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Abstract
There has always been a close link between statistical applications and the devel-
opment of new statistical theory and methods. Even straightforward applications of 
standard methods can give rise to theoretical challenges leading to new statistical 
ideas. In my lecture, I will briefly review a few of the statistical developments in my 
own published papers and describe the applications which gave rise to them. I will 
then outline some current work on publication bias, one of the outstanding problems 
in the interpretation of literature reviews, particularly in the medical sciences.

Keywords Shrinkage of predictions · Selectivity bias · Model sensitivity · 
Publication bias

1 Introduction

Most of the traditional statistical methods that we use were originally developed 
in response to the needs of particular applications. For example, whilst the great 
English statistician R. A. Fisher was working at Rothamsted Experimental Station 
(an agricultural research institute near London), his pioneering papers on the design 
of experiments, randomization and the analysis of variance provided the statistical 
foundation for agricultural field trials, now widely used across the experimental sci-
ences. Fisher was a geneticist as well as a statistician, and his important paper on 
statistical inference in 1920 (exactly 100 years ago this year) established the prin-
ciples of likelihood and estimation, initially for use in genetics, but now accepted 
across almost the whole of science.
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Of course, papers published in our statistical journals nowadays tend to be much 
more specialized and technical, whereas the widespread availability of statistical 
software has meant that research scientists working in application areas can usually 
carry out their own statistical analyses and publish their work in their own subject-
specific journals. However, I think there is still a need for mathematically minded 
statisticians to collaborate with scientists using statistical methods in their own dif-
ferent application areas, when we will often find that even straightforward applica-
tions of standard methods can give rise to statistical challenges which, hopefully, we 
can then work on in our own research papers.

In my lecture, I would like to illustrate this theme by giving a very brief introduc-
tion to three of my own papers published in JRSSB (the methodological series of the 
Journal of the Royal Statistical Society) and describe the applications which gave 
rise to them. In the final part of my lecture, I will introduce my current research in 
meta-analysis, again motivated by a rather challenging application. Each of the four 
sections of this paper is divided into two sub-sections: the application and the result-
ing paper.

2  Shrinkage of predictions

2.1  Applications

Example 1 During a sabbatical visit to the Naval Postgraduate School in California, 
I worked on a regression model used by the US Navy for predicting the development 
costs of new aircraft (Noah et al., 1973). I had access to a vector x of design char-
acteristics for each of 31 previous aircraft and the final costs y of developing those 
aircraft. To study the difference between retrospective fit and validation fit, I divided 
the sample into two random subsets, 8 in the ‘construction sample’ and the remain-
ing 23 in the ‘validation sample’. Fitting a linear regression to the construction sam-
ple gave the fitted regression

The 8 points (y, ŷ) are marked � in Fig 1. As expected, these points are quite close to 
the line y = ŷ shown as the solid line on the plot.

Taking the same fitted regression coefficients �̂� and 𝛽  , I then calculated the pre-
dicted values of y for the other 23 aircraft. This gave the values (y, ŷ) for the vali-
dation sample marked o on the plot. The solid line now gives a very bad fit to the 
validation sample, and a straight line fitted to these points, shown as the dotted line, 
clearly has a very much lower slope than the solid line. Evidently, to get a good fit 
to the validation sample, we would have to shrink all of the predictions towards the 
mean. If we judge the worth of a prediction method by its ability to predict new 
cases, then the original regression is too optimistic, systematically over-estimating 
its ability to differentiate between cases with lower and higher values of y.

ŷ = �̂� + 𝛽Tx.
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Example 2 Shrinkage of predictions is also shown in a second application (Copas 
and Whiteley, 1976), this time a logistic regression rather than a linear regression. 
This is one of several criminological applications I worked on through an informal 
collaboration with the Research Unit of the UK Ministry of Justice. One of the aims 
of the Research Unit is to devise ways of evaluating the effectiveness of the various 
criminal penalties which the courts in the UK can give to people who have been 
found guilty of criminal offences. Depending on the severity of the offence, these 
can include a prison sentence, a fine, a deferred sentence, supervision under proba-
tion, plus a variety of community penalties. Given that randomized controlled tri-
als are not possible in this context, an alternative approach is to rely on prediction 
studies for specific penalties, using the traditional outcome measure of the presence/
absence of further criminal convictions within a fixed period of follow-up.

The second example is a prediction study of convicted criminal offend-
ers whose offending has been related to a specific mental illness (psychopathy) 
and who have been referred to a specialized psychiatric hospital in London. The 
binary outcome S/F is defined as the absence/presence of further criminal convic-
tions within a three-year follow-up after leaving hospital, and the input variables 
x are factors known about these patients at the time of their original conviction. 
The logistic analysis was based on a sample size of 91 with p = 6 covariates.

