptotic distributions (black lines) become smaller as 
lengths of the sequences n become larger. This confirms our asymptotic results, Theo-
rem 2 and Corollary 2.

4 � Auxiliary results

Let

and

𝜉
k
=

{
1 ; when max{X(1)

n,s
, s ∈ U

k
} > u

n
(x1);

0; otherwise,

𝜂
k
=

{
1 ; when max{X(2)

n,s
, s ∈ U

k
} > u

n
(x2);

0; otherwise,

Fig. 3   Red lines are for the distributions calculated based on the generated data; black lines are the theo-
retical asymptotic distributions by Theorem 2.2; n represents different sequence lengths
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where U
k
= {(k − 1)(r

n
+ �

n
) + 1, (k − 1)(r

n
+ �

n
) + 2,… , (k − 1)(r

n
+ �

n
) + r

n
} 

and k = 1, 2,… , qn . Note that the length of Uk is rn . For simplicity, we use the same 
C to denote positive constants that may take different values at different places.

Lemma 1  If yk, y′k are variables assuming only the values 0 and 1 for k = 1, 2… , qn , 
and the condition (8) holds, we have

Proof  It follows from Lemma 8.1 of Berman (1971) that we need only to prove that 
(15) holds when yk = y�

k
= 0, k = 1, 2,… , qn . By the Normal Comparison Lemma 

(see e.g. Leadbetter, 1983), we have

Since

it follows from (8) that (16) can be bounded by

This proves (15). 	� ◻

For notational simplicity we define

(15)

limn→∞

|||||
ℙ
(
�k = yk, �k = y�

k
, k = 1, 2,… , qn

)
−

qn∏

k=1

ℙ(�k = yk, �k = y�
k
)
|||||
= 0.

(16)

|||||
ℙ
(
�k = 0, �k = 0, k = 1, 2,… , qn

)
−

qn∏

k=1

ℙ(�k = 0, �k = 0)
|||||

=
|||||
ℙ

(
max
s∈Uk

X(1)
n,s

≤ un(x1), max
s∈Uk

X(2)
n,s

≤ un(x2), k = 1, 2,… , qn

)

−

qn∏

k=1

ℙ

(
max
s∈Uk

X(1)
n,s

≤ un(x1), max
s∈Uk

X(2)
n,s

≤ un(x2)

)|||||

≤ C
∑2

i,j=1

∑
s∈U1,|t−s|≥𝓁n

|�ij(|t − s|, n)| exp
(
−

u2
n
(x1) + u2

n
(x2)

2(1 + |�ij(|t − s|, n)|)

)

+ C
∑2

i,j=1

∑
s∈U2,|t−s|≥𝓁n

|�ij(|t − s|, n)| exp
(
−

u2
n
(x1) + u2

n
(x2)

2(1 + |�ij(|t − s|, n)|)

)

+⋯ + C
∑2

i,j=1

∑
s∈Uqn

,|t−s|≥𝓁n

|�ij(|t − s|, n)| exp
(
−

u2
n
(x1) + u2

n
(x2)

2(1 + |�ij(|t − s|, n)|)

)
.

u2
n
(x1) + u2

n
(x2)

2
= 2 log n − log(log n) + O(1),

Crnqn

∑2

i,j=1

∑n

s=�n

|�ij(s, n)| exp
(
−
2 log n − log log n

1 + |�ij(s, n)|

)
→ 0 as n → ∞.

M
(i)

k,�
= max

k<s≤� X
(i)
n,s
, M

(i)

�
= M

(i)

0,�
= max

1≤s≤� X
(i)
n,s
,
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for i = 1, 2 , k = 1, 2,… ,� − 1 and � = 1, 2,… , n.

Lemma 2  Under the conditions of Theorem  1, for any bounded index set 
K ⊆ {2, 3,… , } , we have

and

where �1(x1, x2) and �2(x1, x2) are given in (4) and (5), respectively.