The simplest way of describing the results of a logistic predictor is to divide 
the cases into risk groups according to the values of ẑ , the fitted values of the log-
its z = logit P(S|x) . The plot in Fig. 2 uses five risk groups, based on class inter-
vals of ẑ centred on −2,−1, 0, 1, 2 . For example, the first risk group on the left 
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Fig. 1  Example 1. Actual values of y plotted against predicted values ŷ
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gives a fitted success probability of only 11% , compared to the group on the right 
with a fitted success probability of 88% . The points marked x in Fig. 2 show, for 
each risk group, the values of the predicted logit ẑ and the empirical logit defined 
as the sample logit of the observed proportion of successful outcomes within that 
group. These points are satisfactorily close to the solid diagonal line.

After fitting this logistic model, data from a second sample of patients became 
available, of similar size to the original sample. To test the validation fit of the fit-
ted model, I used the same fitted logistic regression to predict the values of ẑ and 
the risk groups for the cases in the new sample. The points marked o in Fig. 2 show 
the corresponding values of the predicted and empirical logits for the new sample. 
As in the first example, the solid line gives a very poor fit to the validation points. 
Whilst the predicted probability of success for the risk group on the right is 88% , 
the empirical logit for this group in the validation sample only gives a success rate 
of 68% , even lower than the predicted rate for the next lowest risk group. Again, 
the fitted model is greatly exaggerating the power of the covariates to differentiate 
between high and low risk cases.

2.2  Copas (1983). Regression, prediction and shrinkage, JRSSB, 45, 311–335

The main aim of the paper is to discuss shrinkage of predictions for a number of 
different regression models and to show how the deterioration in fit between retro-
spective and prospective samples can be predicted in advance. The simplest model 
is linear regression, as in the first example, where we have seen that the deterioration 
in fit corresponds to the difference between the slopes of the solid and dotted lines 
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in Fig. 1. The linear case is discussed in some detail in Sect. 3 of the paper, with the 
case of logistic regression discussed in Sect. 8. Here is a simplified version of the 
arguments to give an outline of the main ideas involved.

Linear Regression. To simplify the notation, assume that both x (the vector 
of covariates) and y (the outcome variable) are centred about their means. We 
assume that the observed values of x are multivariate normal with mean zero and 
variance matrix V, and that y|x follows the usual linear regression model with 
regression vector � and residual variance �2:

Then for a construction sample of size n, the fitted regression vector is

giving the fitted values

A basic property of least squares shows that the linear regression of y on ŷ is 
simply

For the first example, this is the solid diagonal line shown in Fig. 1.
For the validation sample, suppose we sample independent values of x and y 

from exactly the same model as before, but now base predictions on the regres-
sion vector already fitted from the construction sample. Then, the linear regres-
sion of y on ŷ for the validation sample is

where

The numerator of K depends on the unknown regression vector � , but it can be 
estimated by noting that

where p is the dimension of the covariate vector x. This suggests the estimate

x ∼ N(0,V) , y|x ∼ N(�Tx, �2) .

𝛽 ∼ N(𝛽, n−1𝜎2V−1)

ŷ = 𝛽x.

E(y|ŷ) = ŷ.

E (y|ŷ) = Kŷ

K =
𝛽TV𝛽

𝛽TV𝛽
.

E (𝛽TV𝛽) =𝛽TV𝛽 +
p

n
𝜎2

= E (𝛽TV𝛽) +
p

n
𝜎2
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where

This is Fisher’s F statistic, the ratio of the regression mean square to the residual 
mean square in the analysis of variance of the linear regression. The value of F is 
the usual measure of the strength of evidence for a significant dependence of y on x. 
A large value of F indicates strong dependence and a value of K̂ close to one (little 
shrinkage). The data in the first example give F = 3.3 and K̂ = 0.67 . The line with 
slope 0.67 has already been shown as the dotted line in Fig. 1, giving a good fit to 
the validation points marked o on the graph.

Logistic regression. Shrinkage of predictors from logistic regression, as used in 
the second example, is studied in Sect. 8 of the paper. The fact that logistic regres-
sion is a generalized linear model suggests that local approximations to the sampling 
distribution of maximum likelihood estimates will follow a similar pattern to the 
linear regression case.

To simplify the notation, suppose that x has first been centred about its mean, so 
we can assume from now on that x has mean zero with some covariance matrix V. 
The binary outcome y = S∕F is assumed to follow a logistic regression with param-
eters (�, �) , so the model is

For a construction sample of size n, let �̂� and 𝛽  be the fitted parameters giving the 
predicted logits

To study validation fit, we apply the same prediction model to a new set of inde-
pendent samples of (y, x) and then fit the simple logistic regression model of the true 
logits on the predicted logits based on the original logistic estimates. Section 8 of 
the paper shows that the new predicted logits found in this way are approximately

where

p is the number of covariates, and �2 is the usual deviance statistic for testing the 
significance of a generalized linear model. For the logistic example here (Example 

K̂ =
n𝛽TV𝛽 − p𝜎2

n𝛽TV𝛽

=1 −
1

F

F =
n𝛽TV𝛽

p𝜎2
.

x ∼ N(0,V) , logit P (S|x) = � + �Tx.

logit P̂ (y = S|x) = �̂� + 𝛽Tx.

logit P̂ (y = S|x) = �̂� + K̂𝛽Tx,

K̂ = 1 −
p

𝜒2
,
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2), we find that K̂ = 0.51 , corresponding to the dotted line in Fig. 2. The lines with 
slopes 1 and 0.51 in Fig. 2 give good fits to the construction and validation samples, 
respectively. Evidently, the ability of the model to discriminate between high risk 
and low risk cases in the validation sample is much worse than would be expected 
from the fit to the construction sample. The smaller value of K suggests that Exam-
ple 2 suffers more shrinkage than in Example 1, even though the construction sam-
ple size in the second example is considerably larger than in the first example. This 
may be a general characteristic of binary regression models.

As well as discussing these and other examples, the paper examines connections 
between the “pre-shrunk” predictors (with the factor K) as suggested here, and fitted 
models using other approaches to regression. There is a clear similarity with meth-
ods of Bayes estimation, which give a positive prior probability to the null hypoth-
esis � = 0 , and also clear links with Stein-type estimates which again imply shrink-
age towards � = 0 . An important aspect is the change in dimension from the original 
regression (with p covariates) to the simple (univariate) regression of y on predicted 
values ŷ.

This paper was written almost 30 years ago, and since then, there has been a very 
considerable expansion of the literature on non-standard regression methods. How-
ever, these non-standard methods have been developed by statistical specialists, and 
until they have been reflected in standard software packages, textbooks and courses, 
most practitioners will no doubt continue to use the familiar standard regression 
methods. The approach of the paper is to accept the model as fitted by standard 
methods and then to study how it can best be used for prediction.

3  Non‑random samples

3.1  Application

My interest in this topic started with some joint work with an economist in my 
university who introduced me to the econometrics literature on “selectivity bias”. 
Nearly all standard statistical methods depend on the assumption that the data we 
observe are a random sample from the population of interest, even though in prac-
tice we routinely use the same methods in observational data analysis. Selectiv-
ity bias arises if the randomization assumption is false. The best known example 
in statistics is missing data—standard methods are only valid if the data are MAR 
(missing at random), bias arising if the mechanism which determines whether or not 
data are observed is correlated with the underlying random variables of the assumed 
model. Another familiar example is in survey analysis when the subjects in the sam-
ple are self-selected, each person deciding themselves whether or not to be included 
in the sample.

We studied a number of interesting examples in economics, but I then came 
across a clinical trial being conducted in a local hospital which raised very similar 
issues (Burton and Wells, 1989). The data are shown in Fig. 3. During the 1980’s, 
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the renal unit of this hospital was testing a new form of kidney dialysis (ambulatory 
peritoneal dialysis) which was just as clinically effective as the traditional method 
(haemodialysis) but had a number of practical advantages which might affect the 
length of time that patients have to stay in hospital. During the trial, patients were 
allocated to either the new or the old treatment. Figure 3 only includes the data for 
the new treatment, and the two variables plotted in the graph are x, the date when the 
patient was entered into the trial (in years from 1980 to 1986), and y, the hospitaliza-
tion rate defined as the log of the average number of days per year which the patient 
stayed in hospital.

An unexpected feature of Fig. 3 is the apparent reduction in the value of y as x 
increases. A linear regression analysis of y on x gives a significant trend, shown as 
the solid line on the plot. The values of y may well be different between the two 
treatments, but all the patients featured in the plot have been give the same treat-
ment and so there is no obvious reason why there should be any trend over time. 
The question of interest in this example is whether this trend could be explained as a 
consequence of selectivity bias.

3.2  Copas and Li (1997), Inference for non‑random samples, JRSSB, 59, 55–95. 

The example in Fig.  3 is just one of several applications discussed in this paper. 
One general approach explored in the paper is to develop a local sensitivity analy-
sis for assessing the sensitivity of standard methods of inference to departures from 
the randomization assumption. The paper defines a scalar sensitivity parameter � , 
which reflects the degree of non-randomness in the design of the data ( � = 0 under 
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the usual randomization assumptions), and then develops local approximations of 
relevant aspects of inference for small values of � . However, for the example here, a 
more direct approach is possible using a special case of the model set out in Sect. 2 
of the paper.

3.2.1  Model A

As discussed above, if we make the usual assumption that the data are a random sam-
ple, then the linear regression of y on x provides a valid inference, giving the straight 
line shown in Fig. 3, clear evidence that y does tend to decrease with time. The plot also 
shows that the number of patients allocated to the new treatment tends to increase over 
time (more points to the right of the plot). Hospital records of the allocation of patients 
to the two treatments were used to fit the probit regression model

where S|x is the event that a patient was allocated to the new treatment at time x, and 
Φ is the standard normal distribution function. As regression of y on x is condition-
ing on x, the fact that the allocation process depends on x is irrelevant as far as the 
randomization assumption is concerned.