Proof  Our arguments are similar to those used in the proof of Lemma 3.3 in 
Hashorva et al. (2015). First, we have

Let 
{(

Y
(1)

n,s,2
, Y

(2)

n,s,2

)
, s ∈ {1} ∪ K

}
 be a Gaussian triangular array with the same dis-

tribution as the conditional distribution of 
{(

X(1)
n,s
,X(2)

n,s

)
, s ∈ {1} ∪ K

}
 given 

X
(2)

n,1
= un(x2) +

z

un(x2)
 . Then,

and

for i, j = 1, 2 and s,� ∈ {1} ∪ K . Since

for i, j = 1, 2 and s,� ∈ {1} ∪ K if i ≠ 2 and j ≠ 2 , s,� ∈ K if i = 2 or j = 2 . Then, 
using u2

n
(x) ∼ 2 log n for x ∈ R , we have

(17)limn→∞ ℙ

(
X(1)
n,s

≤ un(x1),X
(2)
n,s

≤ un(x2), s ∈ K||X
(1)

n,1
> un(x1)

)
= 𝜗1(x1, x2),

(18)

limn→∞ ℙ

(
X
(1)

n,1
≤ un(x1),X

(1)
n,s

≤ un(x1),X
(2)
n,s

≤ un(x2), s ∈ K||X
(2)

n,1
> un(x2)

)

= 𝜗2(x1, x2),

(19)

ℙ

(
X
(1)

n,1
≤ un(x1),X

(1)
n,s

≤ un(x1),X
(2)
n,s

≤ un(x2), s ∈ K||X
(2)

n,1
> un(x2)

)

∼ �
∞

0

ℙ

(
X
(1)

n,1
≤ un(x1),X

(1)
n,s

≤ un(x1),X
(2)
n,s

≤ un(x2), s ∈ K||X
(2)

n,1
= un(x2) +

z

un(x2)

)

× exp

(
−z −

z2

2u2
n
(x2)

)
dz.

�(Y
(i)

n,s,2
) = �i2(s − 1, n)

(
un(x2) +

z

un(x2)

)
,

Cov(Y
(i)

n,s,2
, Y

(j)

n,�,2
) = �ij(|s − �|, n) − �i2(s − 1, n)�j2(� − 1, n),

�ij(|s − �|, n) − �i2(s − 1, n)�j2(� − 1, n)
√

(1 − �2
i2
(s − 1, n))(1 − �2

j2
(� − 1, n))

→

�i2(s − 1) + �j2(� − 1) − �ij(|s − �|)

2
√

�i2(s − 1)�j2(� − 1)
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Now (18) follows immediately from (19) and (20). By similar arguments, (17) can 
be established. 	�  ◻

Lemma 3  Under the conditions of Theorem 1, we have

and

where �1(x1, x2) and �2(x1, x2) are given in (4) and (5), respectively.

Proof  To prove (21) and (22), it suffices to show that for each j ∈ {1, 2}

for i = 1, 2 . Using similar arguments as those used in Lemma 2, we have

Noting that condition (9) implies

(20)

limn→∞ ℙ

�
Y
(1)

n,1,2
≤ un(x1), Y

(1)

n,s,2
≤ un(x1), Y

(2)

n,s,2
≤ un(x2), s ∈ K

�

= ℙ

�
z

2
+
√
𝛿12(0)W

(1)

1,2
≤ 𝛿12(0) +

x1 − x2

2
, 𝛿12(0) < ∞,

z

2
+
√
𝛿12(s − 1)W

(1)

s,2
≤ 𝛿12(s − 1) +

x1 − x2

2
, 𝛿12(s − 1) < ∞,

z

2
+
√
𝛿22(s − 1)W

(2)

s,2
≤ 𝛿22(s − 1), 𝛿22(s − 1) < ∞ for all s ∈ K

�
.

(21)limn→∞ ℙ

(
M

(1)

1,rn
≤ un(x1),M

(2)

1,rn
≤ un(x2)

||X
(1)

n,1
> un(x1)

)
= 𝜗1(x1, x2),

(22)limn→∞ ℙ

(
M(1)

rn
≤ un(x1),M

(2)

1,rn
≤ un(x2)

||X
(2)

n,1
> un(x2)

)
= 𝜗2(x1, x2),

(23)limm→∞ lim supn→∞ ℙ

(
rn⋃

s=m

X(j)
n,s

> un(xj)
||X

(i)

n,1
> un(xi)

)
= 0,

ℙ

(
rn⋃

s=m

X(j)
n,s

> un(xj)
||X

(i)

n,1
> un(xi)

)

∼ ∫
∞

0

ℙ

(
rn⋃

s=m

𝜌ij(s − 1, n)

(
un(xi) +

z

un(xi)

)

+
Y
(j)

n,s,i
− 𝜌ij(s − 1, n)

(
un(xi) +

z

un(xi)

)

√
1 − 𝜌2

ij
(s − 1, n)

×
√

1 − 𝜌2
ij
(s − 1, n) > un(xj)

)
exp

(
−z −

z2

2u2
n
(xi)

)
dz.