But, further information about this trial showed that this was NOT a randomized 
controlled clinical trial in the usual sense in medical statistics, raising substantial 
doubts about the validity of Model A. The allocations of patients to the treatments were 
not determined by a simple randomizing process but by the doctors who were treating 
these patients. There may well have been subjective biases influenced by the patients’ 
clinical characteristics which might be correlated with the subsequent values of y. This 
would clearly undermine the validity of the randomization assumption required by 
Model A.

3.2.2  Model B

Although the data do suggest that y decreases with x, a reasonable a priori assumption 
would be that y is in fact independent of x—a patient’s hospitalization rate should not 
depend on when the patient happens to have entered the trial. In this case, the model for 
the values of y should simply be a random sample from, say, a normal distribution with 
mean � and variance �2 . The allocation process is modelled by the fitted probit regres-
sion model (1).

This leads to a special case of the simultaneous equation model discussed in Sect. 2 
of the paper:

where (�1, �2) is bivariate standard normal with correlation � . The first equation 
specifies the values of y. The second equation specifies a latent selection variable 

(1)P(S|x) = Φ(−0.54 + 0.7x)

y =� + ��1

z = − 0.54 + 0.7x + �2



624 J. Copas 

1 3

z: y is observed if and only if z > 0 . This model is based on papers published in the 
econometrics literature, in particular Heckman (1976) and Heckman (1979).

The second equation gives

which is exactly the same as Eq. (1) above.
Using standard properties of the bivariate normal distribution, we get

where Λ(u) = �(u)∕Φ(u) is Mill’s Ratio, the ratio of the standard normal density 
to the standard normal distribution function. Similarly, the model also gives the 
variance

Equations (2) and (3) specify a nonlinear regression model for the observed val-
ues of y and x, which can be fitted by weighted least squares in the usual way, giving 
estimates of the remaining parameters � , � and � . Substituting these estimates into 
(2) gives the fitted regression model under Model B. Evaluating this function for 
x = (1, 2,⋯ , 5) gives the points marked O in Fig. 3. These values are almost indis-
tinguishable from the linear regression line fitted under Model A. The Mills ratio Λ 
is a convex function, but evidently the values x used here fall into the range when it 
is close to linearity.

These data are a good example of the importance of randomization assumptions 
in statistical analysis. We have two different models, A and B. Model A assumes the 
data are random with selection function (1), an ignorable model in the sense that 
allocation depends on x but not on y. Model B, on the other hand, implies the alloca-
tion model

which, when � ≠ 0 , is non-ignorable since the allocation explicitly depends on both 
x and the dependent variable y. However, Fig. 3 shows that the fitted regression of 
y on x is almost exactly the same, both models showing a clear observed decline in 
y over x. But the interpretation of the models is quite different: model A allows for 
a structural dependence of y on x, model B asserts that the there is only an appar-
ent dependence between the two variables, the observed dependence being simply a 
consequence of the sample selectivity specified in Eq. (4). Under model A, the fitted 
slope of y on x is an unbiased estimate of the true slope. Under model B, the true 
slope is known to be zero, the fitted slope being entirely caused by selectivity bias.

Just by looking at the data (the scatter of points in Fig.  3), it is impossible to 
know which of these two models is more likely to be correct and therefore impos-
sible to have a clear interpretation of the results of the analysis. Model choice must 
depend on information outside of the data; in this case on the way, the hospital has 

P (S|x) = P (z > 0|x) = Φ(−0.54 + 0.7x)

(2)E (y|x, S) = E (y|x, z > 0) = 𝛽 + 𝜌𝜎Λ(−0.54 + 0.7x)

(3)
Var (y|x, S) = �2[1 − �2Λ(−0.54 + 0.7x){−0.54 + 0.7x + Λ(−0.54 + 0.7x)}].

(4)P (S�x, y) = P (z > 0�x, y) = Φ

�
−0.54 + 0.7x + 𝜌(y − 𝛽)∕𝜎

√
(1 − 𝜌2)

�
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allocated the patients to the treatments. More generally, for a statistical analysis to 
be convincing, its assumptions have to reflect the scientific context of the experi-
ment, which gave rise to the data, and not just chosen on the basis of the data alone.

A more general version of Model B could allow y in the first equation to also 
involve covariates. For example, if � in the first equation is replaced by �0 + �1x , 
then the extended model also includes Model A as the special case when � = 0 . Fit-
ting the extended model with � as an unknown parameter, however, depends on the 
ability of the weighted least squares algorithm to differentiate between two covari-
ates, x and the nonlinear function of x involved in Eq. (2). The near linearity of the 
points marked O in Fig. 3, however, means that these two covariates will be almost 
collinear, and so the weighted least squares algorithm will be very unstable. This 
problem, and more general versions of it, have been much discussed in the econo-
metrics literature, leading to the suggestion that models of this type (the Heckman 
method) should only be used when the y-equation and the z-equation are based on 
different covariates.

4  Model sensitivity

4.1  Application

This application arose from discussions within the Methodology Committee of the 
Office of National Statistics (ONS). The ONS is the central statistics department of 
the UK government, and the task of the committee is to discuss and comment on the 
statistical methods being used by the government statisticians. It is another very rich 
source of interesting statistical problems.

One of the responsibilities of the ONS is to compile regular statistical reports on 
the incomes (or wages) received by the working population of the UK. An obvious 
question is, given data on incomes, how do we estimate the mean income? This is 
not a trivial question, because income distributions tend to be highly skewed and so 
sample averages can be very sensitive to outliers. My suggestion to the committee 
was that, instead of using one of the methods suggested in the literature for down-
weighting the effect of outliers, it might be better to fit a parametric model which 
allows for skewness and then to use the fitted parameters of the model to estimate 
the expectation.

The simplest possibility is to assume that income has a log-normal distribution, 
and so

Then the mean income is

and hence the maximum likelihood estimate of

X = log ( income ) ∼ N
(
�, �2

)
.

E {exp(X)} = exp
(
� +

1

2
�2
)
,
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the log of the mean income, is simply

where x̄ and s2 are, respectively, the sample mean and sample variance of the data 
values of log(income).

The log-normal model gives a good fit to the observed sample of incomes, but 
we know that a good fit to the data does not necessarily mean that the model is 
known to be correct. The log-normal model may be just one of a family of alterna-
tive models, G say, which also give acceptable fits to the same data. The fact that 
the data will give us very little reason to discriminate between the different models 
within this set suggests that when we assess the uncertainty in �̂� we should also 
include the uncertainty arising from the choice of the different models within G. So 
the challenge arising from this simple example is how to develop a sensitivity analy-
sis which allows for uncertainty both within and between the class of well-fitting 
models.

4.2  Copas and Eguchi (2010) , Likelihood for statistically equivalent models. 
JRSSB, 72, 193–217

This in one of several joint papers published with Professor Shinto Eguchi of the 
ISM, giving a general likelihood theory for problems similar to that in the above 
example. The basic theory is put forward in Sects. 2.1–3 of the paper, illustrated 
by the log-normal incomes example in Sect. 2.4. The term “statistically equivalent 
models” in the title of the paper refers to the set of alternative models like G in the 
example, models which could also have been chosen as comparable alternatives to 
the working model which was originally fitted to the data. All models considered 
in the paper are assumed to satisfy the usual regularity assumptions needed for first 
order likelihood asymptotics.

4.2.1  Basic set‑up

Suppose that the working model, f, for an observed sample x1, x2,… , xn is

We assume that model f has been chosen because it gives a good fit to the data.
However, there will also be many other well-fitting models which could also have 

been chosen for the analysis. For any such alternative model, g say, we assume the 
decomposition

� = log{ E (exp(X)},

�̂� = x̄ +
1

2
s2,

f ∶ X ∼ f (x, �) .
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If � = 0 then g = f  , so we can think of � as the distance between g and f. The fact 
that both g and f give good fits to the same data suggests that � will be small. Sec-
tion 2.1 of the paper shows that, under reasonable regularity assumptions,

Similarly, we can think of the function u(x, �) as the direction of the displacement 
between g and f. With no loss of generality, we can assume that u(x, �) is standard-
ized so that

Since

the asymptotic log-likelihood ratio test of g against f accepts g at level � if

where

and z� is the appropriate percentage point of the standard normal distribution. We 
define G as the set of models g which are accepted by this likelihood ratio test. 
As only local departures from f are involved, the paper shows that the parameter � 
appearing in these expressions can safely be replaced by its maximum likelihood 
estimate under model f.

As the parameter � only has meaning within the model f, we need to define the 
parameter of interest as a characteristic of the problem rather than of the model 
which happens to have been selected. The paper does this by defining, for any model 
g, the parameter of interest, � , to be the solution of the estimating equation

For example, in the mean incomes problem, the estimating function a(x,�) is

Under model f, this implies that � = log{Ef exp(X)} as before.

g ∶ X ∼ g(x) ∝ exp{�u(x, �)}f (x, �) .

� = O

(
n
−

1

2

)
.

Ef u(X, �) = 0 and Varf u(X, �) = 1 .

u(xi, �) ∝ log{g(xi)∕f (xi)} ,

|Su| ≤ z� ,

Su = n
−

1

2

n∑

i=1

u
(
xi, �

)
,

� ∶ Ega(X,�) = 0 .

a(x,�) = 1 − exp(x − �) .
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4.2.2  Likelihood functions

If �̂�f  and �̂�2
f
 are respectively the maximum likelihood estimates of � and its variance 

under model f, define the pivital function

The asymptotic log-likelihood function for � under f is then

Let Lg(�) be the corresponding asymptotic log-likelihood function based on 
model g. These functions, for g ∈ G , define a family of likelihoods which, depend-
ing on the direction function u, may be displaced to the right or to the left of Lf (�) . 
If we are interested in the range of values of � which could be considered plausible 
under at least one model g ∈ G , then it is the envelope of this family of likelihoods,

which we need to consider. Section 2.3 of the paper shows that

where

𝜔(𝜙) =
n

1

2

(
𝜙 − �̂�f

)

�̂�f
.