(24)limm→∞ lim supn→∞ max
m≤s≤rn

(
(1 − �ij(s − 1, n)) log n

)−1
= 0.
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Thus, for large enough n and s ∈ [m, rn] , we have

By Mill’s inequality we have

Since, for large enough n,

it follows that the left side of (25) can be bounded by

Thus, for each fixes z0 > 0 we have

Hence, (23) holds. By Lemma 2, the claim of this lemma follows. 	�  ◻

Lemma 4  Under conditions of Theorem 1, we have

where �1(x1, x2) , �2(x1, x2) and � are given in (4), (5) and (6), respectively.

Proof  Note that

𝜃ns ∶=
un(xj) − un(xi)𝜌ij(s − 1, n)

√
1 − 𝜌2

ij
(s − 1, n)

−
z𝜌ij(s − 1, n)

un(xi)
√

1 − 𝜌2
ij
(s − 1, n)

> 0.

(25)ℙ

⎛
⎜
⎜
⎜
⎝

Y
(j)

n,s,j
− 𝜌ij(s − 1, n)

�
un(xi) +

z

un(xi)

�

�
1 − 𝜌2

ij
(s − 1, n)

> 𝜃ns

⎞
⎟
⎟
⎟
⎠

≤ 1

𝜃ns

√
2𝜋

exp
�
−
1

2
𝜃2
ns

�
.

�2
ns
≥ C +

1 − �ij(s − 1, n)

1 + �ij(s − 1, n)
b2
n
≥ C +

1 − �ij(s − 1, n)

1 + �ij(s − 1, n)
(2 log n − log(log n)),

(26)C
1

√
1 − �2

ij
(s − 1)

n
−

1−�ij (s−1,n)

1+�ij (s−1,n) (log n)
−

�ij (s−1,n)

1+�ij (s−1,n) .

limm→∞ lim supn→∞ ∫
z0

0

ℙ

(
rn⋃

s=m

𝜌ij(s − 1, n)

(
un(xi) +

z

un(xi)

)

+
Y
(j)

n,s,i
− 𝜌ij(s − 1, n)

(
un(xi) +

z

un(xi)

)

√
1 − 𝜌2

ij
(s − 1, n)

×
√

1 − 𝜌2
ij
(s − 1, n) > un(xj)

)
exp

(
−z −

z2

2u2
n
(xi)

)
dz = 0.

lim supn→∞ qnℙ(�1 = �1 = 1) = �e−x1 − �1(x1, x2)e
−x1 + �e−x2 − �2(x1, x2)e

−x2 ,
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By Lemma 3, we have

and

By Hsing et al. (1996) and O’Brien (1987),

Combing (27–30), we can get the assertion of this lemma. 	�  ◻

5 � Proofs

5.1 � Proof of Theorem 1

By the fact that limn→∞ n(1 − Φ(un(x))) = e−x and (7), we have

(27)

ℙ(𝜉1 = 𝜂1 = 1) = ℙ

(
M(1)

rn
> un(x1),M

(2)
rn

> un(x2)
)

= ℙ

(
M(2)

rn
> un(x2)

)
− ℙ

(
M(2)

rn
> un(x2),M

(1)
rn

≤ un(x1)
)

= ℙ

(
M(2)

rn
> un(x2)

)

−
∑rn

k=1
ℙ

(
X
(2)

n,k
> un(x2),M

(2)

k,rn
≤ un(x2),M

(1)

k−1,rn
≤ un(x1)

)

+
∑rn

k=1
ℙ

(
X
(2)

n,k
> un(x2),M

(2)

k,rn
≤ un(x2),M

(1)

k−1,rn
≤ un(x1),M

(1)

k−1
> un(x1)

)

= ℙ

(
M(2)

rn
> un(x2)

)

−
∑rn

k=1
ℙ

(
X
(2)

n,k
> un(x2),M

(2)

k,rn
≤ un(x2),M

(1)

k−1,rn
≤ un(x1)

)

+
∑rn−1

�=1
ℙ

(
M

(2)

�,rn
> un(x2),X

(1)

n,�
> un(x1),M

(1)

�,rn
≤ un(x1)

)
.