Lf (�) = −
1

2
{�(�)}2 .

LENV (�) = sup
g∈G

Lg(�)

LENV (�) = −
1

2

[
max{�|�(�)| − (1 − �2)

1

2 z� , 0}
]2

,
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Fig. 4  Log likelihoods for mean income
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and s(x, �) is the score function of the model f. The parameter � plays a crucial role 
in this discussion. If � = 1 , LENV ≡ Lf  and so g is essentially just a re-parameteriza-
tion of model f. As � decreases from 1, LENV becomes increasingly dispersed until, 
when � = 0 , the envelope likelihood is identically zero for all � , indicating that � is 
then unidentifiable (no inference is possible).

Example The data used in the ONS study of incomes mentioned earlier are 
confidential and so I cannot illustrate the above theory on the actual data used, 
but I can show these likelihood functions for a smaller simulated data set having 
very similar characteristics to actual incomes in the UK in 2002. The sample size 
is n = 100 , much smaller than the actual data set used in the application. The data 
are values of X = log income , and the parameter of interest is � = log{ E exp(X)} 
as before. The working model f assumes that X is normally distributed.

The solid line shown in Fig. 4 is Lf (�) plotted against exp(�) , the values of the 
actual mean income or wages (transforming the horizontal axis from � to exp(�) 
accounts for the asymmetry of this likelihood function). LENV (�) is plotted against 
income to give the dashed line in the plot.

A standard asymptotic property of regular univariate log-likelihood functions 
L(�) is that the approximate 95% confidence limits for � are given by the two 
solutions of

Thus, if the maximum of L(�) is (arbitrarily) set to zero, the confidence limits are 
given by the intersections of L with the horizontal line at L = −2.

Applying this to Lf  in Fig.  4 gives the confidence limits for mean income per 
week as ( £ 680, £ 1200), an interval of width £ 520. Applying this to LENV gives 
intersections at ( £ 560, £ 1400). We do not know the confidence intervals for indi-
vidual functions g, but we do know that, over the set g ∈ G , the lower confidence 
limit can be as low as £ 560, and the upper confidence limit can be as high as £ 
1400, a difference of £ 840. If we interpret the width of a confidence interval as a 
crude measure of uncertainty, then a conservative estimate of the effect of model 
uncertainty in this example is that it may have increased the overall uncertainty in 
the estimate of mean income by about 60% . Of course the sample size in the ONS 
analysis is much larger than in the example here, and so the width of confidence 
intervals will be much narrower, although the relative uncertainties of different 
methods are likely to be quite similar.

Figure 4 also shows another log-likelihood function given by the dotted line, LSP , 
described in Sect. 2.3 of the paper as the semi-parametric likelihood. This is centred 
on the nonparametric estimate of � given by

� = corrf {a(X,�), s(X, �)}

L(�) = sup
�

L(�) − 2.

n−1
∑

a
(
xi, �̃�

)
= 0 ,
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which for a = 1 − exp (x − �) is simply the sample mean of the observed incomes. 
The shape of LSP is determined by assuming that �̃� is normally distributed with 
mean � and variance taken to be the same as its variance under model f.

The sample values of income used in this example have one rather large and 
influential observation, which has a marked effect on the sample average of the 
actual incomes but relatively little effect on the sample average of the log incomes. 
As expected, removing this outlying observation from the sample has a much more 
marked effect on LSP than on Lf  or its neighbouring likelihoods Lg with g ∈ G.

5  Publication bias

5.1  Application

The second example in Sect. 2.1 of this paper arose from my collaborative work 
with the UK Ministry of Justice. The application in this section, shown in Fig. 5, 
also arose from this collaboration. Figure  5 is a funnel plot of a meta-analysis 
which appeared in the Journal Criminology in 1990, probably the first published 
systematic review in this area (Andrews et al., 1990). It was received with con-
siderable interest at the time, since it was one of only very few research stud-
ies in criminology which claimed to provide clear evidence that a newly devel-
oped policy for the supervision of juvenile offenders actually ‘works’ in the 
sense of reducing subsequent offending. I was asked to comment on the quality 
of the statistical methods being used in this paper. Although standard methods 
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Fig. 5  Funnel plot of the criminological review
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of meta-analysis had been followed, it was only when I plotted the data, result-
ing in Fig. 5, that there appeared to be a substantial problem of publication bias, 
indicated by the very marked skewness of this plot. This is likely to have severely 
exaggerated the main conclusion of the review.

The review studied the results of 29 separate clinical trials, each comparing the 
effectiveness of a new form of supervision of convicted juvenile offenders with the 
traditional form, measuring success as the absence of any further criminal convic-
tions within a fixed period of follow-up. Each study results in a 2 × 2 table of the 
numbers of successes and failures for each of the two treatments, and hence a value 
of the traditional �2 statistic. The meta-analysis was based on a fixed effects model, 
defining the treatment effect estimate for the ith study, with its asymptotic sampling 
distribution, as

where ni is the study sample size and ± indicates whether the observed success rate 
for the new treatment was higher or lower than the rate observed for the controls. 
This way of defining the treatment effect has traditionally been used in psychology 
and the social sciences, although most recent research in the medical sciences has 
almost always defined y as the log odds ratio or the log relative risk, with the vari-
ance taken to be the value of its usual estimate.