(28)ℙ

(
X
(2)

n,1
> un(x2),M

(2)

1,rn
≤ un(x2),M

(1)
rn

≤ un(x1)
)
∼

1

n
𝜗2(x1, x2)e

−x2 ,

(29)

ℙ

(
M

(2)

1,rn
> un(x2),X

(1)

n,1
> un(x1),M

(1)

1,rn
≤ un(x1)

)

= ℙ

(
X
(1)

n,1
> un(x1),M

(1)

1,rn
≤ un(x1)

)

− ℙ

(
M

(1)

1,rn
≤ un(x1),M

(2)

1,rn
≤ un(x2),X

(1)
n1

> un(x2)
)

∼
1

n
𝜗e−x1 −

1

n
𝜗1(x1, x2)e

−x1 .

(30)lim
n→∞

qnℙ
(
M(2)

rn
> un(x2)

)
= 𝜗e−x2 .
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as n → ∞ , where V
k
=
{
(k − 1)(r

n
+ �

n
) + r

n
+ 1, (k − 1)(r

n
+ �

n
) + r

n
+ 2,… , k(r

n
+ �

n
)
}
 

and k = 1, 2,… , qn . Since

It follows from Lemma 4 and (30) that

Therefore, by combing Lemma 1 and (31)-(32), the assertion of this theorem can be 
obtained. 	�  ◻

5.2 � Proof of Theorem 2

The proof is similar to those of McCormick and Qi (2000) and Hu et al. (2009). Under 
the condition (13), we can find a sequence of integer m(n) satisfying

and

for i, j = 1, 2 . Recall that In = {1, 2,… , n} and denote

Let W+
ni
=
∑n

s=1
�+
ni
(s) and W−

ni
=
∑n

s=1
�−
ni
(s) , where �+

ni
(s) and �−

ni
(s) are the positive 

and negative part of �ni(s) , respectively. Define

(31)

𝔼
���𝜔

N
(1)
n zN

(2)
n − 𝜔

∑qn
k=1

𝜉k z
∑qn

k=1
𝜂k ���

≤ ℙ

�
∪s∈Vk

X(1)
n,s

> un(x1), k = 1, 2,… , qn

�

+ ℙ

�
∪s∈Vk

X(2)
n,s

> un(x2), k = 1, 2,… , qn

�

≤ �nqn
�
(1 − Φ(un(x1)) + (1 − Φ(un(x2))

�

≤ �n

rn + �n

�
n(1 − Φ(un(x1)) + n(1 − Φ(un(x2))

�
→ 0

𝔼(��1z�1 ) = ℙ(�1 = �1 = 0) + �ℙ(�1 = 1, �1 = 0)

+ zℙ(�1 = 0, �1 = 1) + �zℙ(�1 = �1 = 1)

= 1 − (1 − �)ℙ(�1 = 1) − (1 − z)ℙ(�1 = 1) + (1 − �)(1 − z)ℙ(�1 = �1 = 1).

(32)

limn→∞ �
(
��1z�1

)qn = exp {−(1 − �)�e−x1 − (1 − z)�e−x2 + (1 − �)(1 − z)
[
�e−x1 − �1(x1, x2)e

−x1 + �e−x2 − �2(x1, x2)e
−x2

]}
.

(33)limn→∞ m(n) = ∞,

(34)limn→∞

m(n) log n

n2

∑n

s=1

∑n

�=1
|�ij(|s − �|, n)| = 0,

�ni(s) = �

(
X(i)
n,s
Sn1

)
=
∑n

�=1
�1i(|s − �|, n) for s ∈ In, i = 1, 2.
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and S+
ni
=
∑

�ni(s)≥0 X
(i)
n,s

 , S−
ni
=
∑

𝛿ni(s)<0
X(i)
n,s

 for i = 1, 2.
Next, we construct an array {Y (i)

n,s
, s ∈ Jn, n ≥ 1} that is independent of 

Sn1 =
∑n

s=1
X(1)
n,s

 by

for i = 1, 2.
Note that

It follows from (13) that

which implies 
√
m(n) log n

n
S±
ni
→ 0 in probability.

Let ��
ij
(s,�, n) = �

(
Y (i)
n,s
Y
(j)

n,�

)
 for i, j = 1, 2 and s,� ∈ Jn . It follows from James 

et al. (2007) that

which yields

Similarly, we construct a new array {Z(i)
n,s
} that is independent of Sn2 =

∑n

s=1
X(2)
n,s

 
which maintains that independent of Sn1 based on Y (i)

n,s
 , s ∈ Jn, i = 1, 2.

Define

Let V+
ni
=
∑

s∈Jn
�+
ni
(s) and V−

ni
=
∑

s∈Jn
�−
ni
(s) , where �+

ni
(s) and �−

ni
(s) are the positive 

and negative parts of �ni(s) , respectively.
Similarly, put

Jn =

{
s ∶ 𝛿ni(s) ≥ 0,

𝛿ni(s)

W+
ni

≤ logm(n)

n

}

∪

{
s ∶ 𝛿ni(s) < 0,

𝛿ni(s)

W−
ni

≤ logm(n)

n

}
i = 1, 2,

Y (i)
n,s

=

⎧
⎪
⎨
⎪
⎩

X(i)
n,s

−
𝛿ni(s)

W+
ni

S+
ni
; if 𝛿ni(s) ≥ 0

X(i)
n,s

−
𝛿ni(s)

W−
ni

S−
ni
; if 𝛿ni(s) < 0

Var(S±
ni
) ≤ ∑n

s=1

∑n

�=1
||�ii(|s − �|, n)||.

limn→∞

m(n) log n

n2
Var(S±

ni
) = 0,

��
ij
(s,�, n) = �ij(|s − �|, n) + o

(
log2 m(n)

m(n) log n

)
,

(35)limn→∞

m(n) log n

n2 log2 m(n)

∑n

s=1

∑n

�=1
|��

ij
(s,�, n)| = 0, i, j = 1, 2.

�ni(s) = �(Y (i)
n,s
Sn2), s ∈ Jn, i = 1, 2.
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and let T+
ni
=
∑

s∈Jn;�ni(s)≥0 Y
(i)
n,s

 and T−
ni
=
∑

s∈Jn;𝜎ni(s)<0
Y (i)
n,s

 for i = 1, 2.

For s ∈ Rn and n ≥ 1 , let

Then, we have �(Z(i)
n,s
Sn2) = 0 , which implies {Z(i)

n,s
, s ∈ Rn, n ≥ 1} , i = 1, 2 is inde-

pendent of �
�
= (Sn1, Sn2) . By (35), we have

which implies

Next, define

and

for � ∈ R2 , � = ∪2
i=1

(Bi × {i}) , where Bi are Borel sets on (0, 1].
It suffices to prove that

Note that

Rn =

{
s ∈ Jn;𝜎ni(s) ≥ 0,

𝜎ni(s)

V+
ni

≤ logm(n)

n

}

∪

{
s ∈ Jn;𝜎ni(s) < 0,

𝜎ni(s)

V−
ni

≤ logm(n)

n

}

Z(i)
n,s

=

⎧
⎪
⎨
⎪
⎩

Y (i)
n,s

−
𝛿ni(s)

V+
ni

T+
ni
; if 𝜎ni(s) ≥ 0,

Y (i)
n,s

−
𝛿ni(s)

V−
ni

T−
ni
; if 𝜎ni(s) < 0.

limn→∞

m(n) log n

n2 log2 m(n)
Var(T±

ni
) = 0,

√
m(n) log n

n logm(n)
T±
ni

P
⟶0.

�
∗
n
(�, �) =

∑2

i=1

∑qn

k=1
I
(
∪s∈Qk

Y (i)
n,s

> un(xi), s ∈ Jn,
s

n
∈ Bi

)
,

�
�

n
(�, �) =

∑2

i=1

∑qn

k=1
I
(
∪s∈Qk

Z(i)
n,s

> un(xi), s ∈ Rn,
s

n
∈ Bi

)
,

�n(�, �) − �
�

n
(�, �) = op(1).
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By the definition of Jn and Rn , we have

and

where ♯(⋅) denotes the cardinality of any set.
By the fact n(1 − Φ(un(x))) → e−x as n → ∞ , we have

Let �n = maxs∈Jn

{||||
�ni(s)

W+
ni

||||
,
||||
�ni(s)

W−
ni

||||

}(|||S
+
ni

||| +
|||S

−
ni

|||
)
 , then by the Cauchy-Schwarz ine-

quality and (13), we have

as n → ∞ . So ℙ(an𝜁n > 𝜀n) ≤ 𝜀n as n → ∞ by Chebyshev’s inequality, which implies

and by Hu et al. (2009), we have

�n(�, �) − �
�

n
(�, �) = (�n(�, �) − �

∗
n
(�, �)) + (�∗

n
(�, �) − �

�

n
(�, �))