The funnel plot in Fig. 5 is simply the plot of 1∕sdi =
√
ni on the vertical axis 

against yi on the horizontal axis. If the above fixed effects model is correct, then 
these points should look like a funnel, with values of yi clustered about a common 
value of � with spread increasing as we move from the top to the bottom of the plot. 
However, this is clearly not the case in Fig. 5—evidently the smaller studies (with 
smaller sample sizes ni ) are skewed to the right, tending to give larger values of yi 
than would be expected from the more accurate estimates nearer the top of the plot. 
This is the “small study effect”, usually taken as a sign of publication bias.

The challenge of this application is to find a relatively simple model with inter-
pretable parameters which can describe skewness observed in a funnel plot and so 
suggest a sensitivity method for assessing publication bias.

5.2  Current work on publication bias

My discussion of the Andrews review, and of similar examples in the medical lit-
erature, are reflected in a number of subsequent statistical papers. My main concern 
in these papers has been to develop a sensitivity analysis which indicates the likely 
effect of publication bias on the main results of the analysis. The method proposed in 
Copas and Shi (2000), sometimes called the ‘Copas method’, has been implemented 
in R software and used in a number of systematic reviews. The method is based on 
an adapted version of the econometric model used earlier in Sect. 3.2 above.

However, this method is not without its problems. Although the non-randomness 
correlation parameter � is well-defined mathematically, it has no clear interpretation 
in terms of identifiable aspects of the problem, and so the dependence of results 

yi = ±

√
�2
i
∕ni ∼ N(�, n−1

i
) ,
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on � can be difficult to interpret. The second problem is that in some examples, the 
numerical algorithm can fail to converge. Current work aims to overcome these 
problems by developing a simpler model with interpretable parameters which can be 
used without the need for complicated numerical algorithms.

Section 3 of Copas (2013) developed a general theory of selection functions for 
publication bias, based on the assumptions that the set of studies which have been 
published (and hence available for inclusion in a systematic review) are a non-ran-
dom selection from the larger population of all the studies which have been carried 
out in the area of interest. A selection function assumes that relevant outcomes of 
the wider population of studies are given by values of a random variable x, and that 
studies with outcome x are selected with probability

for some probability function a(x). The aim is to make an inference about the dis-
tribution of x across the wider population of studies, given only the data on values 
of x within the smaller population of selected studies. Clearly, this inference will 
depend critically on the choices of x and a(x). Usually, little or no information is 
available about the unpublished studies, in which case the choices of x and a(x) can 
only depend on knowledge of the context of the studies and on the data observed in 
the studies which have been published, usually summarized by a funnel plot as in 
Fig. 5. Assessing the effect of publication bias is one of the most difficult problems 
in meta-analysis, and in practice, it is usually ignored altogether. This is equivalent 
to assuming that publication is a purely random process, with a(x) ≡ p for some 
arbitrary constant p. The tacit assumption that journal editors decide to publish sub-
mitted papers purely at random seems entirely implausible.

Taking the criminological review as an example of clinical trials comparing two 
treatments, suppose that, for each trial, y is the estimated treatment effect with variance 
�2 , satisfying the fixed effects model

Assume that the sample size in each trial is sufficiently large that we can ignore the 
sampling errors of the within-trial variance estimates. The usual within-trial signifi-
cance test of H0 ∶ � = 0 is to refer t = y∕� to the standard normal distribution. For 
any value of �,

where

There is substantial evidence, at least in the medical literature, that studies 
reporting a significant difference between the two treatments are more likely to be 

P ( select |x) = a(x)

y ∼ N
(
�, �2

)
.

t =
y

�
∼ N(�, 1)

� =
�

�
.
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published than studies reporting non-significant results (Dwan et  al., 2013). If a 
2-tail test is appropriate, and S is the event of selection (publication), then this sug-
gests that P (S|t) should be an increasing function of |t|. A simple example of such a 
selection model is the exponential model

with two selection parameters � ≥ 0 and � ≥ 0 . If � = 0 then selection is independ-
ent of t and hence selection is a purely random process (and hence ignorable). The 
size of � is the principal determinant of publication bias, with � controlling the mar-
ginal probability of selection (the overall proportion of papers which are published).

Equation (5) gives

Completing the square in this last expression allows us to write it as a linear combi-
nation of two normal density functions f1(t) and f2(t) , giving

with

Integrating (6) over t gives

Multiplying (6) by t and then integrating over t gives the conditional mean

Similarly, we can get the variance and other properties of the distribution of t for the 
selected studies.