=
∑2

i=1

∑qn

k=1
I
(
∪s∈Qk

X(i)
n,s

> un(xi), s ∉ Jn

)

+
∑2

i=1

∑qn

k=1

[
I
(
∪s∈Qk

X(i)
n,s

> un(xi), s ∈ Jn

)

−I
(
∪s∈Qk

Y (i)
n,s

> un(xi), s ∈ Jn

)]

+
∑2

i=1

∑qn

k=1
I
(
∪s∈Qk

Y (i)
n,s

> un(xi), s ∉ Rn, s ∈ Jn

)

+
∑2

i=1

∑qn

k=1

[
I
(
∪s∈Qk

Y (i)
n,s

> un(xi), s ∈ Rn

)

−I
(
∪s∈Qk

Z(i)
n,s

> un(xi), s ∈ Rn

)]

=∶
∑2

i=1

(
A
(i)

1
+ A

(i)

2
+ A

(i)

3
+ A

(i)

4

)
.

♯(In ⧵ Jn) ≤ 2n

logm(n)
, n −

2n

logm(n)
≤ ♯(Jn) ≤ n,

♯(In ⧵ Rn) ≤ 4n

logm(n)
, n −

4n

logm(n)
≤ ♯(Rn) ≤ n,

�(A
(i)

1
) ≤ 2n

logm(n)

(
1 − Φ(un(x))

)
→ 0 as n → ∞.

(36)�2
n
∶= an�(�n) ≤

√
2 log n

2 logm(n)

n

��n

k=1

�n

�=1
�ii(�k − ��, n) → 0

𝔼
|||A

(i)

2
I
{
𝜁n ≤ a−1

n
𝜀n
}|||

≤ ∑
s∈Jn

[
ℙ

(
X(i)
n,s

> un(xi − 𝜀n)
)
− ℙ

(
X(i)
n,s

> un(xi + 𝜀n)
)]

→ 0 as n → ∞.

max
1≤i≤2max

s∈Jn

||1 − ��
ii
(s, s, n)|| = o

(
1

log n

)
,
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which implies

Similarly, let �n = maxs∈Rn

{||||
�ni(s)

V+
ni

||||
,
||||
�ni(s)

V−
ni

||||

}(|||T
+
ni

||| +
|||T

−
ni

|||
)
 , and by similar argu-

ments as those used in (36), let

we have

Therefore,

as n → ∞ . Hence, for an arbitrary 𝜀 > 0 , we have

This completes the proof of Theorem 2. 	�  ◻

5.3 � Proof of Corollary 1

Under the conditions of Theorem 1, by (10) and let x2 → ∞ , we have

which implies that the number of clusters of un(x1) by 
{
X(1)
n,s
, 1 ≤ s ≤ n

}
 in the set of 

In have an asymptotic Poisson distribution with intensity �e−x1 . Hence, the point pro-
cess N(1)

n
(B) converges weakly to a Poisson process with intensity �e−x1 . 	�  ◻
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𝔼(A
(i)

3
) ≤ 4n

logm(n)
ℙ

(
Y (i)
n,s

> un(xi)
)
→ 0 as n → ∞.

(��
n
)2 ∶= an�(�n) ≤

√
2 log n

2 logm(n)

n

��n

k=1

�n

�=1
�ii(�k − ��, n) → 0 as n → ∞,

ℙ(an𝜂n > 𝜀�
n
) → 0 as n → ∞.

𝔼
|||A

(i)

4
I
(
{𝜂n ≤ a−1

n
𝜀�
n
} ∩ {𝜁n ≤ a−1

n
𝜀n}

)|||
≤ ∑

s∈Rn

[
ℙ

(
X(i)
n,s

> un(xi − 𝜀n − 𝜀�
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)
− ℙ

(
X(i)
n,s

> un(xi + 𝜀n + 𝜀�
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)
)]

→ 0

ℙ

(|||�n(�, �) − �
�

n
(�, �)

||| > 𝜀

)

≤ 𝜀n + 𝜀�
n

+
2

𝜀

[
𝔼

(
A
(i)

1
+
|||A

(i)

2

|||I(𝜁n ≤ a−1
n
𝜀n)

+A
(i)

3
+
|||A

(i)

4

|||I
(
{𝜂n ≤ a−1

n
𝜀�
n
} ∩ {𝜁n ≤ a−1

n
𝜀n}
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→ 0.

limn→∞ �

(
�N

(1)
n

)
= exp {−(1 − �)�e−x1},
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