Making these assumptions, the log-likelihood function L(�, �, �) for any observed 
meta-analysis follows immediately from Eqs. (5) and (7). If ti and �i are the values 
of t and � for the ith study, and Si is the event that the ith study is selected, then, 
omitting irrelevant additive constants,

(5)P (S|t) = 1 − exp{−(� + �t2)}

P (t ∩ S��) = P (t��) P (S�t, �)

=
1√
(2�)

�
exp

�
−
1

2
(t − �)2

�
− exp

�
−
1

2
(t − �)2 − � − �t2

��
.

(6)P (t ∩ S|�) = f1(t) −

{
(1 + 2�)−

1

2 exp

(
−� −

�

1 + 2�
�2

)}
f2(t)

f1(t) ∼ N(�, 1) and f2(t) ∼ N

(
�

1 + 2�
,

1

1 + 2�

)
.

(7)P (S��) = 1 −
1

√
1 + 2�

exp

�
−� −

�

1 + 2�
�2

�
.

(8)E (t|S, �) = �
2� + P (S|�)

(1 + 2�) P (S|�)
.

L(�, �, �) =
∑

i|Si

{
−

1

2�2
i

(ti − �)2 + log P (Si|ti) − log P (Si|�i)
}

.
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A simple numerical search of the values of this log-likelihood function for the 
data in Fig.  5 shows that, for this example, the maximum likelihood estimates of 
(�, �, �) are approximately

Here are four ways of illustrating the fit of this model to the criminological data 
in Fig. 5 :

(a) Severity of Selection
Figure 6 shows a plot of the estimates of (7), the probability of selection for val-

ues of � within the range observed in the meta-analysis. Evidently, the largest study 
(with smallest � ) is three times more likely to be published than the smallest study 
(with largest � ). The dependence of selection on the size of t is much stronger than 
in the naive “missing at random” model tacitly assumed in most applications of 
meta-analysis.

(b) The Fitted Funnel Plot
Writing y = t� and � = �� , Eq. (8) gives

where

�̂� = 0.16, �̂� = 0.00, 𝛽 = 0.01 .

(9)E (y|S, �) = � E (t|S, �) = k�� (9)

k� =
2� + P (S|�)

(1 + 2�) P (S|�)
.
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As P (S|�) decreases with � (see Fig. 6), the factor k� is an increasing function of 
� . This means that the fitted value E (y|S, �) increases from � , for very large studies 
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(at the top of the funnel plot), to progressively larger values towards the bottom of 
the plot. This is seen in Fig. 7, which shows values of E (y|S, �) as the solid line 
superimposed on the funnel plot of Fig. 5.

Also shown in Fig. 7 is a LOWESS scatter plot smoother of the observed values 
yi against 1∕�i (the dotted line). The fact that the solid line is quite close to this crude 
nonparametric estimate of the regression of y on 1∕� suggests that the fitted values 
given by the model give a good estimate of the skewness of the funnel plot.

(c) The Bias-corrected Funnel Plot
Equation (5) shows that

is an unbiased estimate of � for all values of � . The plot of 1∕�i against ỹi is therefore 
a bias-corrected version of the funnel plot. These points are added to the original 
funnel plot of the criminological review in Fig. 8—the original points are shown as 
o (as before), and the bias-corrected points are shown as x. The shape of the new 
points are as one expects of a funnel plot, successfully removing the skewness of the 
original plot.

(d) Estimates of  �
The usual estimate of � in fixed effects meta-analysis is the weighted average

For the criminological data, this gives

But for the bias corrected estimate, we replace yi by ỹi to give

As expected, this estimate is close to the maximum likelihood estimate of � found 
earlier.

These two estimates are shown as the vertical lines in Figs. 7 and  8. Evidently, 
for these data, publication bias has resulted in the conventional analysis over-esti-
mating the treatment effect by about 40%. In most applications of statistics, a bias of 
this magnitude would be thought of as a very major problem.

Although the model proposed here seems to give a good description of features 
of the funnel plot in Fig. 5, further research is clearly needed on the theoretical prop-
erties of the model and its suitability for use in other examples. An extension of the 
model to allow for random effects is clearly needed. Although a variance compo-
nent could be estimated in the usual way, this would ignore the effect of the selec-
tion model assumed here. It may be possible to add a variance component parameter 
directly into the likelihood function. A major practical problem is that most system-
atic reviews have fewer studies than in the example used here, which would make 

ỹi = yi∕k𝜎

�̂� =
{∑

𝜎−2
i

}−1 ∑(
yi𝜎

−2
i

)
.

�̂�1 = 0.228 .

�̂�2 = 0.163 .
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it much more difficult to estimate the selection parameters � and � . The review by 
Dwan et al. (2013) referred to earlier provides some empirical estimates of the pro-
portion of studies reporting significant treatment effects in published studies, as well 
as in unpublished studies. The differences between these estimates across a number 
of different medical areas can provide estimates of � and � which might provide a 
prior distribution for a Bayesian analysis. Hopefully, further research on these and 
other aspects will be reported in a future publication.
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